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Abstract

This paper studies frequent-offer limits of perfect Bayesian equilibria in the
alternating-offer bilateral bargaining model with private correlated values. The
correlation of values is modeled via the global games information structure: values
depend on the unobserved quality of the object and idiosyncratic factors. For any
level of correlation we construct a punishing path that exhibits the Coasian dynam-
ics and enables to sustain a variety of outcomes even when the correlation of values
is almost perfect. We characterize the Pareto frontier of frequent-offer PBE limits
as the correlation approaches perfect and show that such limits exhibit no delay,
but the surplus split generally differs from that in the complete-information game.
We also construct frequent-offer PBE limits that exhibit trade delays even when
the correlation of values is close to perfect. Our findings highlight the role of public
information for bargaining delays.
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1 Introduction

In many markets, prices are negotiated bilaterally and parties’ privately known valuations
are correlated. Examples include over-the-counter (OTC) markets for financial assets, real
estate, private equity, and durable goods such as cars, private jets, etc. In such markets,
values depend on both the unobserved “quality” of the object of trade and idiosyncratic
factors. For example, in OTC markets for financial assets, such as corporate bonds or
collateralized debt obligations, the price a trader is willing to pay or accept for an asset
depends on the risks associated with it as well as the trader’s portfolio strategy and
hedging needs. Differences in values can also arise due to discrepancies in the subjective
evaluations of the asset by traders. The bargaining literature has so far focused exclusively
on one-sided or two-sided independent private information, but has left unaddressed the
case of two-sided correlated private information.

This paper studies frequent-offer limits1 of perfect Bayesian equilibria (PBE) of the
alternating-offer bilateral bargaining model with private correlated values. We show that
even when values become almost perfectly correlated, the bargaining outcome can differ
from the complete-information outcome in both the split of the surplus and delay. In this
limit, while players’ information about values is precise, a variety of bargaining outcomes
is possible because of the lack of common knowledge about values. This result stresses the
role of public rather than private information for predicting the bargaining outcome, and
shows that the Nash bargaining solution (Nash (1953)) commonly used in applications as
a reduced form for the complete-information bargaining outcome may be less compelling
in opaque markets with scarce public information, e.g. OTC markets.

The correlation of values is captured via the global games information structure com-
monly used in the global games literature (see Morris and Shin (1998, 2001)). Specifically,
players’ types are uniformly distributed on a “diagonal stripe” inside the unit square (Fig-
ure 1). Values are private: players’ values are strictly increasing functions of their own
types. Thus, the buyer with a higher value assigns positive probability to an interval of
seller’s types with higher costs. In the OTC example, the buyer of the asset with a high
valuation attributes it partially to low risks associated with the asset, and hence, predicts
that the seller’s valuation is also relatively high.2 The global games information structure

1The focus on frequent-offer limits is standard in the bargaining literature for a number of reasons
including the focus on sources of bargaining delay beyond the exogenously assumed infrequency of offers,
robustness of such limits to details of the bargaining protocol (e.g. Rubinstein (1982), Abreu and Gul
(2000)), and technical challenges in formulating games directly in continuous time (Simon and Stinch-
combe (1989)).

2The private values assumption is relevant in OTC markets e.g. when bargaining occurs through
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Figure 1: Distribution of types. Types (s, b) are uniformly distributed on the diagonal stripe
of width 2η inside the unit square. The bold line depicts the support of optimistic conjectures of
the buyer.

is quite rich and incorporates a variety of correlation levels ranging from almost perfect
correlation (very narrow stripe) to independent values (very wide stripe).3 We consider
the case of no adverse selection, i.e. for any realization of types gains from trade are
positive.4

Given the strong notion of the correlation of values and no adverse selection, one may
expect that as the correlation of values becomes almost perfect, the bargaining outcome
converges to the complete information outcome studied in Rubinstein (1982), in which
equally patient players immediately split the surplus equally. Surprisingly, we show that
even for almost perfect correlation, a variety of bargaining outcomes can be sustained
as frequent-offer PBE limits and we obtain the type of multiplicity that is common in
bargaining models with two-sided independent private information about values. To shed
light on this multiplicity recall that with independent values, multiple outcomes can be
sustained as frequent-offer PBE limits with optimistic conjectures in which, for example,
after the seller’s deviation, each type of the buyer puts probability one on the lowest

brokers that trade on behalf of their clients. Clients value the asset directly and the asset quality
determines the price they are willing to pay or accept for the asset. The brokers’ payoffs equal the
difference between their clients’ values and the actual price of trade. Since brokers’ values are not derived
directly from the asset, the private-values assumption is justified.

3We also allow for a rich class of mappings from types into values. This way, it is possible to match the
empirical marginal distribution of values of both sides by varying the mappings from types into values.
In this respect, the distributional assumption is not as restrictive as it might seem at first.

4This assumption is realistic in OTC markets where participants trade to manage liquidity. In asset
markets, the seller can be forced to liquidate her positions because of the urgent need to raise cash, and
other things equal, her value of the asset is lower than the value of the buyer who is not hit by the
liquidity shock.
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type of the seller. With such beliefs, there is a continuation equilibrium with the Coasian
property giving the lowest (over all continuations) share of the surplus to the deviator.
When values are highly correlated however such optimistic conjectures result only in
a marginal belief updating (the diagonal stripe in Figure 1 is very narrow). We show
that nevertheless there is a continuation equilibrium with optimistic conjectures with
the following contagious Coasian property: in the frequent-offer limit it gives as harsh
punishment to the deviator as in the case of independent values. The key observation is
that the Coasian property obtains in the game between the lowest type of the seller and
a narrow range of buyer types that under optimistic conjectures assign probability one
to the lowest type of the seller. The contagion argument allows us then to extend the
Coasian property for types at the bottom to the rest of types.

Further, we characterize the Pareto frontier of frequent-offer PBE limits as the cor-
relation of values approaches perfect. On this Pareto frontier, the bargaining outcomes
are efficient as in the complete information case, however, the ex-ante split of the surplus
between equally patient players in general differs from equal. To characterize the Pareto
frontier we construct PBEs with the following segmentation dynamics. There is a number
of endogenously defined segments and players with their first offers announce segments.
If players agree on the segment, they trade at the price corresponding to the segment,
otherwise, the war-of-attrition type of dynamics emerges: both sides continue insisting on
their initial announcements until one of the sides gives in. Initial announcements allow
players to quickly establish the common knowledge of a small set of types and thus avoid
the inefficient bargaining delay. Moreover, by increasing the number of segments, we can
construct PBEs that approximate any point on the Pareto frontier or approximate the
complete information outcome.

While bargaining outcomes on the Pareto frontier feature immediate trade, we also
construct inefficient frequent-offer PBE limits that exhibit delay even when the correlation
of values is close to perfect. Such outcomes exhibit realistic two-sided screening dynamics.
Both sides start from extreme price offers and gradually converge in their offers. All types
on each side pool on price offers, but separate by the time they give in and accept the
opponent’s offer. Unlike in PBEs with segmentation dynamics, offers do not reveal the
private information and trade happens through gradual acceptance leading to the ineffi-
cient bargaining delays. In a companion paper (Tsoy (2016)), we show that when types
are affiliated and the distribution of types has full support, under a weak version of the
requirement that the support of beliefs cannot expand,5 bargaining delays are necessary

5The assumption of non-expanding support is common in the bargaining literature (see Bikhchandani
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in separating frequent-offer PBE limits with almost perfect correlation. Moreover, under
this alternative model of correlation, two-sided screening dynamics can still be sustained.
Therefore, we conclude that PBEs with segmentation dynamics are not robust to the
model of the correlation of values, while PBEs with two-sided screening dynamics are.

The persistence and robustness of the two-sided screening dynamics sheds light on the
role of public information in bargaining which has not been emphasized in the bargaining
literature. In our model, when the correlation is high, the private information of players
is quite precise, while the public information about values remains relatively crude (more
precisely, values are not common knowledge). This aspect is important in OTC asset
markets where only limited public information in the form of credit ratings, benchmarks,
past quotes, etc., is available about assets. At the same time, professional traders are
“sophisticated” and rely in addition on their private information sources to evaluate the
asset riskiness. One might be tempted to conclude that since the information of traders
is more refined when compared to the public information, the public information is ex-
traneous in OTC markets and transparency is not necessary. Our analysis suggests that
the precision of public rather than private information is important to guarantee that the
complete-information bargaining game is a good approximation of such environments,
and in particular, to ensure that the trade is efficient.

Related Literature Our paper is related to several strands of literature. The Nash
bargaining solution is widely used in applications to determine the bargaining outcome.
The axiomatic bargaining problem studied in Nash (1953) gives the prediction about the
split of the surplus, and further non-cooperative analysis (Rubinstein (1982), Binmore
et al. (1986)) shows that when values are common knowledge, this split can be attained
without delay which is how the Nash bargaining solution is used in applications. We
show that when values are almost common knowledge, the bargaining outcome can be
quite different both in terms of bargaining delay and price of trade, and so one has to
be more cautious in applications where the public information is crude, such as in OTC
markets. In this respect, our paper is also related to the literature exploring the effect
of uncertainty and higher-order uncertainty on bargaining outcomes. The literature on
the Coase conjecture shows that the bargaining outcome is sensitive to even a small
amount of private information (see e.g. Fudenberg et al. (1985), Gul and Sonnenschein
(1988), Grossman and Perry (1986), Ausubel and Deneckere (1992a), Gul et al. (1986)).
Feinberg and Skrzypacz (2005) shows that the Coase conjecture itself is not robust to

(1992), Grossman and Perry (1986), Rubinstein (1985a)).
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the second-order uncertainty. While the previous literature assumed big differences in
the support of players’ beliefs to obtain the discontinuity in the equilibrium outcomes, in
this paper, as correlation becomes almost perfect, the supports of players’ beliefs become
concentrated around the realized types. Weinstein and Yildiz (2013) shows that the
complete-information game is not robust to the perturbations of higher-order beliefs,
however, their result involves complex and somewhat artificial types, while our type space
has a natural interpretation.

The bargaining literature with two-sided private information about values focuses
exclusively on independent values. In such models, generally a variety of equilibrium dy-
namics can be sustained with optimistic conjectures, and the literature studied particular
classes of equilibria and restricted attention to one-sided offers.6 Ausubel and Deneckere
(1992b) shows that without the gap between the lowest values of players, in a rich subclass
of sequential equilibria the screening delay is degenerate and essentially no trade happens
as offers become frequent.7 Cramton (1984) constructs an equilibrium where first the
seller gradually reveals her type and then screens buyer types. Cho (1990) considers a
class of equilibria in which the seller’s price offers perfectly separate types in every round.
Both equilibria in Cramton (1984) and Cho (1990) converge to immediate trade at price
equal to the lowest valuation of the buyer as offers become frequent. Cramton (1992)
considers the model with two-sided offers where parties strategically choose the amount
of delay to signal their values.8 Our paper complements this literature by constructing
a rich class of equilibria with segmentation and two-sided screening dynamics in the new
environment with correlated values and two-sided offers and showing that a variety of
bargaining outcomes is possible even with little private information.

Deneckere and Liang (2006), Fuchs and Skrzypacz (2013), Gerardi et al. (2014) ex-
plored the model with one-sided private information about interdependent values.9 In
that model, only one party knows the quality of the object which determines values of
both parties. When the uninformed party makes offers, there is a unique equilibrium
similarly to the Coasian-style models. Our paper differs from this literature in that both

6The exception is Ausubel and Deneckere (1993) which allowed offers by both sides and justified that
the restriction to one-sided offers from the welfare perspective.

7They also construct relatively efficient equilibria in which the static monopoly outcome is realized.
8See also Fudenberg and Tirole (1983) for the analysis of the model with two bargaining rounds,

and Chatterjee and Samuelson (1987) for a neat characterization of the bargaining dynamics under the
additional restriction that the type and action space consist of only two types and two offers. Watson
(1998) analyzed the uncertainty about discount factors.

9An earlier analysis of this model is given in Vincent (1989).
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parties have private information and this information is correlated.10

The segmentation dynamics of PBEs approximating the Pareto frontier are similar to
the war-of-attrition dynamics in reputational bargaining (Abreu and Gul (2000), Kambe
(1999), Compte and Jehiel (2002), Wolitzky (2012), Fanning (2016)). In their models,
commitment types require a fixed share of the surplus. This results into the war-of-
attrition, in which rational types mimic certain commitment types. In our model such
dynamics arise despite the fact that all types are rational. Our paper also gives the
connection between the trade dynamics and primitives such as values of players which
is important for applications, while the reputational bargaining literature is silent about
where the commitment types come from.

Although we use the information structure from the global games literature (Carlsson
and Van Damme (1993), Morris and Shin (1998, 2001)), our results about multiplicity of
limits is quite different from the selection results in the global games literature.11 Mor-
ris and Shin (2012) shows the contagious adverse selection can lead to a market break
down in a static trading game. Differently, we combine the contagion argument with the
Coasian argument to show that even when players have a great flexibility in exchanging
offers, the inefficient trade delay may arise as an equilibrium outcome. Similarly to Morris
and Shin (2012), we stress that the public information ensures efficiency through building
common knowledge among players, as opposed to reducing the adverse selection which
was studied e.g. in Daley and Green (2012), Duffie et al. (2014), Asriyan et al. (2015).

The paper is organized as follows. Section 2 describes the game. Section 3 derives the
optimal punishment for off-path deviations. Section 4 characterizes the Pareto frontier as
the correlation becomes almost perfect and shows that bargaining delay may persist even
when the correlation is almost perfect. Section 5 concludes with the discussion of the the
role of public information in bargaining, robustness of different equilibria, order of limits,
and directions for future research. To maintain continuity of the argument, we relegate
all proofs to the Appendix.

10The relevance of either model depends on the application. While the model with interdependent
values can be applied to study negotiations in primary markets where there is an asymmetry of information
between the originator of the security or asset and the buyer, our model better describes the negotiations
in secondary markets where both sides have some private information arising from their liquidity needs
and differences in the evaluation of the asset.

11This is not entirely surprising given that the contagion argument has less bite in dynamic environ-
ments (see Angeletos et al. (2007), Chassang (2010)).

7



2 The Model

The buyer (he) and the seller (she) negotiate the price of the indivisible good. The
seller’s type s and the buyer’s type b are jointly uniformly distributed on the diagonal
stripe inside the unit square Ωη = {(s, b) ∈ [0, 1]2 : s− η ≤ b ≤ s+ η} (see Figure 1).
The uncertainty parameter η ∈ (0, 1] controls the degree of the correlation of types. Let
π(x) = min{1, x+ η} and π(x) = max{0, x− η}. Given their types, players’ prior beliefs
about the opponent’s type are uniform on Bs = [π(s), π(s)] for the seller type s and on
Sb = [π(b), π(b)] for the buyer type b .

Such an information structure is similar to the global games information structure
and it captures the correlation of values in many markets. For example, in OTC financial
markets, one can think of the asset quality ω reflecting the risks associated with the
asset and types being players’ private signals s = ω + ηs and b = ω + ηb about the asset
quality, where ηb and ηs reflect both discrepancies in the risk evaluation and idiosyncratic
factors affecting valuations, such as portfolio strategy and hedging needs. By varying
η, the model spans a variety of environments. When players have precise information
about each others’ values (e.g. negotiations between sophisticated bond traders that can
evaluate very precisely risks associated with the bond), η could be thought of as small. In
applications where idiosyncratic components are big (e.g. the acquisition of a company),
η could be thought of as large.

The valuation of the good of a type b buyer is v(b), and the cost of selling the good
for a type s seller is c(s) where v : [0, 1] → R and c : [0, 1] → R are strictly increasing,
continuously differentiable functions with derivatives bounded from below and above by
some positive constants.12 Monotonicity of v and c implies that values are positively
correlated. The uncertainty about the type of opponent translates into the uncertainty
about the opponent’s value. We assume that gains from trade are positive for any realized
types. Note that this does not preclude the possibility that c(1) > v(0), and hence, there
does not in general exist a single price that gives non-negative utility to all types.

Bargaining occurs in rounds n = 1, 2, . . . . The length of the time interval between
bargaining rounds is ∆ > 0. Players discount the future at common discount rate r > 0.
Denote by δ = e−r∆ the common discount factor. The seller is active in odd rounds, and

12When types are independent (η = 1), it is without loss of generality to assume that types are
uniformly distributed. For any distribution of values, there is a transformation of functions v and c
that preserves the distribution of values and changes the distribution of types into uniform on the unit
interval. With correlated types this is no longer true as no such transformation is guaranteed to preserves
the correlation. We consider a general class of functions v and c, but restrict the distribution of types to
be uniform.
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the buyer is active in even rounds. An active player can either accept the last offer of
the opponent or make a counter-offer. Once a price offer is accepted, the game ends and
payoffs are determined. If trade happens in round N at price p, the buyer’s utility is
δN−1(v(b)− p) and the seller’s utility is δN−1(p− c(s)).13

In any round n by the beginning of which trade has not happened, a history hn is a
sequence of rejected price offers up to round n − 1. A (pure) strategy of the buyer σnb
is a measurable function that maps any buyer type b and history hn into the acceptance
decision or a counter-offer. The posterior beliefs of the buyer µnb is a measurable function
that maps any buyer type b and any history hn into a probability distribution over seller
types. The strategy σns and the posterior beliefs µns are defined analogously for the seller.14

A perfect Bayesian equilibrium (PBE) consists of a pair of strategy profiles (σnb , σns )
and beliefs (µnb , µns ) that satisfy the sequential rationality and following conditions on
beliefs: (a) Bayes’ rule is applied to update beliefs whenever possible; (b) µnb and µns

do not change in even and odd rounds, resp.; (c) for any history hn, µnb ∈ ∆(Sb) and
µns ∈ ∆(Bs). This is a natural adaptation of the perfect Bayesian equilibrium (Fudenberg
and Tirole (1991)) to the environment with correlated values. The last requirement states
that both on and off the equilibrium path, players put positive probability only on types
of the opponent that they initially considered possible, i.e. in Bs or Sb.

We focus on limits of equilibria as offers become frequent, i.e. ∆→ 0 or equivalently
δ → 1. An outcome in the bargaining game is a mapping from types (s, b) into the time of
trade τ and the price ρ. A PBE outcome is the outcome induced by equilibrium strategies,
i.e. (N∆, p). We call (τ, ρ) the frequent-offer PBE limit of a sequence of PBEs indexed
by δ → 1 if equilibrium outcomes (N∆, p) converge in probability to the outcome (τ, ρ)
as δ → 1, i.e. for any ε > 0, limδ→1 P (|N∆− τ | > ε or |p− ρ| > ε) = 0.

When η → 0, the correlation of values becomes almost perfect. In this limit, the model
approaches the complete-information bargaining game analyzed in Rubinstein (1982), in
the sense that infinite hierarchies of beliefs of types s and b, or Harsanyi’s types (Harsanyi
(1967)), approach in the product topology types with common knowledge of values c(s)
and v(b). Note however that no matter how small η is, it is only common knowledge among

13By convention, if trade does not occur in a finite number of rounds, N = ∞ and both players get a
payoff of zero.

14It is standard in the bargaining literature to restrict attention to equilibria in pure strategies with
the reservation that mixing is possible off the equilibrium path (see Gul et al. (1986), Fudenberg et al.
(1985) for a discussion of mixing off-path). In this paper mixing could be necessary only for seller type 0
and buyer type 1 out of the equilibrium path of the continuation equilibrium with optimistic conjectures
analyzed in the next section. With additional notations our results can be formulated to incorporate this
possibility.
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players that types are in Ωη and in this sense the public information remains coarse even
as the uncertainty about values vanishes. We say that the outcome (τ, ρ) is the almost-
public information limit if there is a sequence of frequent-offer PBE limits (τη, ρη) indexed
by η → 0 such that for any ε > 0, limη→0 Pη (|τη − τ | > ε or |ρη − ρ| > ε) = 0 where Pη is
the uniform distribution on Ωη. We use the complete-information model as a benchmark
to compare with the almost-public information limits of our model. In the complete-
information model, the PBE is unique and converges to the outcome (0, 1

2(v(b) + c(s)) as
δ → 1 (Rubinstein (1982)). The complete-information outcome provides non-cooperative
foundations to the axiomatic Nash bargaining solution (Nash (1953)) and we refer to the
equal split of the surplus as the Nash split.

3 Contagious Coasian Property

This section derives the optimal punishment for detectable deviations.15 Even when
η ≈ 0 and players assign positive probability only to a very narrow range of opponent’s
values, the punishment is as harsh as in the case of large uncertainty (η ≈ 1). The
approach is to first derive weak lower bounds on equilibrium payoffs and then show that
the continuation equilibrium with optimistic conjectures attains these lower bounds as
offers become frequent.

Let y(s, b) = δc(s)+v(b)
1+δ and y(s, b) = c(s)+δv(b)

1+δ . These are the equilibrium offers of
the seller and the buyer, respectively, when values v(b) and c(s) are common knowledge
(Rubinstein (1982)). In the complete information game, the first offer is accepted, and
as δ → 1, y(s, b) and y(s, b) converge to an equal split of the surplus which we denote by
y∗(s, b) = 1/2(c(s) + v(b)). The next lemma gives weak bounds on equilibrium prices.

Lemma 1. In any PBE and after any history,

(a) the seller accepts with probability one any offer above y(1, 1), and the buyer rejects
with probability one any offer above y(1, 1);

(b) the buyer accepts with probability one any offer below y(0, 0), and the seller rejects
with probability one any offer below y(0, 0);

(c) the seller’s continuation utility is at least max{y(0, 0) − c(s), 0} and the buyer’s
continuation utility is at least max{v(b)− y(1, 1), 0}.

15An action is a detectable deviation if all types of the opponent detect it, i.e. assign to it probability
zero on the equilibrium path.
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When there is a big variation in values across types, y(0, 0) and y(1, 1) are far apart
and Lemma 1 puts only weak bounds on the price of trade even when η is very small.
These bounds are standard in the bargaining literature (e.g. Grossman and Perry (1986),
Watson (1998)). By Lemma 1, the seller cannot do better than if she convinces the buyer
that her cost is the highest possible and the buyer admits that his value is the highest
possible. Moreover, the buyer always has the option to trade immediately at price y(1, 1)
by admitting that he has the highest valuation and by recognizing that the seller has the
highest cost.

When offers are frequent, Lemma 1 implies that the seller trades only at prices
above y∗(0, 0). Moreover, the seller can secure utility 0 by rejecting any offer and
making unacceptable counter-offers above y(1, 1). Hence, the seller’s utility is at least
max{y∗(0, 0)− c(s), 0} in any continuation equilibrium. Symmetrically, the buyer’s util-
ity is at least max {v(b)− y∗(1, 1), 0}. One might expect that when η is small and values
are almost common knowledge, players can secure a higher level of utility. Indeed, Rubin-
stein (1982) shows that when values are common knowledge and offers are frequent, both
players are guaranteed 1/2(v(b)− c(s)) in any continuation equilibrium. The next theorem
shows that this is not the case. (We formulate the theorem for the seller and symmetric
result holds for the buyer).

Theorem 1 (Contagious Coasian Property). Consider a history h that contains a
detectable deviation of the seller, but not the buyer and after which posterior beliefs of the
seller are truncated from above at some b. For any ε > 0, there exists δ such that for
all δ > δ, there exists a continuation equilibrium in which the continuation utility of any
seller type s is at most max{y∗(0, 0)− c(s), 0}+ ε.

Theorem 1 derives an optimal punishment for detectable deviations with several useful
properties. First, the punishment is the harshest possible. It attains the lower bound on
the seller’s utility of the seller given by Lemma 1. Second, a single equilibrium punishes
all types of the seller simultaneously, hence, the buyer does not need to detect which type
of the seller deviated. Finally, the convergence is uniform in types (δ does not depend on
s).

In the proof of Theorem 1, we construct the continuation equilibrium with optimistic
conjectures of the buyer. Specifically, the seller has her original beliefs, while the buyer
puts probability one on the lowest type in the support Sb, i.e.

µnb [π(b)] = 1, (1)
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for all b ∈ [0, 1] and all histories with a detectable deviation of the seller.16 Beliefs (1) are a
natural counterpart of optimistic conjectures commonly used in the bargaining literature
(e.g. Rubinstein (1985b)).

When η = 1, optimistic conjectures lead to a very drastic updating of beliefs: all types
of the buyer put probability one on type 0 of the seller. Hence, the model is reduced to the
one-sided incomplete information game between the informed buyer with a type b ∈ [0, 1]
and the seller with known cost c(0) analyzed in Grossman and Perry (1986), Gul and
Sonnenschein (1988). In this case, Theorem 1 is the standard Coasian property stating
that as δ → 1, the screening by type 0 happens in a short period of time and all screening
offers are close to y∗(0, 0). Hence, the seller gets utility close to max{y∗(0, 0) − c(s), 0}.
The essence of the Coasian argument is that when the seller cannot commit to future
offers, even the monopolistic seller faces the competition from her own future offers. As
offers become frequent and hence the competition from future offers more severe, the
seller looses the power to price discriminate and allocates almost immediately at the
lowest price.

When η < 1, only types of the buyer below η put probability one on type 0 of the seller
and so, the standard Coasian property implies willingness to pay close to y∗(0, 0) only for
these types. When η is small, this is only a small interval of types, and it is not a priori
obvious whether optimistic conjectures provide as harsh of a punishment as when η = 1.
The surprising conclusion of Theorem 1 is that the same punishment is possible for any
η, and in particular for arbitrary small η, providing offers are sufficiently frequent. For
general η, the proof combines the contagion argument from the global games literature
with the Coasian argument from the bargaining literature. The proof is quite involved
and here we simply give the intuition for how the contagion allows us to leverage the
Coasian forces.

We construct the continuation equilibrium under optimistic conjectures in which all
types of the buyer pool on the lowest acceptable price y(0, 0) and accept offers according
to the willingness to pay P (b) which is the price at which type b is indifferent between
accepting and rejecting. The seller optimally screens the buyer with the screening policy

16Such beliefs can be justified by the following trembles in the model with a finite number of types and
finite grid of price offers. Seller’s and buyer’s types come from {k/K}Kk=1 for some integer K. Suppose
price offers come from a discrete set P. Seller type s trembles with probability (1 − s)m/2 for some
integer m and conditional on trembling, she chooses a price offer uniformly from P. As m → ∞, the
probability of tremble converges to zero. Yet, conditional on the buyer type b, the probability that the
tremble comes from seller type π(b) is (1−π(b))n

(1−π(b))m+
∑

s∈Sb\{π(b)}
(1−s)m

→ 1 as m→∞, since 1−s
1−π(b) < 1.
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Figure 2: Contagion mechanism. Bold line π(b) depicts the support of buyer’s optimistic
conjectures. Horizontal arrows represent beliefs of the buyer, vertical arrows represent the first
screening cutoff of the seller. E.g. buyer type b puts probability one on type π(b) of the seller
and expects her to allocate to all types above t(π(b)) in the first round of screening.

that depends on her type.17 We denote by t(s) the lowest buyer type who buys in the
first round of screening by type s of the seller and so, in the first round of screening type
s of the seller makes the price offer P (t(s)) and all buyer types above t(s) accept it. We
consider the continuation equilibrium in which functions P (·) and t(·) are right-continuous
and strictly increasing. The main step of the proof is to show that the willingness to pay
P (·) converges uniformly over types of the buyer to max{y∗(0, 0), c(π(b))} as δ → 1 which
implies Theorem 1.

First, consider how the willingness to pay function P (·) is determined. All buyer types
below η put probability one on type 0 of the seller and for them P (·) is pinned down by
the screening policy of type 0. For types above η, if type b rejects P (b), then he is still
the highest type in the support of beliefs of type π(b), as only types above b accept P (b).
Hence, after the rejection of P (b), seller type π(b) will restart screening and again offer
P (t(π(b))) which gives

P (b) = (1− δ2)v(b) + δ2P (t(π(b))), (2)

for b ∈ (η, 1].
Now, we can illustrate the contagion mechanism. Suppose first that the seller does

17The Online Appendix provides the existence result.
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not screen, i.e. t(s) = π(s), and sells to all types in Bs immediately by offering P (π(s))
in the first round of screening (see Figure 2a). Using t(s) = π(s), we can extrapolate (2)
to get for b > η

P (b) = (1− δ2)v(b) + δ2P (π(2)(b))

= (1− δ2)v(b) + (1− δ2)δ2v(π(2)(b)) + δ4P (π(4)(b))

= (1− δ2)
K−1∑
k=0

δ2kv(π(2k)(b)) + δ2KP (0), (3)

where π(k) is the k-th iteration of function π and K is the smallest k such that π(2k)(b) =
0. Formula (3) captures the essence of the contagion mechanism. Buyer type b puts
probability one on the seller type π(b) and expects to pay P (t(π(b))) = P (π(2)(b)) in the
first round of screening. In turn, buyer type π(2)(b) puts probability one on the seller
type π(3)(b) and expects to pay P (t(π(3)(b))) = P (π(4)(b)) in the first round of screening,
and so on, until eventually the seller type 0 is reached. When η is small, K can be large,
and hence, for a fixed δ the first term in equation (3) can be significant. However, it
vanishes as δ → 1 and P (b) → P (0) for all b. This way if the Coasian property holds at
the bottom, i.e. P (b) ≈ y∗(0, 0) for b ∈ [0, η] as δ → 1, then the low willingness to pay of
types in [0, η] translates into the low willingness to pay of all the rest buyer types.

Of course, in equilibrium, the seller can optimally choose more discriminatory screening
policy. In fact, for a given willingness to pay function P (·), as δ → 1, the seller becomes
more patient and hence, will screen more finely. In turn, more fine screening by the seller
leads to higher P (b). To see this effect, consider a more discriminatory screening policy
t(s) = s (see Figure 2b). Again extrapolating (2), for b > η

P (b) = (1− δ2)v(b) + δ2P (π(b))

= (1− δ2)v(b) + (1− δ2)δ2v(π(b)) + δ4P (π(2)(b))

= (1− δ2)
K′−1∑
k=0

δ2kv(π(k)(b)) + δ2K′P (0), (4)

where K ′ is the smallest k such that π(k)(b) = 0. It is easy to see that for every b,
expression (4) for P (b) is higher than (3). Hence, a finer screening policy increases the
willingness to pay of the buyer.

Therefore, there are two opposing forces that affect P (·). On the one hand, because of
the contagion mechanism the willingness to pay decreases as δ → 1. On the other hand,

14



the seller screens more finely as δ → 1 which increases the willingness to pay. Theorem
1 shows that the former force dominates using the following Coasian argument. As in
the case η = 1, we can analyze the game between types of buyer in [0, η] and type 0 of
the seller, to which they assign probability one, as a separate bargaining game with one-
sided incomplete information. For such game, the standard Coasian property implies that
P (b)→ y∗(0, 0) as δ → 1. Now, for type s1 of the seller slightly above 0, a big fraction of
the types of the buyer that she faces belongs to [0, η] and has willingness to pay close to
y∗(0, 0). The profit from types below η creates a sufficient temptation for the seller type
s1 to quickly screen types above η. But this implies that types of the buyer slightly above
η have the option to buy at price close to y∗(0, 0) after a short delay, which in turn implies
that the willingness to pay of types in [0, s1 + η] is also close to y∗(0, 0). Similarly, we can
show that type s2 of the seller slightly above s1 quickly screens all types above s1 + η and
so, the willingness to pay of types in [0, s2 + η] is also close to y∗(0, 0). Proceeding in this
fashion, we can show that the willingness to pay of all types is the lowest possible in the
limit as δ → 1.18 To summarize, the Coasian property at the bottom extends through
the contagion mechanism to all types.

4 Almost-Public Information Limits

Theorem 1 shows that the optimal punishment in the limit of frequent offers does not
depend on the level of correlation. This suggests that a variety of on-path equilibrium
dynamics is possible as offers become frequent even when the correlation of values is close
to perfect. This section studies bargaining outcomes in the almost-public information
limit, and for this limit, answers the questions: 1) is trade always efficient and if not, is
efficient trade possible; 2) do efficient outcomes coincide with the complete-information
outcome and if not, can they approximate the complete-information outcome.

18The argument is more subtle than described. If type b of the buyer puts probability one on the seller
type π(b) with costs above y∗(0, 0), then allocating at price close to y∗(0, 0) is no longer a temptation for
the seller type π(b) . Hence, such type will always make offers above c(π(b)) and can potentially screen
indefinitely. For readers familiar with the bargaining literature, this case resembles the “no-gap” case,
while the case described above is the “gap” case. We show in the proof of Theorem 1 that despite the
fact that in this case, the willingness to pay is higher than y∗(0, 0) in the limit, it increases just enough
to cover the costs c(π(b)).
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4.1 Pareto Frontier

In this subsection, we characterize the Pareto frontier of allocations sustainable as almost-
public information limits. Although such limits can approximate the complete-information
outcome, in general there is a variety of other efficient surplus splits that can be attained
by the almost-public information limits.

Let Π = E(s,b)[v(b)− c(s)] be the expected surplus. For any bargaining outcome (τ, ρ),
let US = E[e−rτ (ρ − c(s))] and UB = E[e−rτ (v(b) − ρ)] be players’ expected utilities
at the ex-ante stage (before types are realized). By Lemma 1, in the limit δ → 1,
the seller’s expected utility cannot be lower than US = E(s,b)[max{y∗(0, 0), c(s)} − c(s)]
or exceed U

S = E(s,b)[min{y∗(1, 1), v(b)} − c(s)]. Thus, the set of efficient allocations
that are potentially sustainable as almost-public information limits is a subset of PF =
{(US, UB) : US + UB = Π and US ∈ [US, U

S]}. The next theorem shows that the Pareto
frontier of almost-public information limits coincides with PF .

Theorem 2 (Pareto Frontier). 1. Consider (US, UB) ∈ PF . There exists an almost-
public information limit with ex-ante expected utilities of players (US, UB).

2. The complete-information outcome (0, y∗(s, b)) is an almost-public information limit.

The first part of Theorem 2 shows that even when we restrict attention to efficient
outcomes, the bargaining outcome is sensitive to the amount of public information. When
values are common knowledge, equally patient players split the surplus equally without
delay, i.e. US = UB = 1

2Π (Rubinstein (1982)). In contrast, when values are almost
common knowledge a range of ex-ante surplus splits is sustainable as frequent-offer PBE
limits. This range is determined by how close the bounds on prices y∗(0, 0) and y∗(1, 1)
are to each other. When y∗(0, 0) ≈ y∗(1, 1), the outcome is close to the equal split, as
in this case it is common knowledge that values are close. However, when y∗(0, 0) and
y∗(1, 1) are far apart, the ex-ante split of surplus can be very far from equal, even when
values are almost common knowledge and players face little uncertainty about each others
values (η ≈ 0). The second part of Theorem 2 states that it is still possible to approximate
the complete information outcome (0, y∗(s, b)) with frequent-offer PBE limits when the
correlation is close to perfect. In other words, for η ≈ 0 we can construct PBEs, in which
for any realization of types the surplus split is close to equal and the trade delay is short.

The proof of Theorems 2 applies the construction of frequent-offer PBE limits in which
players with their initial offers establish common knowledge of a relatively narrow range
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of types and this way avoid the inefficient trade delay. In the remainder of the section,
we outline the construction of such PBE limits.

Consider first the following auxiliary continuous-time war-of-attrition game G. The
buyer and the seller make offers qB and qS, resp., irrespective of type. The game stops
once one of the parties accepts the opponent’s offer and trade happens at the accepted
price. We denote such game by G(qS, qB). Threshold acceptance strategies are described
by a strictly decreasing bt and strictly increasing st such that for any t, all buyer types
above bt and all seller types below st accept the opponent’s offer. This game has the
following Bayesian Nash equilibrium (BNE) in threshold strategies.

Lemma 2. Suppose s∞ ∈ (η, 1− η),b∞ = s∞ − η,max{c(s∞), y∗(0, 0)} < qB < v(0), and
c(1) < qS < min{v(b∞), y∗(1, 1)}. Consider thresholds strategies bt and st

r(v(bt)− qS) = ṡt
bt−st+η (qS − qB), (5)

r(qB − c(st)) = − ḃt
bt−st+η (qS − qB), (6)

with the terminal conditions limt→∞ st = s∞ and limt→∞ bt = b∞. Then threshold strate-
gies bt and st constitute BNE in the war-of-attrition game G(qS, qB) and b0 ≤ s0 + η.
Moreover, the ex-ante probability of delay is at most 6η.

We interpret the BNE in Lemma 2 as follows. There are two segments: one with
a higher price qS and one with a lower price qB. Each side insists on belonging to
the segment with a more favorable price by delaying the trade and the war-of-attrition
dynamics emerges. Each side gradually accepts the opponent’s offer starting from the top
for the buyer and from the bottom for the seller. At every time t, threshold types are
indifferent between accepting the current opponent’s offer and marginally delaying the
acceptance. In equations (5) and (6), the costs of marginal delay due to discounting (left-
hand side) equal for threshold types the benefits of marginal delay due to the opponent
giving in first (right-hand side). Since types are positively correlated, the likelihood of
acceptance depends on the type: a higher type of the seller assigns lower probability
to the buyer’s acceptance. The fact that more impatient players also believe that the
opponent is tougher guarantees that threshold strategies are indeed optimal. Further, it
implies that types of the buyer above s∞+2η and types of the seller below b∞−2η assign
probability zero to their offer being accepted and they should accept immediately. This
guarantees that the probability of delay is of order of magnitude η and so, the outcome
is close to efficient when η ≈ 0.
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Our war-of-attrition bargaining game resembles the war-of-attrition dynamics in the
reputational bargaining . Unlike the reputational bargaining, where demands are given
by exogenous demands of commitment types, in our model all types are rational. Hence,
in our model, there is no upper bound on the time of trade (otherwise a rational player
would prefer to wait slightly past the final round of bargaining), while in the standard
model of reputational bargaining (Abreu and Gul (2000)), rational types accept by some
final time.

Denote by νp(s∞, qS, qB) the bargaining outcome determined by the BNE described
in Lemma 2. The next lemma shows that this outcome can be approximated by the PBE
outcomes in our discrete-time bargaining game as δ → 1.

Lemma 3. Suppose s∞ ∈ (η, 1− η),b∞ = s∞ − η,max{c(s∞), y∗(0, 0)} < qB < v(0), and
c(1) < qS < min{v(b∞), y∗(1, 1)}. There is a frequent-offer PBE limit which coincides
with νp(s∞, qS, qB).

In the proof of Lemma 3 we construct threshold strategies in discrete time that ap-
proximate the continuous time threshold strategies,19 and then use the contagious Coasian
property of the punishing paths to sustain the on-path strategies. (Restrictions on qS and
qB in Lemma 3 guarantee that on-path continuation utilities exceeds the lower bounds on
players’ utilities given in Lemma 1 at any moment in time).

Of course, the type of outcome described in Lemma 2 may not always be possible
(e.g. when c(1) > v(0)). Thus, the next step is to repeat the construction in Lemma 3
and increase the number of segments. On the one hand, this guarantees that the trade is
efficient in the limit as the correlation becomes almost perfect. On the other hand, this
allows us to choose at what prices different types trade and hence, match the Nash split
or the division of the ex-ante surplus. The following lemma generalizes the construction
in Lemma 3.

Lemma 4. Fix an integer Z, a strictly increasing sequence of offers {qz}Zz=1 ⊂ (y∗(0, 0), y∗(1, 1)),
and increasing sequences {bz}Zz=1 and {sz}Zz=1 such that 1) b0 = s0 = 0, bZ = sZ = 1; 2)
sz = bz + η and c(sz) < qz < v(bz−1) for z = 1, . . . , Z; 3) bz − bz−1 > 4η for z = 1, . . . , Z.
There exists a frequent-offer PBE limit in which the ex-ante probability of delay is at most
6η(Z − 1), and types of the buyer in [bz, bz+1] and types of the seller in [sz, sz+1] trade
only at price qz or qz+1.

19This step is quite involved technically, as one needs to show that a system of difference equations
admits a monotone solution. The assumption that the distribution of types is uniform on Ωη (as opposed
to general affiliated) is used only in the proof of this result.
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Figure 3: Example of offers and boundary types sz and bz satisfying requirements
of Lemma 4.

Figure 3 illustrates the offers and threshold types that satisfy the conditions of Lemma
4, which are generally can be easily satisfied for some sequences of bz, sz and qz when η is
sufficiently small. To prove Lemma 4, we add to the war-of-attrition game described above
the initial stage at which players can announce one of Z segments where each segment is
identified with a price qz, z = 1, . . . , Z. If players agree on the segment, then trade happens
at the price of this segment. If they disagree and announce adjacent segments, say qz and
qz+1, then the war-of-attrition bargaining game G(qz+1, qz) starts with offers fixed at the
initial announcements. If they disagree and announced non-adjacent segments, then each
side has an option to accept the initial offer, but otherwise, announcements happen again
immediately. We choose segments sufficiently far apart (bz+1− bz > 4η) so that each type
knows that the opponent can announce one of at most two neighboring segments, which
guarantees that deviations to non-adjacent segments are out of equilibrium path. In the
proof of Lemma 4, we construct a discrete-time analogue of such a war-of-attrition with
initial announcement and show that it constitutes the PBE for sufficiently large δ.

By Lemma 3, the probability of the disagreement for any particular pair of prices qz
and qz+1 is at most 6η. Because the inefficient delay occurs only when the announcements
differ, the total probability of delay is at most 6η(Z − 1). Therefore, when Z is small
relative to 1/η (e.g. when Z is constant), the outcome is again efficient in the limit η → 0.

Notice that here the assumption that the support of beliefs is bounded plays a crucial
role in the segmentation dynamics. For example, when the buyer observes an unexpectedly
high segment announcement, he simply ignores it. With the full-support of beliefs this
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would not be the case: if such an announcement is on-path, then the buyer should update
his beliefs that the seller’s costs are (unexpectedly) high. We return to this issue when
we discuss the plausibility of difference bargaining outcomes in Section 5.

Finally, we can apply Lemma 4 to prove Theorem 2. Let

q(ι, γ, β) = (1− γ)y∗(ι, ι) + γβmax{c(ι), y(0, 0)}+ γ(1− β) min{v(ι), y∗(1, 1)}. (7)

For any γ and β, we can apply Lemma 4 to construct frequent-offer PBE limits with
segments that are √η apart (hence Z ∼ 1√

η
) and prices qz = p(sz, γ, β). As η → 0,

the probability of delay is bounded from above by 6η(Z − 1) ∼ √η and converges to
zero. The length of each segment √η also converges to zero and so each type of the
seller s trades at a price close to q(s, γ, β). Since q(ι, 0, β) = y∗(ι, ι) and [US, U

S] =
{E(s,b)[q(s, 1, β) − c(s)], β ∈ [0, 1]}, with appropriate choices of γ and β we can get the
desired approximations in Theorem 2.

4.2 Inefficient Delay

This subsection shows that the frequent-offer PBE limits need not converge to efficiency
no matter how close the correlation is to perfect. Specifically, we construct almost-public
information limits that approximate the Nash split, but do so with the delay.

Let us revisit the continuous-time war-of-attrition game G introduced in the previous
section, but suppose now that price offers instead of being fixed are given by a strictly
decreasing function qSt for the seller and a strictly decreasing function qBt for the buyer
such that qST = qBT for some T <∞. As before, players choose the time when they accept
the opponent’s offer. Denote such a game by G(qSt , qBt ). We again focus on BNEs in
threshold acceptance strategies.

Lemma 5. Suppose there exist thresholds strategies bt and st that satisfy

r(v(bt)− qSt ) = −q̇St , (8)

r(qBt − c(st)) = q̇Bt ; (9)

with the terminal condition bT = sT + η. Then bt and st constitute a BNE in the war-of-
attrition game G(qSt , qBt ).

The incentives for delay in the BNE described in Lemma 5 are the opposite of that in
the war-of-attrition game with constant offers studied in the previous subsection. When
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offers are constant, the benefits from the delay come from the acceptance of the opponent.
Thus, only types that assign a positive probability to each other’s acceptance delay the
trade, and as the interval of such types is at most 2η, the outcome approaches efficiency
when η → 0. In contrast, in the BNE described in Lemma 5, before the final time T (when
price offers are equal and bargaining stops), each side assigns probability zero to its offer
being accepted and the only incentive for delaying the trade comes from waiting for a
more favorable opponent’s offer. Thus, the two-sided screening dynamics emerges. For
types above bT , the buyer is screened by a path of decreasing seller’s offers qSt , while for
types below sT , the seller is screened by a path of increasing buyer’s offers qBt . Here, the
optimality of threshold strategies follows from the standard skimming property: higher
types of the buyer and lower types of the seller are more impatient and thus, accept
earlier. Notice that because of the two-sided screening dynamics it is necessary that there
is a delay, as long as qB0 < qBT and qS0 > qST , and as a result, the outcome is inefficient.

We can choose price offer paths in such a way that for small η, the prices of trade
approximate the Nash split. Specifically, we set qSt = 1

2(v(bt − η
2) + c(bt − η

2)), qBt =
1
2(v(st + η

2) + c(st + η
2)), and bt and st that solve the system (8) − (9) with the initial

condition b0 = 1 and terminal condition bT = sT +η. Denote such an outcome by (τ †η , ρ†η).
The next theorem shows that such an outcome can be approximated by the frequent-offer
PBE limits.

Theorem 3 (Inefficient limit). There is a frequent-offer PBE limit which coincides with
(τ †η , ρ†η). Moreover, limη→0 Pη

(
|ρ†η − y∗(s, b)| > ε

)
= 0 for all ε > 0, and limη→0 Eη[τ †η ] > τ

for some τ > 0.

Theorem 3 shows that there is an inefficient almost-public information limit that
approximates the Nash split of the surplus. Together with Theorem 2, this result shows
that the complete-information outcome is not a good approximation for environments
where players have little uncertainty about each other’s values (η ≈ 0), as long as the
public information is crude. This is true even if we additionally restrict attention to
efficient outcomes or outcomes consistent with the axiomatic Nash bargaining solution.

We already have all the ingredients to prove Theorem 3. We construct equilibria in
grim trigger strategies. Players start from the main path and stick to it as long as there
are no detectable deviations. The main path is the discretization of continuous-time
paths bt, st, qBt , qSt . If a detectable deviation happens, then the deviator is punished by
the continuation equilibrium with optimistic conjectures described in Theorem 1.

There is one detail about the construction of the main path worth stressing. Rather
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Figure 4: Expected delay in segmentation and screening limits.

than having each side make offers that are gradually accepted by opponent (as in the
war-of-attrition game G(qSt , qBt )), we construct on-path PBE strategies in which both
sides make non-serious offers until one of the sides reveals an interval of types by making
an acceptable offer. The construction is such that as δ → 1, at any time t only threshold
types bt and st make “serious” offers qSt and qBt , resp., while all the rest types pool on some
un-acceptable offer. The reason for this signaling rather than screening on-path dynamics
is as follows. If say the seller were to make screening offers, then after some histories
in which the buyer deviated from his acceptance strategy, the seller would have to make
offers that bring her negative payoff. This would contradict the sequential rationality after
such off-path histories. This problem does not arise with the signaling on-path dynamics.
If say the buyer deviates from her revelation strategy, then in equilibrium he corrects his
deviation in the next round. Thus, the seller is never forced to make an offer that brings
her negative payoff when accepted.

Comparison of the segmentation and screening dynamics As an illustration of
the segmentation and screening dynamics, consider the following example. Let v(b) =
b+ 2

3 , c(s) = s,η = 0.1, and r = 10%. Figure 4a depicts the expected delay in the frequent-
offer PBE limit described in Lemma 4 with three segments: q1 = 1

2 ,q2 = 5
6 ,q3 = 3

2 and
b1 = 1

3 −
η
2 , s

1 = 1
3 + η

2 ,b2 = 2
3 −

η
2 , s

2 = 2
3 + η

2 . Figure 4b depicts the expected delay in the
frequent-offer PBE limit described in Theorem 3 with price paths qSt = 5

3 − (1
3 + η

2)(1+ tr)
and qBt = (1

3 + η
2)(1 + tr) and corresponding acceptance strategies solving the system

(8)− (9) with bT = 1
2 + η

2 and bT = sT + η as terminal conditions. The expected delay is
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non-monotone in the player’s type and it is highest for types close to the boundaries of
segments in the segmentation dynamics and for types close to the middle of the range of
types in the screening dynamics. To measure the efficiency, we use the share of surplus
that is dissipated due to trade delay E(s,b)[e−rτ (v(b)−c(s))]

E(s,b)[v(b)−c(s)] . In the segmentation limit, the
trade delay occurs only for types close to boundaries of segments and only 3.1% of surplus
is dissipated. In the screening limit, the trade delay occurs for almost all types due to
gradual convergence of prices, and 45.5% of the surplus is dissipated due to bargaining
delay. We see that even for relatively low players’ uncertainty about values, the bargaining
outcomes can differ substantially depending on the type of equilibrium played and need
converge to the complete-information outcome.

5 Discussion

This paper studies the alternating-offer bargaining model with the global games infor-
mation structure. Despite the strong notion of correlation – each type assigns positive
probability only to a set of types of opponent – a variety of equilibrium dynamics can
be sustained even when the correlation of values is close to perfect. In the almost-public
information limit, the outcome is neither guaranteed to be efficient nor on the Pareto
frontier, the split of the surplus is guaranteed to coincide with the complete-information
split. To conclude, we discuss the implications of our analysis, the robustness of screening
and segmentation dynamics, and the order of limits.

The Role of Public Information for Bargaining Efficiency The non-robustness
of the complete-information bargaining model highlights the role of public information
in bargaining. In the almost-public information limit, the players’ uncertainty about
values is vanishingly small, but the public information about values is crude (e.g. it
is only common knowledge that the buyer’s value is in [v(0), v(1)]). Many secondary
markets, such as OTC markets for financial assets, are known for their opaqueness and
lack of transparency. It is sometimes argued that because traders in such markets are
sophisticated, they are capable of overcoming this lack of public information about assets.
In fact, the growing literature on search-and-bargaining models of OTC markets (e.g.
Duffie et al. (2005), Lagos and Rocheteau (2009)) applies the Nash bargaining solution to
capture the bargaining outcome, thus, implicitly assuming that the complete-information
model is a good approximation for OTC negotiations. Our analysis shows that the lack of
common knowledge may force both sides to start the negotiation from extreme offers and
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enter into an inefficient phase of exchange of offers. Hence, the sophistication of traders
in OTC markets need not compensate for the market opaqueness. In a companion paper
(Tsoy (2016)), we show that bargaining delays arising from the lack of public information
lead to a very different predictions about the market liquidity compared to the standard
search-and-bargaining models of OTC markets.

Robustness to the Model of Correlation The companion paper (Tsoy (2016)) con-
siders an alternative model of correlation in which the types are distributed according
to the affiliated distribution with full support on the unit square. We additionally use
a slightly weaker version of the standard refinement in the bargaining literature (see
Bikhchandani (1992), Grossman and Perry (1986), Rubinstein (1985a)) that the support
of beliefs does not expand.20 The main result is that in the almost-public information
limit, the delay is necessary to attain the Nash split. This shows the non-robustness of
the efficient bargaining outcomes constructed in Theorem 2. In fact, the source of this
non-robustness is clear from our construction of PBEs approximating the Pareto frontier.
There, it is important that every side expects at most two offers from the opponent and
offers that corresponds to distant segments are ignored. This allows players to quickly
coordinate on a narrow band of types and results in an efficient outcome. With the full
support of beliefs this is not possible anymore, as offers corresponding to distant segments
would be on-path. Further, we show in Tsoy (2016)) that the two-sided screening dynam-
ics in Theorem 3 can be still sustained in the model with the full support of beliefs. We
conclude that the almost-public information limits with two-sided screening dynamics are
more robust to the assumptions about the details of the correlation of values, than the
efficient segmentation dynamics.

Order of Limits This paper demonstrates lack of upper-hemicontinuity in the frequent-
offer PBE limits: for arbitrary small η, there is a variety of outcomes possible, however,
when η = 0, there is a unique frequent-offer PBE limit. We focus in the paper on the
order of limits where we first take limit δ → 1 and then take limit η → 0. The next
theorem shows that under the reversed order of limit, all PBEs converge to the outcome
of the complete-information game as one would expect.

20We do not impose this refinement in the present paper, as the bounded support of beliefs already
restricts significantly the evolution of beliefs after deviations. However, the full-support beliefs have an
undesirable property that the initial correlation of values is virtually erased out of the equilibrium path.
Even if beliefs of each type are initially concentrated on a very narrow range of types of opponent, after
the deviation, beliefs need not preserve the initial correlation of values. Hence, the refinement is desirable
in such a model.
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Theorem 4. For any δ, consider a sequence of PBEs indexed by η → 0 that converges to
the limit (τδ, ρδ). Then for any ε > 0, limδ→1 Pη=1(τδ > ε and |ρδ − y∗(s, b)| > ε) = 0.

In our view, the order of limits used in this paper is more relevant in applications.
The complete-information game corresponding to η = 0 is well understood: the first offer
is y(s, b) and it is accepted by the buyer. At the same time, little is known about the
bargaining with correlated private information. A natural way to explore it is by looking
at the limit when offers are frequent, and hence, the delay comes purely from the private
information of parties.

There are several interesting directions for future research. First, the prediction that
the amount of public information can affect bargaining delays for a fixed precision of the
private information can be tested in the lab.21 Second, we prove the contagious Coasian
property for any η, but focus on the analysis of the equilibrium set in the limit η → 0, as
the correlation of values is the novel feature of our environment. However, our construc-
tion of frequent-offer PBE limits with segmentation and screening dynamics is valid for
a range of ηs. The analysis of the equilibrium set for intermediary levels of correlation
is an interesting avenue for future research. Third, another theoretical development of
the model is to explore the predictions of the model in the presence of outside options,
as in Fuchs and Skrzypacz (2010), or to endogenize the length of bargaining rounds and
use an intuitive criterion style refinement, as in Admati and Perry (1987) and Cramton
(1992). Finally, the delay generated in model with almost-public information about qual-
ity proves very tractable in applications, as in our model one can essentially abstract from
private information and still generate non-trivial delays. Tsoy (2016) uses it to study the
implications of bargaining delay for liquidity in OTC financial markets, and it is interest-
ing to study implications of bargaining delays in different applications, such as labor or
monetary economics.

A Appendix
This Appendix contains proofs of the main results. Auxiliary technical lemmas and additional
results are provided in the Online Appendix.

21In an early study, Roth and Murnighan (1982) study experimentally how the fact that the information
is common knowledge or not affects bargaining outcomes.
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A.1 Proofs for Section 3
We first derive general bounds on acceptable offers that imply Lemma 1. Let Pb be the supremum
of offers accepted by type b of the buyer with positive probability in equilibrium (both on- and
off-path), and analogously, let Ps be the supremum of offers rejected by type s of the seller with
positive probability in equilibrium, pb be the infimum of prices rejected by type b of the buyer
with positive probability in equilibrium, ps be the infimum of prices accepted by type s of the
seller with positive probability in equilibrium.

Lemma 6. For all b, s,

Pb ≤ (1− δ)
∞∑
k=0

δ2k
(
v(π(2k)(b)) + δc(π(2k+1)(b))

)
,

ps ≥ (1− δ)
∞∑
k=0

δ2k
(
c(π(2k)(s)) + δv(π(2k+1)(s))

)
.

Proof. First, by the definition of Ps, type b of buyer can guarantee himself the utility arbitrarily
close to δ(v(b) − maxs∈Sb Ps) by making an offer arbitrarily close to maxs∈Sb Ps whenever he
is active. Hence, δ(v(b) − maxs∈Sb Ps) ≤ v(b) − Pb. Second, let Us be the supremum of the
continuation utilities of type s on- and off-path if the trade does not occur in the current round.
If type s of the seller rejects an offer, she cannot guarantee more than max{δ(maxb∈Bs Pb −
c(s)), δ2Us}, which implies Us ≤ δ(maxb∈Bs Pb− c(s)). Hence, Ps− c(s) ≤ δ(maxb∈Bs Pb− c(s)).
Therefore,

Pb ≤ (1− δ)v(b) + δmax
s∈Sb

Ps

≤ (1− δ)v(b) + δmax
s∈Sb

(
(1− δ)c(s) + δ max

b′∈Bs
Pb′

)
= (1− δ) (v(b) + δc(π(b))) + δ2 max

s∈Sb
max
b′∈Bs

Pb′ .

By iterating this inequality, we obtain the first inequality in the statement of the lemma. The
argument for the second inequality is symmetric.

Proof of Lemma 1. Follows from Lemma 6 and the monotonicity of functions v and c.

Now, we analyze the punishing equilibrium, the continuation equilibrium with optimistic
conjectures of the buyer that we construct to prove Theorem 1. Below we first describe strate-
gies in the punishing equilibrium and then prove the contagious Coasian property of such a
continuation equilibrium. The existence of the punishing equilibrium for sufficiently large δ is
proven in Theorem 5 in the Online Appendix. The argument is provided for the case b = 1 and
can be immediately extended to the general case b < 1 by simply ignoring types of the buyer
above b.
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A.1.1 Description of Strategies

Since the optimistic conjectures of the buyer may exclude the realized seller’s type, the buyer and
the seller may have different expectations regarding the path of play in the punishing equilibrium.
For concreteness, we refer to the path of play expected by the seller as the equilibrium path of
the punishing equilibrium.

Buyer on-path strategy: All types of the buyer pool on y(0, 0), the lowest acceptable
price offer. Type b accepts any offer less than or equal to his willingness to pay P (b) which is
right-continuous and strictly increasing in b. Since P (·) is strictly increasing, for any history hn

without buyer’s deviations, there exists a buyer type β ∈ [0, 1] such that only types of the buyer
below β remain in the game in round n. Whenever β ≥ π(s), posterior beliefs of seller type s
are uniform on Bs ∩ [0, β].

Seller on-path strategy: The seller makes offers to screen the buyer’s willingness to
pay. Given the highest remaining type of the buyer β, the seller type s > 0 chooses a cut-off
buyer type t(β, s) and allocates to all remaining buyer types above t(β, s) by making an offer
A(β, s) = P (t(β, s)). The strategy of type 0 of the seller differs from the rest of the types, as a
positive mass of buyer types in [0, η] puts probability one on type 0. Seller type 0 accepts the
buyer’s offer y(0, 0), whenever the highest remaining type of the buyer is below some β ∈ (0, η].
Given the highest remaining buyer type β ∈ (β, η], seller type 0 allocates to buyer types above
t(β, 0) by offering A(β, 0) = P (t(β, 0)).

Strategies off-path: Deviations by the seller are ignored. Consider histories in which type
b of the buyer rejects an offer below P (b). If such a deviation is not detected, then type b of
the buyer continues making the offer y(0, 0), and accepts any price offer less than or equal to
(1−δ2)v(b)+δ2P (t(β, π(b))). If b > β+2η, then type π(b) detects such deviation and strategies
of both players are described in Lemma 7 below. If the buyer makes a price offer different from
y(0, 0) or β < π(s) (the deviation from the strategy P (·) is detected), type s of the seller switches
to optimistic conjectures and assigns probability one to the highest buyer type in the support
of her prior belief, i.e.

µns [π(s)] = 1 (10)

for all histories hn with detectable deviations by both sides. Lemma 7 describes equilibrium
strategies with optimistic conjectures of both players.

Lemma 7. Suppose that for some b′ ∈ [0, 1], beliefs of types of the buyer above b′ and all types
of the seller above π(b′) are described by (1) and (10). Then the following strategies are the
equilibrium strategies for such types. After any history, type b of the buyer above b′ accepts offers
less than or equal to PB(b), and otherwise, makes the counter-offer AB(b). After any history
type s of the seller above π(b′) accepts offers greater than or equal to PS(s), and otherwise,
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makes the counter-offer AS(s). Functions PB, PS, AB, AS are given by

PB(b) =

(1− δ)v(b) + δPS(0)

y(b− η, b)
AB(b) =

P
S(0), for b ∈ [0, η),

y(b− η, b), for b ∈ [η, 1];

PS(s) =

y(s, s+ η)

(1− δ)c(s) + δPB(1)
AS(s) =

y(s+ η, s), for s ∈ [0, 1− η],

PB(1), for s ∈ (1− η, 1].

Proof. Consider type b of the buyer above max{b′, η}. Type b puts probability one on type π(b)
of the seller by (1), while seller type π(b) puts probability one on type b by (10). By Rubinstein
(1982) strategies of these two types given in Lemma 7 constitute the subgame perfect equilibrium
of the complete information game with valuation v(b) and cost c(π(b)).

Now consider type s of the seller above 1−η that put probability one on type 1 of the buyer.
Type 1 of the buyer, in turn, puts probability one on type 1 − η of the seller and is willing to
pay PB(1). Since PB(1) > c(1), it is optimal for types of the seller above 1 − η to make offer
PB(1). Moreover, they are willing to pay up to P̌S(s) given by P̌S(s)− c(s) = δ(PB(1)− c(s)).
The argument for types of the buyer below η is symmetric.

A.1.2 Proof of the Contagious Coasian Property

Before moving on to the proof of the Contagious Coasian Property, we state the optimality
conditions for the willingness to pay and screening policy. The problem of seller type s can
be formulated recursively. Let R̃(β, s) for β ∈ [π(s), 1] be the expected profit of type s > 1
of the seller given that the highest remaining type of the buyer is β, and denote R(β, s) =
R̃(β, s)(β−π(s)). Then R(β, s) is the bounded function that satisfies the Bellman equation22,23

R(β, s) = max
b∈Bs∩[0,β]

{
(β − b)(P (b)− c(s)) + δ2R(b, s)

}
. (11)

Denote by T (β, s) the set of maximizers in (11). Say that a seller strategy t(β, s) is a best-reply
to the willingness to pay P (·), if t(β, s) = supT (β, s) for all s and β ≥ π(s). A special role in the
analysis is played by the first screening cut-off and price offer which I denote by t(s) = t(π(s), s)
and A(s) = A(π(s), s), resp.

The willingness to pay P (·) for b ∈ (η, 1] satisfies (2) in the main text. The willingness to
pay of types of the buyer in the interval [0, η] differs from the rest of the types, as they all assign
probability one to type 0 of the seller. Both on- and off-path, it is determined by some strictly
increasing and right-continuous function P 0(·) (see Lemma 13 in the Online Appendix).

22The value function is defined only on when π(s) ≤ β (otherwise, type s detects the deviation and
switches to the optimistic conjectures (10)).

23Notice that the seller discounts by δ2, as the buyer makes non-acceptable offers.
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Consider a sequence of punishing equilibria indexed by δ → 1. In the notation, we omit the
dependence of quantities in the punishing equilibrium on δ. The proof of Theorem 1 builds on
a number of auxiliary lemmas. Let Σ = max

(s,b)∈Ω
{v(b)− c(s)} ξ = min

(s,b)∈Ω
{v(b)− c(s)} be maximal

and minimal, resp., gains from trade possible in the game. Let ` be the upper bound on the
derivatives of v and c.

Lemma 8. Suppose there is 0 < φ < 2η and b̂ ∈ [η, 1] such that c(π(b̂)) + 2`φ < P (b̂−φ). Then
P (b̂ + φ) − P (b̂) < f(φ, δ), where function f does not depend on b̂ and limδ→1 f(φ, δ) = 0 for
any φ.

Proof. Let ŝ = π(b̂) + φ. By 0 < φ < 2η, π(ŝ) < b̂− φ < b̂+ φ = bŝ. By the Lipschitz continuity
of c,

c(ŝ) + `φ < c(π(b̂)) + 2`φ < P (b̂− φ). (12)

Let K ≤ ∞ be the first round of screening when type ŝ of the seller makes an offer below P (b̂).
Then

R(b̂+ φ, ŝ) ≤
ˆ b̂+φ

b̂
(P (b)− c(ŝ))db+ δ2KR(b̂, ŝ). (13)

Fix an integer M (to be determined later) and consider an alternative screening policy in which
type ŝ makes a sequence of offers (Am)Mm=1 such that Am = v(b̂+ φ) + m

M (c(ŝ)− v(b̂+ φ)) and
sells with probability one in M rounds. The loss in profit from each sale is at most Σ

M . By the
optimality of the seller’s screening policy,

R(b̂+φ, ŝ) ≥ δ2M
(ˆ b̂+φ

b
(P (b)− c(ŝ))db− Σ

M (b̂+ φ− b)
)
≥ δ2M

(ˆ b̂+φ

b
(P (b)− c(ŝ))db− Σ

M

)
,

(14)
where b = inf{b : P (b) > c(ŝ)}. Combining (13) and (14) and rearranging terms,

δ2M
(ˆ b̂

b
(P (b)− c(ŝ))db− Σ

M

)
≤
(
1− δ2M

)ˆ b̂+φ

b̂
(P (b)− c(ŝ))db+ δ2KR(b̂, ŝ). (15)

Combining (15) with the facts that R(b̂, ŝ) ≤
b́̂

b

(P (b)− c(ŝ))db and the surplus is bounded by Σ,

δ2M
(
R(b̂, ŝ)− Σ

M

)
≤
(
1− δ2M

) ˆ b̂+φ

b̂
(P (b)−c(ŝ))db+δ2KR(b̂, ŝ) ≤

(
1− δ2M

)
Σφ+δ2KR(b̂, ŝ).

(16)
When the highest remaining type is b̂, type ŝ of the seller can make offer P (b̂ − φ) which is
accepted at least by types in (b̂− φ, b̂) and so, using (12),

R(b̂, ŝ) ≥ φ(P (b̂− φ)− c(ŝ)) > φ2` > 0. (17)
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Dividing (16) by R(b̂, ŝ) and using (17),

δ2K ≥ δ2M − Σ
R(b̂,ŝ)

(
δ2M

M + φ
(
1− δ2M

))
> δ2M − Σ

φ2`

(
δ2M

M + φ
(
1− δ2M

))
.

For each δ, we choose an integer M(δ) such that limδ→1M(δ) = ∞ and limδ→1 δ
2M(δ) = 1.

Type b̂+φ of the buyer prefers to purchase in the first round of screening by type ŝ rather than
wait until the screening round K when price drops below P (b̂) and so, v(b̂ + φ) − P (b̂ + φ) ≥
δ2K(v(b̂+ φ)− P (b̂)), which implies that

P (b̂+ φ)− P (b̂) ≤ (1− δ2K)(v(b̂+ φ)− P (b̂)) ≤

(1− δ2K)Σ ≤
(
1− δ2M(δ) + Σ

φ2`

(
δ2M(δ)

M(δ) + φ
(
1− δ2M(δ)

)))
Σ. (18)

Denoting the last expression by f(φ, δ) gives the desired bound.

Definition A.1. For any ε > 0, a monotone function f on [0, 1] is ε-continuous if for any open
interval I ⊂ [f(0), f(1)] of length at least ε we have f([0, 1]) ∩ I 6= ∅.

Lemma 9. For any ε > 0, there is δ̄ ∈ (0, 1) such that for all δ > δ̄: (a) function P (·) is
ε-continuous; (b) for any type s of the seller and any type b ∈ Bs of the buyer,

P (b)− P (t(b, s)) ≤ ε. (19)

Proof. Part (a): Suppose to contradiction that there exist ε > 0, p, p > p + ε such that for δ
arbitrarily close to 1, either P (b) ≥ p or P (b) ≤ p for all b. By equation (2), for any b,

P (b)− P (t(π(b))) = (1− δ2)(v(b)− P (t(π(b))) ≤ (1− δ2)Σ < ε (20)

for δ sufficiently close to one. Let b̃ = sup{b : P (b) < p}. Consider type b̂ = b̃ + c(η,δ)
2 and

b̌ = b̃ − c(η,δ)
2 where c(η, δ) is as in Lemma 17 in the Online Appendix. Lemma 17 implies

b̌ > t(π(b̂)) and so, P (b̂)− P (t(π(b̂))) > P (b̂)− P (b̌) > ε, which contradicts (20).
Part (b): Consider b ∈ Bs. Since s ≥ π(b), by Lemma 15 in the Online Appendix t(b, s) ≥

t(b, π(b)). Hence,

P (b)− P (t(b, s)) ≤ P (b)− P (t(b, π(b))) = P (b)− P (t(π(b))), (21)

which by (20) is less than ε > 0 for sufficiently large δ.

Lemma 10. There is a function h(·) such that limφ→0 h(φ) = 0 and for any φ > 0 there is
δ ∈ (0, 1) such that for δ > δ, P (b− φ) ≤ c(π(b)) + 2`φ implies P (b) < c(π(b)) + h(φ).
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Proof. The statement of lemma can be reformulated as: for any h, there exist φ(h) and δ ∈ (0, 1)
such that for all φ < φ(h) and δ > δ, P (b − φ) ≤ c(π(b)) + 2`φ implies P (b) < c(π(b)) + h(φ).
Suppose to contradiction there is h > 0 such that for any φ and δ, there is b̂ such that P (b̂−φ) ≤
c(π(b̂))+2`φ and P (b̂) ≥ c(π(b̂))+h. Denote ŝ = π(b̂) and H = P (b̂)−c(ŝ) ≥ h > 0. Let K ≤ ∞
be the first round of screening in which type ŝ of the seller makes an offer below c(ŝ) + 0.7H
and this way allocates to all types of the buyer above some b̌. By Lemma 9, P (b̌) > c(ŝ) + 0.6H
for sufficiently large δ. Without loss of generality, suppose 2`φ < 0.1H. This implies that the
mass of types in Bŝ with P (b) > c(ŝ) + 0.1H is at most φ.

Lower bound on xK : In the first K rounds of screening, type ŝ allocates to the mass xK =
b̂− b̌ < φ of types of the buyer. Since type b̂ prefers to buy at price P (b̂) rather than wait until
price drops to P (b̌),

δ2K ≤ v(b̂)− P (b̂)
v(b̂)− P (b̌)

≤ v(b̂)− c(ŝ)−H
v(b̂)− c(ŝ)− 0.7H

≤ Σ−H
Σ− 0.7H < 1. (22)

Consider an alternative screening strategy, in which type ŝ speeds up screening in the first K/MK

rounds for some positive MK such that K/MK is an integer. Let Ak be the price offer that type ŝ
makes in round k in the equilibrium screening strategy. Define qk = P (b̂)+MKk

K

(
AK−1 − P (b̂)

)
,

k = 1, 2, ..,K/MK . In the alternative strategy, type ŝ makes offer pk = min{qk, Ak} in rounds
k ≤ K/MK , makes offer AK in round K/MK + 1 and continues following the equilibrium strategy
from then on. The total loss from using the alternative strategy is at most 0.4HMK

K xK . Indeed,
in each round the loss of type ŝ compared to the maximum surplus that can be extracted is at
most P (b̂)−P (b̌)

K/MK
≤ 0.4HMK

K and she allocates to a mass xK of the types of the buyer. Moreover,
there is no loss due to discounting, as the allocation to all buyer types happens sooner under the
alternative strategy than under the equilibrium strategy. At the same time, by speeding up the
screening, type ŝ gains at least

(
δ2K/MK − δ2K

)
VK , where VK is the continuation utility of type

ŝ after she makes price offer AK and follows the equilibrium strategy further. By the optimality
of the screening strategy of type ŝ,

0.4HMK
K xK ≥

(
δ2K/MK − δ2K

)
VK . (23)

Lower bound on xL: Consider type š = π(b̌) of the seller, and let L+K be the first round of
screening in which type š makes an offer below c(ŝ) + 0.4H and this way allocates to all types
above b̃. By Lemma 9, P (b̃) > c(ŝ) + 0.3H for sufficiently large δ. By the analogous argument
as with K and type ŝ above,

δ2L ≤ v(b̌)− P (b̌)
v(b̌)− P (b̃)

≤ v(b̌)− c(ŝ)− .6H
v(b̌)− c(ŝ)− .4H

≤ Σ− 0.6H
Σ− 0.4H < 1, (24)
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and for the optimality of strategy of seller type š it is necessary that

0.4HML
L xL ≥

(
δ2L/ML − δ2L

)
VL. (25)

In inequality (25), xL = b̌ − b̃ denotes the mass of buyer types to whom type š allocates in
rounds K, . . . ,K +L, and VL denotes the continuation utility of seller type š after price offer in
round L and follows the equilibrium strategy further.

Lower bound on VK : Observe that type ŝ can offer c(ŝ) + 0.3H in round K + 1 of the
screening instead of following the equilibrium screening policy. The mass of buyer types that
accept such price is at least xL and so,

VK ≥ 0.3HxL. (26)

Lower bound on VL : Suppose that the seller allocated in previous rounds to all types of
the buyer with P (b) > c(ŝ) + 0.3H and offers c(ŝ) + 0.1H in the current round. Denote by
b′′ and b′ the highest and lowest types, respectively, that accept c(ŝ) + 0.1H. By Lemma 9,
P (b′′)− P (b′) > 0.1H. The next claim gives the following lower bound

VL ≥ 0.2Hγ(δ). (27)

Claim 1. There exist a function γ(δ) such that limδ→1
γ(δ)

(1−δ)2 ∈ (0,∞) and b′′ − b′ ≥ γ(δ) for all
sufficiently large δ.

Proof. Define L̃ and tl, l = 0, . . . , L̃+ 1 recursively as follows. Let t0 = b′′ and tl = t(π(tl−1))
for l = 1, . . . , L̃+ 1 where L̃ is the largest integer such that tL̃ ≥ b′. By (2),

P (b′′) = (1− δ2)
L̃∑
l=0

δ2lv(tl) + δ2(L̃+1)P (tL̃+1).

Since P is strictly increasing and b′ ∈ [tL̃+1, tL̃],

P (b′′)− P (b′) ≤ (1− δ2)
L̃∑
l=0

δ2lv(tl)− (1− δ2(L̃+1))P (b′) ≤ (1− δ2(L̃+1))(v(b′′)− P (b′)).

Since v(b′′)−P (b′) ≥ P (b′′)−P (b′) > 0, 1H > 0, 1− δ2(L̃+1) is bounded away from zero. Hence,
there exists C1 > 0 and δ1 such that L̃ ≥ −C1/ ln δ for all δ ≥ δ1. By Lemma 17 in the Online
Appendix, there exists C2 > 0 and δ2 such that tl−1− tl > C2(1− δ)3 for all l ∈ 1, . . . , L̃ and all

δ ≥ δ2. Hence, b′′−b′ =
L̃∑
l=1

(tl−1− tl)+ tL̃−b′ ≥ C2(1−δ)3L̃ ≥ −C1C2(1−δ)3/ ln δ ∼ (1−δ)2 for

δ ≥ max{δ1, δ2}. Function γ(δ) = −C1C2(1− δ)3/ ln δ satisfies the desired properties. Q.E.D.
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Multiplying inequalities (23), (25), (26), (27),

8
3xK ≥

K(1− δ)
MK

L(1− δ)
ML

(
δ2K/MK − δ2K

) (
δ2L/ML − δ2L

) γ(δ)
(1− δ)2 . (28)

Notice that K depends on δ and b̂, but we can choose MK(δ, b̂) so that limδ→1 δ
K/MK(δ,b̂) is a

positive number in (0, 1). Similarly, L depends on δ and b̌, but we can choose ML(δ, b̌) so that
limδ→1 δ

L/ML(δ,b̌) is a positive number in (0, 1). This way, by H > h > 0 and bounds (22) and
(24), the right-hand side of (28) converges to a positive number as δ → 1. On the other hand,
the left-hand of (28) is bounded from above by 8

3φ. Since φ can be arbitrarily small, we get the
contradiction.

Lemma 11. limδ→1 maxb∈[0,1] |P (b)− P ∗(b)| = 0 where P ∗(b) = max {y∗(0, 0), c(π(b))}.

Proof. Fix ε > 0. We show that there exists δ such that for all δ > δ, either P (b) < c(π(b)) + ε

or P (b) < y∗(0, 0) + ε. Choose φ so that φ < ξ
4` and h(φ) defined in Lemma 10 is less than ε

2 .
Choose δ large enough so that f(φ, δ)/φ < ε

2 where f is the function from Lemma 8.
Suppose b is such that P (b) ≥ c(π(b)) + ε. Consider the first positive integer K such that

P (b−Kφ) ≤ c(π(b−(K−1)φ))+2`φ. We show that in fact there is no such an integer. By Lemma
10, P (b−φ) ≤ c(π(b))+2`φ implies P (b) < c(π(b))+h(φ) < c(π(b))+ ε

2 and so, K > 1. By Lemma
10, for all b, P (b) > 1

2(y∗(0, 0) + c(0)) for sufficiently large δ. This implies that b− (K− 1)φ > η

for sufficiently large δ, as φ < ξ
2` . For all 2 ≤ k < K, P (b− kφ) > c(π(b− (k − 1)φ)) + 2`φ and

so by Lemma 8,
P (b− (k − 1)φ) > P (b− (k − 2)φ)− f(φ, δ). (29)

Therefore,

P (b− (K − 1)φ) > P (b)− (K − 1)f(φ, δ)

≥ c(π(b)) + ε− (K − 1)f(φ, δ)

> c(π(b− (K − 1)φ)) + ε− f(φ, δ)/φ

> c(π(b− (K − 1)φ)) + ε
2 ,

where the first inequality is by iterating (29), the second by P (b) ≥ c(π(b)) + ε, the third by the
monotonicity of c and K ≤ 1/φ, the last is by the choice of φ. On the other hand, by Lemma
10, P (b− (K − 1)φ) < c(π(b− (K − 1)φ)) + h(φ) < c(π(b− (K − 1)φ)) + ε

2 . Therefore, no such
K exists which implies that the inequality (29) holds for all k up to K∗ = 1 + bb−η/φc. Summing
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(29) for all k,

P (b) < P (b− (K∗ − 1)φ) + (K∗ − 1)f(φ, δ)

< P (η) + f(φ, δ)/φ

< P (η) + ε
2 .

By the last statement in Lemma 13 in the Online Appendix, P ∗(b) = y∗(0, 0) for b ∈ [0, η].
Therefore, P (b) < y∗(0, 0) + ε which gives the desired conclusion.

Proof of Theorem 1. The continuation utility of type s of the seller in the seller punishing
equilibrium is bounded above by P (π(s))− c(s). By Lemma 11, limδ→1 max

s∈[0,1]
|P (π(s))− c(s)−

max{y∗(0, 0)− c(s), 0}| = 0 which gives the desired conclusion.

A.2 Proofs for Section 4.1
Proof of Lemma 2. Denote the uniform distribution of types on Ωη by F and note that F
is affiliated. Let F (s|b) = max{min{s,π(b)}−π(b),0}

π(b)−π(b) be the c.d.f. of the buyer type b’s beliefs and
f(s|b) be the corresponding p.d.f. We show that if b· satisfies the equation (5), then it is a best
response to the threshold strategy s·. Buyer’s type b chooses the acceptance time t to maximize
u(b, t) given by

u(b, t) =
ˆ t

0
e−ru(v(b)− qB)dF (su|b) + (1− F (st|b))e−rt(v(b)− qS).

The first-order condition for this problem is

(qS − qB)f(st|b)ṡt = r(v(b)− qS)(1− F (st|b)) (30)

from which it immediately follows that |bt − st| ≤ η (otherwise, the left-hand side is zero) and
threshold type bt strictly prefers to accept at time t. This implies that b0 − b∞ < 2η and
s∞−s0 < 2η, which in turn together with b∞ = s∞+η implies that the probability of a positive
delay is at most ( 1

2 (4η)2− 1
2 (2η)2)/η(2−η) = 6η

2−η ≤ 6η. (Note that the density of F on Ωη is given
by 1

1−(1−η)2 = 1
η(2−η)).

From the first-order condition (30),

u(1, t(1))− u(b̃, t(b̃)) =
ˆ 1

b̃

(
∂

∂b
u(b, t(b)) + ∂

∂t
u(b, t(b))t′(b)

)
db

=
ˆ 1

b̃

∂

∂b
u(b, t(b))db,

(31)

where t(b) is the inverse of bt. In Claim 2 below, we show that u(b, t) satisfies the smooth single
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crossing difference (SSCD) condition in (b,−t). Together with the envelope formula (31), this
verifies the conditions of Theorem 4.2 in Milgrom (2004) and proves that bt is a best response
to st. Therefore, (bt, st) constitute a BNE of G(qS , qB).

Claim 2. u(b, t) satisfies the SSCD condition in (b,−t) for b ∈ (b∞, b0) and t ∈ (0,∞).

Proof: We will show the following conditions are satisfied which imply the SSCD.

1. u(b, t) satisfies the (strict) single crossing difference condition in (b,−t), i.e. for all t̃ > t

and b̃ > b,

u(b, t)− u(b, t̃) ≥ 0 =⇒ u(b̃, t)− u(b̃, t̃) > 0.

2. for all t, if ∂
∂tu(b, t) = 0, then for all δ > 0, ∂

∂tu(b, t− δ) ≥ 0 and ∂
∂tu(b, t+ δ) ≤ 0.

Let us start with the single crossing difference condition. Consider b < b̃ and t < t̃ ≤ T and
suppose that

u(b, t) ≥ u(b, t̃). (32)

We will show that u(b̃, t) > u(b̃, t̃). Define function

g(u|b, t) = e−ru(v(b)− qB)1{u < t)}+ e−rt(v(b)− qS)1{u ≥ t}.

Then ˆ T

0
g(u|b, t)dF (su|b) ≥

ˆ T

0
g(u|b, t̃)dF (su|b) ≥

ˆ T

0
g(u|b, t̃)dF (s|b̃),

where the first inequality follows from (32), the second inequality follows from the fact that
g(·|b, t̃) is decreasing and F (·|b̃) first-order stochastically dominates F (·|b) (as F is affiliated).
This implies that

u(b, t) =
ˆ t

0
e−ru(v(b)− qB)dF (su|b) + (1− F (st|b))e−rt(v(b)− qS)

≥
ˆ t̃

0
e−ru(v(b)− qB)dF (su|b̃) + (1− F (st̃|b̃))e−rt(v(b)− qS),

or equivalently,

v(b)
(ˆ t

0
e−rudF (su|b) + (1− F (st|b))e−rt −

ˆ t̃

0
e−rudF (su|b̃)− (1− F (st̃|b̃))e−rt̃

)

≥ qS −
ˆ t̃

0
e−ruqBdF (su|b̃)− (1− F (st̃|b̃))e−rt̃qS . (33)

We will show that the left-hand side of (33) is positive and so, the left-hand side would increase
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if we substitute v(b̃) instead of v(b). This in turn implies that u(b̃, t) > u(b̃, t̃) and completes the
proof of the strict single crossing difference. Let h(u|t) = e−ru1{u < t)} + e−rt1{u ≥ t}. Then
the left-hand side of (33) is equal to

v(b)
(ˆ T

0
h(u|t)dF (su|b)−

ˆ T

0
h(u|t̃)dF (su|b̃)

)

≥v(b)
(ˆ T

0
h(u|t)dF (su|b̃)−

ˆ T

0
h(u|t̃)dF (su|b̃)

)

=v(b)
ˆ T

0
(h(u|t)− h(u|t̃))dF (su|b̃) > 0,

where the first inequality follows from F (·|b̃) first-order stochastically dominates F (·|b) and h(·|t)
decreasing, and the last term is strictly positive by t < t̃.

Now, let us show the second requirement of the SSCD condition. Suppose ∂
∂tu(b, t) = 0. By

taking the partial derivative

ert
∂

∂t
u(b, t) = (qS − qB)f(st|b)ṡt − r(v(b)− qB)(1− F (st|b)),

we get that

ert
∂

∂t
u(b− δ, t) =

(qS − qB)f(st|b− δ)ṡt − r(v(b− δ)− qS)(1− F (st|b− δ)) =

(1− F (st|b− δ))
(

(qS − qB) f(st|b− δ)
1− F (st|b− δ)

ṡt − (r(v(b− δ)− qS)
)
.

Since v(b− δ) ≤ v(b) and f(st|b−δ)
1−F (st|b−δ) ≥

f(st|b)
1−F (st|b) (by the affiliation of f), it follows that ∂

∂tu(b−
δ, t) ≥ 0. Showing that ∂

∂tu(b+ δ, t) ≤ 0 is analogous. q.e.d.

The following lemma (proven in the Online Appendix) is the key mathematical fact in the
proof of Lemma 3.

Lemma 12. Consider b∞ ∈ (0, 1− η), s∞ = b∞ + η, qB, qS that satisfy

max{c(s∞), y∗(0, 0)} < qB < qS < min{v(b∞), y∗(1, 1)}. (34)

There exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1) there are positive sequences (xk, yk)∞k=1 that
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satisfy the recursive system
xk+1 = (1− αB(yk+1))xk − αB(yk+1)yk+1,

yk+1 = (1− αS(xk))yk − αS(xk)xk,

b∞ + xk ≤ s∞ − yk + η;

(35)

where

αB(y) = (1− δ2)(qB − c(s∞ − y))
δ(qS − c(s∞ − y))− δ2(qB − c(s∞ − y)) ,

αS(x) = (1− δ2)(v(b∞ + x)− qS)
δ(v(b∞ + x)− qB)− δ2(v(b∞ + x)− qS) .

Proof of Lemma 3. We construct on-path threshold acceptance strategies. Types of the buyer
above bn and types of the seller below sn accept the opponent’s offer in even round n for the
buyer and odd round n for the seller. Otherwise, players make counter-offers qS for the seller
and qB for the buyer. By Lemma 12, we can construct sequences of threshold types bn and sn

so that corresponding sequences xk and yk defined by xk = b2k − b∞ and yk = s∞ − s2k−1 for
k = 1, 2, . . . satisfy (35). Since (xk, yk) is a positive trajectory and αB(y) > 0 whenever y > 0,
from (35) it follows that xk+1 − xk = −αB(yk+1)(xk + yk+1) < 0 for all n ∈ N, and analogously,
yk+1 − yk < 0. Hence, bn and sn are monotone sequences. Since (xk, yk) converges to (0, 0), the
limits of bn and sn are b∞ and s∞, respectively. The form of functions αB(x) and αS(y) implies
that

v(bn)− qS = δαSn

(
v(bn)− qB

)
+ δ2

(
1− αSn

) (
v(bn)− qS

)
for n even, (36)

qB − c(sn) = δαBn

(
qS − c(sn)

)
+ δ2

(
1− αBn

) (
qB − c(sn)

)
for n odd, (37)

where

αSn = sn+1 − sn−1
π(bn)− sn−1

, (38)

αBn = bn−1 − bn+1
bn−1 − π(sn) . (39)

By the same argument as in Lemma 2 we can show threshold strategies bn and sn are optimal
on-path.

All deviations from acceptance strategies bn and sn are ignored. To deter deviations from
offers qB and qS specify that after deviations from price offers qB and qS , players switch to
the punishing equilibrium of the deviator. By Theorem 1, in such an equilibrium the expected
utility of the deviator is uniformly (over all types of the deviator) close to the reservation utility
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as δ converges to one. On the other hand, by following the equilibrium strategy any seller type
s ≤ π(b0) gets at least qB − c(s), and any buyer type b ≥ π(s0) gets at least v(b) − qS . These
utilities are bounded away from the reservation utility by max{c(s∞), y∗(0, 0)} < qB < v(0) and
c(1) < qS < min{v(b∞), y∗(1, 1)}. This proves that the constructed thresholds constitute the
PBE. Sequences bn and sn can be linearly extrapolated to continuous time and they converge to
bt and st, resp. This implies the convergence of PBE outcomes to νp(s∞, qS , qB) as δ → 0.

Proof of Lemma 4. For all z = 1, . . . , Z − 1, let ŝz = bz − η and q̂z be such that the seller
type ŝz is indifferent between having his offer q̂z accepted in the current round and accepting qz
in the next round, i.e. q̂z − c(ŝz) = δ(qz − c(ŝz)). Denote ŝ0 = 0,ŝZ = 1, and q̂Z = qZ .

For any z = 1, . . . , Z − 1, suppose that only types of the seller in [ŝz, ŝz+1] and of the
buyer in [bz − η, bz+1] remain in the game. We can follow the proof of Lemma 3, to construct
for sufficiently large δ the continuation PBE with constant offers on the equilibrium path qz

for the buyer and q̂z+1 for the seller, and acceptance threshold strategies bzn and szn such that
limn→∞ b

z−1
n = bz and limn→∞ s

z
n = sz. In this PBE, bz2 − bz < 2η and sz − sz3 < 2η. Since Z

is finite, for sufficiently large δ the constructed strategies constitute continuation PBEs for all
z = 1, . . . , Z − 1. Let b̂z = bz2 for z = 1, . . . , Z − 1 and b̂0 = 0, b̂Z = 1.

The equilibrium strategies are described as follows. In the first round, for z = 1, . . . , Z seller
types in [ŝz−1, ŝz] make offer q̂z. Since ŝz − ŝz−1 > bz − bz−1 > 4η for z = 2, . . . , Z, each type of
the buyer expects to receive one of at most two offers in the first round on-path. In the second
round, for z = 1, . . . , Z − 1, buyer types in [b̂z−1, b̂z] accept offer q̂z, but reject offer q̂z+1 and
make a counter-offer qz. Buyer types in [b̂Z−1, b̂Z ] accept q̂Z . Starting from the third round,
if in the first two rounds the buyer offered qz and the seller offered q̂z+1 for some z, then the
buyer continues offering qz and the seller continues offering q̂z+1 and players follow acceptance
strategies bzn and szn constructed above.

Denote the set of seller’s on-path offers by QS = {q̂1, . . . , q̂Z} and the set of buyer’s on-path
offers by QB = {q1, . . . , qZ−1}. After any deviation to offers not in QS for the seller and not
in QB for the buyer, players switch to the punishing continuation equilibrium of the deviator
constructed in Theorem 1. If the seller deviates from the equilibrium path to a lower price offer
in QS , then such an offer is accepted by all remaining buyer types. If the seller deviates to
a higher price offer in QS , then such an offer is rejected by all remaining buyer types and in
subsequent rounds players return to following on-path acceptance strategies bzn and szn and offers
qz and q̂z+1. Same happens if the seller deviates from the acceptance strategy. Strategies after
buyer’s deviations from on-path strategies are defined analogously.

Let us verify that constructed strategies constitute the PBE for sufficiently large δ. By
construction, after first two rounds the continuation strategies constitute PBEs. By the choice
of q̂z and qz+1 and Theorem 1, no player prefers to deviate in the first two rounds from the
equilibrium price offers to offers outside QS and QB for δ sufficiently large. Since qz−1 < qz
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for all z, a deviation to a lower offer in QS is worse than accepting the buyer’s price offer for
sufficiently large δ. A deviation to a higher offer in QS in one round will be rejected for sure
for sufficiently large δ, as the buyer expects that the seller will return to the equilibrium path
and decrease her price offer in the next round. Thus, such a deviation is not profitable either
and so, the seller does not have incentives to deviate to other offers in QS for sufficiently large
δ. (The argument for the buyer is symmetric). Finally, since b̂z−1 > bz−1 = ŝz−1 + η, all buyer
types in Bŝz accept offer q̂z, but reject qz+1. By q̂z − c(ŝz) = δ(qz − c(ŝz)), seller type ŝz is
indifferent between offering q̂z that is accepted for sure and offering qz+1 that is rejected for
sure and accepting the buyer’s counter-offer qz. By the single-crossing property of payoffs, seller
types above ŝz strictly prefer to accept the offer qz in two rounds, and seller types below ŝz

strictly prefer that the buyer accepts q̂z in the next round.
By construction, on the equilibrium path, types of the buyer in [bz, bz+1] and types of the

seller in [sz, sz+1] trade only at price qz or q̂z+1 where the latter converges to qz+1 as δ → 1.
The positive delay occurs only when players offer qz and q̂z+1 in the beginning. For each z, the
probability of such initial offers is at most 6η by Lemma 3, and so the probability of positive
delay is at most 6η(Z − 1).

Proof of Theorem 2. Fix γ, β ∈ (0, 1) and choose bz = bz−1 + √η and qz = q(bz, γ, β) for
z = 1, . . . , Z and Z =

⌊
1√
η

⌋
. Observe that for γ, β ∈ (0, 1), q(·, γ, β) is strictly increas-

ing with the derivative bounded from above and below by some positive constants C and c,
resp., and for all ι, c(ι) < q(ι, γ, β) < v(ι) and q(ι, γ, β) ∈ (y∗(0, 0), y∗(1, 1)). Thus, for suffi-
ciently small η, the conditions of Lemma 4 are satisfied and there is a frequent-offer PBE limit
(τη, ρη) such that types of the buyer in [bz, bz+1] and types of the seller in [sz, sz+1] trade at
price qz or qz+1 and probability of a positive delay is at most 6η(Z − 1) ∼ 1√

η . Therefore,
Pη (τη(s, b) > 0 or |ρη(s, b)− q(s, γ, β)| > c0η) = c1√

η for some constants c0 and c1. Therefore,
(0, q(b, γ, β)) is an almost-public information limit.

To characterize the Pareto frontier, fix β ∈ (0, 1) such that US = E(s,b)[q(s, 1, β) − c(s)].
Fix ε > 0. By setting qz = q(bz, 1 − ε, β(1 − ε) + 1

2ε) in the construction above, we can
construct for any ε > 0 a sequence of frequent-offer PBE limit (τη,ε, ρη,ε) that converges to
(0, q(b, 1 − ε, β(1 − ε) + 1

2ε)) as η → 0. By taking the diagonal subsequence in ε and η, we get
the sequence of frequent-offer PBE limit that converges to (0, q(b, 1, β)) as η → 0. Similarly, by
setting qz = q(bz, ε, 1

2) we can show that the complete-information outcome is an almost-public
information limit.

A.3 Proofs for Section 4.2
Proof of Theorem 5. Since st < sT = bT − η < π(bt) for t < T , type bt assigns probability
zero to his offer being accepted before T . Type bt chooses the acceptance time t to maximize
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e−rt(v(bt) − qSt ) for which the first-order condition is given by the equation (8) (equation (9)
for threshold seller types). The sufficiency of the first-order condition follows from the single-
crossing property of payoffs.

Proof of Theorem 3. We construct PBEs in grim-trigger strategies. Players start the game
by following the main path and continue following it so long as there were no deviations in the
past. If one of the sides detects a deviation, then the play switches to the punishing path of the
deviator.

Construction of the main path (b̃n, s̃n, q̃Bn , q̃Sn ): We consider the following on-path strategies.
In any odd round n, types of the seller in [s̃n−1, s̃n] make an offer q̃Bn which is accepted by the
buyer and all remaining types make an unacceptable offer v(1). In any even round n, types of
the buyer in [b̃n, b̃n−1] make an offer q̃Sn which is accepted by the seller and all remaining types
make an unacceptable offer c(0).

Consider a tuple (bt, st, qBt , qSt , T ) such that qSt = 1
2(v(bt− η

2 ) + c(bt− η
2 )) and qBt = 1

2(v(st +
η
2 ) + c(st + η

2 )), and bt and st so that they solve the system (8)− (9) with the initial condition
b0 = 1 and terminal condition bT = sT + η. We construct the discrete-time approximation of st
and bt using the Euler method. Suppose N = b T∆c is even and let s̃N+1 = 1,s̃N = sT , b̃N = bT .
For odd n < N , s̃n = s̃n+1− ṡ(n+1)∆∆ and b̃n = b̃n+1, and for even n < N , b̃n = b̃n+1− ḃ(n+1)∆∆
and s̃n = s̃n+1. We construct paths q̃Sn (for n odd) and q̃Bn (for n even) backwards in time starting
from N and q̃SN+1 = qBN = qST as follows: for n ≤ N ,

v(b̃n)− q̃Sn = δ2(v(b̃n)− q̃Sn+2), (40)

q̃Bn − c(s̃n) = δ2(q̃Bn+2 − c(s̃n)). (41)

(b̃n, s̃n, q̃Bn , q̃Sn ) converges uniformly to (bt, st, qBt , qSt ) which implies the convergence of the PBE
outcomes (τ, ρ) to (τ †η , ρ†η). By construction of paths qSt and qBt , in the war-of-attrition game
G(qSt , qBt ), the expected continuation utility at any time t ≤ T for every type is greater than the
lower bound in Lemma 1.

Construction of the punishing path: We consider the punishment of the seller and the strate-
gies are symmetric for the punishment of the buyer. The following seller’s deviations are possible:

• If the seller makes in round n an offer different from v(1) and q̃Bn , the play switches to the
continuation equilibrium with optimistic conjectures of the buyer. By Theorem 1, such a
deviation is not profitable.

• If type s ∈ [s̃n−1, s̃n) of the seller mimics a lower type, then she reveals herself with an
offer lower than q̃Bn . We specify equilibrium strategies so that such an offer is accepted
by the buyer no matter whether the buyer detects such offer as a deviation or not and if
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it is rejected, then the subsequent play returns to the main path. By the single-crossing
property of payoffs, such a deviation is not profitable for type s. Since the play returns
to the main path in case the deviating offer is rejected, the buyer prefers to accept such
an offer which is lower than subsequent on-path offers.

• If type s ∈ [s̃n−1, s̃n) mimics a higher type, then she does not make any acceptable offers
until some round n′ > n. Such a deviation is detected by the buyer only when b < π(s̃n′).
Specify equilibrium strategies as follows. In round n′, type s makes offer q̃Bn′ which is
accepted by types of the buyer who did not detect the deviation. Types of the buyer
who detected the deviation immediately switch to optimistic conjectures. Then they wait
until the seller offers q̃Bn′ and make a counter-offer y(0, 0) and the play switches to the
continuation equilibrium with optimistic conjectures of the buyer. If the buyer deviates
and makes some offer in round before n′, then the seller switches to optimistic conjectures.
By the single-crossing property of payoffs and construction of offers in (40), even if the
buyer never detects the deviation, type s prefers to reveal herself in round n rather than
later. On top of that delaying the revelation increases the probability that the buyer
detects the deviation which makes longer delay even more costly. Hence, it is optimal for
the seller to reveal herself as soon as possible.

The type of the buyer who detected the deviation prefers to offer c(0) and wait for the seller
to reveal the deviation in round n′. Indeed, by Theorem 1, for sufficiently large δ, this guar-
antees an immediate trade at a price close to the minimal price max{y∗(0, 0), c(π(b))},
while if she deviates and makes an off-path offer, then both sides hold optimistic con-
jectures and by Lemma 7, the buyer expects a price of trade close to y∗(π(b), b) for δ
sufficiently large.

The convergence of ρ†η to y∗(s, b) as η → 0 follows from the construction of qSt and qBt and
acceptance strategies bt and st, and the positive expected delay Eη[τ †η ] follows from the fact that
the left-hand side of (8) and (9) is bounded (and so, the acceptance is gradual).

Proof of Theorem 4. By Lemma 6, for any ε0 > 0 and K(b, η) = bε0/2ηc,

Pb ≤ (1− δ)
K(b,η)∑
k=0

δ2k(v(b+ ε) + δc(b+ ε)) + δ2K(b,η)y(1, 1)

≤ (1− δ)
K(b,η)∑
k=0

δ2k(v(b) + δc(b)) + 2(1− δ)ε0`+ δ2K(b,η)y(1, 1)

As η → 0, the last term goes to zero while the first term converges to y(b, b). Since ε0 was
chosen arbitrarily, limη→0 Pb ≤ y(b, b) and by the same argument, limη→0 ps ≥ y(s, s). Players’
types are within distance η and so, for all s and b drawn from Ωη, |y(b, b)− y(s, s)| < `η. This
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implies that for some constants c0, c1, |ρδ(s, b) − y∗(s, b)| < c0η and τδ < c0η which gives the
conclusion of the theorem.
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Online Appendix (Not for Publication)

Existence
In this subsection, we prove the existence and derive several useful properties of the punishing
equilibrium.

Theorem 5. For all δ sufficiently close to 1, there exists the punishing equilibrium.

The key element of the proof of theorem 5 is the existence of functions t(·, ·) and P (·)
that satisfy (2) and (11). The proof of the existence of such functions is constructive and the
construction is carried out starting from the bottom of the type distribution.

We first analyze strategies of type 0 of the seller and types of the buyer in [0, η]. Such
types of the buyer put probability one on the type 0 of the seller, and the model is reduced to
the model with one-sided incomplete information and alternating offers. The following result is
standard in the literature (see Grossman and Perry (1986), Gul and Sonnenschein (1988)).24

Lemma 13. For all δ sufficiently close to 1, there exists a perfect Bayesian equilibrium in a
game between type 0 of the seller and types of the buyer in [0, η], in which on-path (a) the
buyer makes price offer y(0, 0) and accepts offers according to the right-continuous and strictly
increasing willingness to pay function P 0; (b) there exists β̄ ∈ [0, η] such that if the highest
remaining buyer type is below β̄, then type 0 of the seller accepts offer y(0, 0); (c) given the
highest remaining type of the buyer β ∈ (β̄, η], type 0 of the seller allocates to all types above
t(β, 0) in the current round. Moreover, for any ε > 0, there exists δ(ε) < 1 such that for all
δ > δ(ε), the first price offer of type 0 of the seller does not exceed y∗(0, 0) + ε.

Proof. The proof is standard and we only sketch the argument. Following Fudenberg et al.
(1985), we can construct a perfect Bayesian equilibrium in a game between type 0 of the seller
and types of the buyer in [0, η] in which the buyer is restricted to either accept the seller’s offer or
make the counter-offer y(0, 0).25 Such equilibrium takes the form as described in the statement
of the lemma. By the argument from the Theorem 3 in Gul et al. (1986), the Coase Conjecture

24One detail worth mentioning is that despite the fact that in the punishing equilibrium, type 0 of the
seller follows a pure strategy on the equilibrium path, off-path mixing might be necessary (see footnote
14). This possibility can easily be incorporated into the analysis. For notation simplicity, we will assume
that the seller screening strategy in Lemma 13 is pure.

25The argument in Fudenberg, Levine, and Tirole (1985) should be slightly modified. As in their paper,
we start by showing that for β smaller than some β̄ the seller prefers to accept y(0, 0) rather than continue
the screening. This implies that there is a finite date after which bargaining ends with probability one
by the argument analogous to Lemma 3 in Fudenberg, Levine, and Tirole (1985). we follow the steps in
their proof of Proposition 1 to construct equilibrium strategies by backward induction on beliefs starting
from beliefs supported by [0, β], β < β̄ with the only difference that instead of asking price v(0), the seller
accepts price offer y(0, 0) for such beliefs.
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holds for such game, and for any ε > 0, after any history the first price offer of the seller does
not exceed y∗(0, 0) + ε for δ sufficiently close to one.

To support the constructed equilibrium as an equilibrium in the game with unrestricted
counter-offers of the buyer specify the following punishment for deviations of the buyer. If the
buyer makes an offer different from y(0, 0), then the seller puts probability one on type η of the
buyer and the game proceeds as in the unique subgame perfect equilibrium of the game with
complete information with the seller cost equal c(0) and the buyer valuation equal v(η). Then
trade happens almost immediately at a price that is close to y∗(0, η) for δ close to one. On the
other hand, by the Coase Conjecture, the first offer of the seller is close to y∗(0, 0) < y∗(0, η) for
δ close to one, making the deviation of the buyer non-profitable.

Strategies for the rest of the types are constructed via the following iterative algorithm. Let
c(η, δ) > 0 be a constant specified in Lemma 17 below, I be the smallest integer such that
Ic(η, δ) ≥ 1− η and denote bi ≡ η + ic(η, δ) for i = 1, . . . , I.

Iterative Algorithm

Input: Define π0(b) =

P
0(b), for b ∈ [0, η],

v(b), for b ∈ (η, 1].
Execute Step i, i = 1, . . . , I + 1.
Step i: Construct a screening policy τ i(β, s) that is a best-reply to πi−1(b). Construct
πi(b) by

πi(b) =


πi−1(b), for b ∈ [0, bi−1],

(1− δ2)v(b) + δ2πi−1(τ i(π(b))), for b ∈ (bi−1, bi],

v(b), for b ∈ (bi, 1].

Output: P (b) = πI+1(b), t(β, s) = τ I+1(β, s).

I next prove several auxiliary results that allow me to verify that the iterative algorithm
produces the punishing equilibrium for sufficiently large δ.

Lemma 14. Suppose t(β, s) is a best-reply to willingness to pay P . Then (a) R(β, s) is non-
decreasing in β; (b) for 0 ≤ β′′ < β′ ≤ 1, it holds 0 < R(β′, s)−R(β′′, s) ≤ Σ(β′− β′′) whenever
R(β′, s) > 0, and R(β′, s) = R(β′′, s) = 0 whenever R(β′, s) = 0; (c) R is Lipschitz-continuous
in both β and s of modulus `R = `+ Σ.

Proof. Parts (a) and (b) follow from Lemma A.2 in Ausubel, Deneckere (1989). To show that R
is Lipschitz-continuous, consider two types s and s′. Let R(β, s, s′) be the value function of type
s from following the screening policy t(β, s′) when the highest remaining type of the buyer is
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β.26 Let ps′s and qs′s , respectively, be the expected discounted transfer and discounted probability
of allocation, respectively, both multiplied by the mass of remaining types according to type s
when type s follows the screening policy of type s′. Then

R(β, s) ≥ R(β, s, s′)

= ps
′
s − qs

′
s c(s)

≥ ps
′
s − qs

′
s c(s′)− |c(s)− c(s′)|

≥ ps
′
s′ − qs

′
s′c(s′)− (`+ Σ)|s− s′|

= R(β, s′)− (`+ Σ)|s− s′|.

The equalities are by the definition of R(β, s, s′) and R(β, s′). The first inequality follows from
the fact that type s prefers policy t(β, s) to t(β, s′). The second inequality is by qs′s ∈ [0, 1]. To
see the last inequality, consider two cases. When s > s′, by using the screening policy t(β, s′),
type s gets the same profit from types of the buyer in [π(s), π(s′)] as type s′, but looses at
most Σ by not screening types in [π(s′), π(s)) that have mass at most s − s′ (as she assigns
probability one to them). When s < s′, by using the screening policy t(β, s′), type s gets the
same profit from types of the buyer in [π(s′), π(s)] as type s′, but looses at most Σ from types
of the buyer in [π(s), π(s′)] (as she assigns probability one to them). By reversing the roles of
s and s′ and repeating the argument, we get |R(β, s)− R(β, s′)| ≤ (`+ Σ)|s− s′| which proves
the Lipshitz-continuity.

Lemma 15. Suppose screening policy t is a best-reply to willingness to pay P . Then (a) t is
non-decreasing in β and s; (b) for any β, T (β, ·) has a closed graph and t(β, ·) is right-continuous
in s.

Proof. Part (b) follows from the generalization of Theorem of the Maximum in Ausubel and
Deneckere (1988). Part (a) is an analogue of Proposition 2 in Hopenhayn and Prescott (1992).
Due to the special functional form, we can prove it under weaker complementarity conditions
that are satisfied in my environment. Let π(β, s, b) ≡ (β−min{β, b}) max{0, (P (b)−c(s))}. The
Bellman equation (11) can be written as R(β, s) = maxb∈Bs

{
π(β, b, s) + δ2R(b, s)

}
. Consider

the functional equation TR(β, s) = maxb∈Bs
{
π(β, b, s) + δ2R(b, s)

}
. we show that TR has the

single crossing property in (β, s). In particular, for β2 ≥ β1, we show that TR(β2, s) ≥ TR(β1, s)
for any s. Denoting by bi some element of arg maxb∈Bs

{
π(βi, b, s) + δ2R(b, s)

}
, we get

π(β2, b2, s) + δ2R(b2, s) ≥ π(β2, b1, s) + δ2R(b1, s)
26Notice that Rβ(s, s) = Rβ(s).
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and so, for TR(β2, s) ≥ TR(β1, s) it is sufficient that

π(β2, b1, s) + δ2R(b1, s) ≥ π(β1, b1, s) + δ2R(b1, s) (42)

which for P (b1) > c(s) and β1 ≥ b1 is equivalent to

(β2 − b1)(P (b1)− c(s)) + δ2R(b1, s) ≥ (β1 − b1)(P (b1)− c(s)) + δ2R(b1, s) ⇐⇒

(β2 − β1)(P (b21)− c(s)) ≥ 0,

which is implied by β2 ≥ β1. When P (b1) ≤ c(s) or β1 < b1, the inequality (42) is trivially
satisfied.

Since the single crossing property is preserved under the pointwise limit, the solution R to
the Bellman equation (11) satisfies the single crossing property in (b, s). Since ∂

∂sπ(β, b, s) =
−(β−P (max{β, b})c′(s) is increasing in b, π has single crossing property in (b, s) and so function
π + δ2R has single crossing property in (b, s). Since ∂

∂βπ(β, b, s) = P (b)− c(s) is increasing in b
for b < β and is constant for b ≥ β, π+δ2R has single crossing property in (b, β). Combined with
the fact that set Bs is ascending, this implies, by Theorem 4 in Milgrom and Shannon (1994),
that arg maxb∈Bs

{
π(β, b, s) + δ2R(b, s)

}
is ascending, and so t is non-decreasing in β and s.

Lemma 16. Consider the function πi obtained on Step i of the iterative algorithm and let Πi(s)
be the expected profit of type s that screens optimally facing the willingness to pay πi. For all b,
πi(b) ≥ c(π(b)) + (1− δ2)ξ, and for all s ∈ [0, 1−η], Πi(s) > C(η, δ) > 0 with C(η, δ) ∼ (1− δ)2.

Proof. For any type b of the buyer,

πi(b) = (1− δ2)v(b) + δ2πi−1(τ i(π(b)))

≥ (1− δ2)v(b) + δ2c(π(b))

≥ c(π(b)) + (1− δ2)ξ, (43)

where the first inequality follows from the fact that the seller gets non-negative profit when she
best-replies to πi−1, the second inequality follows from v(b)− c(π(b)) ≥ ξ.

Consider a type s ∈ [0, 1 − η] and suppose she makes the offer c(s) + (1 − δ2) ξ2 . Consider
b ∈ Bs such that c(π(b)) + (1 − δ2)ξ ≥ c(s) + (1 − δ2)ξ. By (43), such types accept the offer
c(s)+(1−δ2) ξ2 . Since the derivative of c is bounded above by `, the mass of such types is at least
min{2η, (1−δ2) ξ2`}. Therefore, type s is guaranteed to get at least min{2η, (1−δ2) ξ2`}(1−δ

2) ξ2` =
C(η, δ) by offering c(s) + (1− δ2) ξ2 . This minimal profit is equal to (1− δ2)2 ξ2

4` for δ close to one
and, hence, C(η, δ) ∼ (1− δ)2.

Lemma 17. There exists c(η, δ) > 0 such that for all s ∈ [0, η], π(s) − t(s) > c(η, δ) and
c(η, δ) ∼ (1− δ)3 as δ goes to one.
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Proof. Make the change of variables x = π(s) − t(s) in the problem (11). Then Πi(s) =
x(πi(π(s) − x) − c(s)) + δ2Πi(π(s) − x, s) ≤ x(πi(π(s) − x) − c(s)) + δ2(Πi(s) + `Rx) where
the inequality follows from the Lipschitz-continuity of Πi(s) (by Lemma 14). Therefore, x ≥

Πi(s)(1−δ2)
πi(π(s))−c(s)+δ2`R

≥ C(η,δ)(1−δ2)
Σ+`R where we used the lower bound on R(s) from Lemma 16. Letting

c(η, δ) ≡ C(η,δ)(1−δ2)
Σ+`R gives the desired conclusion.

Lemma 18. On each step of the iterative algorithm, function πi(b) is right-continuous and
strictly increasing.

Proof. The proof is by induction on the step of the algorithm. For i = 0, the strict monotonicity
of π0(b) follows from the strict monotonicity of P 0 and v, and the fact that P 0(η) ≤ v(η).
The right-continuity of π0(b) follows from the right-continuity of P 0 and the continuity of v.
Suppose by the inductive hypothesis that πi−1(b) is strictly increasing and right-continuous. For
b ∈ (bi, 1], πi(b) = v(b) is strictly increasing and continuous. For b ∈ [0, bi], πi(b) = (1−δ2)v(b)+
δ2π̂i−1(τ i(π(b))) is a convex combination of a strictly increasing function v and π̂i−1(τ i(π(b))).
Function π̂i−1(τ i(π(b))) is increasing, as π̂i−1 is strictly increasing by the inductive hypothesis
and τ i(π(b)) is non-decreasing by Lemma 15. Therefore, πi(b) is strictly increasing on [0, bi).
Moreover, πi(bi) ≤ v(bi), which completes the proof of the strict monotonicity of πi(b). Function
πi is right-continuous, as it is a convex combination of right-continuous functions on [0, bi] and
equal to continuous v on (bi, 1].

Lemma 19. Suppose P (b) and t(β, s) satisfy equations (2) and (11). Then for δ sufficiently
close to one, in the punishing equilibrium strategies P (b) and t(β, s) are optimal on-path .

Proof. From the design of the algorithm the screening strategy t(β, s) is optimal for the seller
who faces the willingness to pay P . We next show that the buyer does not have incentives to
deviate either from the acceptance strategy P or from pooling on the price offer y(0, 0).

If the highest remaining type of the buyer exceeds b, then type b interprets the previous
seller’s offers as the seller’s deviations and expects the seller to restart the screening. From
equation (2), it follows that any offer above P (b) would be rejected by buyer b. To complete the
verification of optimality of the threshold strategy, we show that prices below P (b) are accepted
by buyer b.

Suppose to contradiction that the seller makes price offer p which is accepted by type b′, but
rejected by type b > b′. First, observe that if b ≤ β̄, then both types b and b′ put probability one
on type 0 of the seller, and the result follows from the single-crossing property of the payoffs.
Next, suppose that b′ > η. Let β = inf{b : P (b) ≥ p}. If the buyer rejects price offer p, then the
highest type of the buyer remaining in the game is β. Each type s of the seller uses screening
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policy t(β, s) after the rejection. Then for all k ∈ N,

v(b′)− p ≥ δ2k
(
v(b′)− P (t(k)(β, π(b′)))

)
(44)

v(b)− p < δ2K
(
v(b)− P (t(K)(β, π(b)))

)
(45)

for some K, where t(k)(β, s) denotes the threshold type of the buyer to who type s of the seller
sells in round k of the screening that started from type β being the highest type. That is,
type b′ accepts offer p, and buyer type b rejects such offer and expects to accept price offer
P (t(K)(β, π(b))) from type π(b) of the seller. Subtracting inequality (44) (with k = K) from
(45), we get after rearranging terms

(
1− δ2K

)
(v(b)− v(b′)) < −δ2K

(
P (t(K)(β, π(b)))− P (t(K)(β, π(b′)))

)
. (46)

The left-hand side of (46) is greater than zero, as b > b′. By Lemma 15, t(K)(β, π(b)) ≥
t(K)(β, π(b′)), and moreover, P is increasing. Hence, the right-hand side of (46) is less than zero,
which gives a contradiction. If b′ ≤ β̄ < b, then the only difference with the previous case is
that the screening of type 0 of the seller ends with the acceptance of y(0, 0). Therefore,

v(b′)− p ≥ δ
(
v(b′)− y(0, 0)

)
≥ δ2K

(
v(b′)− y(0, 0)

)
Combining this inequality with the same argument as before we get the contradiction.

Finally, we show that all types of the buyer prefer to pool on y(0, 0) for sufficiently large
δ. By Theorem 1 any type b > η of the buyer expects to get the good in the next round at
price uniformly close to P ∗(b).27 By Lemma 7, if such type deviates he trades with the seller
at price close to y(π(b), b) > P ∗(b) when δ is sufficiently large. Hence, such a deviation is not
profitable.

Proof of Theorem 5. By Lemma 17, the iterative algorithm converges in a finite number of steps.
By Lemma 19, no deviations are profitable.

Proof of Lemma 12
Proof. Observe that if xk and yk are given for k ≥ k0, then by (35), we can construct xk and
yk for k < k0. The following claim shows that it is sufficient to construct xk and yk that are
positive starting from some k0.

27Notice that the proof of Theorem 1 does not rely on the existence of the punishing equilibrium and
simply analyzes the equilibrium path of the punishing equilibrium.
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Claim 3. If trajectories xk and yk satisfying (35) are positive starting from some k0, then xk

and yk are positive for all k ∈ N.

Proof. By rearranging terms in the first equation of (35), xk = xk+1+αB(yk+1)yk+1
1−αB(yk+1) . Observe

that αB(y) ∈ (0, 1) for y > 0 and so xk is positive whenever xk+1 and yk+1 are positive.
Analogously, it can be shown from the second equation of (35) that yk is positive whenever xk+1

and yk+1 are positive. Q.E.D.

Claim 4. For given xk0 and yk0, there is K(xk0 , yk0) such that k0 ≤ K(xk0 , yk0).

Proof. First, observe that xk and yk are decreasing whenever they are positive. Indeed, for
all k ∈ N, we have xk−1 − xk = αB(yk)(xk−1 + yk) > 0 and similarly, yk−1 − yk > 0. Next, from
(35), for all k ≤ k0,

xk−1 − xk = αB(yk)(xk−1 + yk) ≥ αB(yk0)(xk0 + yk0) > c1 (47)

for some c1 > 0 where we made use of the fact that αB(y) is increasing and xk and yk are
decreasing sequences. Suppose for any K ∈ N, we could construct sequences xk(K) and yk(K)
such that xK(K) = xk0 and yK(K) = yk0 . From (47), for K sufficiently large, b∞ + x0(K) >
s∞ − y0(K) + η, which contradicts (35). Q.E.D.

Let V B ≡ v(b∞)− qS , V S ≡ qB − c(s∞) and ∆P ≡ qS − qB. The following claim gives rise
to the Taylor expansion of αB(y) and αS(x).

Claim 5. There exists δ1 ∈ (0, 1) and ε1 > 0 such that for all δ ∈ (δ1, 1) and all x ∈ (0, ε1),y ∈
(0, ε1),

αB(y) ≡ αB − φB
∞∑
l=1

γBl y
l, (48)

αS(x) ≡ αS − φS
∞∑
l=1

γSl x
l, (49)

where

αB ≡
(1− δ2)V B

δ(∆P + (1− δ)V B) , γB ≡ −
1− δ

∆P + (1− δ)V B
< 0, φB ≡

(1 + δ)∆P
δ(∆P + (1− δ)V B) > 0,

αS ≡
(1− δ2)V S

δ(∆P + (1− δ)V S) , γS ≡ −
1− δ

∆P + (1− δ)V S
< 0, φS ≡

(1 + δ)∆P
δ(∆P + (1− δ)V S) > 0,

γBl ≡
l∑

j=1
γjB

 ∑
l1+···+lj=l

dl1c(s∞)/dsl1
l1! . . .

dljc(s∞)/dslj
lj !

 ,
γSl ≡

l∑
z=1

γzS

 ∑
l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

 ,
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and γSl ≤ |γSD|(1 + |γSD|)l−1, γBl ≤ |γBD|(1 + |γBD|)l−1.

Proof. As δ → 1, γS and γB converge to zero and so, for δ sufficiently close to one, |γS(v(1)−
v(0))| < 1 and |γB(c(1)− c(0))| < 1. Expanding αS(x) into the Taylor series, results in

αS(x) = αS − φS
∞∑
z=1

γzS(v(b∞ + x)− v(b∞))z.

Since v is a smooth function, expanding it into the Taylor series around b∞ results in v(b∞ +
x)−v(b∞) =

∞∑
l=1

dlv(b∞)
dbl

xl

l! . By the regularity of v, all derivatives dlv(b)/dbl
l! , l ∈ N are bounded by

D for some D > 1. Therefore, the Taylor expansion of v around b∞ is an absolute convergent
series, and by the Merten’s theorem the z’s power of it equals

(v(b∞ + x)− v(b∞))z =
∞∑
l=z

xl

 ∑
l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

 ,
and so,

αS(x) = αS − φS
∞∑
z=1

γzS

∞∑
l=z

xl

 ∑
l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

 . (50)

Observe that
∞∑
z=1

∣∣∣∣∣∣γzS
∞∑
l=z

xl
∑

l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

∣∣∣∣∣∣ ≤
∞∑
z=1
|γS |z

∞∑
l=z

xl
∑

l1+···+lz=l

∣∣∣∣∣dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

∣∣∣∣∣ ≤
∞∑
z=1
|γS |z

∞∑
l=z

xl
∑

l1+···+lz=l
Dz =

∞∑
z=1
|γS |zDz

∞∑
l=z

xl

 l − 1
z − 1

 =
∞∑
z=1

(|γS |Dx)z

(1− x)z <∞

where the first inequality follows from the triangle inequality, the second inequality follows from
the regularity of v and the fact that (l1 + . . .+ lz)! ≥ l1! · . . . · lz!, the first equality follows from

the fact that a number of compositions of l into exactly z parts is equal to

 l − 1
z − 1

, the second

equality results by summing over l, and the resulting series is convergent for x sufficiently small
(so that x < (1 + |γS |D)−1). Therefore, the series in (50) is absolutely convergent, and by the
Fubini’s theorem, we could exchange the order of summation in (50) to get expression (48). We
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have the following upper bound on the absolute values of coefficients γSl

|γSl | ≤
l∑

z=1
|γS |z

 ∑
l1+···+lz=l

∣∣∣∣∣dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

∣∣∣∣∣
 ≤ l∑

z=1
|γSD|z

 l − 1
z − 1

 = |γSD|(1+|γSD|)l−1

(51)
where the first inequality comes about via the triangle inequality, the second inequality follows
from the regularity of v, and the equality is obtained by algebraic manipulation. The derivation
of the corresponding expression for αS(y) is analogous. Q.E.D.

System (35) has steady states (z,−z), z ∈ R. By the specification of the problem we am
interested only in steady state (0, 0). Around this steady state the linearized system can be
written in the matrix formxk+1

yk+1

 =

1− αB + αSαB −αB(1− αS)
−αS 1− αS

xk
yk

 .
The matrix has eigenvalues 1 and λ ≡ (1 − αB)(1 − αS). Since one of eigenvalues is equal to
1, the steady state is unstable, and we cannot conclude that in the neighborhood of the steady
state the non-linear system will converge to the steady state. Therefore, we find a particular
trajectory that satisfies desired properties.

We conjecture that there exist µxi and µyi such thatxk
yk

 =
∞∑
i=1

λik

λi/2µxi
µyi

 , (52)

which is the required solution and for all i ∈ N,

|µxi | ≤ uδM i and |µyi | ≤ uδM
i (53)

for some positive M and uδ such that

M < 1 < 1
λ(1 + uδ(1 + max{|γS |, |γB|}D)) . (54)

Given the accuracy of this conjecture, we next derive expressions for coefficients µxi and µyi , and
then verify that for δ sufficiently close to one, upper bounds on absolute values of coefficients
will hold. Series (52) defining (xk, yk) are absolutely convergent, as they are dominated by the
absolutely convergent series uδ

∞∑
i=1

λikM i.

9



Plugging the solution (52) into system (35), we get
∞∑
i=1

λik(µxi − µxi λi − αB(µxi + µyi λ
i/2)) = −φB

(
∞∑
l=1

γBl

( ∞∑
i=1

µyi λ
i(k+1)

)l)( ∞∑
i=1

λik(µxi + µyi λ
i/2)

)
,

∞∑
i=1

λik(µyi − µ
y
i λ

i − αS(µxi λi/2 + µyi )) = −φS

(
∞∑
l=1

γSl

( ∞∑
i=1

µxi λ
ik

)l)( ∞∑
i=1

λi(k+1/2)(µxi λi/2 + µyi )
)
.

(55)

Consider the first equation in system (55). By the Merten’s Theorem,
( ∞∑
i=1

µyi λ
i(k+1)

)l
=

∞∑
i=l

∑
i1+···+il=i

µyi1 · . . . · µ
y
il
λi(k+1) and

∞∑
l=1

γBl

( ∞∑
i=1

µyi λ
ik

)l
=
∞∑
l=1

γBl

∞∑
i=l

∑
i1+···+il=i

µyi1 · . . . · µ
y
il
λi(k+1). (56)

The series in (56) is absolutely convergent by

∞∑
l=1

∞∑
i=l

∣∣∣∣∣∣λi(k+1)γBl
∑

i1+···+il=i
µyi1 · . . . · µ

y
il

∣∣∣∣∣∣ ≤
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |
∑

i1+···+il=i

∣∣∣µyi1 · . . . · µyil ∣∣∣ ≤
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |
∑

i1+···+il=i
ulδM

i =
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |ulδM i

i− 1
l − 1

 ≤

|γBD|
∞∑
l=1

∞∑
i=l

λi(k+1)(1+|γBD|)l−1ulδM
i

i− 1
l − 1

 = |γBD|
1 + |γBD|

∞∑
l=1

(1+|γBD|)lulδ

(
λk+1M

1− λk+1M

)l
≤

|γBD|
1 + |γBD|

∞∑
l=1

(1 + |γBD|)lulδ
(

λM

1− λM

)l
,

where the first inequality arises via the triangle inequality, the second inequality follows from
(53), the first equality arises from the fact that the number of compositions of i into exactly l

parts is

i− 1
l − 1

. The third inequality follows from (51), the forth inequality is by λk+1 < λ,

and the resulting series is convergent whenever uδ(1 + |γBD|) λM
1−λM < 1, which holds by (54).
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Therefore, by Fubini’s Theorem, exchanging the order of summation in (56) results in

∞∑
l=1

γBl

( ∞∑
i=1

µyi λ
ik

)l
=
∞∑
i=1

λi(k+1)
i∑
l=1

∑
i1+···+il=i

γBl µ
y
i1
· . . . · µyil .

By the absolute convergence of both series on the right-hand side of (55), the product on the
right-hand side is equal to the Cauchy product, and so we can rewrite system (55) as follows
∑∞
i=1 λ

ik

(
µxi − µxi λi − αB(µxi + µyi λ

i/2) + φB
i−1∑
j=1

(µxi−jλj/2 + µyi−jλ
i/2)

j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)
= 0,

∑∞
i=1 λ

ik

(
µyi − µ

y
i λ

i − αS(µxi λi/2 + µyi ) + φS
i−1∑
j=1

(µxi−jλi/2 + µyi−jλ
j/2)

j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
= 0.

Setting all coefficient at λik equal to zero results in the system
µxi − µxi λi − αB(µxi λj/2 + µyi λ

i/2) = −φB
i−1∑
j=1

(
(µxi−jλj/2 + µyi−jλ

i/2)
j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)
,

µyi − µ
y
i λ

i − αS(µxi λi/2 + µyi ) = −φS
i−1∑
j=1

(
(µxi−jλi/2 + µyi−jλ

j/2)
j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
.

Using notation Ai ≡

1− λi − αB −αBλi/2

−αSλi/2 1− λi − αS

, µi ≡

µxi
µyi

, and

ϕi =

ϕxi
ϕyi

 ≡

−φB

i−1∑
j=1

(
(µxi−jλj/2 + µyi−jλ

i/2)
j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)

−φS
i−1∑
j=1

(
(µxi−jλi/2 + µyi−jλ

j/2)
j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
 , (57)

and we can write the system in matrix form as Aiµi = ϕi. Since det(Ai) = (1− λi)(λ− λi) > 0,
for i ≥ 2, matrix Ai is invertible, and we can solve for all µi (with the exception of i = 1)

µi = A−1
i ϕi. (58)

For i = 1, the equations are linearly dependent and the relation between µx1 and µy1 is given by

µx1 = µy1
αB
αS

(1− αS). (59)

Equations (58) and (59) give the desired expressions for µi through the parameters of the model.
The next claim verifies that bounds (53) and (54) indeed hold and so, my derivation is justified.

Claim 6. For M < 1, there exists δ̂ ∈ (0, 1) such that for any δ ∈ (δ̂, 1) there exist positive uδ
and µy1 such that (54) holds, and for µi defined by (58) and (59), bounds (53) hold.
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Proof. The proof is by induction on i. Without loss of generality, we assume that

V S ≤ V B (60)

and so, αS ≤ αB, |γS | ≥ |γB|, φS ≥ φB. Let uδ ≡ u
2 min{|γS |, |γB|} where u = 1

2 min{V S , V B}.
Let us first show that for our choice of uδ, 1 < 1

λ(1+uδ(1+max{|γS |,|γB |}D)) for δ sufficiently close
to one. To see this, observe that for δ sufficiently close to one, max{|γB|, |γS |}D < 1 and so,

1
λ(1+2uδ) <

1
λ(1+uδ(1+max{|γS |,|γB |}D)) . Therefore, it is sufficient to show that λ1/2(1 + 2uδ) < 1.

Then

λ1/2(1 + 2uδ) = ((1− αS)(1− αB))1/2 (1 + umin{|γS |, |γB|}) ≤ (1− αS)(1 + u|γS |).

Observe

(1− αS)(1 + u|γS |) =
(

1− (1− δ2)V S

δ(∆P + (1− δ)V S)

)(
1 + (1− δ)u

∆P + (1− δ)V S

)
,

and λ1/2(1 + 2uδ) < 1 is equivalent to

∆P + (1− δ)V S + u(1− δ) < δ(∆P + (1− δ)V S)(∆P + (1− δ)V S)
∆Pδ − (1− δ)V S

,

or

u < (1 + δ)V S ∆P + (1− δ)V S

∆Pδ − (1− δ)V S
. (61)

As δ → 1, the right-hand side of (61) converges to 2V S . Since u < V S , inequality (61) holds
and so (1− αS)(1 + u|γS |) < 1 for sufficiently large δ. Hence, we have proven that (54) holds.

To prove bounds (53), let µx1 and µy1 be defined as follows. If αB
αS

(1 − αS) ≤ 1, then let
µy1 = uδM and µx1 = µy1

αB(1−αs)
αS

≤ µy1, and otherwise let µx1 = uδM and µy1 = µx1
αS

αB(1−αS) ≤ µ
x
1 .

By the definition, |µx1 | and |µyi | are less than uδM , which proves the base of induction.
Suppose that the statement is true for all j < i. We show that |µxi | < uδM

i and |µyi | < uδM
i.

We can find closed-form solution to system (58),

|µxi | =
|(1− λi − αS)ϕxi + αBλ

i/2ϕyi |
(1− λi)(λ− λi) ≤ 4 max{1− λi, αS , αB} ·max{|ϕxi |, |ϕ

y
i |}

(1− λi)(λ− λi)

and the same upper bound holds for |µyi |. It is sufficient to show that 4 max{(1−λi),αS ,αB}·max{|ϕxi |,|ϕ
y
i |}

(1−λi)(λ−λi)uδM i <

1.
Notice that αS

1−λi <
αS

1−λ for i ≥ 2, and by l’Hospital rule lim
δ→1

αS
1−λ = lim

δ→1
αS

αS+αB−αSαB =
V S

V S+V B ≤ 1. Hence, for sufficiently large δ and all i ≥ 2, we have αS
1−λi < 1, and by an analogous
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argument, αB
1−λi < 1. Therefore, 4 max{1−λi,αS ,αB}

1−λi < 5 for sufficiently large δ and it remains to
show that max{|ϕxi |,|ϕ

y
i |}

(λ−λi)uδM i < 1
5 for sufficiently large δ.

We next show that |ϕxi |
(λ−λi)uδM

< 1
5 (by the symmetric argument |ϕyi |

(λ−λi)uδM
< 1

5). From (57)
it follows

|ϕxi |
φB
≤

i−1∑
j=1

λj/2
j∑
l=1
|γBl |

∑
j1+···+jl=j

|µxi−jµ
y
j1
· . . . ·µyjl |+λ

i/2
i−1∑
j=1

j∑
l=1
|γBl |

∑
j1+···+jl=j

|µyi−jµ
y
j1
· . . . ·µyjl | ≤

i−1∑
j=1

λj/2
j∑
l=1
|γBl |

∑
j1+···+jl=j

ul+1
δ M i + λi/2

i−1∑
j=1

j∑
l=1
|γBl |

∑
j1+···+jl=j

ul+1
δ M i ≤

2uδM i
i−1∑
j=1

λj/2
j∑
l=1
|γBl |ulδ

j − 1
l − 1

 ≤

2uδM i|γBD|
i−1∑
j=1

λj/2
j∑
l=1

ulδ(1 + |γBD|)l−1

j − 1
l − 1

 ≤
2uδM i|γBD|

i−1∑
j=1

λj/2uδ (1 + uδ(1 + |γBD|))j−1 ≤

2uδM i|γBD|
i−1∑
j=1

λj/2uδ(1 + 2uδ)j−1 =

2uδM i|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)i−1)
1− λ1/2(1 + 2uδ))

,

where the first inequality is due to the triangle inequality, the second inequality arises via the
inductive hypothesis, the third inequality makes use of the fact that the number of compositions

of j into exactly l parts is

j − 1
l − 1

 and that λj > λi for j < i, the forth inequality uses a bound

on |γBl |, the fifth inequality exists by summing over l, the sixth inequality is by |γBD| < 1 for
sufficiently large δ, the equality is the summation over j. It remains to show that

2φB|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)i−1)
(λ− λi)(1− λ1/2(1 + 2uδ))

<
1
5 . (62)

Since the denominator in (62) is positive, (62) is equivalent to

λ− λi − 10φB|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)i−1)
1− λ1/2(1 + 2uδ)

> 0. (63)
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The derivative of (63) with respect to i is equal to

λi/2
(
− ln(λ)λi/2 + 10 ln(λ1/2(1 + 2uδ))φB|γBD|

uδ(1 + 2uδ)i−1

1− λ1/2(1 + 2uδ)

)
.

Multiplication by λi/2 does not affect the sign of the derivative so we focus on the term in
brackets. The positive (first) term in brackets is decreasing in absolute value, while the negative
(second) term is increasing in absolute value. Therefore, the minimum of expression (63) is
either attained at i = 2 or i→∞. For i = 2, (63) is equal to

λ− λ2 − 10φB|γBD|uδλ1/2 > 0, (64)

whenever uδ < λ1/2(1−λ)
10φB |γBD| . By (60), λ1/2(1−λ)

10φB |γBD| = λ1/2(1−(1−αB)(1−αS))
10φB |γBD| ≤ λ1/2(1−(1−αB)2)

10φB |γBD| ≤
αB

φB |γB | → V B. Since uδ converges to zero as δ → 1, inequality (64) holds for δ close to one.
For i =∞, (63) is equal to

λ

(
1− 10DφB|γB|

λ1/2
uδ

1− λ1/2(1 + 2uδ)

)
. (65)

Observe that lim
δ→1

uδ
1−λ1/2(1+2uδ)

= u
V S+V B−2u . Since |γB| → 0, λ→ 1, φB → 2 as δ → 1, we have

that (65) is positive for sufficiently large δ. Q.E.D.
So far we have constructed the candidate trajectories (xk, yk) given by (52). First, notice

that by making k sufficiently large the solution approaches zero and so, the Taylor expansion in
Claim 5 is justified. Second, observe that xk =

∞∑
i=1

λikλi/2µxi = λk+1/2
(
µx1 +

∞∑
i=2

λ(i−1)kλi/2µxi

)
,

and for sufficiently large k , the sign of xk is determined by µx1 which we can choose to be
positive. Analogously, since µy1 has the same sign as µx1 (by the definition), yk is positive for
sufficiently large k. By Claim 3, the constructed trajectory (xk, yk) is positive.

14

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

