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Abstract

In dynamic financial markets the stochastic supply of risky assets has a significant

informational role. Contrary to static models, where it acts as “noise,” in dynamic mar-

kets stochastic supply contains information about risk premiums. Acquiring private div-

idend information helps investors disentangle dividend information from discount-rate

information contained in prices. For uninformed investors, however, as more informed

investors enter the economy prices become more informative about dividends but less in-

formative about discount rates. This tradeoff creates complementarities in information

acquisition and multiple equilibria in the information market.
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1. Introduction

I develop a theory of information acquisition in dynamic settings by extending Grossman and

Stiglitz (1980) to the case where the asset market is dynamic. How information gets incorporated

into asset prices is a central question in finance, yet our understanding of endogenous informa-

tion acquisition comes from static descriptions of financial markets. For example, in the model of

Grossman and Stiglitz (1980), an investor’s decision to become informed is completely character-

ized by the informativeness of prices about dividends. This description of information acquisition

rests crucially on the assumption that financial markets are static. In dynamic markets, however,

investors care not only about how much an asset will pay as dividends, but also about how the price

of the asset will change over time. As I show below, introducing dynamic trading into an otherwise

standard model of information acquisition can lead to significantly different economic conclusions.

My first main result is that in dynamic financial markets the value of private information can

be increasing in the number of informed agents. This complementarity is very different from the

well-known negative relation between the value of information and the number of informed agents

in the static version of the economy. The distinction arises because in a dynamic setting the

presence of informed agents affects the informativeness of prices about future prices in a different

way than it affects the informativeness of prices about dividends. As I explain below, investors

learn information about future capital gains through the stochastic supply of the asset, rather than

through dividend information.

In fact, existing theories of dynamic financial markets recognize explicitly that the stochastic

supply of the asset is a proxy for the conditional risk premium. For example, in Campbell and

Kyle (1993) and Wang (1993) the quantity of risk borne by investors is proportional to stochastic

supply. This interpretation delivers an information-based version of the Gordon growth formula.

Prices contain both dividend information and information about discount rates, where shocks to

discount rates are modeled as shocks to supply. Thus, the dynamics of conditional risk premiums

are fully represented by the dynamics of supply, and therefore stochastic supply may predict future
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price changes.

To keep the analysis tractable, I assume that investors decide whether to purchase informa-

tion about dividends once and for all time at the beginning of the economy. Moreover, prices

are publicly observable and they depend only on two variables, dividend information and supply

information. This may sound trivial, but its consequence is that investors who acquire informa-

tion about dividends are better able to infer the level of supply by looking at prices. Therefore,

purchasing dividend information provides the extra benefit of revealing non-dividend information

about conditional expected returns. In contrast, agents who do not purchase dividend information

must rely on noisy prices to learn not only about dividends, but also about supply.

In equilibrium, the information content of prices is a weighted average of dividend information

and supply information. The weight of each type of information is a function of the number of

informed agents. Similarly to the static model, as more informed agents enter the economy prices

become less noisy signals of dividends because there is more dividend information available. This

implies that the weight of dividend information in the total information content of prices increases.

Correspondingly, the weight of supply decreases, making prices noisier signals of supply.

This tradeoff affects the ex ante willingness of agents to pay for dividend information as the

number of informed agents increases. On the one hand, that prices become more informative about

dividends makes agents less willing to pay for dividend information. On the other hand, when

prices become noisier signals about supply they also become less informative about the conditional

risk premium. This makes agents more willing to pay for dividend information, because agents

can infer supply levels from prices only if they know the dividend information. The latter effect

dominates in the overall value of information when prices contain little dividend information, so

that others becoming informed is a complement for acquiring information directly.

My second main result is that such complementarities in information acquisition are prominent

when the mean-reversion of stochastic supply is high. This is because the mean-reversion of supply

determines whether the level of supply contains information about the capital gain of the asset.

2



Note that if a stochastic process is mean-reverting, then today’s level predicts tomorrow’s change:

for example, if supply is high today it will most likely decrease tomorrow. In the model, having a

mean-reverting supply is formally equivalent to today’s discount rate level containing information

about changes in future discount rates. I show that as the time-series of supply becomes more

persistent, and thus discount rate changes become less predictable, the complementarities in the

information market become less pronounced. In the extreme case of when supply follows a random

walk the aggregate demand for information is decreasing in the number of informed agents. In this

limiting case information acquisition in dynamic markets works in the same manner as in static

markets.

My model features a single risky asset, but its conclusions extend to a multi-asset economy,

as long as one can argue that there is asymmetric information about risk premiums. There is

empirical support for the existence of private information about market-wide economic forces,

which ultimately determine risk premiums. For example, Albuquerque, De Francisco, and Marques

(2008) generalize the structural model of Easley, Kiefer, O’Hara, and Paperman (1996) to allow

for trading in multiple stocks and for private information in two levels, firm-specific and market-

wide. Their method strongly rejects a null hypothesis of no market-wide private information for

the NYSE. Moreover, across eight developed international equity markets, Albuquerque, Bauer,

and Schneider (2009) exhibit that a common global factor explains about 50% of the variation

of trades due to private information. In addition, some theoretical studies show that even firm-

specific information may affect expected returns. Lambert, Leuz, and Verrecchia (2007) use a

model similar to the Capital Asset Pricing Model (CAPM) to show that higher quality of firm-

specific accounting information lowers the cost of capital of firms. Finally, Armstrong, Banerjee,

and Corona (2013) establish that firm-specific information can affect expected returns if it pertains

to the firm’s systematic factor loadings.1

The model applies to markets of professionals who produce information, such as analysts who

1In this light we can think of learning about supply as a reduced-form model of effects similar to those in Armstrong,

Banerjee, and Corona (2013).
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cover a particular stock. It proposes that initiations of analyst coverage might be positively related

to existing analyst coverage. Extant empirical work contains evidence that can be interpreted

as both in favor (Rao et al., 2001; Das et al., 2006; Chen and Ritter, 2000; Corwin and Schultz,

2005) and against (Bradley et al., 2008) complementarity, while there is also evidence against

substitutability (Frankel et al., 2006). This study suggests that looking at periods with mean-

reverting conditional risk premiums might help identify complementarities in analyst initiations.

The next section relates this paper to the existing literature. Section 3 describes the setup

of the model and the equilibrium. Section 4 discusses and analyzes the information tradeoff,

complementarities, and further results. Section 5 summarizes the paper. The supplementary

internet Appendix shows how the information market works in a continuous-time extension of the

model.

2. Literature review

In this paper I explain how the information market works when the financial market is intertem-

poral. My model builds on Grossman and Stiglitz (1980), which considers information acquisition

in a single-period financial market. It also builds on Wang (1993), which describes a dynamic finan-

cial market with an exogenous number of informed agents. In environments where agents can trade

before they acquire information, after which they trade again, Holden and Subrahmanyam (2002)

generate momentum in asset returns and Chordia and Subrahmanyam (2004) establish predictabil-

ity of returns by trade imbalances. Manela (2014) calibrates a two-trading-period Grossman-Stiglitz

economy and studies how exogenous rates of information dissemination through media affect re-

turns in the market for pharmaceutical drugs. These papers build on the concept of noisy rational

expectations introduced by Lucas (1972) and further developed by Green (1973), Grossman (1976,

1978), Kihlstrom and Mirman (1975), and Grossman, Kihlstrom, and Mirman (1977).

The existing theory literature features a variety of assumptions about the mean-reversion of price

noise. My model shows that these assumptions can have stark implications about the qualitative
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nature of information acquisition. In Allen et al. (2006) the noisy supply is independent and

identically distributed (i.i.d.) over time. Other assumptions include a general AR(1) structure for

noisy supply, as in Campbell and Kyle (1993), Wang (1993, 1994), and He and Wang (1995), and

more recently in Cespa and Vives (2015) and Albagli (2015), among others. The random-walk

assumption is used in Kyle (1985), Grundy and McNichols (1989), Brown and Jennings (1989),

and Vives (1995).

This paper also relates to a growing literature about complementarities in information acqui-

sition. My contribution here is to show that complementarities obtain when financial markets are

dynamic without any further enrichments of the economy. In contrast, all of the currently known

mechanisms for information complementarities are static. They include fixed costs in the infor-

mation production sector as in Veldkamp (2006), relative-wealth concerns as in Garćıa and Strobl

(2011), supply signals (Ganguli and Yang, 2009; Manzano and Vives, 2011), non-normal returns

as in Breon-Drish (2015b), ambiguity aversion as in Mele and Sangiorgi (2015), and information

acquisition in segmented markets as in Goldstein, Li, and Yang (2014). My discount-rate mech-

anism has empirical implications that are distinct from those of the above models: demand for

information can increase whenever (i) the conditional risk premium becomes more volatile or (ii)

the autocorrelation coefficient of stochastic supply, or any other kind of price noise, is low.

Another part of the literature discusses the aggregation of diverse information, such as in

Hellwig (1980), Diamond and Verrecchia (1981), and Verrecchia (1982). The most related papers

are Grundy and McNichols (1989), who study the volume of trade in a multiperiod economy, and

Cespa and Vives (2015), who study the effect of persistent noisy supply on equilibria in the financial

market, rather than in the information market, as here.

Lastly, in this study the dependence of prices on supply plays a dual role. It conveys non-

dividend information about future prices and it makes prices noisy signals of dividend information.

Using economic variables other than supply to replicate this role will not change the information

tradeoff and the main result. Examples of such interpretations can be found in Diamond and
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Verrecchia (1981), Wang (1994), and Vives (2008, Section 4.4.1).

3. The model

The economy is made up of two markets: an information market and a financial market. So

as to simplify the analysis, I assume that investors make information decisions once and for all

before trading begins. They decide whether to obtain information about the dividend at a fixed

cost or remain uninformed for free, knowing that they will be observing prices in the financial

market. All agents consume at the liquidation date of the asset, when dividends are paid out

and private information is revealed. I present the economy with two trading periods, but note

that as the supplementary internet Appendix shows, all the results extend to a continuous-time

infinite-horizon economy with intermediate consumption and interim dividend payouts that follow

a general autoregressive process. The advantage of the model I present here is that it is possible

to derive a closed-form expression for the value of information.

There is a continuum of ex ante identical agents of total mass one. Each agent has constant

absolute risk aversion (CARA) preferences with coefficient δ. Everyone has initial wealth W0 which

he can invest in a safe storage technology with constant net return normalized to zero and in a

risky stock. There are two trading periods, t = 1 and t = 2, during which agents trade the stock

but do not consume. This is followed by a consumption-only period, t = 3. The stock pays off a

risky dividend D3 only in the consumption period. It is known that the dividend is made up of

two parts,

D3 = µ̃+ ζ̃ , (1)

where µ̃ ∼ N (0, σ2µ) and ζ̃ ∼ N (0, σ2ζ ) with µ̃ independent of ζ̃. The value of µ̃ does not change

between trading periods.2 Before the two trading periods there is an information-acquisition period,

2This models that dividend information is persistent. It can be modified by adding a shock to µ at t = 1, or

by modeling the dividend information as a mean-reverting process, but only at the expense of more complicated

calculations. I invite the interested reader to look at the extension of the model in the supplementary internet

Appendix, where the dividend information process is generally mean-reverting.
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[Fig. 1 here]

t = 0, during which every agent can pay κ0 so as to observe the value of µ̃ right before trading

starts at t = 1. An agent might also decide not to pay κ0 at the information-acquisition stage

and thereby remain uninformed for the duration of trading. Thus, for uninformed agents D3 is a

random variable over which they have the prior D3 ∼ N (0, σ2µ + σ2ζ ).

At t = 1 the price is P1 and at t = 2 the price is P2. Because prices depend on the value of µ̃,

the uninformed agents use prices to update their beliefs about µ̃. Let µ̂1 and µ̂2 be the uninformed

agents’ estimate of µ̃ at t = 1 and t = 2.

If prices contained no more unknowns than just the mean dividend µ̃, the uninformed would

be able to infer the mean dividend perfectly. Thus, the presence of some kind of noise is necessary

in prices. As is standard in the literature, I fill this modeling necessity by making the supply of

stock at time t, θ̃t, stochastic. As I show in more detail below, stochastic supply plays a dual role:

it makes prices noisy signals of dividend information, but it also conveys non-dividend information

about future prices. I assume that

θ̃2 = ρ θ̃1 + η̃, (2)

where I take 0 ≤ ρ ≤ 1. Here, θ̃1 and η̃ are independent of each other and of µ̃ and ζ̃. The priors

over supply are θ̃1 ∼ N (0, σ2θ) and η̃ ∼ N (0, σ2η). If an agent decides to become informed he will

not only see µ̃, but also the price at t = 1 and t = 2. As explained shortly, the informed agents

will be able to deduce perfectly the level of supply at each point in time. At the same time, the

uninformed agents will also be able to estimate this piece of information by observing prices. Let

θ̂1 be the uninformed agents’ estimate of θ̃1 at t = 1 and let θ̂2 be his estimate of θ̃2 at t = 2.

Each agent anticipates rationally the trade-and-update process at the two trading periods. In

the information-acquisition period he compares the benefits of being informed versus the cost of

giving up κ0. The benefit of being informed, however, depends on the number of agents that will

have decided to be informed, because the presence of informed agents influences the informativeness
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of prices. Let λ denote the fraction of informed agents. The information market will equilibrate

at the λ at which every agent is indifferent between paying to become informed and remaining

uninformed for free. It is also possible that information is too cheap, in which case the economy

will equilibrate at λ = 1, or that information is too expensive, in which case the economy will

equilibrate at λ = 0. See Fig. 1 for a graphical depiction of the sequence of events in the model.

3.1. Financial market equilibrium

I construct the equilibrium in the financial market in a conjecture-and-verify approach. In par-

ticular, I use a discrete-time finite-horizon version of the continuous-time steady-state equilibrium

of Wang (1993). Let i denote the informed agents and u denote the uninformed agents.

Definition 3.1. A Financial Market Equilibrium at a fraction λ of informed agents is a pair of

price functions
(

P λ1 , P
λ
2

)

such that

(a) Agents in group j, j = i, u, select their demand in period t based on their information set F j
t

so as to maximize expected utility.

(b) The price functions
(

P λ1 , P
λ
2

)

are such that in each period total demand for the stock equals

total supply of the stock.

(c) Agents in group j, j = i, u, extract their information sets F j
t rationally from the history of

observed prices and any other information available to them in period t, for t = 1, 2.

At t = 1 the value function of the uninformed is Ju(W0, P
λ
1 ;λ) and the value function of the

informed is J i(W0, P
λ
1 , µ̃;λ). For the rest of this section I drop dependence of the value functions

and prices on λ. For expositional convenience I present a summary of the construction of the

equilibrium, whereas I give the details in Appendix B.

Fix the fraction λ ∈ [0, 1] of informed agents. I conjecture that prices are linear in state

variables:

P1 = pµµ̃+ pθθ̃1 + pµ̂µ̂1 + p
θ̂
θ̂1, (3a)

P2 = qµµ̃+ qθθ̃2 + qµ̂µ̂2 + q
θ̂
θ̂2. (3b)
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The only objects in prices that do not depend on λ are µ̃, θ̃1, and θ̃2. At t = 1 an uninformed agent

observes P1 only and at t = 2 he observes P2 only, but remembers P1. Thus, the information sets

of the uninformed are the σ-algebras

Fu
1 = σ(P1), (4a)

Fu
2 = σ(P1, P2). (4b)

The uninformed investors estimate mean dividends and supply level given their information at each

point in time,

t = 1 : µ̂1 = E [µ|Fu
1 ] , θ̂1 = E [θ1|F

u
1 ] , (5a)

t = 2 : µ̂2 = E [µ|Fu
2 ] , θ̂2 = E [θ2|F

u
2 ] . (5b)

The inferences µ̂1 and θ̂1 belong to Fu
1 so the uninformed treat them as known. Therefore, from

Eq. (3a) what the uninformed observe when they see P1 is the price signal

y1 = pµµ̃+ pθθ̃1. (6)

The inferences µ̂1 and θ̂1 are linear transformations of this price signal. Similarly, at t = 2 what

the uninformed observe when they see P2 is the price signal

y2 = qµµ̃+ qθθ̃2, (7)

so the inferences µ̂2 and θ̂2 are linear combinations of this price signal and y1.

Because every constant is known in equilibrium, observing the price signals y1 and y2 is equiv-

alent to observing

1

pθ
y1 = pµθµ̃+ θ̃1 (8)
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and

1

qθ
y2 = qµθµ̃+ θ̃2, (9)

where pµθ denotes the ratio pµ/pθ and qµθ denotes the ratio qµ/qθ. The quantities pµθ and qµθ

measure the sensitivity of price information to dividend information.

The informed agents also observe the price signals y1 and y2. But because they know µ̃, they

effectively observe θ̃1 and θ̃2. Thus, the information sets of the informed are the σ-algebras

F i
1 = σ(µ̃, P1) = σ(µ̃, θ̃1), (10a)

F i
2 = σ(µ̃, P1, P2) = σ(µ̃, θ̃1, θ̃2). (10b)

The information market is open only at time zero, at which time all agents are identically unin-

formed. Everyone’s initial information set Fu
0 is the trivial sigma algebra.

Each agent in group j, j = i, u, selects first-period demand xj1 and second-period demand xj2

to maximize the first-period expectation of third-period utility by solving a dynamic programming

problem. Doing so he obtains value J j(W0, S
j) at time one,

J j(W0, S
j) = max

x
j
1

E

[

max
x
j
2

E

[

−e−δc
j
3

∣

∣

∣
F j
2

] ∣

∣

∣
F j
1

]

, (11)

subject to

cj3 =W0 + xj2(D3 − P2) + xj1(P2 − P1), (12)

where Su = P1 is the state vector of the uninformed and Si = [P1, µ̃]
T is the state vector of the

informed. A discount factor does not appear above because there is only one period of consumption.

The market clears at each point in time, that is, the total agent demand equals total supply,

λxit
∗
+ (1− λ)xut

∗ = θ̃t, (13)

for t = 1, 2. Solving for the optimal agent demands, substituting into market clearing, and rearrang-

ing for prices gives an expression that I compare to the price conjecture. By matching coefficients
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I obtain expressions for the information sensitivities qµθ and pµθ.

Proposition 3.2. In equilibrium, for a fixed fraction of informed investors λ,

(i) The second-period information sensitivity qµθ is

qµθ = −
λ

δσ2ζ
. (14)

(ii) The first-period information sensitivity pµθ is the solution to the equation

γ3p
3
µθ + γ2p

2
µθ + γ1pµθ + γ0 = 0, (15)

where the coefficient γi, i = 0, . . . 3, is a polynomial of order 4− i in qµθ.

I give γ3, γ2, γ1, and γ0 explicitly in terms of the model parameters and qµθ in Appendix B.

The next proposition summarizes results on existence and uniqueness.

Proposition 3.3. For a fixed fraction of informed investors λ,

(i) A financial market equilibrium at λ always exists.

(ii) Among the financial market equilibria, there always exists one such that

(a) if λ = 0, then pµθ = 0,

(b) if λ > 0, then pµθ < 0.

(iii) Within the class of linear equilibria, the financial market equilibrium at λ is unique if the

discriminant of Eq. (15) is non-positive.

For every solution, example, and graph that I provide in this paper I have checked through the

discriminant non-positivity condition that each equilibrium is unique.3 Next I characterize the rate

at which the equilibrium pµθ changes for small numbers of informed agents.

3At the time of this writing, I have not found counterexamples to existence and uniqueness. Future research could

attempt proving uniqueness of this linear equilibrium within the class of continuous equilibria by using the recent

global uniqueness result of Breon-Drish (2015a) in backward induction.
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Lemma 3.4. Consider the first-period information sensitivity pµθ and the second-period infor-

mation sensitivity qµθ as functions of the informed agents λ. Their derivatives at the origin are

equal,
d

dλ
pµθ

∣

∣

∣

λ=0
=

d

dλ
qµθ

∣

∣

∣

λ=0
. (16)

In fact, this lemma delivers an approximation of pµθ as a function of λ for small λ. Whereas

the solution of qµθ is provably affine in λ, Eq. (15) shows that pµθ does not necessarily share this

property. However, from above we can see that, as functions of λ, the quantities pµθ and qµθ have

the same intercept and the same slope at the origin. Therefore, we can informally argue that for

small numbers of informed agents that pµθ and qµθ are roughly equal. Finally, in the special case

of when supply follows a random walk I can solve for pµθ explicitly.

Proposition 3.5. When ρ = 1, pµθ = qµθ for every λ.

I finish the computation of the equilibrium by solving for the price coefficients, which are

completely determined by the ratios qµθ and pµθ. Please refer to Proposition B.4 and Lemma B.6

of Appendix B for more details.

3.2. Information market equilibrium

Having obtained the equilibrium in the financial market for each fixed fraction λ, I step one

period back to t = 0 to endogenize λ. For an exogenous cost of information κ0, a candidate

equilibrium in the information market is a tuple of a fraction of informed investors λ ∈ [0, 1] and a

Financial Market Equilibrium
(

P λ1 , P
λ
2

)

.

Definition 3.6. For a given cost of information κ0,

(a) If λ∗ ∈ [0, 1] and E

[

Ju(W0, P
λ∗

1 ;λ∗)
∣

∣

∣
Fu
0

]

= E

[

J i(W0 − κ0, P
λ∗

1 , µ̃;λ∗)
∣

∣

∣
Fu
0

]

, then
(

λ∗,
(

P λ
∗

1 , P λ
∗

2

))

is an Information Market Equilibrium.

(b) If E
[

Ju(W0, P
0
1 ; 0)

∣

∣

∣
Fu
0

]

> E

[

J i(W0 − κ0, P
0
1 , µ̃; 0)

∣

∣

∣
Fu
0

]

, then
(

0,
(

P 0
1 , P

0
2

))

is an Information

Market Equilibrium.

(c) If E
[

Ju(W0, P
1
1 ; 1)

∣

∣

∣
Fu
0

]

< E

[

J i(W0 − κ0, P
1
1 , µ̃; 1)

∣

∣

∣
Fu
0

]

, then
(

1,
(

P 1
1 , P

1
2

))

is an Information

Market Equilibrium.
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At t = 0, before the agents decide on their information status, everyone is uninformed with

wealthW0. If an agent decides to remain uninformed he will enjoy value given by the value function

Ju. If an agent decides to become informed he will pay κ0 and he will switch value functions to

J i. But Ju(W0, P
λ
1 ;λ) and J

i(W0 − κ0, P
λ
1 , µ̃;λ) are random variables; before an agent sees P λ1 or

µ̃ he does not know what their realization will be. Thus, the comparison of values at t = 0 is done

conditional on Fu
0 .

Each type of agent anticipates rationally the workings of the financial market and compares the

benefit of being informed versus the cost of giving up κ0. The benefit of being informed depends on

the fraction λ of agents that are informed, because how many informed agents exist influences the

informativeness of prices about µ̃, θ̃1, and θ̃2. To facilitate the derivation of this equilibrium, I define

the value of information at λ as the relative value of being informed against being uninformed.

Definition 3.7. The value of information ψ0(λ) is the relative certainty-equivalent value of being

informed,

E

[

Ju
(

W0, P
λ
1 ;λ

) ∣

∣

∣
Fu
0

]

= E

[

J i
(

W0 − ψ0(λ), P
λ
1 , µ̃;λ

) ∣

∣

∣
Fu
0

]

. (17)

Due to CARA utility I can write

eδψ0(λ) =
E

[

Ju(W0, P
λ
1 ;λ)

∣

∣

∣
Fu
0

]

E

[

J i(W0, P
λ
1 , µ̃;λ)

∣

∣

∣
Fu
0

] , (18)

and to calculate ψ0(λ) I need to calculate the conditional expectations of each value function

conditional on prior information. The CARA-normal environment allows this calculation in closed

form in moments of returns. I provide the details in Appendix C.

The cost of information acquisition, κ0, is an exogenous parameter. The equilibrium fraction

of informed agents λ∗ is such that every agent finds that the value of information is the same as its

cost,

κ0 = ψ0(λ
∗). (19)

If κ0 > ψ0(0), then λ∗ = 0 is an equilibrium and if κ0 < ψ0(1), then λ∗ = 1 is an equilibrium.
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Thus, to determine λ∗ I need to derive the entire value-of-information curve as a function of λ. I

give this curve in the main theorem of the paper, where I drop dependence on λ for expositional

clarity.

Theorem 3.8. The value of information is

ψ0 =
1

2δ
log

Var (D3 − P2|F
u
2 )

Var
(

D3 − P2|F i
2

) +
1

2δ
log

Var (P2 − P1|F
u
1 )

Var
(

P2 − P1|F i
1

)

+
1

2δ
log

1− Corr2 (D3 − P2, P2 − P1|F
u
1 )

1− Corr2
(

D3 − P2, P2 − P1|F i
1

) , (20)

where

Corr
(

D3 − P2, P2 − P1|F
j
1

)

=
Cov

(

D3 − P2, P2 − P1|F
j
1

)

√

Var
(

D3 − P2|F
j
1

)

Var
(

P2 − P1|F
j
1

)

. (21)

I provide a detailed discussion of the economics behind the value of information in Section 4.2

below. Finally, I note that if the cost of acquiring information is arbitrarily small, it is always

better to be informed.

Proposition 3.9. For λ ∈ [0, 1], ψ0(λ) > 0.

4. Results

In this section I lay out the main results of the model. First I establish that there is a tradeoff

between dividend information and supply information. This information tradeoff happens regardless

of whether the market is static or dynamic, but as I explain below it only creates complementarities

in information acquisition when markets are dynamic.

4.1. The information tradeoff

Proposition 4.1. Holding σ2µ and σ2θ fixed, the derivatives of Var
(

θ̃1|F
u
1

)

and Var (µ̃|Fu
1 ) with

respect to any other parameter have opposite signs.

I provide a formal proof of the information tradeoff in Appendix D whereas here I give an

intuitive explanation. The total amount of information contained in prices is a weighted average of
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dividend information and supply information. Consider the price signal at t = 1, y1 = pµµ̃+ pθθ̃1.

It is a noisy signal of µ̃ because of the presence of θ̃1, but also a noisy signal of θ̃1 because of the

presence of µ̃. In equilibrium, every quantity that is not a random variable is known by every

investor. Therefore, when the uninformed see y1 they can divide it by its standard deviation and

thus glean the quantity

y1
√

Var(y1)
=

pµµ̃+ pθθ̃1
√

p2µσ
2
µ + p2θσ

2
θ

=
pµθσµ

√

p2µθσ
2
µ + σ2θ

µ̃

σµ
+

σθ
√

p2µθσ
2
µ + σ2θ

θ̃1
σθ
. (22)

This standardized information content of prices is a linear combination of two independent standard

normal random variables. Notice that the squares of the coefficients of each standard normal add

up to one. In this manner each coefficient measures how much weight the amount of each type of

information carries in the overall amount of information contained in prices. Thus, changes in the

economy that increase the amount of dividend information contained in prices decrease the amount

of supply information contained in prices and vice versa.

I plot the inference qualities of mean dividends and supply in Fig. 2. As the number of informed

investors in the market increases, prices become more informative about dividends and Var (µ̃|Fu
1 )

decreases. This is the classic effect of Grossman and Stiglitz (1980), whereby a higher amount

of traders with access to dividend information decreases the dividend uncertainty for uninformed

investors. At the same time, Var
(

θ̃1|F
u
1

)

increases, which means that prices become less informa-

tive about supply. In other words, the uninformed investors’ estimation of dividend information

improves but their estimation of supply information worsens.

[Fig. 2 here]

4.2. Complementarities

Complementarities in information acquisition obtain when the slope of the value of information

ψ0(λ) with respect to the number of informed traders λ is positive. That Eq. (15) is a cubic

polynomial in λ presents a bottleneck of tractability in ∂ψ0(λ)/∂λ for arbitrary λ. Nevertheless,

15



the value of information is in closed form in moments of cash flows and prices, even though these

moments are not themselves a closed form of λ. As Theorem 3.8 shows, the value that agents

attach to information has three components: the relative informativeness of price histories about

liquidating cash flows, the relative informativeness of first-period prices about capital gains in

the second period, and a conditional correlation component. This says that information is valuable

because it allows informed investors to respectively (i) make better decisions at the terminal trading

date, (ii) manage their myopic demand better at the intermediate trading date, and (iii) hedge

better against future changes in the investment opportunity set. I show graphs of each component

of the value of information in Fig. 3.

[Fig. 3 here]

The value of information coming from information about liquidating cash flows is

1

2δ
log

Var (D3 − P2|F
u
2 )

Var
(

D3 − P2|F i
2

) . (23)

This component is always decreasing in the number of informed investors, following the intuition in

Grossman and Stiglitz (1980) that as more informed agents enter the market, prices become more

informative about dividends. Therefore, any remaining uninformed agents are less willing to pay

for information. That is, other agents becoming informed is a substitute for uninformed agents

acquiring information directly. But what prices can reveal about liquidating cash flows is not the

only informational concern of uninformed investors. Investors also worry about how the price of

the asset is going to move around over time. In other words, investors care about being able to

predict the capital gain of the asset. This part of informational value is measured by

1

2δ
log

Var (P2 − P1|F
u
1 )

Var
(

P2 − P1|F i
1

) . (24)

The next proposition establishes that the relative value of information about capital gains is

one-to-one with the uninformed investors’ conditional variance of supply.
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Proposition 4.2. The relative informativess of first-period prices about second-period returns is

Var (P2 − P1|F
u
1 )

Var
(

P2 − P1|F i
1

) = 1 +

(

qµθ
pµθ

− ρ

)2 Var
(

θ̃1|F
u
1

)

σ2η
. (25)

The coefficient of Var
(

θ̃1|F
u
1

)

depends on the intertemporal ratio of informativeness and the

value of the persistence of supply.4 In particular, the smaller the persistence ρ is, the more supply

information matters for the relative value of information about capital gains. To see why, notice

that we can write the capital gain from trade as

P2 − P1 = gη η̃ + gµ µ̂1 + gη

(

qµθ
pµθ

− ρ

)

θ̃1, (26)

where the return coefficients gη and gµ are deterministic functions of λ, given in Appendix D. The

contribution of P2 − P1 to the value of information comes from the relative posterior variance of

each state variable conditional on first-period information. The first term on the right-hand side of

Eq. (26) depends on η̃, but this is an unpredictable shock. Neither the informed nor the uninformed

have any information about it after the first period. There is also dependence on µ̂1, but this is

common information. Hence, η̃ and µ̂1 do not contribute to the relative value of information. The

only part of the capital gain that matters for the value of information is supply.

In Fig. 4 I show the breakdown of the coefficient of first-period supply into two components.

The first component, shown on the left, is the same as the coefficient of the shock η̃. The second

component, shown on the right, is a measure of how well the supply level predicts the capital gain.

The loading of the capital gain on first-period supply is the product of these two terms. Here, we

can see that if supply is mean-reverting, the capital gain loads heavily on the level of first-period

supply for all levels of fractions of informed agents λ.

[Fig. 4 here]

The intuition for why supply persistence affects the value of information comes by thinking in

4For small λ this coefficient is roughly equal to (1− ρ)2/σ2
η by Lemma 3.4.
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terms of first differences over time. Prices are driven by state variables and therefore capital gains

are driven by changes in state variables. When supply is mean-reverting, the level of supply in

the first period predicts the forthcoming change in supply. For example, suppose that today the

level of stochastic supply is higher than its mean, so that the price level is lower than its mean.

Because stochastic supply reverts to its mean, it will most likely decrease tomorrow and prices

will correspondingly increase. In this case, having access to dividend information has a valuable

ancillary benefit. Because agents with dividend information are able to infer the level of supply by

looking at prices, they can form sharper expectations of the capital gain. In other words, having

dividend information is equivalent to also having better information about the conditional expected

return.5

In contrast, the uninformed agents have to rely on what prices convey about supply to predict

the capital gain. Here, the information tradeoff becomes important. As informed agents enter the

economy they make prices more informative about dividends. But at the same time they also make

prices less informative about supply, and thus less informative about capital gains. As a result,

the marginal effect of additional informed agents is to make the remaining uninformed agents value

information about capital gains more.

The third component of the value of information is

1

2δ
log

1− Corr2 (D3 − P2, P2 − P1|F
u
1 )

1− Corr2
(

D3 − P2, P2 − P1|F i
1

) . (27)

This term comes out of the hedging component of the agents’ demand. We can interpret the quantity

1− Corr2(D3 − P2, P2 − P1|F
j
1 ) for j = i, u, as one minus the R2 of a regression of the liquidating

return D3−P2 on the myopic return P2−P1, but conditional on first-period information. Whenever

this R2 increases the agents know, as of t = 1, that when they observe the realized myopic return at

5Information asymmetry about supply is formally equivalent to information asymmetry about discount rates.

From Eq. (26), the conditional risk premium for the informed is E

[

P2 − P1

∣

∣

∣
F

i
1

]

= gµ µ̂1 + gη
(

qµθ

pµθ
− ρ

)

θ̃1. The

uninformed know µ̂1, so what stops them from having the same conditional expected returns as the informed is that

they do not know θ̃1.
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t = 2 they will have a more precise signal of the future liquidating return. This improves the agents’

ability to plan out their intertemporal investment as of t = 1, which further allows the agents to

substitute away from obtaining information. Thus, whenever the ability to hedge improves for the

uninformed in relation to the informed, the value of acquiring information decreases.

As we can see in Fig. 3(c), for large numbers of informed agents and for low mean-reversion of

supply, the hedging component of the value of information is decreasing in the number of informed

agents λ. We can also see, however, that the opposite can be true, but only if there are few informed

agents and the mean-reversion of supply is high. When the information-tradeoff is dominant,

increasing the number of informed agents makes supply information less precise, which makes the

myopic return a less precise signal of future liquidating returns. The uninformed thus perceive the

asset as a poorer hedge, and they become more willing to purchase information. To summarize,

what triggers complementarities in the hedging component is the same economic force that triggers

the complementarities in the myopic component: that the supply process is mean-reverting.

In fact, when supply is highly mean-reverting, as in the case of when it is i.i.d., it is possible

to prove analytically that complementarities in information acquisition are always present. To

make the calculation a little easier, I calculate the slope of e2δψ0(λ) instead, which has the same

monotonicity in λ.

Theorem 4.3.

de2δψ0(λ)

dλ

∣

∣

∣

∣

∣

λ=0

=

(

σ2ζ + σ2µ

σ2ζ

)2 2
σ2µ
σ2
ζ

1 + δ2σ2η(σ
2
ζ + σ2µ)

[

1 + δ2σ2ησ
2
ζ

1 + δ2σ2η(σ
2
ζ + σ2µ)

− ρ

]

. (28)

Here, the effect of changing ρ on the presence of complementarities is clear. As supply becomes

less persistent, ρ decreases and the complementarity in the value of information for small numbers

of informed agents becomes more pronounced. In particular, when supply is independent of its

past, the value of information is increasing for small numbers of informed agents.

In contrast, in economies where supply is more persistent, the level of supply predicts the

changes in supply to a lesser degree. Those who acquire dividend information are still able to infer
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the supply level by looking at prices. But in this case the ancillary benefit of better predicting

the capital gain is not as large, and thus the complementarity in information acquisition is less

pronounced. In the extreme case of when supply follows a random walk the change in supply is

completely unpredictable, so there are no benefits whatsoever to knowing what the supply level

is. Here, the complementarity dissipates and consequently information acquisition is all about the

dividends, similarly to the static market.

I exhibit this pattern in Fig. 5, where I plot the value of information for two extreme values of

ρ and one intermediate case: ρ = 0, ρ = 0.5, and ρ = 1. The remaining parameters of the model

are δ = 1, σζ = 1, σµ = 1, σθ = 2, and ση = 1. The value of information here is the sum of

the three terms shown individually in Fig. 3. For low ρ, when few informed investors exist in the

market the supply information effect dominates. As more informed investors enter the economy,

they start making prices less informative about supply, pushing the value of information upwards

but more informative about dividends, pushing the value of information downwards. Eventually

when λ is large enough the dividend information effect dominates. As ρ increases to 0.5 the

supply information effect starts to become less pronounced. For example, when ρ = 0 the value of

information is increasing for λ ≤ 0.33, but when ρ = 0.5, ψ0(λ) is increasing for λ ≤ 0.15. Finally,

when ρ = 1 the value of information is decreasing in λ because there is no supply information effect.

I give more details about this special case in the next section.

[Fig. 5 here]

4.3. Persistent supply

Thus far I have argued that adding another trading period introduces complementarities in

information acquisition when supply is mean-reverting. But what would happen if one of the two

trading periods was informationally redundant, in the sense that I could remove all information

effects from it? The economy would then be informationally equivalent to a one-period economy.

We know that under the assumptions of Grossman and Stiglitz (1980) there are no information
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complementarities in static economies. Therefore, in dynamic economies that are informationally

equivalent to a static economy there should not be any information complementarities, either. As

Fig. 5 shows, this is exactly what happens when supply follows a random walk. In fact, the reason

why there are no complementarities when ρ = 1 is precisely that there are no informational effects

coming from the second period. Notice that the first-period price contains the information

1

pθ
y1 = pµθµ̃+ θ̃1, (29)

and the second-period price contains the information

1

qθ
y2 = qµθµ̃+ ρ θ̃1 + η̃. (30)

In addition, because agents learn over time, the contribution of the second period to the value

of information is due to information not already seen in the first period. When agents see the

information content y2 in the second period they remember the information content y1 in the first

period, so that they can calculate any function of y1 and y2. In particular, they effectively observe

1

qθ
y2 −

1

pθ
y1 = (qµθ − pµθ) µ̃+ (ρ− 1) θ̃1 + η̃, (31)

which is nothing other than the innovation to the information content of prices.

When ρ = 1, in which case qµθ = pµθ also holds, the innovation to the information content of

prices reveals the shock η̃ to the uninformed agents at t = 2. Moreover, the new price signal at

t = 2 is 1
qθ
y2 =

1
pθ
y1 + η̃. But because the uninformed know η̃ at t = 2, what they glean from y2 is

the first-period information content of prices 1
pθ
y1. In other words, the uninformed agents do not

see anything about the dividend at t = 2 that they did not already know at t = 1.

There are two implications of this fact. First, the only role of any trading between the informed

and the uninformed in the second period is to accommodate the incremental liquidity η̃, without

any asymmetric-information effects. Second, conditional on first-period information, the capital

gain P2 − P1 depends only on η̃. But η̃ is completely unpredictable by both the informed and
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the uninformed in the first period. Therefore, any trading considerations about the capital gain in

the first period have nothing to do with information asymmetry either. In particular, the capital

gain is not predictable by the level of supply in the first period, and thus the information tradeoff

between µ̃ and θ̃1 in the first period does not matter. Consequently, and as the next proposition

establishes formally, when supply is a random walk the complementarities disappear.

Proposition 4.4. When supply is a random walk, the value of information is always decreasing in

the number of informed agents.

5. Conclusion

To conclude, supply information is valuable in dynamic financial markets because it captures

information about future prices, which are determined in equilibrium, in a way that is distinct from

information about dividends, which are fixed exogenously. This implies that uninformed investors

use the time-series of prices to learn information about two quantities, dividend information and

supply. In this joint estimation dividends and supply act as noise with respect to each other. As

a result, changes in the information market make the estimation qualities of dividends and supply

move in opposite directions.

This tradeoff in estimation creates a similar tradeoff in informativeness of prices about dividends

and capital gains. As more informed agents enter the economy they make prices more informa-

tive about future cash flows, but less informative about capital gains. The combination of the

two effects gives a value of information that is not monotonic in the number of informed agents.

This phenomenon creates multiple equilibria in the information market and makes prices fragile in

perturbations of information costs.

This price fragility is often interpreted as a source of “structural breaks,” or “regime switching”

in prices. The intuition is that if the information decision was to be repeated over time, then the

multiplicity of equilibria would translate to time-varying moments of prices. To argue this point

further the iteration of the information decision must be part of the model. Moreover, in reality,
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information markets are dynamic environments. Because asset markets and information markets

interact, if we want to understand either market we must understand intertemporal information

acquisition. The dynamic model of this paper provides a foundation for such studies.
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Appendix A. Some auxiliary results

Lemma A.1. For two σ-algebrae H1 and H2 where H1 is contained in H2 and the jointly normal random

variables Z and W ,

Cov (E [Z|H2] ,E [W |H2] |H1) = Cov (Z,W |H1)− Cov (Z,W |H2) . (32)

Proof. The law of total covariance states that for the random variables X and Y , conditional on the

σ-algebra G,

Cov(X,Y ) = E [Cov(X,Y |G)] + Cov(E[X |G],E[Y |G]). (33)

When X and Y are jointly normal the conditional covariance is constant. Thus, with X = E [Z|H2],

Y = E [W |H2], and the σ-algebra H1, I get

Cov (E [Z|H2] ,E [W |H2] |H1) = Cov(E [Z|H2] ,E [W |H2])− Cov(E [Z|H1] ,E [W |H1])

= Cov (Z,W |H1)− Cov (Z,W |H2) (34)

by the law of iterated expectations and the law of total covariance.

Lemma A.2. For two jointly normal random variables X1 and X2, where X1 ∼ N (µ1, σ
2
1), X2 ∼ N (µ2, σ

2
2),

and Cov(X1, X2) = σ12,

E
[

exp{b1X1 + b2X2 + a11X
2
1 + 2a12X1X2 + a22X

2
2}
]

=

1

S
1

2

exp

{

1

S

{

1

2

[

b21
(

σ2
1 − 2a22|Σ|

)

+ 2b1b2 (σ12 + 2a12|Σ|) + b22
(

σ2
2 − 2a11|Σ|

)]

+ µ1

[

b1 + 2(a11b2 − a12b1)σ12 + 2(a12b2 − a22b1)σ
2
2

]

+ µ2

[

b2 + 2(a12b1 − a11b2)σ
2
1 + 2(a22b1 − a12b2)σ12

]

+ µ2
1a11

(

1− 2a22σ
2
2

)

+ 2µ1µ2 (a12 + 2|A|σ12) + µ2
2a22

(

1− 2a11σ
2
1

)

}

}

, (35)

where

S = |I − 2ΣA| = 1− 2(a11σ
2
1 + 2a12σ12 + a22σ

2
2) + 4|A||Σ|, (36a)

|A| = a11a22 − a212, (36b)

|Σ| = σ2
1σ

2
2 − σ2

12. (36c)

Proof. This is a special case of a standard property of the multivariate normal distribution for two random

variables, see, for example, Vives (2008, Section 10.2.4) and references therein.
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Lemma A.3. The first-period inferences of the uninformed are

µ̂1 =
pµθσ

2
µ

p2µθσ
2
µ + σ2

θ

(

pµθµ̃+ θ̃1

)

, (37a)

θ̂1 =
σ2
θ

p2µθσ
2
µ + σ2

θ

(

pµθµ̃+ θ̃1

)

. (37b)

The precisions of the first-period inferences are

Var (µ̃|Fu
1 ) =

σ2
µσ

2
θ

p2µθσ
2
µ + σ2

θ

, (38a)

Cov
(

µ̃, θ̃1|F
u
1

)

= −pµθVar (µ̃|F
u
1 ) , (38b)

Var
(

θ̃1|F
u
1

)

= p2µθVar (µ̃|F
u
1 ) . (38c)

The forecast is

E [µ̃|Fu
1 ] = µ̂1, (µ̃ does not change) (39a)

E

[

θ̃2|F
u
1

]

= ρθ̂1. (39b)

The second-period inferences of the uninformed are

µ̂2 = µ̂1 + (qµθ − ρpµθ)
Var (µ̃|Fu

2 )

σ2
η

[

qµθ(µ̃− µ̂1) + θ̃2 − ρθ̂1
]

, (40a)

θ̂2 = ρθ̂1 +

[

Var (µ̃|Fu
2 )

Var (µ̃|Fu
1 )

− ρpµθ(qµθ − ρpµθ)
Var (µ̃|Fu

2 )

σ2
η

]

[

qµθ(µ̃− µ̂1) + θ̃2 − ρθ̂1
]

. (40b)

The precisions of the second-period inferences are

Var (µ̃|Fu
2 ) =

Var (µ̃|Fu
1 )σ

2
η

Var (µ̃|Fu
1 ) (qµθ − ρpµθ)

2
+ σ2

η

, (41a)

Cov
(

µ̃, θ̃2|F
u
2

)

= −qµθVar (µ̃|F
u
2 ) , (41b)

Var
(

θ̃2|F
u
2

)

= q2µθVar (µ̃|F
u
2 ) . (41c)

The increase in precision over time is characterized by

1

Var
(

µ̃|Fu
2

) =
1

Var
(

µ̃|Fu
1

) +

(

qµθ − ρpµθ
ση

)2

. (42)

Proof. The results follow directly from the solution of the Kalman filter of the uninformed agents.
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Appendix B. Financial market

Proposition B.1. For j = i, u,

(i) The agents’ second-period demand is

xj2
∗
=

E

[

D3 − P2|F
j
2

]

δVar
(

D3 − P2|F
j
2

) . (43)

(ii) The agents’ first-period demand is

xj1
∗
=

E

[

P2 − P1|F
j
1

]

δVar
(

P2 − P1|F
j
1

) − βj
E

[

D3 − P2 − βj(P2 − P1)|F
j
1

]

δVar
(

D3 − P2 − βj(P2 − P1)|F
j
1

) , (44)

where

βj =
Cov

(

D3 − P2, P2 − P1

∣

∣

∣
F j

1

)

Var(P2 − P1|F
j
1 )

. (45)

Proof. The value function of each agent group j = i, u is

Jj(W0, S
j) = −e−δW0 min

x
j
1

{

eδx
j
1
P1E

[

e−δx
j
1
P2 min

x
j
2

{

eδx
j
2
P2E

[

e−δx
j
2
D3

∣

∣F j
2

]} ∣

∣

∣
F j

1

]}

. (46)

Let

E2

(

x2;F
j
2

)

= eδx2P2E

[

e−δx2D3

∣

∣F j
2

]

, (47a)

E1

(

x1;F
j
1

)

= eδx1P1E

[

e−δx1P2 min
x
j
2

{

Ej2

(

xj2;F
j
2

)}
∣

∣

∣
F j

1

]

. (47b)

The objective function of the innermost optimization is

E2

(

x2;F
j
2

)

= e−δx2E[D3−P2|F
j
2 ]+ 1

2
δ2x2

2
Var(D3−P2|F

j
2), (48)

so the first-order condition gives

xj2
∗
=

E

[

D3 − P2|F
j
2

]

δVar
(

D3 − P2|F
j
2

) , (49)

which establishes (i). Plugging the first-order condition back into the value function shows that the objective
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function of the outermost optimization is

E1

(

x1;F
j
1

)

= E



e
−δxj

1
(P2−P1)−

E
2[D3−P2|F

j
2]

2Var(D3−P2|F
j
2)

∣

∣

∣

∣

∣

F j
1



 . (50)

To carry out the calculation of this expectation, apply Lemma A.2 withX1 = P2−P1 andX2 = E

[

D3 − P2|F
j
2

]

conditionally on F j
1 , i.e., with

µ1 = E

[

P2 − P1|F
j
1

]

, (51a)

µ2 = E

[

D3 − P2|F
j
1

]

, (51b)

σ2
1 = Var

(

P2 − P1|F
j
1

)

, (51c)

σ2
2 = Var

(

E[D3 − P2|F
j
2 ]|F

j
1

)

, (51d)

σ12 = Cov
(

P2 − P1,E[D3 − P2|F
j
2 ]|F

j
1

)

, (51e)

and b1 = −δxj1, b2 = 0, a11 = a12 = 0, a22 = − 1

2Var(D3−P2|F
j
2)
. Then |A| = 0 and S = 1 − 2a22σ

2
2 so that

the expectation is

E1

(

x1;F
j
1

)

=
1

S
1

2

exp

{

1

S

{

1

2
δ2x1

2
(

σ2
1 − 2a22|Σ|

)

− δx1
[

(1− 2a22σ
2
2)µ1 + 2a22σ12µ2

]

+ µ2
2a22

}}

. (52)

The first-order condition at t = 1 gives

xj1
∗
=

(1− 2a22σ
2
2)µ1 + 2a22σ12µ2

δ (σ2
1 − 2a22|Σ|)

=

(

σ2
2 −

1
2a22

)

µ1 − σ12µ2

δ
(

|Σ| − 1
2a22

σ2
1

) . (53)

Using Lemma A.1 I obtain

σ12 = Cov
(

P2 − P1, D3 − P2|F
j
1

)

, (54a)

σ2
2 −

1

2a22
= Var

(

E[D3 − P2|F
j
2 ]|F

j
1

)

+Var
(

D3 − P2|F
j
2

)

= Var
(

D3 − P2|F
j
1

)

, (54b)

|Σ| −
1

2a22
σ2
1 = σ2

1

(

σ2
2 −

1

2a22

)

− σ2
12. (54c)

Now define

hj =
Cov

(

D3 − P2, P2 − P1

∣

∣

∣
F j

1

)

Var(D3 − P2|F
j
1 )

, (55)
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so that the first-order condition at t = 1 becomes

xj1
∗
=

µ1 − hjµ2

δ
(

σ2
1 −

σ2

12

Var(D3−P2|F
j
1
)

) . (56)

Moreover,

σ2
1 −

σ2
12

Var
(

D3 − P2|F
j
1

) = Var
(

P2 − P1|F
j
1

)

− hjCov
(

D3 − P2, P2 − P1

∣

∣

∣
F j

1

)

= Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

, (57)

which establishes that

xj1
∗
=

E

[

P2 − P1 − hj(D3 − P2)|F
j
1

]

δVar
(

P2 − P1 − hj(D3 − P2)|F
j
1

) . (58)

Result (ii) now follows by plugging the definition of βj into the first-period demand as stated in the propo-

sition and carrying out the algebra to show that it is equal to xj1
∗
as written just above.

Finally, define Kj
1 to be the inverse of S. Then Lemma A.1 implies that

Kj
1 =

Var
(

D3 − P2|F
j
2

)

Var
(

D3 − P2|F
j
1

) . (59)

Remark B.2.

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

= Var
(

P2 − P1|F
j
1

)

−
(

hj
)2

Var
(

D3 − P2|F
j
1

)

. (60)

Definition B.3. For j = i, u, let

Πj2 =
[

Var
(

D3 − P2|F
j
2

)]−1

, (61a)

Πj1 =
[

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)]−1

, (61b)

be the precisions for each information group and let

Π2 = λΠi2 + (1 − λ)Πu2 , (62a)

Π1 = λΠi1 + (1 − λ)Πu1 . (62b)

be the aggregate precisions.
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Proposition B.4. In equilibrium, for a fixed fraction of informed investors λ,

(i) The second-period price coefficients are

qµ = λ
Πi2
Π2

, (63a)

qµ̂ = 1− qµ, (63b)

qθ = −
δ

Π2
, (63c)

q
θ̂
= 0, (63d)

where

(

Πi2
)−1

= σ2
ζ , (64a)

(Πu2 )
−1 = σ2

ζ +Var (µ̃|Fu
2 ) . (64b)

(ii) The first-period price coefficients are given by

pµ = λ
Πi1
Π1

[

1−
(

1 + hi
)

qµ̂
Var (µ̃|Fu

2 )

Var (µ̃|Fu
1 )

]

, (65a)

pθ = λ
Πi1
Π1

(

1 + hi
)

ρqθ −
δ

Π1
, (65b)

pµ̂ = 1− pµ, (65c)

p
θ̂
= (1 − λ)

Πu1
Π1

(1 + hu) ρqθ, (65d)

where, in addition, pθ < 0, and, if the discriminant of Eq. (15) is non-positive, then pµ ≥ 0.

Proof. Establishing the expressions for the second-period precisions Πi2 and Πu2 is straightforward. Second-

period optimal demands, Eq. (3b), and coefficient-matching in second-period market clearing establish part

(i). Next, notice that E
[

D3|F i
1

]

= µ̃, E [D3|Fu
1 ] = µ̂1, and that from Eq. (42)

E
[

P2|F
i
1

]

= q̄µµ̃+ q̄µ̂µ̂1 + ρqθ θ̃1, (66)

where

q̄µ = qµ + qµ̂
σ2
µσ

2
θ(qµθ − ρpµθ)

2

σ2
µσ

2
θ(qµθ − ρpµθ)2 + σ2

η(p
2
µθσ

2
µ + σ2

θ)
= qµ + qµ̂(qµθ − ρpµθ)

2Var (µ̃|F
u
2 )

σ2
η

, (67a)

q̄µ̂ = qµ̂
σ2
η(p

2
µθσ

2
µ + σ2

θ)

σ2
µσ

2
θ(qµθ − ρpµθ)2 + σ2

η(p
2
µθσ

2
µ + σ2

θ)
= 1− q̄µ = qµ̂

Var (µ̃|Fu
2 )

Var (µ̃|Fu
1 )
. (67b)
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Using iterated conditional expectations I get

E [P2|F
u
1 ] = µ̂1 + ρqθ θ̂1. (68)

The above conditional expectations, first-period optimal demands, Eq. (3a), and coefficient-matching in

first-period market clearing give

Π1pµ = λΠi1
[(

1 + hi
)

q̄µ − hi
]

, (69a)

Π1pθ = λΠi1
(

1 + hi
)

ρqθ − δ, (69b)

Π1pµ̂ = λΠi1
(

1 + hi
)

q̄µ̂ + (1− λ)Πu1 , (69c)

Π1pθ̂ = (1 − λ)Πu1 (1 + hu) ρqθ, (69d)

where I note that

pµ + pµ̂ = 1. (70)

The last five equations together with Eq. (42) establish part (ii). Finally, I establish that pθ < 0 and pµ ≥ 0.

First, solving Eq. (63c) for qθ and plugging into Eq. (69b) gives

pθ = −
δ

Π1

[

λΠi1
Π2

(

1 + hi
)

ρ+ 1

]

, (71)

where Π2 > 0, Πi1 > 0, and Π1 > 0 because they are either precisions or convex combinations of precisions,

and 1 + hi > 0 from Lemma B.6 below. Thus, pθ < 0. In addition, whenever an equilibrium exists and

the discriminant of Eq. (15) is non-positive, Proposition 3.3 implies that pµ/pθ ≤ 0, which implies that

pµ ≥ 0.

Remark B.5. The above computes the values of the price coefficient ratios pµθ and qµθ, which are sufficient

to construct the equilibrium. The above is also sufficient for computation of the price coefficients in period

t = 2. To complete the computation of the price coefficients for the period t = 1, it is very helpful to use

an alternative representation of prices. Since µ̂2 and θ̂2 are linear combinations of y1 and y2, µ̂2 and θ̂2 are

linear combinations of µ̃, θ̃1, and θ̃2. As a result the price representation Eq. (3) is equivalent to

P1 = ϕµµ̃+ ϕθ θ̃1, (72a)

P2 = χµµ̃+ χθ2 θ̃2 + χθ1 θ̃1, (72b)

where ϕµ and ϕθ are linear combinations of the price coefficients in Eq. (3a) and χµ, χθ2 , and χθ1 are linear

combinations of the price coefficients in Eq. (3b).

Lemma B.6. The first-period precisions are given by

(

Πi1
)−1

=
(

1 + hi
)2
χθ2

2σ2
η + hi

2
σ2
ζ , (73a)
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(Πu1 )
−1 = (1 + hu)2 χθ2

2σ2
η + hu2σ2

ζ (73b)

+ [(1 + hu)χµ − hu]2 Var (µ̃|Fu
1 ) + (1 + hu)2 (ρχθ2 + χθ1)

2 Var
(

θ̃1|F
u
1

)

(73c)

+ 2 [(1 + hu)χµ − hu] (1 + hu) (ρχθ2 + χθ1)Cov
(

µ̃, θ̃1|F
u
1

)

. (73d)

The first-period conditional moments are

Cov
(

D3 − P2, P2 − P1

∣

∣

∣
F i

1

)

= −χ2
θ2σ

2
η, (74a)

Var
(

P2 − P1

∣

∣

∣
F i

1

)

= χ2
θ2σ

2
η, (74b)

Var
(

D3 − P2

∣

∣

∣
F i

1

)

= σ2
ζ + χ2

θ2σ
2
η, (74c)

and

Cov
(

D3 − P2, P2 − P1

∣

∣

∣
Fu

1

)

= −χ2
θ2σ

2
η

+ [χµ − pµθ (ρχθ2 + χθ1)] [1− χµ + pµθ (ρχθ2 + χθ1)]Var (µ̃|F
u
1 ) , (74d)

Var (P2 − P1|F
u
1 ) = χ2

θ2σ
2
η + [χµ − pµθ (ρχθ2 + χθ1)]

2
Var (µ̃|Fu

1 ) , (74e)

Var
(

D3 − P2

∣

∣

∣
Fu

1

)

= σ2
ζ + χ2

θ2σ
2
η + [1− χµ + pµθ (ρχθ2 + χθ1)]

2
Var (µ̃|Fu

1 ) , (74f)

where

χµ = 1− qµ̂
Var (µ̃|Fu

2 )

σ2
µ

, (75a)

ρχθ2 + χθ1 = ρqθ + qµ̂pµθ
Var (µ̃|Fu

2 )

σ2
θ

, (75b)

χθ2 = qθ + qµ̂ (qµθ − ρpµθ)
Var (µ̃|Fu

2 )

σ2
η

. (75c)

Proof. These expressions follow by Eq. (3), Eq. (72), the solution to the Kalman filter, and omitted algebraic

manipulations. The hedging coefficients hi and hu are given by the above and definition Eq. (55).

Proof of Proposition 3.2. Divide Eq. (63a) by Eq. (63c) to get

qµθ = −
λΠi2
δ

= −
λ

δσ2
ζ

, (76)

which establishes part (i). Next, divide Eq. (69a) by Eq. (69b) to get

pµθ =
λΠi1

[(

1 + hi
)

q̄µ − hi
]

λΠi1 (1 + hi) ρqθ − δ
. (77)
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Rearranging this and carrying out the algebra gives

[

δq2µθ (qµθ − ρpµθ) + δ
σ2
η

σ2
ζ

(qµθ − pµθ)−

(

1

σ2
ζ

+ δqµθ

)

(qµθ − ρpµθ) (qµθ − pµθ)

]

=
[

qµθ (qµθ − ρpµθ)− δσ2
η (qµθ − pµθ)

]

[

(qµθ − ρpµθ)
2

σ2
η

+
p2µθσ

2
µ + σ2

θ

σ2
µσ

2
θ

]

.

(78)

Further algebraic manipulations show that Eq. (78) can be written as

γ3p
3
µθ + γ2p

2
µθ + γ1pµθ + γ0 = 0, (79)

where

γ3 = σ2
µ

(

ρqµθ − δσ2
η

) (

ρ2σ2
θ + σ2

η

)

, (80a)

γ2 =
σ2
µ

σ2
ζ

{

−σ2
ζ (σ

2
η + 3ρ2σ2

θ)q
2
µθ + δσ2

ζσ
2
η

(

σ2
η + ρ (1 + ρ)σ2

θ

)

qµθ − ρσ2
θσ

2
η

}

, (80b)

γ1 =
σ2
θ

σ2
ζ

{

3ρσ2
ζσ

2
µq

3
µθ − 2δρσ2

ησ
2
ζσ

2
µq

2
µθ + σ2

η

(

σ2
µ + ρ

(

σ2
ζ + σ2

µ

))

qµθ − δσ4
η

(

σ2
ζ + σ2

µ

)}

, (80c)

γ0 = −
σ2
θ

σ2
ζ

qµθ
(

qµθ − δσ2
η

) (

σ2
ησ

2
µ + σ2

ζ (σ
2
η + σ2

µq
2
µθ)
)

, (80d)

which proves part (ii).

Proof of Proposition 3.3.

(i) A financial market equilibrium exists when Eq. (79) has a real root. Because Eq. (79) is a cubic

polynomial in pµθ, it always has at least one real root.

(ii) (a) When λ = 0, qµθ = 0 so γ0 = 0 and therefore one of the solutions of Eq. (79) is pµθ = 0.

(b) When λ > 0, qµθ < 0 and γ0, γ1, γ2, γ3 < 0. By Descartes’ rule of signs the polynomial in Eq. (79)

has no positive roots, but from above it has at least one real root. Therefore, that root must be

negative.

(iii) The financial market equilibrium is unique when Eq. (79) has a unique real root. This is true when

the discriminant of the polynomial in Eq. (79), ∆pµθ , is non-positive. The discriminant is

∆pµθ = 18γ3γ2γ1γ0 − 4γ32γ0 + γ22γ
2
1 − 4γ3γ

3
1 − 27γ23γ

2
0 . (81)
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Proof of Lemma 3.4. By the Implicit Function Theorem and Eq. (15) I get that

d

dqµθ
pµθ = −

(

p3µθ
∂

∂qµθ
γ3 + p2µθ

∂

∂qµθ
γ2 + pµθ

∂

∂qµθ
γ1 +

∂

∂qµθ
γ0

)

(

3p2µθγ3 + 2pµθγ2 + γ1
)−1

. (82)

Recall from Propositions 3.2 and 3.3 that qµθ
∣

∣

λ=0
= 0 and pµθ

∣

∣

λ=0
= 0. Thus,

d

dqµθ
pµθ

∣

∣

∣

λ=0
= −

(

∂

∂qµθ
γ0
∣

∣

λ=0

)

(

γ1
∣

∣

λ=0

)−1
= −

(

δσ4
ησ

2
θ

σ2
ζ + σ2

µ

σ2
ζ

)(

−δσ4
ησ

2
θ

σ2
ζ + σ2

µ

σ2
ζ

)−1

= 1. (83)

The result now follows by the chain rule of differentiation with respect to λ.

Proof of Proposition 3.5. The result follows by inspection of Eq. (78).

Appendix C. Information market

Proof of Theorem 3.8. The value of information is

eδψ0(λ) =
E

[

E1 (x
u
1
∗;Fu

1 )
∣

∣

∣
Fu

0

]

E

[

E

[

E1

(

xi1
∗
;F i

1

)

∣

∣

∣
F i

0

] ∣

∣

∣
Fu

0

] =
E

[

E1 (x
u
1
∗;Fu

1 )
∣

∣

∣
Fu

0

]

E

[

E1

(

xi1
∗
;F i

1

)

∣

∣

∣
Fu

0

] , (84)

where the last equality follows from the law of iterated expectations. I need to calculate two conditional

expectations, which are very similar. For j = i, u, plugging xj1
∗
back into the value function gives

E1

(

xj1
∗
;F j

1

)

=

√

Kj
1 exp

{

−
1

2Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

{

E
2
[

P2 − P1|F
j
1

]

− 2hjE
[

P2 − P1|F
j
1

]

E

[

D3 − P2|F
j
1

]

+
Var

(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

)E
2
[

D3 − P2|F
j
1

]}

}

. (85)

To calculate the conditional expectation of E1

(

xj1
∗
;F j

1

)

, apply Lemma A.2 for j = i, u with X1 =

E

[

P2 − P1|F
j
1

]

and X2 = E

[

D3 − P2|F
j
1

]

conditionally on Fu
0 . Because ex ante all random variables

have zero means

µ1 = E

[

E

[

P2 − P1|F
j
1

] ∣

∣

∣
Fu

0

]

= 0, (86a)

µ2 = E

[

E

[

D3 − P2|F
j
1

]
∣

∣

∣
Fu

0

]

= 0. (86b)
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Moreover, take

σ2
1 = Var

(

E

[

P2 − P1|F
j
1

] ∣

∣

∣
Fu

0

)

, (87a)

σ2
2 = Var

(

E

[

D3 − P2|F
j
1

] ∣

∣

∣
Fu

0

)

, (87b)

σ12 = Cov
(

E

[

P2 − P1|F
j
1

]

,E
[

D3 − P2|F
j
1

]
∣

∣

∣
Fu

0

)

. (87c)

and

b1 = b2 = 0, (88a)

a11 = −
1

2Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

) , (88b)

a12 = −hja11, (88c)

a22 =
Var

(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

)a11. (88d)

Then

|A| = a211





Var
(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

) − hj
2



 = −
a11

2Var
(

D3 − P2|F
j
1

) , (89)

where the last equality follows from the variance decomposition in Remark B.2 and as a result

S = 1− 2a11



σ2
1 − 2hjσ12 +

Var
(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

)σ2
2



− 2a11
σ2
1σ

2
2 − σ2

12

Var
(

D3 − P2|F
j
1

)

= 1 +
σ2
1 − 2hjσ12 + hj

2
σ2
2

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

) +

(

Var(P2−P1|F
j
1)

Var(D3−P2|F
j
1)

− hj
2
)

σ2
2

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

+
σ2
1σ

2
2 − σ2

12

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

Var
(

D3 − P2|F
j
1

)

=
Var (P2 − P1|Fu

0 )Var (D3 − P2|Fu
0 )

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

Var
(

D3 − P2|F
j
1

) . (90)
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The last equality follows from Remark B.2, the definition of hj , and Lemma A.1. Now define Kju
0 to be the

inverse of S for j = i, u as in the last equation. Applying Lemma A.2 gives that the value of information is

eδψ0(λ) =
E

[

E1 (x
u
1
∗;Fu

1 )
∣

∣

∣
Fu

0

]

E

[

E1

(

xi1
∗
;F i

1

)

∣

∣

∣
Fu

0

] =

√

Ku
1

Ki
1

√

Kuu
0

Kiu
0

=
Var(D3 − P2|Fu

2 )

Var(D3 − P2|F i
2)

Var (P2 − P1 − hu(D3 − P2)|Fu
1 )

Var
(

P2 − P1 − hi(D3 − P2)|F i
1

) . (91)

From this expression, different writings of the value of information can be obtained, by either using Remark

B.2 or by writing hj in terms of βj for j = i, u and carrying out the algebra.

Proof of Proposition 3.9. Lemma B.6 yields that hi < hu < 0, thus −
(

hi
)2
< − (hu)

2
< 0. By Lemma

A.1, Var (D3 − P2|Fu
2 ) > Var

(

D3 − P2|F i
2

)

, Var (D3 − P2|Fu
1 ) > Var

(

D3 − P2|F i
1

)

, and Var (P2 − P1|Fu
1 ) >

Var
(

P2 − P1|F i
1

)

. Remark B.2 and Theorem 3.8 now imply that ψ0(λ) > 0 for any λ ∈ [0, 1].

Appendix D. Information tradeoffs and complementarities

Lemma D.1. The coefficients of the capital gain P2 − P1 are

gη = qθ + qµ̂(qµθ − ρpµθ)
Var(µ̃|Fu

2 )

σ2
η

, (92a)

gµ =
[

(qµθ − ρpµθ)gη + pµθ
(

ρqθ − (pθ + p
θ̂
)
)] σ2

θ

p2µθσ
2
µ

. (92b)

Proof. This follows from Proposition B.4, the solution to the Kalman filter in Lemma A.3, and omitted

algebra.

Proof of Proposition 4.1. Combining the expressions for Var (µ̃|Fu
1 ) and Var

(

θ̃1|Fu
1

)

from the Kalman

filter I get

Var
(

θ̃1|F
u
1

)

= σ2
θ

[

1−
Var (µ̃|Fu

1 )

σ2
µ

]

, (93)

which establishes the result.

Proof of Proposition 4.2. Eq. (26) and Lemma D.1 give

Var (P2 − P1|Fu
1 )

Var
(

P2 − P1|F i
1

) =
g2ησ

2
η + g2η

(

qµθ

pµθ
− ρ
)2

Var
(

θ̃1|Fu
1

)

g2ησ
2
η

= 1 +

(

qµθ
pµθ

− ρ

)2 Var
(

θ̃1|Fu
1

)

σ2
η

. (94)

The state variable µ̂1 is common information in the first period, so it does not contribute anything to the

conditional variance of capital gains.
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Proof of Theorem 4.3. Total differentiation of e2δψ0(λ) gives

de2δψ0(λ)

dλ
=
∂e2δψ0(λ)

∂λ
+
∂e2δψ0(λ)

∂qµθ

dqµθ
dλ

+
∂e2δψ0(λ)

∂pµθ

dpµθ
dλ

. (95)

Evaluating each partial derivative of the right-hand side above at λ = 0 yields

∂e2δψ0(λ)

∂λ

∣

∣

∣

∣

∣

λ=0

= 2
σ2
µ(σ

2
ζ + σ2

µ)

σ4
ζ

[

1 + δ2σ2
η(σ

2
ζ + σ2

µ)
] , (96)

∂e2δψ0(λ)

∂qµθ

∣

∣

∣

∣

∣

λ=0

= −2δ
σ4
µ(σ

2
ζ + σ2

µ)

σ4
ζ

[

1 + δ2σ2
η(σ

2
ζ + σ2

µ)
]2 , (97)

∂e2δψ0(λ)

∂pµθ

∣

∣

∣

∣

∣

λ=0

= 2ρδ
σ2
µ(σ

2
ζ + σ2

µ)
2

σ4
ζ

[

1 + δ2σ2
η(σ

2
ζ + σ2

µ)
] . (98)

The intermediate algebraic manipulations are trivial but very long and are thus omitted. Combining the

above with Lemma 3.4 and carrying out the algebra establishes the result.

Proof of Proposition 4.4. When ρ = 1, Propositions 3.5 and 4.2 imply that

qµθ − ρpµθ = 0, (99)

Var (µ̃|Fu
2 ) = Var (µ̃|Fu

1 ) , (100)

Var (P2 − P1|Fu
1 )

Var
(

P2 − P1|F i
1

) = 1. (101)

These relations, together with Lemma B.6, imply that the value of information in Theorem 3.8 is

e2δψ0 =

(

σ2
ζ +Var (µ̃|Fu

1 )

σ2
ζ

)2
σ2
ζ + q2θσ

2
η

σ2
ζ +Var (µ̃|Fu

1 ) + q2θσ
2
η

. (102)

Here, pθ and Var (µ̃|Fu
1 ) are functions of λ. Taking the derivative of e2δψ0 with respect to λ and carrying

out the algebra shows that the value of information is decreasing in λ.
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t = 0

Acquire information
(observe µ̃) at cost κ0

or remain uninformed

t = 1

Asset supply

θ̃1

Update and trade

t = 2

Asset supply

θ̃2 = ρθ̃1 + η̃

Update and trade

t = 3

Liquidating dividend

D3 = µ̃+ ζ̃

Consume

Time t

Fig. 1. The sequence of events in the model. At time t = 0 all agents choose whether to pay κ0 to acquire information

about the liquidating dividend D3 of a risky asset. The dividend is made up of two random variables, µ̃ ∼ N (0, σ2
µ)

and ζ̃ ∼ N (0, σ2

ζ) with µ̃ independent of ζ̃. Agents that choose to acquire information observe the value of µ̃ right

before time t = 1. Agents that choose not to acquire information must rely on prices in later periods to update

their beliefs about the value of µ̃. At times t = 1 and t = 2 all agents are free to trade the risky asset. The value

of the dividend information µ̃ does not change over time. The supply of the asset at time t = 1 is θ̃1 ∼ N (0, σ2

θ),

independent of µ̃ and ζ̃. The supply of the asset at time t = 2 is θ̃2 = ρθ̃1 + η̃, where ρ is the persistence of supply

and η̃ ∼ N (0, σ2
η), independent of θ̃1, µ̃, and ζ̃. All agents consume out of their dividend holdings at time t = 3 and

the economy ends.
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Fig. 2. Conditional variance of dividend information (left) and conditional variance of supply information (right) for

the uninformed agents at time t = 1, for different values of supply persistence ρ. Solid curves for ρ = 1, dash-dotted

curves for ρ = 0.5, and dashed curves for ρ = 0. The information set F
u
1 of the uninformed agents at time t = 1

contains only the first-period price. The risk-aversion coefficient is δ = 1, and the standard deviations of the random

variables as in the timeline of Fig. 1 are σζ = 1, σµ = 1, σθ = 0.5, and ση = 0.5.
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Fig. 3. The components of the total value of information as a function of the fraction of informed agents λ for a

two-trading-period market with first-period price P1, second-period price P2, and liquidating dividends D3. For each

trading period t = 1, 2, the informed agents have information set F
i
t and the uninformed agents have information

set F
u
t . All agents have CARA preferences with risk-aversion coefficient δ. The value of information has three

components: one capturing the relative informativeness of price histories about liquidating cash flows (top left), one

capturing the relative informativeness of first-period prices about myopic returns (top right), and one capturing the

relative value of using information to hedge better (bottom.) Each plot shows the value of information for different

levels of supply persistence ρ, with solid curves for ρ = 1, dash-dotted curves for ρ = 0.5, and dashed curves for

ρ = 0. The risk-aversion coefficient is δ = 1, and the standard deviations of the random variables as in the timeline

of Fig. 1 are σζ = 1, σµ = 1, σθ = 2, and ση = 1.
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Fig. 4. The breakdown of the coefficient of first-period supply in capital gains as a function of the fraction of informed

agents λ, for different values of supply persistence ρ. This coefficient is the product gη
(

qµθ

pµθ
− ρ

)

, where gη is the

loading of capital gains on the second-period supply shock (shown on the left) and qµθ/pµθ is the ratio of the price-to-

noise ratios qµθ and pµθ (shown on the right, adjusted by subtracting ρ.) Solid curves for ρ = 1, dash-dotted curves

for ρ = 0.5, and dashed curves for ρ = 0. The risk-aversion coefficient is δ = 1, and the standard deviations of the

random variables as in the timeline of Fig. 1 are σζ = 1, σµ = 1, σθ = 2, and ση = 1.
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Fig. 5. The total value of information ψ0(λ) as a function of the fraction of informed agents λ for different values

of supply persistence ρ. Solid curves for ρ = 1, dash-dotted curves for ρ = 0.5, and dashed curves for ρ = 0. For

ρ = 0, when the cost of information is κ0 = 0.625 there is one corner equilibrium at λ0 = 0 (left filled circle), one

interior equilibrium at λ∗ = 0.10 (empty circle), and another interior equilibrium at λ∗ = 0.58 (right filled circle).

The risk-aversion coefficient is δ = 1, and the standard deviations of the random variables as in the timeline of Fig. 1

are σζ = 1, σµ = 1, σθ = 2, and ση = 1.
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