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OTC markets exhibit a core-periphery interdealer network: 10-30 central dealers trade
frequently and with many dealers, while hundreds of peripheral dealers trade sparsely and
with few dealers. Existing work rationalize this phenomenon with exogenous dealer het-
erogeneity. We build a directed search model of network formation and propose that a
core-periphery network arises from specialization. Dealers endogenously specialize in dif-
ferent clients with different liquidity needs. The clientele difference across dealers, in turn,
generates dealer heterogeneity and the core-periphery network: The dealers specializing in
clients who trade frequently form the core, while the dealers specializing in buy-and-hold

investors form the periphery.
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1 Introduction

In over-the-counter (OTC) markets, transactions between dealers exhibit a core-periphery net-
work. Ten to thirty highly interconnected dealers account for a majority of both dealer-to-dealer
and client-to-dealer transactions. These dealers form the core, while hundreds of sparsely con-
nected dealers trade infrequently and form the periphery. This network structure is not a
one-time random event but is highly persistent over time. In particular, both the dealers’ rela-
tive importance in the network and who they trade with are highly persistent.! Li and Schiirhoff
(2014) (LS hereon) document these patterns for the municipal bond market and Neklyudov,
Hollifield, and Spatt (2014) (NHS hereon) for the asset-backed securities market.?

These stylized facts challenge existing models. Recent papers rationalize the core-periphery
phenomenon with ex-ante dealer heterogeneity.?> Current network models are one-time static
models and hence cannot speak to the observed network persistence. Search models—a promi-
nent class of models capturing OTC markets—imply that trading networks are random.

Thus, we still need to explain: How does dealer heterogeneity arise in the first place? And
why do core and peripheral dealers co-exist? Any convincing explanation has to—at the same
time—explain the observed network persistence. How do core dealers maintain their size and
market share and persistently remain in the core?

We build a search-based model of network formation and show that dealer heterogeneity and
the core-periphery network arise from specialization. Some dealers form the core because they
specialize in investors who trade frequently (e.g. index funds). Because they cater to customers
who trade frequently, core dealers receive a large volume of client orders. Their client orders,
in turn, support the large volume of interdealer trades they transact and hence their centrality

in the network. Conversely, the dealers that specialize in buy-and-hold investors (e.g. pension
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interdealer network. This insight is the main contribution of the paper.

We formalize this insight with a directed search model that builds on Duffie, Garleanu, and
Pedersen (2005) and, in particular, on Vayanos and Wang (2007). We add to their environment
dealers and interdealer trades. Dealers are ex-ante identical, but customers have heterogenous
liquidity needs. Some customers just buy and hold an asset; others buy knowing they will turn
around and sell quickly. Dealers intermediate directly between customers, but also connect with
other dealers to supplement their liquidity provision to customers. We assume a fully connected
dealer network, but network weights (in particular, the transaction volumes between pairs of
dealers) are endogenous.

In this environment, we show that both symmetric and asymmetric equilibria exist. The
symmetric equilibrium features a circular network, where dealers have identical network cen-
trality. This shows that client heterogeneity alone does not guarantee dealer heterogeneity. The
asymmetric equilibrium, on the other hand, features a core-periphery network due to special-
ization and the heterogeneity that it creates.

In the asymmetric equilibrium, the endogenous dealer specialization works as follows. Clients
tradeoff a dealer’s ask-price versus its liquidity service. Some dealers charge a high ask-price
but, in return, offer better liquidity if the client has to return the bond: The dealer either buys
back at a higher bid-price, executes the order more quickly, or both. Others charge a cheaper
ask-price price but offer worse liquidity. Buyers who expect to reverse their position quickly
care more about what happens to them as a seller. They, as a result, choose the dealer based on
liquidity the dealer offers and are willing to pay the higher ask-price. Buy-and-hold investors,
less concerned with turning into a seller later on, instead, choose the dealer offering the cheapest
price. Thus, investors with different liquidity needs endogenously sort across different dealers.

The clientele difference across dealers, in turn, supports the different prices and liquidity across



the standard models assume that agents trade through random search and match and thus
abstract from repeated trades between agents. We relax both of these assumptions. We model
clients and dealers separately and model valuation changes occurring with clients. Dealers’
identities and their equilibrium roles (e.g. whether they are a core or peripheral), as a result,
remain stable and hence the persistence in the intermediation roles. The stability of dealer
identities allows us to model explicit network links between dealers. Dealers, as a result, trade
with each other repeatedly and hence the persistence in the interdealer trades.’

Additionally, we show that core and peripheral dealers play the following roles. On the
interdealer market, core dealers supply liquidity (by volume and execution speed) to other
dealers but charge wide bid-ask spreads. Peripheral dealers consume that liquidity and pass it
down to their clients (specifically, the execution speed and wide bid-ask spreads). They rely
more on the interdealer market and on long intermediation chains for their liquidity service to
clients. Bonds, as a result, cycle through the economy starting with core dealers’ clients, then
the interdealer network, and eventually end with buy-and-hold investors, who are concentrated
with peripheral dealers. The cycle repeats when a buy-and-hold investor experiences a liquidity
shock and sells the bond. The sell order, in turn, primarily gets absorbed via the interdealer
network by core dealers and their clients. Thus, core dealers serve as a central conduit in
transmitting assets through the economy from one end-customer to another.

Finally, we highlight three additional results. First, we show that specialization and the re-
sulting core-periphery network are socially desirable and dominate a circular network. Second,
interconnectedness among dealers improves bond market liquidity: It increases the aggregate
volume of transactions, narrows bid-ask spreads, and speeds up transaction times. Greater
liquidity, in turn, alleviates misallocations and improves both the customer welfare and dealer

profits. Third, market fragmentation (captured by the aggregate number of dealers) also in-



on the interdealer market, to other dealers. Section 5 derives additional results on dealer inter-
connectedness, market fragmentation, and welfare. In Section 6, we discuss our assumptions.

Section 7 concludes.

1.1 Related Literature

We close the gap between the network and search literatures: We provide a novel way to think
about dealers and dealer networks in an environment with search and matching frictions. We
depart from Duffie, Garleanu, and Pedersen (2005) (DGP) in an important way: From the
perspective of clients, dealers are segmented. In DGP, end-customers trade with one another
directly through random search and match, but also frictionlessly with any dealer. Thus, the
implicit assumption in DGP is a zero cost of forming a client-dealer relationship. In contrast,
our model features dealer segmentation and thus implicitly assumes a fixed cost of forming a
relationship with a dealer. This simple tweak (dealer segmentation) allows us to model and
study (1) clients’ endogenous choice over dealers, (2) multiple dealers, (3) the intermediation
chain among dealers, and (4) dealer heterogeneity.

Our paper relates to recent models with implications on trading networks among agents.
In Atkeson, Eisfeldt, and Weill (2014), for example, the dealer banks with a larger number of
traders and intermediate exposures to aggregate risk resemble a core dealer. In Zhong (2014)
and Neklyudov (2012), the dealers with an exogenously larger inventory capacity and a superior
trading technology, respectively, form the core. In Hugonnier, Lester, and Weill (2014) and Shen,
Wei, and Yan (2015), agents have idiosyncratic realizations of private valuations for an asset, and
those with intermediate valuations intermediate the most and resemble a core dealer. In Chang
and Zhang (2015), agents have both heterogeneous volatility and idiosyncratic realizations. In

contrast to these papers, in our model, the heterogeneity across dealers arises endogenously.



centrality as given (see, for example, Gofman (2011), Kondor and Babus (2013), and Malamud
and Rostek (2014)). We allow for endogenous network weights.”

In our model, some dealers in equilibrium intermediate more dealer-to-dealer trades than
other dealers. Bonds also travel through longer intermediation chains with peripheral deal-
ers than with core dealers. Thus, our paper relates to models of intermediation chains (e.g.,
Viswanathan and Wang (2004), Glode and Opp (2014), Gofman (2011), Colliard and Demange
(2014), Hugonnier, Lester, and Weill (2014), and Shen, Wei, and Yan (2015)).

2 Model

Time is continuous and goes from zero to infinity. There is one asset—a bond with supply S
paying a coupon flow d—and two sets of agents: customers and n ex-ante identical dealers.
Dealers are indexed by i € N, where N = {1,2,3,...n} is the set of dealers.® Everyone is risk

neutral, infinitely lived, and discounts the future at a constant rate r > 0.

2.1 Customers

Customers are the end-users of the bond. As in standard search models, they have an idiosyn-
cratic high or low valuation for the bond. High types derive a flow utility 0 from holding the
bond, while low types derive § —z, where x > 0 represents a disutility of holding the bond. High
types thus in equilibrium want to own the bond; low types do not. Categorizing agents by their
valuation and asset holding, we label them according to their equilibrium trading strategy: a
buyer, owner, and seller.

Investors’ valuations, moreover, change randomly, thus generating a need to rebalance their

asset position and trade. In particular, high types experience a liquidity shock with intensity &
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economy as high type non-owners (that is, as buyers).

Investors, in addition, differ by their liquidity type, k: the rate with which they experience
the liquidity shock. The distribution over k is given by the density function f (k) on support
[k,k].° A k-type investor expects to hold the bond for a period of %; thus, different liquidity
types have different expected trading horizons. Those with a high switching rate (k) have a
short trading horizon (%) and expect to have to sell quickly, while those with a small k£ expect
to hold the bond longer. We refer to the former as liquidity investors and to the latter as
buy-and-hold investors.

Investors can only buy and sell through one of the dealers. Upon entering the economy, a

k-type buyer chooses dealer i with probability v;(k) according to

1 Vb(k) > maxV?P(k
i (k) > maxVP(k)
vi(k) = q[0,1]if VP(k) :mixvjb(k) (1)
JF
0 VE(k) < maxVp(k),

where Vib(k) denotes the expected utility of a k-type buyer who is a customer of dealer i, and
> vi(k) = 1. Once an investor chooses a dealer, we assume that, from then on, she can trade
;erﬁfy through that dealer.

Figure 1 summarizes the life-cycle of investors. An investor enters the economy as a high
type non-owner (i.e. as buyers), picks, say, dealer ¢, and becomes a buyer-client of that dealer.
Upon buying the bond, she becomes an owner-client of the dealer. As an owner, she holds the
bond until she experiences a liquidity shock and becomes a seller. Upon selling the bond, the

investor exits the economy.

We denote by u7, ,ui?, and pf the total measure of sellers, buyers, and owners of dealer i,



and owners with switching rates k in [k, k 4 dk].

2.2 Dealers and Intermediations

Dealers intermediate bonds for customers. They do so in two ways. First, a dealer pairs up

buyers and sellers within its own client base according to
MZ-D = )\Dufuf, (4)

where \p is an exogenous matching efficiency of a dealer.'® Adopting the notation from LS and
NHS, MP is the volume of CDC (Client-Dealer-Client) intermediation chains, where the first
C is the end-seller client, and the last C is the end-buyer client. We assume dealers do not hold
inventory: They buy from one client and instantly sell to another.

Second, a dealer intermediates for its clients by connecting with other dealers. We denote
the set of dealer connections of dealer 7 with IV; and assume that each dealer is connected to
every other dealer: N; = {j € N : j # i} for all .. We define dealers i and j as connected if
they share their clients with each other. In particular, using ¢’s sellers and j’s buyers, dealers
i and j together produce )\DD,ufu? matches (i.e. CDDC chains), where ¢ is the first D in the
chain, and App is a joint matching efficiency of the two dealers.'’ Analogously, using j’s sellers

and ¢’s buyers, they produce )\DD,u;f,uﬁ?

CDDC chains, where ¢ is now the second D in the chain.
Summing across all dealers j that dealer ¢ is connected to, the total volume of CDDC chains

that dealer 7 intermediates is:

JEN; JEN;
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in (5). Since, the number of links is identical across dealers, our measure is equivalent to: the
number of links weighted by the strength of the link (that is, by the volume of trade between
dealers). We thus define dealer i as more central (i.e., core) than dealer j if dealer i intermediates

a larger volume of interdealer trades (MPP) than dealer j.

Definition 1. Dealers i and j are defined as relatively core versus peripheral dealer if MiDD >

MPP
HE

In our environment, the source of inefficiency is that—due to matching frictions—investors
with a low valuation for a bond (i.e. sellers) are stuck holding the bond despite the availability
of willing buyers. Specifically, after receiving orders, dealers take time in producing matches
and thereby create wait times for clients even though clients can instantly contact and submit
an order with a dealer. Thus, trading frictions manifest as waiting periods after a client submits
an order with a dealer. In a frictionless environment (A, — oo, App — 00), a customer would
sell instantly, via their dealer, to another end-customer with a higher valuation (i.e. a buyer).
Our specification is realistic. In practice, customers (as well as dealers themselves) can easily

call up and put an order with a dealer, but immediate transactions are not guaranteed.

2.3 Market Clearing

The supply of bonds circulating among customers of dealer i—denoted by s; and endogenously

determined—equals the measure of customers who currently hold the bond:

k
| e+ = 5. (6)

For market clearing, the number of bonds circulating across all dealers’ clients has to equal the
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The left- and right-hand sides are the total volume of bonds dealer ¢ sells and buys on the
interdealer market, respectively. Equating the two ensures that the dealer is neither a net buyer

or a seller on the interdealer market.

2.5 Client Masses and Transitions

Customer masses have to be constant in the steady state. In particular, the flow of investors
switching to a particular type has to equal the flow of investors switching out of that type. The

mass of k-type buyers, as a result, is determined by

i inflow outflow
F(kyvi(k)dk = kplb(k)dk + (,%Aijuj)ﬂ?(k‘)dk, (9)
JjE

where \;j = App if @ # j; otherwise, A\j; = Ap. The left-hand side is the flow of type k € [k, k+dk]
investors who become a buyer of dealer i. On the right-hand side, the first term is the flow of
k-type buyers who experience a liquidity shock and exit the economy. The second term is the
flow of buyers who get matched; in particular, buyers find a bond through their dealer with

intensity ) Ay 1 - Appendix C analogously characterizes the owner and seller masses.
JEN

2.6 Prices

Prices arise from a sharing rule and are illustrated in Figure 3. Denoting by V;*, V?(k), and
V2(k) the expected utility of a seller-, buyer-, and owner-client of dealer i, the reservation values
of a buyer and a seller are V.°(k) — V2(k) and V;*, respectively. The total gains from trade is
the difference between the buyer and seller’s reservation values.

Prices are such that the end-seller of dealer 7 and the end-buyer of dealer j each capture z;;

fraction of the total cains from trade. where z:; = 2z~ if 1 £ 7 (i.e. 2-dealer chain): otherwise.



dealer, paSk (k). Similarly, a seller client considers the average bid-price across possible end-
buyers she could be matched with, Toé’id. Appendix C characterizes these expected prices and
the expected bid-ask spread ¢,(k) customers face from their dealers. Equations (17)-(18) char-
acterize the probability of getting matched with a buyer, m , and a seller, m}, respectively.
We make the following assumption on the bargaining powers and matching efficiencies. It

is a necessary assumption for dealer heterogeneity to arise.

Assumption 1.

)\DDZDD > )\DZD' (10)

2.7 Continuation Values

Clients’ value functions solve their optimization problem. Consider, for example, a k-type
buyer who is a customer of dealer i. In a small time interval [t + dt], a buyer could (a) receive a
liquidity shock and exit the economy before he could purchase the bond (with probability kdt
and get utility 0), (b) buy a bond (with probability >_ Ajjujdt and get V(k) — ﬁj‘zk(kz)), or (c)

JEN
remain a buyer:

VE(k) = (1 — rdt) (kdto + > Niusdt (Ve (k) — posF(k))+
JEN

1 = kdt =Y Nijpsdt) VP (k ))
JEN

Appendix C analogously derives the value functions of owner and seller types.
The continuation value of a seller client, V;*, summarizes the quality of a dealer’s liquidity
service and, as a result, plays an important role later. The Appendix shows that we can express

V® as
- r /6*33\ m - /7 -1\



2.8 Equilibrium Characterization

Our analysis focuses on the steady state equilibrium. It is expected utilities {V;°(k), V;* (k), V;*}, S

population measures {[0(k), 22(k), s} the distribution of bonds across dealers {s;}icn,

S
prices {ﬁf@d(k),ﬁf‘;k(k),ﬁj(k)} N and dealer choices {v;(k)};cn such that (i) value func-
tions solve investors’ optimizatio;l problems (C.4)—(C.6); (ii) population measures and the dis-
tribution of bonds across dealers solve inflow-outflow equations (9), (C.1), market clearing
conditions (6)—(7), and inter-dealer transactions equations (8), (iii) prices arise from bargaining
(C.7)—(C.9), and (iv) entry decisions solve (1) and X;Vyl(k) =1.

i€

3 Main Results

To characterize the types of equilibria that arise in the model and the client structure in each
equilibrium, Lemma 1 establishes a sorting mechanism of clients into dealers. According to
Lemma 1, the quality of a dealer’s liquidity service—captured by the value function of a seller
client (V;*)—arises as a sorting device. If dealer ¢ provides better liquidity than dealer j (V;* >
Vj‘s), buyers with switching rates above some cutoff k* prefer dealer ¢ over dealer j, while buyers
below the cutoff (those with k < k*) prefer dealer j over dealer i. Thus, investors with greater
liquidity needs (i.e. high &k buyers) select dealers offering better liquidity, while investors with

low liquidity needs select dealers offering low liquidity.

Lemma 1 (Sorting Device). Suppose k* is such that V?(k*) = ‘A/jb(k:*) for some dealersi,j € N.

Then, V?(k) — f/'jb(k) has the same sign as (k — k*) (VZS — V;S>

Lemma 1 narrows down the set of equilibria into two main types based on the equilibrium

heterogeneity in {V;°}: symmetric and asymmetric. We define an equilibrium as symmetric if all



customers from the most buy-and-hold (k) to the most liquidity investor (k). This is because,
using Lemma 1, investors are indifferent between the n homogenous dealers: v;(k) > 0 for all i €
N and all k €[k, k]. Second, dealers have identical network centrality (MPP). This is because
dealers have identical client sizes. The left plot of Figure 5 illustrates the interdealer network
structure. These results show that, first, we do not have any baked-in dealer heterogeneity.

Second, client heterogeneity alone does not guarantee dealer heterogeneity.

Lemma 2 (Symmetric Equilibrium). A symmetric equilibrium exists in which dealers are ho-
mogenous in the liquidity service they provide to clients: V° = Vjs for all i, 5 € N. In such
equilibria, dealers have identical client sizes and identical network centrality (u = 13 ,uz’ = ,u?,

(2

e = s, MPD :M]DD foralli, j € N).

3.2 Main Results: Endogenous Specialization and Dealer Heterogeneity

This section gives the main results of the paper.

Theorem 1 shows that an asymmetric equilibrium exists in which no two dealers have iden-
tical liquidity service.'? The heterogeneity in {V;?} implies the following client structure across
dealers. Let us index dealers in the order of increasing liquidity service: V* < V5P < ... < V7.
This is without loss of generality. Then, according to Theorem 1, cutoffs {k] 5, k5 3,... k1 .}
exist where k < ki, < k35 < ...k 1, < k, buyers of type k < ki o choose dealer 1, buyers
of type k € [k] 5, k3 5] choose dealer 2, and so on. Buyers at the cutoff k = k7 ; are indifferent
between dealers i and j: ‘/ib(k;‘k,j) = V]b(k;" ;). Thus, in the asymmetric equilibrium, dealers
specialize. High liquidity quality dealers specialize in investors with frequent trading needs.

Low liquidity dealers specialize in the relatively buy-and-hold investors. Figure 4 illustrates the

clientele result.



Dealers are heterogeneous not only in the composition of clients but also in the size of client
masses or, equivalently, in the volume of client orders they receive. From Theorem 1, high liquidity
dealers receive larger volumes of client orders, while low liquidity dealers receive smaller volumes.

The heterogeneity in the volume of client orders generates dealer heterogeneity on the in-
terdealer market. Theorem 2 shows that dealers specializing in liquidity investors—supported
by their large volume of client orders—intermediate larger volumes of interdealer trades and
consequently form the core. The mechanism reverses for peripheral dealers. The intuition is
simple. If a dealer receives a large volume of client orders, she intermediates a large number of
bonds both by herself (i.e. in-house) and by trading with other dealers (i.e. inter-house). Thus,
how clients form around dealers determines the shape of the interdealer network. It determines
the volume of orders dealers receive and, as a result, how much dealers trade on the interdealer
market. This is the main insight of the paper. Figure 5 illustrates the network structure in the

asymmetric equilibrium.

Theorem 2 (An Endogenous Core-Periphery Network). The dealers that specialize in investors
with relatively high switching rates (i.e. high liquidity need investors) intermediate more CDC
chains: MP > MP > ... > MP > MP. They also intermediate more interdealer (i.e.
CDDQ) trades, MPP > MPE > ... > MPP > MPP | and, as a result, form the core of the
interdealer network. It is vice versa for dealers that specialize in investors with relatively low

switching rates (i.e. buy-and-hold investors).

3.3 Intuition

This section provides an intuition for (1) the tradeoffs clients face in choosing between deal-

ers; (2) why high liquidity dealers are also the dealers with larger client masses; and (3) the
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average for the bond, T)fs’“(k). Some dealers charge a high ask-price on average but, in return,

offer better liquidity if the client has to return the bond: the dealer either buys back at a
higher bid-price, executes orders more quickly, or both. Others charge a cheaper ask-price but
offer worse liquidity. Buyers who expect to reverse their position quickly (i.e., those with high
switching rates, k) care more about what happens to them as a seller. They, as a result, choose
the dealer based on its liquidity and are willing to pay the higher ask-price. Buy-and-hold
investors, less concerned with turning into a seller later on, instead, choose the dealer offering
the cheapest price. Figure 6 illustrates the tradeoff. Appendix C.6 explains the tradeoff in
detail.

The heterogeneity in client sizes across dealers generates these tradeoffs. The tradeoffs
arise, in particular, if the high liquidity dealer is the larger client mass dealer. To see the
intuition, consider for simplicity the parameter range where dealers have identical execution
speed: App = Ap. In this case, if the high liquidity dealer has a larger client mass, she charges
higher expected ask-prices. The mechanism has two parts. First, the ask-price a large client
mass dealer charges in in-house matches dictates its average ask-price. This is because the
larger client mass dealer fills a larger fraction of its client orders by itself (i.e. in-house) than
by involving another dealer (inter-house). Second, when App, = Ap, in-house matches result in
higher (hence, worse) prices for buyers than inter-house matches regardless of the dealer. This
is because when App < Ap, Assumption 1 requires zpp > 2zp, which says that clients have less
bargaining power (and thereby extract smaller gains from trade) in one-dealer chains than in
two-dealer chains. A buyer, as a result, pays a higher price (a price closer to her reservation
value) in one-dealer chains than in two-dealer chains. Now, recall that the dealer with a larger
client size is the relatively core dealer on the interdealer market. Put together, if an investor

becomes a client of a core dealer, she buys on average through an in-house match, has less



sellers is as follows. Substituting in the bid-prices, the continuation value of a seller is a weighted

sum of the expected trading surpluses from “in-house” and “inter-house” matches:

rV? =6 —x+ (\pzp) B} wi(k)] + (Aovzon) 2 WGE] [wyi(k)] -

— JEN;
gains from
in-house matches gains from inter-

house matches

Due to assumption (10), the weight on the gains from inter-house matches is larger than the
weight on the gains from in-house matches. The expected utility of a seller, as a result, depends
more on the inter-house matches. For clients of a dealer specializing in liquidity investors, the
inter-house matches are with buy-and-hold buyers. A match with a buy-and-hold investor, in
turn, yields a larger trading surplus than a match with a liquidity investor because buy-and-
hold investors are the natural investors in the bond.!> Put together, a dealer specializing in
liquidity investors offers a better value to its sellers. The better value manifests as either a higher
bid-price, faster execution speed, or both. The mechanism reverses for dealers specializing in

buy-and-hold investors.

3.4 Key Ingredients

The endogenous dealer heterogeneity relies on three ingredients. The first ingredient is matching
frictions (A\p < 00, App < 00) together with an imperfectly competitive dealer market. Absent
trading frictions (A, — 00, A\pp — 00), the dealer heterogeneity and, hence, the core-periphery
structure do not arise.

The second ingredient is the parameter condition in (10): Appzpp > Apzp. It says that, for a
dealer heterogeneity to emerge, clients have to somehow benefit from interdealer intermediation

chains and, consequently, prefer a dealer who relies relatively more on intermediation chains.



Opp (2014), for example, show that, in a model with adverse selection, when multiple dealers
are involved in a chain, more trades take place than without intermediation chains. Their
model, as a result, implies: App > Ap. The main insight of our paper—that heterogenous
clients endogenously sort across different dealers, and that specialization, in turn, supports
dealer heterogeneity—does not depend on the underlying micro-foundations that generate the
parameter conditions.

The third ingredient is dealer segmentation: a client can only sell through the dealer she
initially chooses. If clients can later sell through any dealer, specialization would not arise.
The dealer segmentation captures a fixed cost of building a client-dealer relationship that the
client, then, needs to recoup over multiple subsequent trades. Presumably, such costs exist due
to agency and contractual frictions, in the absence of which, clients would freely choose new
dealers. Thus, our results suggest that the core-periphery phenomenon inherently arises from
contractual frictions between OTC counterparties.'®
The extent of all three ingredients increases the extent of dealer heterogeneity and, hence,

the core-periphery structure. For example, as matching frictions increase, the extent of dealer

heterogeneity and the core-periphery structure also increases.

4 Testable Predictions

We now tie the network centrality results with the previous results on specialization. We
highlight testable predictions of our model and compare them with the available empirical

evidence.

4.1 Client Trades



the paper, we focus on this interpretation. Liquidity investors could be, for example, investment
funds that track indices and, hence, trade frequently, while buy-and-hold investors could be
pension funds. A direct evidence for this prediction so far does not exist because in a typical

dataset (such as that of LS and NHS) client identities are anonymous.!

4.2 CDC and CDDC Chains

A core dealer intermediates more CDC chains than a peripheral dealer:
MP > MP (13)

Thus, core dealers account for a larger fraction of not only interdealer trades (hence their
labels) but also client trades.!” This result is not trivial. The core-periphery phenomenon is a
statement about how dealers trade amongst each other, not how much they trade with clients.
The phenomenon by itself, as a result, does not preclude other theories predicting that, for
example, core dealers trade mainly with other dealers, and that peripheral dealers account for
most of the client trades. Such theories would still be able to argue that they explain the core-
periphery phenomenon. LS and NHS, however, document that core dealers also account for a
larger fraction of client trades.'® Thus, a convincing theory has to explain why core dealers
account for a larger fraction of both interdealer and client trades. We not only reconcile the
two facts but also show that core dealers’ large volumes of client trades are precisely why they
form the core.

A core dealer intermediates more CDC chains both in levels as in (13) and as a fraction of
all chains it intermediates:

MmP MpP

& > L 14
MP + MPP ~ MP + MPP (14)




comprise a larger fraction of all its intermediations than for a core dealer:

MpP mpP
MP + MPP ~ MP + MPD (15)

Eq. (14) also implies that the average chain length is longer for a peripheral dealer:

Mé) MpDD MD MDD
D DD (1) + D DD (2) > D ‘ DD (1) + D . DD (2)’ (16)
MDP + M MDP + M MDP + M] MP + M]

where inside the brackets are the chain lengths. LS and NHS document the same patterns as

(13)-(16).

4.3 Execution Speed

The rate at which dealer ¢ fills clients’ buy orders is:

MP +0.5MPP
mf z b ! = Z)\,-j,uj. (17)

i JEN

The denominator is the total buy orders the dealer receives; the numerator is, out of the total,
how many it executes. The ratio captures the fraction of all buy orders the dealer executes.?’

The rate of filling sell orders is analogously defined as:

b
m;

MP 4+ 0.5MPP
;. + i :Z)‘W‘? (18)

S
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Consider the difference between execution speeds of any two dealers ¢ and j:



is: A core dealer fills large volumes of client orders (the numerator in (17) and (18)), but the

volume of orders submitted to the dealer is even greater (the denominator). Peripheral dealers,

in contrast, transact fewer client volumes, but the amount of orders they receive is even fewer.?!
4.4 Transacted and Quoted Ask- and Bid-Prices
A core dealer transacts, on average, at a lower ask-price than a peripheral dealer:
b [—ask b [—ask
EY [ (k)| < B [ (k)] (20)

Eq. (20) compares prices across dealers averaged in two dimensions. The first dimension, as
discussed earlier, is across possible end-sellers a k-type buyer could be matched with: TofSk(k‘).
—ask

The empirical counterpart to p{**(k) would be dealers’ effective quoted prices. Recall that, for

a given k-buyer, a core dealer quotes a higher expected ask-price:
et (k) > Py (k) (21)

Eq. (21) is the counterfactual we observe in the model. The second dimension, captured by
E?[], is across dealer i’s equilibrium buyer mass. Because ask-prices, p?**(k), decrease with
the buyer type k, and a core dealer’s clients are in equilibrium high k buyers, in a transaction
price data, we would observe (20), not (21). Thus, (20) is the testable prediction relevant to
transaction price data, not (21).22

Whether a core dealer buys back at a higher bid-price depends on Ap vs App. If App is
sufficiently low, a core dealer buys back at a lower return (i.e. bid-) price than a peripheral

dealer. The intuition is as follows. For a sufficiently low App, a core dealer is so fast that even if

it buys back at a lower price. it still offers a ereater overall value to its sellers than a peripheral



4.5 Transacted Bid-Ask Spread

A core dealer charges, on average, a narrower bid-ask spread than a peripheral dealer:

B [9e(k)] < By [8,(R)] (22)

where, similar to the discussion of average ask-prices, E? Wz(k)] is an average across two di-
mensions. Eq. (22) can be seen in Figure 7. The trading surplus (for the entire intermediation
chain) decreases with the end-buyer’s liquidity type k. Bid-ask spreads, as a result, also decrease
with k because bid-ask spreads are proportional to the total gains from trade. This together
with the fact a core dealer’s buyers are high k buyers imply (22).

NHS document the same for the asset-backed securities market, but LS find the opposite
with the municipal bond market data. Both studies also document that longer intermediation
chains have wider bid-ask spreads. Consistent with this finding, our model predicts that the
average chain involving a peripheral dealer is longer and that peripheral dealers charge clients

wide spreads.

4.6 Quoted Bid-Ask Spread

Whether a core dealer also quotes a narrower bid-ask spread depends on if the core dealer
executes orders at a faster rate and by how much faster. The latter, in turn, depends on App.
Figure 7 shows how dealers’ bid-ask spreads differ. For a high value of App, a core dealer is
slower. To compensate for its inferior execution speed and to preserve V> > V7, a core dealer
has to offer to buy back a higher bid-price than a peripheral dealer. For a sufficiently high App,
the bid-price is so high that the core dealer offers a narrower bid-ask spread for all £.22 On the

other extreme, for a relatively low App, a core dealer is faster. As a result, the core dealer’s



4.7 Interdealer Trades

We now discuss the roles that core and peripheral dealers play on the interdealer market. Below
results are novel testable predictions. Appendix C characterizes prices {P%? P} bid-ask

spreads ®, and execution speed dealers’ face from each other.

Proposition 2 (Prices and Liquidity Provision on the Interdealer Market). Suppose dealers
indexed ¢ and p are relatively core and peripheral dealers, respectively. A core dealer charges
other dealers a higher ask-price, PcaSk > P]‘}Sk, buys back at a lower bid-price, Pcbid < P;”'d,
and hence charges other dealers a wider bid-ask spread, ®. > ®,, than a peripheral dealer. A

core dealer buys and sells more than a peripheral dealer: )\DDMZ,MZ; > )\DD,ugug and ADDug,ui >

)\DD/AZ/L;. A core dealer provides a faster execution speed: Apppiy > )\DDM; for T ={s,b}.

Core dealers—supported by the large volumes of clients’ orders—supply liquidity to other
dealers. They do so in two ways. First, they transact greater volumes.?® The number of bonds
an arbitrary dealer d sells to another dealer i is )\DDMZM% and the number of bonds it buys from
dealer ¢ is )\DD,ufug. Since a core dealer has a larger client mass, dealer d trades proportionally
more with a core dealer on both sides of the trade. Second, a core dealer offers a faster execution

speed to other dealers. The rate at which dealer i fills dealer d’s sell orders is

AopHgHY

b
I = AbpHy -

Thus, the execution speed of dealer ¢ is proportional to its client size. Since a core dealer has a

larger buyer mass, it executes dealer d’s orders more quickly:

)\DD,U/IC) > )\DDNZ'



in turn, manifests as a high interdealer ask-price.?® Thus, from the perspective of a dealer,
it is more expensive to buy from a core dealer than from a peripheral dealer: P%* > P;Sk .
Second, on the reverse trip, when a dealer sells back to a core dealer, the dealer ultimately sells
to liquidity investors (high k buyers), who have low reservation values. A dealer, as a result,
sells back at a lower (bid-) price to a core dealer, P%? < P;,’id. Put together, a dealer faces a
wider bid-ask spread from a core dealer. Recall that the opposite holds for client transactions:
Core dealers charge clients narrower bid-ask spreads (on average, across its buyers).

Bonds, as a result, cycle through the economy starting with, say, a core dealer’s client, then
the interdealer network, and eventually end with buy-and-hold investors who are concentrated
with peripheral dealers. The cycle repeats when a buy-and-hold investor gets a liquidity shock
and sells the bond. The sell order primarily gets absorbed, via the interdealer network, first
by core dealers and their clients. Thus, core dealers serve as a central conduit in transmitting

assets through the economy from one end-customer to another. Peripheral dealers consume the

liquidity core dealers supply and pass it down to their clients.

5 Additional Results

In Sections 5.1 and 5.2, we analyze how dealer interconnectedness and market fragmentation
affects prices, liquidity, and welfare. In Section 5.3, we analyze the welfare across asymmetric
and symmetric equilibria.

We start by characterizing customer welfare, dealer profits, and the total welfare. We define

customers’ welfare as

w¢ = Z[/kﬂ’?(k)vb(k)dk + /k [0 (k)\V2(K)dk + psVyE. (23)
- ieN E (] K] E (] K] 771



For dealer 7, the present value of the stream of flow profits is

W= | A0 (1~ 220) (V) ~ VAR — )k (24)
+ 2; ( / oot (22 ) (vt = Vi) - v7) dk)
+ g ( / Moot ()i (1‘222) (Vo) - Vo) —17) dk) |

The first term captures profits from intermediations directly between its customers (that is,
CDC chains). The second and third terms are profits from buy and sell interdealer transactions,

respectively (that is, CDDC chains). The total profit across dealers is
wh=>"wp. (25)
1EN

The total welfare of all agents in the economy is then
War =W + WP, (26)

As Proposition 3 shows, the total welfare depends only on the aggregate mass of sellers, uy =

2 ;-

1EN

Proposition 3. The total welfare is given by

1) z
W = =S — —uy. 27
l , TUN ( )

The first term is the present value of the stream of bond coupon flows. The welfare in a
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5.1 Dealer Interconnectedness

In this section, we contrast the environments with and without the interdealer market and show
that dealer interconnectedness through the interdealer market increases bond market liquidity
and the total welfare. Without the interdealer market, clients trade only locally with the clients
of the same dealer. This environment is similar to Vayanos and Wang (2007).3° Markets in
their setting are the counterparts to dealers in our setting. We assume the supply of bonds
circulating among customers of each dealer is identical at s; = S/n.

In the absence of interdealer trades, clients sort into dealers analogous to the environment
with interdealer trades. Buyers tradeoff a dealer’s expected ask-price versus its liquidity service.
Buy-and-hold investors choose the dealer offering a cheaper price, while liquidity investors choose
the dealer offering better liquidity. Dealers specializing in high liquidity need investors have a

larger buyer and seller client mass than dealers specializing in low liquidity need investors.

Proposition 4 (The Effect of Interconnectedness). Dealer interconnectedness increases bond
market liquidity (the aggregate volume of trade and execution speeds), improves the allocation

of bonds (), and increases the total welfare (W ).

The intuition for Proposition 4 is as follows. Due to interdealer trades, an investor trades

not only with the other clients of her dealer but also with the entire investor population in



As Proposition 5 shows, dealer interconnectedness evens out the order imbalance across
dealers. We capture the order imbalance of a dealer by the ratio of its seller mass to its
buyer mass. Without the interdealer market, the ratio differs across dealers and is higher for
dealers specializing in buy-and-hold investors. Introducing the interdealer market removes the
heterogeneity. Imbalances at the dealer level are now proportional to the aggregate imbalance.

Thus, dealers achieve a full risk-sharing in their orders.

Proposition 5. In the presence of the interdealer market, the order balance is identical across

dealers: for alli € N,

g
b=t 1)
M K

5.2 Market Fragmentation

In this section, we analyze how market fragmentation affects customer welfare, dealer profits,
prices, and liquidity. We capture market fragmentation with the aggregate number of dealers
in the economy (n) and, as in the main section, assume a complete network. We focus on the
parameter range App > Ap, which is the more interesting range, and relegate to the appendix

the results under App < Ap.

Proposition 6. Suppose App, > Ap. Then, increasing the number of dealers in the economy
increases the aggregate volume of trade, (MiD + MiDD) and the total welfare in the economy,
1EN
Wi
The intuition for Proposition 6 is as follows. With more dealers in the economy, each dealer
has a smaller client mass and, as a result, is more likely to involve another dealer to fill a client’s

order. But due to condition App, > Ap, two dealers working together produce more matches than

a dealer working alone. The result is a greater volume of trade, a better allocation of bonds,



fragmentation. Finally, if clients’ bargaining power is smaller in two-dealer chains than in one-
dealer chains, now dealers extract the increase in the welfare. They do so at the expense of
customer welfare.

These changes in how clients and dealers split the gains from trade correspond to changes
in the bid-ask spreads clients pay. In particular, a decrease in dealer profits manifests as a

decrease in the bid-ask spreads clients face and vice versa for an increase in dealer profits.

5.3 Welfare Analysis

In this section, we analyze the social welfare in the asymmetric and symmetric equilibria and
contrast them with the socially optimal amount of dealer concentration. For exposition, we do
so in an environment with two dealers, where dealer 1 serves the low switching rate buyers, and
dealer 2 serves the high switching rate buyers.

Figure 12 illustrates how the level of heterogeneity (captured by Z—%) changes with the cutoff.
Let us denote by kj,,, a cutoff such that the two dealers are identical (ui = p3). Even though
this is not an equilibrium cutoff, the client masses at this cutoff correspond to the client masses

of the symmetric equilibrium.?? Then, for any cutoff k* < k*

sym» dealer 2 is the larger dealer. In

particular, the lower the cutoff is, the larger is the heterogeneity between the dealers ( Z—?) This
is because dealer 1’s client mass increases with the cutoff, while dealer 2’s decreases. Moreover,
the asymmetric equilibrium cutoff, kj,,,,, has to be below kg, .. This is because the dealer

that specializes in high switching rate buyers (i.e. dealer 2) has to be the larger dealer in the

asymmetric equilibrium.

Proposition 7. Suppose App > Ap. Then, the socially optimal cutoff (k;) is such that dealers

are heterogeneous: pj < (5.



precisely that. A dealer specializing in buy-and-hold investors provides a faster liquidity imme-
diacy than a dealer specializing in liquidity investors. Importantly, Proposition 7 implies that
dealer specialization and a core-periphery network are socially desirable. Figure 12 illustrates
with k7, the cutoff that maximizes the total welfare W,;.

Next, consider how the equilibrium level of dealer heterogeneity compares with the socially
optimal level. Let us allow buyers and sellers’ bargaining powers to differ because they affect
the equilibrium heterogeneity in opposite directions. Let us also focus on the parameter range
Zpp > 2p. As Figure 12 illustrates, increasing the buyers’ bargaining power in inter-house
matches (holding the other parameters fixed) reduces the equilibrium dealer heterogeneity. The
intuition is as follows. If we increase buyers’ bargaining power in inter-house matches (without
changing client masses), the marginal cost of choosing the larger dealer increases, while the
marginal benefit remains the same. Fewer buyers, as a result, choose the larger dealer (dealer
2). As dealer 2’s client size decreases (while dealer 1’s size increases), dealers become less
heterogenous. Reducing the dealer heterogeneity, in turn, starts to reverse the increase in
the marginal cost (p3**(k) — p¢**(k)) while also increasing the marginal benefit. This process
continues until there is a buyer who is indifferent between the two dealers. The result is
more homogenous dealers. If buyers’ bargaining power is sufficiently large, dealer heterogeneity
(thereby, the extent of the core-periphery structure and concentration on the interdealer market)
falls short of the socially optimal level.

Sellers’ bargaining power has the opposite effect (as explained further in the Appendix).
Dealer heterogeneity increases with the sellers’ bargaining power. If sellers’ bargaining power
is sufficiently large, the equilibrium dealer heterogeneity (hence, the extent of concentration on
the inter-dealer market) can exceed the socially optimal level.

The discussion so far focuses on the parameter range App > Ap. If instead A\pp < Ap, then



6 Discussion

In this section, we discuss our assumptions and how relaxing them would affect our results.
In Section 3, we discussed the key assumptions that our main results rely on. Relaxing below
assumptions would make the environment more realistic but would not affect our main insights.

We assume a fully connected dealer network and that dealers do not choose who to connect
to. Implicitly, we assume a zero cost of both initially connecting and maintaining the connection.
We could relax this by assuming that dealers pay for an access to other dealers’ clients. If dealers
charge a cost per client, then we expect our results to remain the same. But if dealers charge a
fixed amount regardless of the client size, dealers would pay only for an access to core dealers’
clients. Our basic mechanism would go through, and the core-periphery structure would be
even more pronounced. Although important, we leave for future work showing pairwise and
group stability properties of the dealer networks in our model.

We take the aggregate number of dealers as fixed and do not model dealer entry and exit.
We could model dealer entry as follows. Dealers have an outside opportunity. Dealers enter
until the marginal dealer is indifferent between its outside opportunity and the profit it expects
to make as one of the dealers in the economy. Nevertheless, endogenizing dealer entry would
not change our main insight on dealer specialization.

We assume that dealers do not hold an inventory and that bonds sit on the balance sheet
of client-sellers. We can recast the model so that, instead of clients holding the bonds on their
balance sheet, dealers hold the bonds in their inventory. When a bond owner gets a liquidity
shock and wants to sell her bond, she sells immediately to her dealer. The dealer, in turn, holds
the bond in its inventory until it can match the bond with a buyer. With this interpretation,

a dealer’s inventory size would be proportional to its seller client size, and a core dealer, as a
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than just two dealers. The second way is to allow dealers to hold inventory. In both ways, the
longest chain in the model can be as long as the aggregate number of dealers in the model.

We assume a full information structure. In particular, dealers know client types, and clients
know both their own and other dealers’ client structure. The latter is reasonable since clients
can figure out whether a dealer-brokerage firm is a large or small market player and, hence, a
relatively core versus peripheral dealer. Regarding dealers’ information on client types, Vayanos
and Wang (2007) show that a clientele effect still emerges in the presence of asymmetric in-
formation about buyers’ type. Thus, we predict that our main insight on dealer specialization
would hold in the presence of asymmetric information.

We abstract from adverse selection problems. We observe the core-periphery structure and
intermediation chains in markets where adverse selection problems are small. Currency and
municipal bonds markets are an example. Thus, adverse selection problems cannot be a first

order in explaining the core-periphery structure.

7 Conclusion

The network structure of over-the-counter markets exhibits a core-periphery structure: few
dealers are highly interconnected with a large number of dealers, while a large of number of
small dealers are sparsely connected. We build a search-based model of dealer network formation
and show that the core-periphery structure emerges from dealer specialization. The dealers that
attract a clientele of liquidity investors have a larger customer base, support a greater fraction
of interdealer transactions, and, thus, form the core. The dealers that instead cater to buy-and-

hold investors form the periphery.



Appendix

A Tables

Table 1: Parameter Values

This table gives the parameter values chosen for the numerical analysis. We assume a uniform distribution for

f (k).
Variable Notation  Value
Bond coupon blow 1) 1
Disutility of holding the bond T 0.5
Support of customer distribution [k, k] [1,5]
Supply of bonds S 0.3
Risk-free rate r 0.04

B Figures

Figure 1: Clients of Dealer i: Buyers, Owners, and Sellers

The figure illustrates in dashed (black) lines clients’ life-cycle from a buyer, to an owner, to a seller. Upon a
liquidity shock, an investor’s bond valuation changes from § to § — x, where x is a disutility of holding the bond.
See Section 2 for more detail.
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Figure 2: Clients, Dealers, and Interdealer Trades

The figure illustrates the model environment, as an example, for n = 3 dealers. Dashed (black) lines represent
clients’ life-cycle between different client types (buyer, owner, and seller). Solid (blue) lines represent bond
transaction flows. The sizes of circles represent the sizes of client measures. See Section 2 for more detail.
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Figure 3: Transaction Prices

The figure illustrates how prices arise from a sharing rule. The total gains from trade is the difference between
the end-buyer’s reservation value (V7 (k) —V;(k)) and end-seller’s reservation value (V;*). Prices, characterized in
(C.7)-(C.9), are such that the two end-customers each capture z, (zop) fraction of the total surplus in one-dealer
(two-dealer) intermediation chains; dealer(s) split equally the remaining 1 — 2z, (1 — 2zpp) fraction. The top
plot illustrates prices in one-dealer intermediation chains, while the bottom plot illustrates prices for two-dealer
intermediation chains. See Sections 2.6 and C.3 for more detail.
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Figure 4: Endogenous Cutoffs and Specialization in Customers

The figure illustrates how in the asymmetric equilibrium dealers specialize in different clients with different
liquidity needs (k). See Section 3.2 for more detail.

clients clients clients of clients
of dealer 1 of dealer 2 dealer n — 1 of dealer n
/ Y Y —t — . 3}
k 1,2 k33 k21 n—1,n k
<—— buy-and-hold investors liquidity investors ——

Figure 5: An Endogenous Core-Periphery Structure

The figure illustrates the equilibrium interdealer network structure in the symmetric (the left plot) and in the
asymmetric equilibria (the right plot). Each node is a dealer. The sizes of nodes represent the buyer and seller-
client sizes of dealers. Lines represent trades between dealers. The thickness of the lines represent per period
volume of trade between pairs of dealers. The symmetric equilibrium features dealers who are identical in terms

of their client size and network centrality. The asymmetric equilibrium exhibits a core-periphery interdealer
network. See Sections 3.1-3.2 for more detail.

Figure 6: The Average Ask-Price vs. the Sellers’ Expected Utility

The figures illustrate the tradeoff that buyers face when choosing dealers, for exposition, in a two-tier environment.
The figures plot the expected ask-price (on the left) and the continuation value of a seller-client (on the right) as
functions of clients’ liquidity type k (in x-axis) for a relatively core versus central dealer. The expectation of the
ask-price is over possible sellers that a buyer could be matched with as a client of that dealer. The cutoff k* is

such that buyers with k < k* choose the peripheral dealer, while buyers with k& > k* choose the core dealer. See
Section 3.3 for more detail.



Figure 7: The Quoted Average Bid-Ask Spread

The figures illustrate the expected bid-ask spread, ¢,(k), as functions of buyers’ liquidity type k (in x-axis) for
three different parameter regions: App < Ap, Aop = Ap, Aop > Ap. The cutoff £* is such that buyers with k& < k*
choose the peripheral dealer, while buyers with k& > k™ choose the core dealer. See Sections 4.5-4.6 for more
detail.
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Figure 8: The Effect of Dealer Interconnectedness on Welfare

The figures illustrate how the introduction of the interdealer market changes the total welfare, dealer profits, and
clients’ welfare. They illustrate the change in these variables across the symmetric equilibria and as functions of
clients’ bargaining power (zpp) and matching efficiency (App) in two-dealer chains. The parameter values used
for the plot are zp = 0.1 and 2z, = 0.3 in the environments with and without interdealer trades, respectively, and
Ap = 100 for both. The other parameter values are in Table 1. See Section 5.1 for more detail.
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Figure 9: The Effect of Dealer Interconnectedness on Prices

The figures illustrate how the introduction of the interdealer market changes the average bid-ask spread, the
average ask-price, and the average bid-price. They illustrate the change in these variables across the symmetric
equilibria and as functions of clients’ bargaining power (zpp) and matching efficiency (App) in two-dealer chains.
The parameter values used for the plot are zp = 0.1 and zp, = 0.3 in the environments with and without interdealer
trades, respectively, and A, = 100 for both. The other parameter values are in Table 1. See Section 5.1 for more
detail.
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Figure 10: The Effect of Market Fragmentation on Welfare

The figures illustrate the change in the total welfare, dealer profits, and clients’ welfare as the number of dealers
increase from n = 2 to n = 3. They illustrate the change in these variables across symmetric equilibria and as
functions of clients’ bargaining power (zpp) and matching efficiency (App) in two-dealer chains. The parameter
values used for the plot are 2z, = 0.2 and A, = 100. The other parameter values are in Table 1. See Section 5.2
for more detail.
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Figure 11: The Effect of Market Fragmentation on Prices

The figures illustrate the change in the average bid-ask spread, the average ask-price, and the average bid-price
as the number of dealers increase from n = 2 to n = 3. They illustrate the change in these variables across
symmetric equilibria and as functions of clients’ bargaining power (zpp) and matching efficiency (App) in two-
dealer chains. The parameter values used for the plot are z, = 0.2 and A, = 100. The other parameter values
are in Table 1. See Section 5.2 for more detail.
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Figure 12: Welfare Analysis

The figure plots the total welfare (on the left) and the level of dealer heterogeneity (on the right) as functions
of the cutoff £*. It does so for a two-tier environment in which App > Ap. The cutoff k:ym is a cutoff such that
ui = ps, and kg, is a cutoff that maximizes the total welfare. The actual asymmetric equilibrium cutoff, k%4, ,
will be in (E, k;‘ym). Where it falls depends on clients’ bargaining power. If the sellers’ bargaining power in two-
dealer chains (z;;,) is large, the cutoff is smaller implying more heterogenous dealers. If the buyer’s bargaining
power in two-dealer chains (ng) is large, the cutoff is larger (implying more homogenous dealers) and can even
exceed kj,.;- See Section 5.3 for more detail.
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C Masses, Value Functions, Prices, Liquidity, and Tradeoffs
C.1 Client Masses

The mass of k-type owners is given by

> i | (k) = kg (k). (C.1)
JEN

The left-hand side is the flow of buyers that turn into a k-type owner of dealer i; the right-hand
side reflects the flow of owners that experience a liquidity shock and switch to a seller.

Later in the proofs, we will use the characterization of client masses given in the following
Lemma.

Lemma C.1. Taking the cutoff functions {v;(k)}; as given, the system of equations character-
izing {usi}i is given by

k s s
k k + (>\D - )\DD),%$ + )\DD,U?V N?V

for each dealer i, where py = > pf and c = fkk f(k:)%dk‘ — 85 >0 is a constant.
1EN -
Proof. The market clearing condition is
> omiug > ui =5, (C.2)
ieEN 1eEN

where

El )
i = [ it
k

and
m; = (Ap — App) i + Appiy-

We can write




Eq. (C.3) together with system of interdealer constraints, pj = uf% for all 7 € N, characterize
N

{u3}i taking as given the dealer choice functions {v;(k)};. O

C.2 Value Functions

After simplifying and taking the continuous time limit of (11), we get
PV =k (0= VER)) + D gy (Vi (k) = VE(R) = 5535 (R)) (C.4)
JEN

Inside the summation, if 7 = 7, the transaction is with another customer of the same dealer. If
j # i, the transaction instead involves an interdealer intermediation chain, and the end-seller is
a customer of another dealer j. Analogously, the expected utility of a k-type bond owner who
is a customer of dealer i is given by

rVe(k) =6+ k (Vi = V2(k)). (C.5)
The expected utility of a seller who is a customer of dealer ¢ is given by

&
R N o ( [ bt - Vf)dk> | ()
jen \"k

C.3 Characterization of Prices Specific to an Intermediation Chain

We first characterize prices specific to an intermediation chain (that is, specific to dealers and
customers involved in a chain). We denote interdealer prices with capital letters (P) and client-
to-dealer prices with small letters (p). A seller-client of dealer ¢ sells to his dealer at the bid-price

P (k) = (1= 2) Vi 235 (V7 () = V (k) (.1

when the end-buyer is a k-type buyer of dealer j. Dealer i turns around and sells to dealer j at
the interdealer price:

® 1 s 1 o
Prs(k) = 3V + 5V (k) = VI(K)). ()
Dealer j, in turn, sells to its buyer-client at the ask price:
DI (k) = 255V + (1= 2i5) (VP (k) = V7 (K))- (C.9)

If j = i, the end-buyer and seller are clients of the same dealer i, and the interdealer price

P; j(k) is irrelevant. If j # ¢, the bond transaction instead involves an interdealer trade, and



We define the liquidity immediacy buyers of dealer i face as:

m; = Z)\U,uj.

JEN
Analogously, the liquidity immediacy sellers of dealer 7 face is
b k b
mi= > / Aij il (k)
jetiny \E

Averaging across buyers of dealer i, an average buyer of dealer ¢ expects to buy at:
Pt = B[] (C.11)

where the expectation is over the buyer population measure.3*
The price a seller of dealer ¢ expects to sell at is the weighted average price across all buyers

that she could be matched with (that is, buyers of both dealer ¢ and dealer i’s connections):

P = S sl ER)) (C.12)
m; JEN
where E? [pf’;l(k)] is the weighted average price across buyers of dealer j.

We deﬁne the expected round-trip transaction cost from the perspective of a k-type buyer
of dealer ¢ as the expected ask price minus the expected bid price normalized by the mid-point:

- B pgsk (k) pi)zd

(k C.13
Similarly, the round-trip transaction cost that an average buyer of dealer i expects is:
ask __ =bid
gi= L1 P (C.14)

0. 5( ask +pbld)

LS and NHS compute bid-ask spreads as follows. For a CDDC chain, for example, the
bid-ask spreads clients face is the transaction price at the DC leg of the chain (i.e. the price a
client buys at) minus the price at the CD leg (i.e. the price a client sells at) normalized by the
mid-point in NHS and by the price at the CD leg in LS. LS regress this bid-ask spreads on the
centrality of the first dealer.

Motivated by how clients in our model choose dealers, we instead take the perspective of a
client of a particular dealer. We first take all chains 7 such that {7 : CD.D,C\. i.e. chains where



C.5 Expected Prices and Liquidity from Dealers’ Perspective

We characterize now expected prices and bid-ask spreads that an arbitrary dealer, indexed d,
faces from another dealer ;. We denote prices and bid-ask spreads from interdealer transactions
with capital letters, P and ®, to contrast them from client-to-dealer transactions, p and ¢.

Dealer d buys from dealer i € Ny at price P 4(k), defined in (C.8), if dealer d’s client is a
k-type buyer. The weighted average price across all buyers of dealer d is

Pt = BY[P; (k)] (C.15)

Conversely, dealer d sells to dealer ¢ at price Pdﬂ-(k:) if dealer 7’s client is a k-type buyer.
The weighted average price across buyers of dealer i is

PP = EP[Py (k). (C.16)

We define the bid-ask spread as the expected purchase price minus the expected selling price
normalized by the midpoint:
k bid
Pias _ Pz ) -
0.5P%% 4 0.5

(C.17)

P =

Although Pi“k, Pl-bid, and ®; are specific to dealer d, for exposition, we suppress their dependence
on d.

C.6 Choosing Over Dealers

We now explain in detail how investors sort across dealers for general A\pp and Ap without
assuming their relative magnitudes. We first derive the expected utility of a buyer, owner, and
seller client.

Consider the buyer’s value function:

VP =k (0= VEH) + D s (Vf’(k)—%b(k) )

jel{i,N;}
=k (0=VPm) + D N vio(k — 3 Ntk (k)
Jje{i,Ni} jefi,Ni}

k(0= VW) + VR = VR | D0 X | —mi— D Nauipis (k)

je{i,Ni} Je{z N;}

k(0= VER)) + V() = VER) i — mipi (k)

@



puts more weight on the net value of owning the bond.
Consider the owner’s expected utility:

rVe(k) =0+ k(V? - V2(k).
From here
0+ kV?
r+k
T ) k
= - s 1
T+k<r>+r+k(v) (C.18)

Thus, the owner’s expected utility is the weighted average between g (the present value of the
bond coupon flow if one were to hold the bond forever) and V;* (the expected utility of a seller).
If the probability of getting a valuation shock and, consequently, turning into a seller is high
(i.e. k is high), a bond owner puts more weight on what happens to her as a seller, and less on
the coupon flow she receives in the meantime.

Finally, consider the seller’s expected utility:

PVE=0—z+ Z:[/’M% ﬁ%w)‘w)
jed{i,Ni}
vy |

]G{l,Ni} -

VO(k) =

1 ke
:5—x+m%$ z:[/,m@@mﬁw)
tjefingy Lk

=6 —z+mbpd — VEmb

(2

From here,

5 — x + miph
(r—I—mi)

=t () i (), (19

Thus, the seller’s value function is a weighted average between the value of holding the bond
forever, 577‘”, and the expected revenue from selling it, pbld 35 If the probability of selhng7 ,
is high, the seller puts more weight on the expected revenue from selling, and less on =%. The
expected utility of the seller, thus, increases with both the price she can sell at, pb’d, and the
probability of selling it, m?.36

Thus, from (C.18), a liquidity investor (i.e. a high k investor) worries more about what

Ve =

(2




value functions into the buyer’s:

Vi) =
— mf o ask
_T—I-k—l—mf (V’ k)>
ms —ask
= - Ve =it (k C.20
rtk+ms [T—I—kr rk P ()} (C.20)
m; r d—=x me i .
= 2 4 i —bi Hask (L.
r+k+mf <r+kr T—i—k[(r—l—m?) r (r+m)pl] pi™ (k)
_ m; < k r  d—ux [ask(k)_ k m? pf’id]>
T+k+mf T+kT T+k)(r+mf) r ? (T+k)(r+mlb) i
_ m; k T 5_x—¢eff(k) 7
r+k+m; r—i—kr 7“+k:)(r—|—m§?) r
where

b

¢l = prsk (k) — |:(7" i k) (r T ;ni?)] ( fld)

is the eﬁective round trip transaction cost: the expected bid-ask spread scaled by the liquidity
immediacy, m?, of the dealer. The effective round trip transaction cost declines (with k) at a
faster rate for the clients of a core dealer.3” Thus, the benefit of choosing a core dealer is that,
in relative terms (not necessarily in absolute levels), a core dealer offers a narrower transaction
cost. And, as above, prices serve as a sorting device.

Whether the core dealer offers a narrower transaction cost also in absolute levels depends
on the liquidity immediacy it offers compared to that of a peripheral dealer. The latter, in
turn, depends on App vs Ap. If App > Ap, a core dealer offers inferior liquidity immediacy:
m; < mj, and, compensating for its inferior liquidity, a core dealer offers a narrower bid-ask
spread (¢;(k) < ¢;(k) for all k). If App = Ap, core and peripheral dealers offer the same liquidity
immediacy, and the point at which a core dealer’s bid-ask spread becomes narrower coincides
with the endogenous cutoff, k*. If \pp < Ap, a core dealer offers better liquidity immediacy:
m; > mj, and a core dealer’s bid-ask spread becomes narrower at a point further to right of
k*. In all cases, recall that the core dealer’s transaction cost is declining at a faster rate. The
intuition is as follows. Given the faster decline of the core dealer’s transaction cost, at some k
n [k, k], the two transaction costs cross, and the core dealer’s cost becomes lower. The worse
the liquidity immediacy of the core dealer, the core dealer’s transaction cost has to decline at
an even higher rate to compensate for its inferior liquidity immediacy. That is, the benefit of
choosing a core dealer has to kick-in sooner (i.e. the point at which they cross shifts to the left).
In some cases (as in A\pp > Ap ), it already starts off narrower in absolute levels.



D Proof of Lemma 1

Proof of Lemma 1. We start by characterizing further f/l-b(k) and V;® for dealer ¢ € N. Con-
sider first V;’(k). Using the ask-prices, the value function of a buyer who is a client of dealer

1 € N is given by
(r -+ WV2 (k) = g (VPP R) = V) ur S s (VP (k) — 77
JEN;

= (=t (VEP0R) = V7 ) s (V00 = V7).
JEN

where N; is the set all of dealers N except dealer 7,

VeP(k) = Vo (k) = V°(k)

is the reservation value of a buyer,
U7 = AppZpp;

and
U= A\pZp.

Combining the buyer and owner value functions, the reservation value of a buyer is

O+ EVE — (ur —u) Vi +urVy
k4 — (ur — s +urpdy

Ve (k)

where
=X
JEN
Using (D.2) into (D.1), the buyer’s value function can be characterized as

1 (k4 r)uVy +ur (BV +0) py — (ur —u) (6 = rViP) i
r+k k41— (ur —uw)us +urps

V2 (k)

(D.1)

(D.2)

(D.3)

Consider next the value function of a seller client. Using the bid-price (C.7), the value

function of a seller is

Vi = bt (/:ﬂw (e~ vz) d"’) ) U:ﬂ? () (V7 0) = Vi) a

JEN;

Tnteoratine the recervation valiie of a biiver (D 2) over the buver’s macg

) . (D.4)



k
k b
= 28 (k) dk
g /kMH(u_ul)M%W%m()
Thus,

k
/k Ve (k) (k) = Vi (i — (r + i )gi) + (6 + Vi) g (D.5)

Using (D.5), (D.4) becomes

rV = (D.6)
i

=5 (ur — ) / VR (K)dk + (ur — wplVE + urVE — urdy Ve
k

=0—az— (ur — W[V () — (r +urpiy)gs) + (6 +urVi)g] + (ur — w)pl Ve + u Ve — urpy VP
=0 —a— (ur —w)[= Vi (r + urply)gi + (6 +ur Vi) gil +ur Vg — uppl Ve

Thus, rearranging we get

§—x— (ur —u) (0 +uVi)gi +urVg
r+urpdy — (ur —w)(r +urpdy)gi

Ve =

2

(D.7)

where

k
V=) ( / ﬂ?(k)vfb(k)dk) :
k

JEN

Next, consider the relationship between V;* and V* for any two dealers ¢ and j in N. Using
(D.3),

(k+7) (ur —w) (urVy +96) (uf - ,uj) — Vi’pjwi + Vi piw;
bibj

(r+ ) (VP (k) = V() = . (D3)

where
w; =1 (ur —u) pf + kurpy.
pi=k+r+ (u—ur)pi +urpy.
Then, at k* such that V’(k*) = ij(k*), the numerator of (D.8) is zero. Setting the numerator

+n 7or0 and enliine for VS from 1+ we oot



Next, plug the expression for V* from (D.9) into (D.8), simplify, and get
(r+ k) (V) = V2(R)) =

— 1) (ur =) (wrV§y +8) = (r +uriy) Vi*) 1

[(k* +r)piw; — (k+ 'r)pfw;-‘] <Mj

*

pjwj pipj
Using (D.10), we can express it as
L (k" + 1) piw; — (k + r)pfw] |
k) (VP(k) — Vi(k :[ Ve-VP D.11
(r+ k) (VP (k) = Vi (k) CETITY (v;-ve) (D1
Using the definitions of p;, wj, pj, and w; and rearranging,
(r+ k) (V7 () f/;’(k)) (D.12)

= (k—k") (V7 = V)
[(k + ) (K + ) urpy, + ruipsy (uﬁv - = uj) o (u—up) 2 pd + ruurpdy <Mf + uj)}

X
(k* 4+ 1) pip;

The expression in square brackets is positive. Thus, the sign of ij(k) — Vib(k:) is the same sign
as that of (k — k*) (VJS — VZS)
This sorting mechanism of clients into dealers applies to any pair of dealers i and j even if

their equilibrium client sets are not connected to each other on [k, k]. That is, k* does not have
to correspond to one of the equilibrium cutoffs described in Theorem 1. ]



E Existence Proofs

The asymmetric and symmetric equilibria are special cases of a more general equilibrium that
we refer to as a semi-asymmetric equilibrium. The semi-asymmetric equilibrium features a
tiered dealer structure. Let V7, denote the liquidity quality of dealer ¢ in tier 7 and (2 the set
of dealers in tier 7. Then, we define a tier as a group of dealers such that V*; = V* j for all 4 and
j in €. Analogous to the asymmetric equilibrium, let us index tiers in the order of increasing
liquidity so that V7, < V7, for all ¢ € Q; and j € Q.11. Thus, dealers are homogenous within
tiers but are heterogenous across tiers. Proposition E.1 shows that taking the number of tiers
(denoted by n) and the number of dealers within a tier ({n.},) as given, such equilibrium exists.
Then, the symmetric equilibrium is a special case with a single tier (n = 1) and n dealers in
that tier, while the asymmetric equilibrium is a special case with n tiers and a single dealer in
each tier.

The within tier economy is analogous to the economy under the symmetric equilibrium.
Dealers in the same tier offer identical liquidity (V,°;) and prices (@Y, p2sk(k)), have client
masses of identical size, and serve the same set of investors. Investors are, in turn, indifferent
between dealers in the same tier.

The dealer heterogeneity across tiers is analogous to the dealer heterogeneity in the asym-
metric equilibrium. First, dealers in different tiers specialize in different investors. Those in
tiers in which dealers offer high liquidity attract relatively high switching rate investors, while
those in tiers with low liquidity dealers attract relatively buy-and-hold investors. When choos-
ing dealers in different tiers, investors face the same tradeoff as in Proposition 1. Second, dealers
in high liquidity tiers receive larger volumes of client orders than dealers in lower tiers. Third,
dealers in different tiers have different network centrality. Dealers in high liquidity tiers trade
more with other dealers, account for a larger fraction of the total interdealer volume, and form
the core of the interdealer network. It is vice versa for dealers in low liquidity tiers. Thus, the
results of the asymmetric equilibrium generalize to the semi-asymmetric equilibrium.

Proof of Lemma 2. The symmetric equilibrium is a special case of the semi-asymmetric equi-
librium of Proposition E.1 with a single tier and n dealers in that tier. The existence of the
symmetric equilibrium, as a result, is a corollary of Proposition E.1, which shows that semi-
asymmetric equilibria exist for any number of tiers 7 < n and any number of dealers in each
tier {n,}, and taking them as given.

A continuum of symmetric equilibria exist. To see this, the aggregate buyer mass is

i = ui

1EN
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equilibrium is with respect to dealer choice functions, not client sizes. ]

Proof of Theorem 1. The asymmetric equilibrium is a special case of the semi-asymmetric
equilibrium of Proposition E.1 with n = n tiers and a single dealer in each tier (n, = 1). O

Proposition E.1 (Semi-Asymmetric Equilibrium). Suppose {Q;}_, {n-}._], and n are given,
where 2, is the set of dealers in tier T, n is the number of dealers in tier T, and n is the number
of tiers. An equilibrium exists in which V7, TS+1J forallie Qr, j € Qryy, 7€{1,2,...,n—
1}. It is characterized by cutoffs {k} 2,k2 EIRRRRY 1,7} where k < ki, < ... < kj_q, < k,
buyers of type k < ki, choose one of the dealers in tier 1, buyers of type k € [k:l 2,k2 3]
choose one of the dealers in tier 2, and so on. Buyers at the cutoff k = k7 .4 are mdzjj”erent

between dealers in tiers T and T + 1: Vf (k7 r11) = Vf+17j(kT7T+1).38 In such equilibrium,

b b — b _ b —
Wri < Pogr; and pl, < ploq . Within any tier 7, ps, = pi, pr, = prg V75 = V2,

pl;zf = pl;“j, pﬁslk(k‘) = ﬁ?fj" for any two dealers i and j € Q.

Proof. We breakdown the proof into Lemmas E.1-E.4. In Lemma E.1, we show that Lemma 1
implies that (a) dealers with the same V;* specialize in the same continuous subset of clients on
[k, k] and (b) the client sets of dealers with different V,*’s overlap at most at a single buyer type
k € [k, k]. Then, Lemmas E.2-E.4 show the rest of the results. O

Lemma E.1. The client sets of dealers with different V;°’s overlap at most at a single buyer
type k € [k, k]. Dealers with the same V® specialize in the same continuous subset of clients on
[k, k).
Proof. These results are direct corollaries of Lemma 1.

First, suppose V;* # V7 for dealers i and j, and k* is such that Vf(k)*) = V?(k*). From
Lemma 1, the sign of V(k) — V¥(k) is given by (k — k*) for all k. In turn, (k — k*) # 0 for all
k # k*. This means that for all k& # k*, ‘A/jb(k) — VP(k) # 0. Thus, the client sets of dealers with

different V;*’s overlap at a single buyer type k € [k, E]; B
Next, if V;* = V7, then from Lemma 1, VoK) = ij(k) for all k € [k, k]. Thus, each buyer
k € [k, k] is indifferent between all dealers with the same V. O

Lemma E.2. Let 7 € {1,2,...n} index dealer tiers and 2 the set of dealers in tier 7. There
exist {k:7T+1}:i717_1 such that for all tiers T € {1,2,...,n— 1}

(i) <kig<hkig<.. <ki_,, <k,

(i) TA/Tbﬂ( 1) = Vf_i_lj(kT +41) for all dealers i € Q0 and j € Qryq,

(113) VTbl(k) > Vb o (k) forallk € (ky_y . k) 11), 1 € Qr, T # 7, and i’ € Qv and
(iv) V2i(k) = ( ) for all k€ (Kf_y .k, \y) and i, j € Q.

Donnt Tommmac 1l and B 1 ivvanlyr +hoe FAallavrirng ~liont atriicetiive acrnce doaloare (YAancidor +the lacot



Given such client structure, we can define cutoffs {k12,k23,...kn—1,,} such that (if they
exist) k < kiog <kis <...<kp,, < k and buyers of type [ki—1,i, kiit+1] choose one of the
dealers in tier . The remainder of this proof shows that such cutoffs exist.

Using (D.7) into (D.3), (r+k) <‘7Jb(k) — Vf(k:)) for any two dealers in tiers ¢ and j simplifies

to
(r+ ) (V' (k) = V2(R)) (E2)
_ (ur — u) ei; (k) A (E.3)
pipj (r+urply — (ur —w) (74 urpdy) gi) (7 +urply = (ur —w) (r +urpy) g5)° ‘
where
€i (k)

= (k+7) (uf — i) (7“ + Umlz)v) + (r (ur — w) g + kugpiy) pig; — (r (ur —w) 5 + kurpy) pigs

A=uVy (7“ + ul,ulj’v) + uyd (u?\; - u%) + (a: - uIVﬁb) (r+urpy) (E.4)
pi = kb T — (= W) + gy
pj=k+r—(ur —u)p +uppy

I show below in Lemma E.5 that A # 0. As a result, & ; such that ‘A/jb(kj’j) - f/ib(k;j) =0is
characterized by e;;(k} ;) = 0. Showing that the equilibrium exists amounts to showing that for
all tiers ¢ € {1,2,...n7— 1} and its neighboring tier j =i+ 1

eij(ky;) =(ki; +r) (ui — pf) (7‘ + umlz’v>
+ (r (ur —w) 5 + kf jurply) pigi — (1 (ur — w) i + ki jurpiy) pjg; = 0

has a solution in k7 ; where V> V7. We illustrate the existence proof first for 7 = 3 tiers and
then generalize the proof to a general number of tiers, 7.

Suppose that there can be at most three tiers (7 = 3). Consider the first cutoff 7 5 charac-
terized by e 2(k7 5) = 0:

e1a(kia) =(k o +7) (3 — i) (v + wrpy) (E:5)
+ (r (ur — w) g + K} urpy) poga — (r (ur — w) s + ki qurply) pign
=0
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p3 = 0. As a result, ez 3(ke3 = k) > 0. Put together, when kj , = k, there is ko3 € (k12,k)
satisfying es 3(k23) = 0.

The existence of ko3 € (k12,k) = (k,k) implies that go > 0, u§ > 0, p§ > 0, g1 = 0,
pb =0, u§ = 0, and thereby e12(kfy = k) > 0 when k}, = k. Thus, eja(kf, = k) < 0
and ey 2(k} , = k) > 0. By continuity, there exists a cutoff k{5 € (k, k) satisfying e;; (k) = 0.
Given the equilibrium cutoff kf , € (k, k), there exists k3 5 € (kf 5, k) (the argument is analogous
to that of when ki, = k). Thus, all three dealers attract positive mass of clients and exist in
equilibrium.

We now show existence for general 7 number of tiers. Again, the first cutoff kj , is charac-
terized by e 2(k} ;) = 0. To show that there exists a cutoff &} , € (k, k) satisfying e12(k} ) = 0,
it is sufficient to show that el,g(kziz =k) >0 and el,g(kiQ =k)<0.

Ik = k, by definition of the cutoffs, all the other cutoffs are also at the corner: kiy,= k.
Then, v1(k) > 0 for all k € [E,ﬂ, g1 >0, pi > 0, while v;(k) =0, g; =0, uf =0 for all dealers
i other than dealer 1: i # 1. As a result, e;j(kj, = k) < 0. If kf, = k, then the sign of
elg(kiz = k) depends on whether ks 3 > ki 2 when ko = k.

Whether ko 3 € (]CLQ,E] depends on the sign of eg 3(k2 3) evaluated at ko 3 = k12 and kg 3 = k.
If ko3 = k, since ki o = k, we have that g; = 0, ,ui-’ =0, pj = 0, for all dealers i # 2; thereby,
e23(k2,3) < 0. If instead ko3 = k12 = k, then analogous to the above, the sign of eg3(k23)
depends on whether k34 > ko3 = k. Iterating these arguments forward until the very last
cutoff, e;—1,i(ki—1,) evaluated at the left end of its feasible interval (i.e. at k;;—1 = kj—2,—1)
ultimately depends on the last cutoff &, 1, when k;_;; = k for all i <.

Consider then the last cutoff k;_1, when all the previous cutoffs are k;_1; = k. When
ky_1,, = k, then g; = 0, ,uf =0, pj = 0 for all dealers ¢ < n, while g, > 0, ,u,b7 >0, gy > 0. As
a result, e,_1,,(ky—1,, = k) > 0. When instead k;_1, = k, then g,—1 > 0, ,u%,l >0, pyp_y >0,
while g, = 0, ,ug =0, py =0. As a result, e;_1,(ky—1,, = k) < 0. Put together, when k;_1; = k
for all i <, there exists k;_; , 67@’ k) satisfying en—1,3(ky_1,,) = 0. B
The existence of ky_; , € (k, k) in turn establishes the existence of k;_,, ; € (k, k) when
the cutoffs to its left are at the boundary, k. To see this, the existence of k;—lm € (k, k)
implies that g,—1 > 0, ugfl >0, gp_y > 0, gy—2 =0, Ngq = 0, py_o = 0 and thereby
en—2.n—1(kp—2y—1 = k) > 0 when k;_1; =k for all i <n. If k9,1 = k while the previous
cutoffs are at k, then g,_» > 0, ,ul;]fQ >0, pp_o > 0 and the masses of the other dealers are zero.
As a result, e)_2,—1(ky—2y-1 = k) < 0. Put together, when k1o = kog = ... = ky—sn—2 =k,
there exists ky—2,-1 € (k, k).

We can iterate these results back to the first cutoff and show that treating the other cutoffs
{ki—1,i}i>2 as implicit functions of k2, there exists kio € (k, k) satisfying 6172(k>1k,2 =k)=0.
Given ki ,, there exists k3 3 € (k},, k) satisfying ez 3(k33) = 0 because using the arguments
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Although the masses are the same, the composition need not be. To see this, consider the
buyer mass for a particular dealer in tier 7

b _ rr1 f( ri(k)
,uT—/k kit me ——————dk. (E.6)

:71,7'

Suppose the equilibrium value is ,uT = a for some constant a. Fixing cutoffs k7_; _,
m3, a continuum of functions v, ;(k) exist such that the right-hand side equals a.

The additional result that pf’ﬁf = pff;l, pgslk(k:) = pﬁSk MPZD = MT%D for any two dealers

i and j € € are direct implications from the fact buyer and seller value functions and client
masses are identical across dealers within the same tier. O

*
k3 -1, and

Lemma E.4. Suppose dealers in tier T specialize in buyers with switching rates in [k}_y K} 4],
while dealers in tier T + 1 specialize in [k} iy, k7 1ol Then, V2 > V2, ply > p3, and
N2+1 > ul, where the subscript denotes the tiers of the dealers.

Proof. Lemma E.6 shows that 6 — 7V + ur(Vy + VZpy) > 0 for any dealer in tier 7. Using
(D.10) and Assumption 10, V7, ; > V? if and only if 5, > p7. Let us consider then p;  ; and

-
At k7 ., such that Vh( 1) = Vrb+1(k:,7+1)’ it has to be that e r+1(k} ;1) = 0. That is,
0= 1) () (- )
( (ur —u) ps + TT+1UI,U§V) Dr+1G9r+1 + (7" (ur —u) Mi+1 + k:,r+1umfv) Prgr
> TT+1 + ’I” (H Iu’7'+1) (’F + uI:u’l])V)
—u)

( (ur

b * b * b
TT+1 +r M /"L7'+1) (7" + ULUN) - kT,T—&—luIM?VMT—&-l + kT,T—‘rluI/’L?V/'LT (E7)

b b
13k i) ey + (7 (ur = w) pi + K unpy) gy

The inequality uses the fact that

/ i k‘rT—i—l +r+ (U_UI)MT—FULMN ~b
Prgr =

kiT-&»l
k)dk b (k)dk = pb
(k+r+(U—UI)HT+UIMN) () >/* T() Hr

T—1,7 T—1,7

kii1r42 KX +7r 4 (uw—up)pd,  + urps ke 1o
Tr+1 T+1 N ~b ~b b
4 10r 41 = f kdk</ iy q(k)dk = p
Pr+19r+1 /* (l{? r (’LL u[)ﬂj— . uy i]g\/') 7'+1( ) . T-‘rl( ) T+1

T, 7+1 T, 7+1
The equality in (E.7) uses pépul, | = pé, 48 (which is implied by the interdealer constraint (8)).

b b
The interdealer constraint also implies 12, , = 25  and u® = 2¥ 5. Substituting these into




Proof. We prove by contradiction. Suppose
A=uiVy (7“ + U]/,Ll])v) + urd (ulj\; - ,u,fv) + (x — uIVﬁb> (r+urpy) =0. (E.8)

From (D.7), V7, differ across dealers only if gr; differ across dealers. The derivative of the
right-hand side of (D.7) with respect to g, ; is

(u—ur) (urVyy (r+urply) +urd (Wl — ) + (2 — urVP) (r + ugpyy))
(r+ griru — grirur + urpdy + 9o (w — ur) urpdy) 2
(u—uy) A
(r 4 griru — grirur + urpdy + gri (uw—ur) urpdy) 2

Thus, since per our conjecture A =0, V*; do not differ across dealers (even if g, ; differ across
dealers). Let V* define the common Ve Vs = VZ for all 7 and ¢. Using these implications,
(D.7), and (D.5) and solving for Vs, we get that for any dealer i in any tier 7

N 6 1 T

e 2 , E.9
r o rl4(u—ur)gri+urgn (E.9)

where gy = ) gj. Eq. (E.9) shows that g, has to be the same across dealers also. Plugging
JEN
(E.9) and (D.5) back into the right-hand-side of (E.8),

v+ [urply — (ur — w)(r +urpl)gr.

A=
1+ (u—ur) gri + urgn

Consider the expression in square brackets. Since g, ; is the same across tiers, we can take the
tier 7 such that pf < p?, for all 7/ and express it as

urply — (r+urply) (ur — w) gm']

r b
w1
= [ur = Lk 0 002
Hy My
- Mb 1
= py |ur— — — (r +urply) (ur —u) g“]
L M7 HN
1
_ = urpl psy — ps (r +urply) (ur —u) g”']
s 1

S P L LR 17,5 T W P (L 7
. N L o L (u—un) s urns. ] k4 NS



V;’:iu[u’]’v. Rearranging (D.6), we get

k
(ur =) [ (Ve = Vi) () = 6 = 0 = 1V 4 VR = wah Vs,
k

On the left-hand-side, VT?? — V7, is the gains from trade, which is nonnegative. Thus, 6 —rV}, +
ur(Viy + V2iuy) = 0. O



F Equilibrium Uniqueness

Proposition F.1. Suppose A\, = App, n = 2 is the number of tiers, ny > 1 and ny > 1 are
the number of dealers in tiers 1 and 2. A unique semi-asymmetric equilibrium ezists for any
number of dealers in each tier.

Proof. In a two-tier structure, the market clearing and interdealer conditions are
¢ = (mph +noph) = (mpsi + nops3) (F.1)

iy = psud (F-2)
where ¢ = [, ,f f (k)%dk — .5 > 01is a constant and uf and p denote the buyer and seller masses
of an individual dealer in tier i € {1,2}. Solving for p¢ and pf from (F.1) and (F.2), we get:

b _ i (c+mpi +nops)
! nipg + naps

I

b 1 (c+nipi + nop3)
? nipy + N

Using the definitions of ull’ and ug, we have a system of two equations that characterize pf and
15 as implicit functions of k*.

k*

k S S S

/ f(s ) i (k)dk = 1 (c+ i + 722/~02) (F.3)
ko kA Aupd 4 Adapd nipg + naps

g kA Aorpf + Agopy 7 s + nopis

where ¢ = flf f(k)%dk — 8 > 0, where A\j1 = Ap + (1 — 1) App, M2 = n2dpp, A21 = n1App,
X2o = Ap + Ao (ng —1). Then, u3, 3, and the cutoff k* are the solution to a system of three
equations: (F.3), (F.4), and

e (" +7) (5 — p3) (7 + wraly) (F.5)
+ (r (ur — w) pi + K urpyy) p2ge + (r (ur — u) g + K urpy) prgr = 0

where p; =7+ k* 4+ (u —uy) + urpy;, for i € {1,2}. Equations (F.3) and (F.4) characterize uj
and pf as implicit functions of £*. Then, to show that (F.5) has a unique solution in k*, it is
sufficient to show that



Proof. Taking the partial derivative of the left-hand side of (F.5) with respect to k*, we get

86 S S S
opr = 1~ H2) (T + UIM?V) + (urpy) (Prg1 = p292) (F.7)
+ (1 (ur — w) ps + K uppy) g1 — (7 (ur —u) pi + kK urpy) g2
dg1 0go
+ (r (ur —w) s + kK uppy) pro, — (0 (ur —w) pi + K urpy) pa7 (F.9)
ok ok
where
o9 _ ﬂ)mu)
Ok* v (k* 4 (u—ur) p§ + urpdy) (B* 4+ (Ao — Aoo) 45 + Mooy
992 _ _ f (&) v (k)
Ok* r(k* + (uw—ur) p§ +urply) (B* 4+ (Ao = Aoo) 15 + Aooply)
dg1 092

Since g > 0 and I <0, the third row (F.9) is positive. Consider the combination of the
first two rows (F.7) and (F.8) . From (F.5),

— (r (ur — w) p§ + K*urpyy) prgr + (r (ur — w) i + K urply) p2ge
r 4+ k*

b
(15— p3) (r + il ) =
Substitute this into the first two rows and simplify to get:

(g1 — g2) (7“ (w—ur) ?pips + ug ((k*)2 + 2K r v (r 4 (u —ur) (p3 + M%))) iy +rug (pyy) 2)
k* +1r

This is positive. Thus, g > 0. O

Lemma F.2. Suppose A\p = App,

Proof. When A\, = App, the aggregate seller mass py, does not depend on the system of dealer
choices {v; ;(k)} for tiers 7 € {1,2} and j € Q.. To see this, write the aggregate buyer mass as

iy = Zﬂlfz + Zﬂgz

1€ 1€Q2

k* k
= 2] dk;—l—/ Vo
/Q k,+ADMN > k*k_%ADMN > v

1€ 1€Q9

k* k
I g [,
k k—’_)‘D/“LN ko k+>\DﬂN



Taking the partial derivative of the left-hand side of (F.5) with respect to uf, we get

Oe .
s =(r+k )(T+um§’v) — 7 (ur — u) pago (F.11)
Oy
v, 8 9
+ (r (ur —w) ps + kK urpyy) (ur — w) (—gl +p18Zi’) (F.12)
1
where g}g& > 0:
og1 _ 0 " 1 fkyi(k)
ops  Oui Ji k+r+(u—ur)pi +upy k4 Aopy

1 f(k)vai(k)

k*
:(UI—U)/ dk
b (k7 — (ur—w) g +urpg)® B+ Aosy

Consider the first row, (F.11):
(r+ k%) (T + uI;L?V> —r(ur —u) paga = (r + k*)r + kK*urply 4 rug (M?V — p292> + rupags.
To show that right-hand-side is positive, consider the expression Ml])v — p2g2 > 0:

M?v — D292 > Mg — D292
F f(k)va (k) F f(k)van(k)
————dk —p2
L+ k?'f‘)\D L (/~c+r—|—(u—ul)u§+um§v) (k;—|—)\D,us)

/’“ (1 Kt -+ um%) f®R)van(k)
kE+r+4 (u—ur)ps +urply ) k4 Aopsy

*

Since k* < k, this is positive. Thus, (F.11) is positive.
To see the sign of the second row (F.12), consider —g; + plg—lgi:
1

g1
ops

—g1+nm

_ /’“ F(k)v1 (k)
N & (k+r—(u1 u),ul—kuluN) (k—k)\D,uﬁv)
N /’“ E*+r— (ur —u) pf +urply f(E)vip(k)
g kA= (up — ) pi +up (k:+T— (ur —w) pi +u1:u?\f) (k_{')‘D'u?V)
rk* s ¥ L ome (o o) 1S L a8 \ 201\, o (1)




Proof. Taking the partial derivative of the left-hand side of (F.5) with respect to 3, we get

oe
O

=—(r+k% (T‘ + uuﬁv> + 7 (ur —u)prgr + (r (ur — u) u§ + kK urpyy) (ur —u) g2 (F.13)

0
— (r (ur —u) s§ + K ugpidy) (ur — ) an—f;, (F.14)
2

where ggi is positive:
H3

dg2 _ 0 /k L fkyvan(k)
Oy Ops Jre k+r 4 (w—up) pi +urpy k+ Aopiy
k 1 kYo p(k
- (uj—u)/ ka( )V)\Q,h(s)dk
ko (k41— (up —uw) ps +urply)” K+ Aokiy

From (D.7), V5’ > V{® implies that g2 < g1 . Then, using g2 < g1, the first row (F.13) is less
than

= (r+k) (7“ + umlz’v) + 7 (ur —u)pigy + (r (ur — w) g + Krurply) (ur — u) g1

= = () [ wnpdy = (4 i) (u - w) g1

Consider now the sign of [uyul — (r +urpsy) (ur — u) g1

urply — (r+ugply) (ur —u) 91}

—

b
1
s [u;”f — — (r +ugpy) (ur — ) 91]
By My
po 1
= uy [Uls — — (i) (ur — ) 91]
M1 Hy
1
T [“m?u?v = 0 (r +urpy) (ur = u) gl}
1

I ( s pi (r 4+ urpyy) (ur — w) ) f(B)v,i(k)
= UTHN — s s s dk
w Ji E4r+(u—ur)pf +urply ) k+ Xppiy
L[N g (= g o uagy) + e Gupd + (= g+ nags — 1) k)
w; Jg E4r+ (u—ur)pi +urply k+ Appsy

Qineo ma >T1 and 115~ 115 we have that 11000 — (v a1 15 Y(11r —a) s ~ 0 Thiic the Graet row



Whel"e )\11 = )\D + (nl - 1) ADD*) )\12 = n2)\DD, AQl = nl)\DD, )\22 - AD + )\DD (nQ - 1) I Wlll use
the following distribution v (k) = 7711 and vo(k) = L.

Taking the derivative of both sides of (F.15) and (F.16) with respect to k*, we get a linear
system of equations

S S a 1 S S a 5 S
(430 (L4 bidnn) + enops3) SEL+ (b (03) M — emaprd) 52 = fi(ui)® (F17)
ous ous
(b2 (1) *A21 — cnyps) 6:1 + ((u3) 2 (1 + badao) + enypef) 8/15:3 =—fo (uy)? (F.18)
where
_ S (E) v (K7)
h=—mr s
+mj
_ f(E") v (K7)
+ m35
e 1
by = / o (k) dk (F.19)
ko (k+ Mg + Mops)?
k 1
by = / v (k) dk (F.20)
ke (K gy + Aagpis)?
Solving for g’,ﬁ and g’lf from (F.17) and (F.18), we get
f(k7) F(K)
oz ((L+bada) (ui) * + empd) s + (bimadon () — enapd) s (F21)
ok* D '
G F(+")
opy (L bidn) (i) * + enops) =as +ma (badoo () = ci3) s (F.22)
ok — D :
where
D = ((u3)® (14 baidn) + enaps) () 2 (1+ baaz) + enapf) (F.23)

— (b1 (1) * M2 — enapf) (b2 (i) A1 — enaps3) -

Consider next the numerator in (F.21). It can be expressed as % (K*+m3) (K* +m3)
times

(1) 2 (k* + m3) Aozy () 2 (k* + m3)

Py "~

Aoo () 2 (K +m5) by +



This is positive since k* > k and, for App > Ap, Appuyy > mf. Thus, combined with the result
that D > 0 shown in Lemma F.5, gzi > 0.
Consider now the numerator in (F.22). It can be expressed as % (K* +m3) (K* +m3)

times

i <(,u‘]sv)2(k;:' ms) >‘11b1 I ) (k™ + m3) Appba + (143 ) (:: +m3)

+dw—@m$

For A\pp > Ap, m{ —m3 > 0. Thus, together with the result D > 0 shown in Lemma F.5,
ggi < 0. ]

Lemma F.5. D > 0, where D is given in (F.23).

Proof. Dividing by (u%)? and grouping terms with b; and bo, (u? E is
N

(,us ) 5 = (,ulj’vnlm‘f + py (e A1 — nﬂnf)) b1 + ( pnnams + py (a2 — n2m§)) )
N
+ (A2aA11 — Aar ) () 2biba + v il

where mij = A\ —|—)\12,u2 and m3 = Ao1 ] +A22pu5. Simplifying further and using the interdealer

condition p? = p? Z?’ ,

D
= (F.25)
NN)
M}SV b s 1 s s
— | pgmimi + oH2 (A22A11 — A21A12) b2 ) by
2
/”L}QV b s 1 S s
+ F <,u1n2m2 + §,u1 ()\22/\11 - )\21)\12) ,uNb1> b2 (F26)
1
+ v (mpk = (o = o) mamsbr + man = (oo = o) iz
: b — [k 1 —
Using pf = f& (k+>\11u§+/\12u§)VLh(k)f(k)dk and b = fk k+>\11“1+/\12“2)2Vl,h(k)f(k‘)dk,

the expression ul{ngmg + %/ﬁ (A22A11 — A2 Ai2) pybr in (F.26) can be expressed as:

1
plnams + 5#? (A22A11 — A21A12) pivbr =

K 1 1 k)f(k
— / (nomi — 2SS (Moo X111 — Aot \1o) — \ Vl’.h( )f( )dk




Substituting this back to (F.25), (F.25) becomes

D
(1)
phnams + S (Aaadin — Ao Ai2) piyba N 2mim3ing + (A21A12 — A2aA11) FIEN G |
5 5 2| b1
Ha 211y
1 M kms k
+ Sb2/ mzni fg ) 5 dk
wi "y E+mi k4 Appf + Appp

+ nl,ul{ - ()\DD - )\D) n2u§b1 + n2/~Lg - (>\DD - )\D) nl,uibQ

Consider the expression inside the square bracket in (F.27). Using the definitions of mf,
mj, and p3;, it simplifies to

nm§ 5 madarAir (p5) 2 + ne (A2adin + Aardi2) pi s + nadaadie (p§) 2
w12 s
_ /k (Aup] + Arop) (knapd + (napd + nops) (Aa1p] + Asaps3))
: pips (k + Aa1pg + Aazpss)?

bo

va(k)dk,

where the equality arises from using

k
1
b
= vo(k)d
i /k (k + Aot + Aaopil) 2()

and

k
1
by = / svo(k)dk
e (k+ Aa1pf + Aoapih)
and rearranging. Thus, the first row in (F.27) is strictly positive.

. . : b — [k 1
Consider next the third row of (F.27). Using pui = f@ (k1105 +A 1203

k* 1 . b < ;
1% ]{7 dk’ and rearranging, n — )\ — )\ n 4‘? 1S
fk (k+)\11u§+)\12u§)2 1’h( ) ging 1M1 ( DD D) 2501

l/l,h(k)dk and bl =

nlﬂl{ — ()\DD - )\D) n?l[?‘;bl
_ / ¥ Qo+ (= 1) dow) pf 0 Qo+ (= D don)
. (k + Mg + Aizpss) |

. . k
Since n1 > 1, nl,ul{ — (App — Ap) n2u3by > 0. Analogously, using ug = fk:* mm(l{)d
1 2



G Proofs of Section 3-5 Results and Additional Discussion

Proof of Theorem 2. Consider two dealers indexed ¢ and j where p7 — p7 > 0. Given that
dealer ¢ has a larger buyer and seller client mass than dealer j, it is straightforward to see that
MP > MP.

Consider the interdealer volume, M. Due to the interdealer constraints (8), the first and
the second terms in (5) are equal. Hence, MPP is the twice the first term:

MPP = 2003 Z M?

JEN;
: b _ sﬁ
Using the fact that p; = p; e
DD 15 I
M7 = 2 opp; Zﬂj TN = QADDMfM}SViTN- (G.1)
jEN; KN HN

Thus, the sign of MiDD — M]-DD depends on the sign of:

Wi N, — MR,
= Wi (Mj + :Ui\f/{i,j}) — K (Mf + M}g\f/{i,j}>
= (1 = 5) N i g}

Since pif — pj > 0, we have that MpD — MJDD > 0.

These results also apply to the semi-asymmetric equilibrium. Since p7 4 ; > p7 ; for any

dealer ¢ € Q211 and j € (), it follows that Mﬂlvi > MT% and Mgfii > M%D. ]

Proof of Proposition 1. This proposition highlights the cost associated with choosing a dealer
that offers better liquidity. Consider the cost first for the parameter range A\, > App. From
(C.20),

b m?’ r o0 k s —ask
k)= — — k
Ve ) r+k+ms [r+k‘r+r+k‘VT Pr ()]

Solving for (r 4 k)p2*(k), we get

r+k
S

<r+k>pisk<k>=—<r+k>(
- Sr+k N

+ 1> VE(k) + kVE +6



Using (D.11) and rearranging,
(r+ k) (P (F) = p2(h))

E— <T +k+ mi+1> [(k:,r+1 + T) pr(k)wr1(k) — (k+ T)p‘r(k:,ﬂrl)wf—kl(ki,rJrl)}

§ (K2 s +7) pr(B)pr s (R)

s
m7'+1

x (Vi —VE)

T

B
- (Vi —17)
mS g (K2 o 1) pr(R)pra (1)

where

B =kmiy (k71 + 1) pr(k)prsa (k)
— (r+k+mi) [(k o1 +7) pr(R)wesa (k) = (k +1)pr (K ) wrsn (K )]

At the limit r — 0, B is kkJ ;. times

(upy +ur (piy — 13)) (upyig +ur (= #341)) Aotiz1 + Ao (BN — p341))
+kypurpy (Aotizgq + Ao (BN — #341))

+ k2 (()\D - )\DD)Nf——i-l + ()‘DD - UI)N?\[)

ke (k7 purpy + (u (3 + ) Fur (py — 13 = p341)) Aopsgn + oo (1 — #341)))

This is strictly positive. Since V7, — V7 > 0, p2F (k) — p2*(k) > 0 for all k € [k, k] and
Te{l,2,...,n—1}.

If the parameter range is instead Ap < App, then ﬁiﬂ‘l(k:) — P2 (k) > 0 does not necessarily
hold. The cost associated with choosing a high liquidity dealer is instead worse execution speed.
To see this, from (19), the difference in the execution speed across any two dealers i and j is

mi —mj = —(Aop = Ap) (Mf - N;)

from the perspective of a buyer client and

mf - m? = —(Aop — Ap) (#? - M?)

from the perspective of a seller client. Thus, when A\, < App, the dealer with a larger client mass
offers worse execution speed than a dealer with a smaller client mass. The dealers with larger
client masses are the dealers with better overall liquidity, V*, (this is true regardless of the

~aratratar vraliiac) P11t faocthor +ha dAoalarve vvrith bhottar ~vrarall 1ia11i A4 A FAar virmran avact1d1a1



Thus, a dealer buys an asset at a higher ask-price from a core dealer than from a peripheral
dealer.
Now consider the price an arbitrary dealer d sells back to dealer ¢

1 (% @bk
szd _ *V; + 2/ My (b )V;Ob(k‘). (G?))
ko Hy
1 1
=5Vi+ §Ef’Vi°b. (G.4)

Since core dealer’s clients are high k-buyers, and high k-buyers have low reservation values,
EY [Ve(k) = V2(k)] < B [Vio(k) — V2 (K)]. Thus,

szd szd

Combining the two, the core dealer charges a wider bid-ask spread:

Pask _ Pbid Pask szd
C C
0.5Pask 4 0.5Pcbid 0. 5Pa5k + 0. 5szd

The results on execution speed and volume are straightforward implications from the difference
in client sizes across dealers. O

Proof of Proposition 3. Integrating the value functions over the respective client masses
yields:

k k k
r / VO(k)a (k) dk = 6 / A9 (k)dk + / (Vi — V2(k)) 2 (k)dk.
k k k

/ Vb (k)b (k / k (O—V-b(k:)> (k) dk

/ > Nz (VEGR) = Vi) = V7 ) il (k).

= jJeN

rVius = (6 —x) i+ </ Nij g 3 (k) 24 (Vf(k) — VP (k) - V)) :

JEN

~

Adding these up, plus the new entrants expected utility f x Vb k) f(k)vi(k)dk and dealer profits



rWP, we get

k k
HWE + WP) =5 / A2(k)dk + / k(VE — VP(k)) 2(k)dk
k

o [ k(0 viw) swar

k
[ S N (Vi) = Vi) = V7))
= jJeN

_ s k L..,snb .. o /b /s
+ (0 — ) u; +Z (/k i 5 (k) zij (V] (k) =V (k) =V, ))

jeN \"E

k
b ¢ .
4 /k V() f (ki) dk

+ /: Ao il (k)ps (1 — 22) (Vio(k) —Vi(k) - Vis) dk

+ Y ( /k A (1 = ZDD) (Vo) = Vi) - vy) dk)

JEN,
1-2z2 o s
S (/ s (=5 ) (vj<k>—vf<k>—vi)dk)-
JEN;
Simplifying it and replacing fi%(k) and ¢ (k) with ib(k) = f(/,i)r';ib(f ) and (k) = %, we
get
¢y [ L Bmlm; /‘f o oy L) m;
r(WE + W, 5/ k Do [ vt St
T .
b f(k)vi(k)
+/k k(0-Vi(h)) e

+ /:)\uf (V;O(k) —Vi(k) - Vﬁ) i (k) dk

/ ZM@ ( (k) = V2(k) — V»s) (il (k)dk

*jGN
/ T PR \



we get

b
Summing across all dealers i € N and using the fact uf = uf%, all the expressions involving

V’s cancel. We are left with:

k vi(k)m?
> (5/k k(:l‘(fl)f f;i) dk + (6 — x) ug)

1EN
= > (8(si — pf) + (6 — ) i)
1EN
where the second equality comes from the market clearing condition. O

G.1 Dealer Interconnectedness

Interconnectedness affects dealer profits and clients’ welfare as follows. Because introducing
the interdealer market lengthens the average intermediation chain, the effects are similar to the
effects of market fragmentation discussed in Section 5.2. As Figure 8 illustrates, how clients
and dealers split the increase in the welfare depends on clients’ bargaining power in two-dealer
chains (zpp) relative to that in one-dealer chains (zp). If it is significantly larger in two-dealer
chains, clients not only extract the entire increase in the welfare but also get a cut from dealers’
profit. That is, by lengthening the intermediation chain, clients tilt the gains from trade in
their favor at the expense of dealers. Dealers in this case are better off without the interdealer
market. For an intermediate range of clients’ bargaining power in two-dealer chains, both clients
and dealers benefit from interconnectedness. Finally, if clients’ bargaining power is smaller in
two-dealer chains than in one-dealer chains, now dealers extract the increase in the welfare.
Thev do so at the expense of customer welfare.



Applying the Implicit Function Theorem to (G.5), the derivative of p}; with respect to App is

(n=Duy k (k) dk
n k )’
a s - (k+(>\1)+(n_1)>\l>ll)MTN)
T = g K ’ (0
DD 1+(AD+(H—1))\DD)%fk fit zdk

= (k+(AD+(n71)ADD)@)

The right-hand-side is negative for any App and Ap. Thus, the aggregate mass of sellers decreases
with the introduction of the interdealer market. Using (27), this implies that the total welfare
increases with interconnectedness.

The aggregate volume is

Z (Mz'D + MiDD) = ”M? (Ap + (n = 1)Aop) p15

1EN
k
3 k
= (Ao +(n— 1)ADD)"N/ /%) dk, (G.7)
m Sk i+ Qo (1= 1)oo)
where the second equality substitutes in nuf = kkf W@l))\mﬁdk and uj = % Then,

taking the derivative with respect to App and simplifying, we get

0% (MP+MPP)

iEN
_ G.8
Ey (G-8)
_ 9o+ (0= Ddop) ) | 1 /k kf (k) "
s\ 2
Pon e (o o+ (0 1)) )
) (AD+(n—1)ADD)“ZV)
From (G.8), the sign depends on the derivative of the execution speed, Eyw. :
9 ((Ap + (n = 1) App) piy) Oy
= —1 — 1)
Do Don (Ap + (n = D)App) + (n — Dy

Substituting in (G.6) and simplifying, we get

9 (Ao + (n — 1)Aop) piiy) (n— Dy

9Aop 1+(>\D+(n— 1)>\DD)%IE]f ( ( (f(k)) )H?V)Qdk
k4+(Ap+(n—1)App “n




As a result,

b, sHN
i = g E
Or, alternatively,
Ko _ BN
weo

G.2 Market Fragmentation

Proof of Proposition 6. Applying the Implicit Function Theorem to (G.5) and simplifying,
we get

(>\DD_>\1)) & ka f(k) dk;

n (App+(n—1)Ap)p3 2
Onx _ ——— (G.9)
on 1_|_IE %()\DDJF(”*l))\D)f(k) k ’
k

(k+ Qop+(n=1)Ap)us, )2

n

Thus, the sign depends on —(App — A\p). If, for example, A\pp, — Ap > 0, it is negative implying
that the total welfare increases in n.

Consider now how increasing the number of dealers affects the aggregate volume of trade.
Taking the derivative of (G.7) with respect to n, we get

k s
%Z (MP + MPP) = /k R (k) - Qdk% [(/\D + (n— 1)App) /%N
iev k (k: + (Ap + (72— 1)App) %)
(G.10)
. 8(()\D+(n71))\DD)%)
The sign depends on 5 :

0 (()\D + (Tl - 1))\DD) %) _ ag—z\’ ()\D + (n — 1))\DD) + ()‘DD - /\D) :U’}g\/

on n?

Substituting in (G.9) and simplifying, we get

0o+ (n—1Aon) 1) 4 (oo — Ao) 15

= - — 1 °
on n?q I /H(AD“”*%DW %)k

~ (Ap+(n—1)App)p3s \ 2



b
_ ,,SHEN.
= Wi

condition y?
(K* 4 Aot + Aoppd)br — (K + Apppd + App3)ba — (1 — b)) = 0.
Rearranging it,

0 = (K" + Ao§ + Aoppd )by + pf — (K + Aoppt + Appd )b — 115
> 2(pf — p3).

To see how the inequality arises, consider (k* 4+ A\pui + Appps)b1 + ;/{:

(™ + Aot + Aoppis) b1 (G.12)
k* k* PN A s
_ / (k" + Ll + DD’:zg vy (k)dk (G.13)
e (k+ Appf + )\DDHQ)
k* k PN A s
> / Uh - Aot + donk3) oy (G.14)
k (k' + ADM? + )\DD,LLS)
k* 1
= v1(k)dk G.15
/k (k + Appf + Aopps3) (k) ( )
= b, (G.16)

Thus,
(K* + Appt§ + Appps )by > .

Analogously, —(k* 4+ Apppt§ + Aps)b2 > —pb. Then, 0 > pb — b or p§ > pb at the welfare
maximizing cutoff. O
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