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1 Introduction

In over-the-counter (OTC) markets, transactions between dealers exhibit a core-periphery net-

work. Ten to thirty highly interconnected dealers account for a majority of both dealer-to-dealer

and client-to-dealer transactions. These dealers form the core, while hundreds of sparsely con-

nected dealers trade infrequently and form the periphery. This network structure is not a

one-time random event but is highly persistent over time. In particular, both the dealers’ rela-

tive importance in the network and who they trade with are highly persistent.1 Li and Schürhoff

(2014) (LS hereon) document these patterns for the municipal bond market and Neklyudov,

Hollifield, and Spatt (2014) (NHS hereon) for the asset-backed securities market.2

These stylized facts challenge existing models. Recent papers rationalize the core-periphery

phenomenon with ex-ante dealer heterogeneity.3 Current network models are one-time static

models and hence cannot speak to the observed network persistence. Search models—a promi-

nent class of models capturing OTC markets—imply that trading networks are random.

Thus, we still need to explain: How does dealer heterogeneity arise in the first place? And

why do core and peripheral dealers co-exist? Any convincing explanation has to—at the same

time—explain the observed network persistence. How do core dealers maintain their size and

market share and persistently remain in the core?

We build a search-based model of network formation and show that dealer heterogeneity and

the core-periphery network arise from specialization. Some dealers form the core because they

specialize in investors who trade frequently (e.g. index funds). Because they cater to customers

who trade frequently, core dealers receive a large volume of client orders. Their client orders,

in turn, support the large volume of interdealer trades they transact and hence their centrality

in the network. Conversely, the dealers that specialize in buy-and-hold investors (e.g. pension

funds) form the periphery. Thus, how clients form around dealers determines the shape of the

1LS document the persistence in two dimensions. First, the probability that a top-ten central dealer remains
a top-ten dealer month-to-month is 93%. The persistence is 97% for peripheral dealers. Second, if two dealers
trade one month, the probability that they trade again the following month is 65%. In a random network, this
probability is 1.4%.

2Other OTC markets exhibit similar networks. Afonso, Kovner, and Schoar (2013) and Bech and Atalay
(2010), for example, document a core-periphery structure in the inter-bank lending market.

3In Atkeson, Eisfeldt, and Weill (2014), for example, the dealers with a larger number of traders form the
core. In Zhong (2014) and Neklyudov (2012), the dealers with exogenously larger inventory capacity and superior
trading technology, respectively, form the core. Hugonnier, Lester, and Weill (2014) and Chang and Zhang (2015)
assume a heterogeneity in agents’ preference for an asset. In the former, agents have idiosyncratic realizations of
asset valuations; in the latter, agents have both heterogeneous volatility and idiosyncratic realizations. Recent
network models fix agents’ network centrality (see, for example, Gofman (2011), Kondor and Babus (2013), and
Malamud and Rostek (2014)).
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interdealer network. This insight is the main contribution of the paper.

We formalize this insight with a directed search model that builds on Duffie, Gârleanu, and

Pedersen (2005) and, in particular, on Vayanos and Wang (2007). We add to their environment

dealers and interdealer trades. Dealers are ex-ante identical, but customers have heterogenous

liquidity needs. Some customers just buy and hold an asset; others buy knowing they will turn

around and sell quickly. Dealers intermediate directly between customers, but also connect with

other dealers to supplement their liquidity provision to customers. We assume a fully connected

dealer network, but network weights (in particular, the transaction volumes between pairs of

dealers) are endogenous.

In this environment, we show that both symmetric and asymmetric equilibria exist. The

symmetric equilibrium features a circular network, where dealers have identical network cen-

trality. This shows that client heterogeneity alone does not guarantee dealer heterogeneity. The

asymmetric equilibrium, on the other hand, features a core-periphery network due to special-

ization and the heterogeneity that it creates.

In the asymmetric equilibrium, the endogenous dealer specialization works as follows. Clients

tradeoff a dealer’s ask-price versus its liquidity service. Some dealers charge a high ask-price

but, in return, offer better liquidity if the client has to return the bond: The dealer either buys

back at a higher bid-price, executes the order more quickly, or both. Others charge a cheaper

ask-price price but offer worse liquidity. Buyers who expect to reverse their position quickly

care more about what happens to them as a seller. They, as a result, choose the dealer based on

liquidity the dealer offers and are willing to pay the higher ask-price. Buy-and-hold investors,

less concerned with turning into a seller later on, instead, choose the dealer offering the cheapest

price. Thus, investors with different liquidity needs endogenously sort across different dealers.

The clientele difference across dealers, in turn, supports the different prices and liquidity across

dealers. It also generates, as previously explained, the heterogeneity in the volume of client

orders, the volume of interdealer trades, and hence the network centrality across dealers.

Our second contribution lies in capturing the observed network persistence. The observed

persistence challenges two central assumptions of search models. First, search models assume

that agents’ private valuations of an asset change randomly (as a way to generate trade in

equilibrium). The assumption implies that agents’ intermediation roles are random.4 Second,

4That is, Goldman Sachs, a core dealer, can randomly become a mom-and-pop peripheral asset management
firm one period and then randomly switch back to being Goldman Sachs another period. In Hugonnier, Lester,
and Weill (2014), for example, agents with an intermediate asset valuation resemble core dealers, while agents
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the standard models assume that agents trade through random search and match and thus

abstract from repeated trades between agents. We relax both of these assumptions. We model

clients and dealers separately and model valuation changes occurring with clients. Dealers’

identities and their equilibrium roles (e.g. whether they are a core or peripheral), as a result,

remain stable and hence the persistence in the intermediation roles. The stability of dealer

identities allows us to model explicit network links between dealers. Dealers, as a result, trade

with each other repeatedly and hence the persistence in the interdealer trades.5

Additionally, we show that core and peripheral dealers play the following roles. On the

interdealer market, core dealers supply liquidity (by volume and execution speed) to other

dealers but charge wide bid-ask spreads. Peripheral dealers consume that liquidity and pass it

down to their clients (specifically, the execution speed and wide bid-ask spreads). They rely

more on the interdealer market and on long intermediation chains for their liquidity service to

clients. Bonds, as a result, cycle through the economy starting with core dealers’ clients, then

the interdealer network, and eventually end with buy-and-hold investors, who are concentrated

with peripheral dealers. The cycle repeats when a buy-and-hold investor experiences a liquidity

shock and sells the bond. The sell order, in turn, primarily gets absorbed via the interdealer

network by core dealers and their clients. Thus, core dealers serve as a central conduit in

transmitting assets through the economy from one end-customer to another.

Finally, we highlight three additional results. First, we show that specialization and the re-

sulting core-periphery network are socially desirable and dominate a circular network. Second,

interconnectedness among dealers improves bond market liquidity: It increases the aggregate

volume of transactions, narrows bid-ask spreads, and speeds up transaction times. Greater

liquidity, in turn, alleviates misallocations and improves both the customer welfare and dealer

profits. Third, market fragmentation (captured by the aggregate number of dealers) also in-

creases the total welfare. Whether the increase in the welfare accrues to clients or dealers,

however, depends on their relative bargaining powers.

We proceed as follows. Section 2 presents the model. In Section 3, we derive the asymmetric

specialization equilibrium and show that the dealer network has a core-periphery structure. Sec-

tion 4 compares liquidity and prices that core and peripheral dealers provide to customers and,

with extreme valuations resemble peripheral dealers. As agents randomly switch between different valuations, a
dealer that is a core dealer one period may randomly become a peripheral dealer the next period and vice versa.
Similarly, in Shen, Wei, and Yan (2015), an agent randomly switches between trading like a dealer versus like a
client.

5Also, clients in our model choose dealers and trade repeatedly with their dealers.
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on the interdealer market, to other dealers. Section 5 derives additional results on dealer inter-

connectedness, market fragmentation, and welfare. In Section 6, we discuss our assumptions.

Section 7 concludes.

1.1 Related Literature

We close the gap between the network and search literatures: We provide a novel way to think

about dealers and dealer networks in an environment with search and matching frictions. We

depart from Duffie, Gârleanu, and Pedersen (2005) (DGP) in an important way: From the

perspective of clients, dealers are segmented. In DGP, end-customers trade with one another

directly through random search and match, but also frictionlessly with any dealer. Thus, the

implicit assumption in DGP is a zero cost of forming a client-dealer relationship. In contrast,

our model features dealer segmentation and thus implicitly assumes a fixed cost of forming a

relationship with a dealer. This simple tweak (dealer segmentation) allows us to model and

study (1) clients’ endogenous choice over dealers, (2) multiple dealers, (3) the intermediation

chain among dealers, and (4) dealer heterogeneity.6

Our paper relates to recent models with implications on trading networks among agents.

In Atkeson, Eisfeldt, and Weill (2014), for example, the dealer banks with a larger number of

traders and intermediate exposures to aggregate risk resemble a core dealer. In Zhong (2014)

and Neklyudov (2012), the dealers with an exogenously larger inventory capacity and a superior

trading technology, respectively, form the core. In Hugonnier, Lester, and Weill (2014) and Shen,

Wei, and Yan (2015), agents have idiosyncratic realizations of private valuations for an asset, and

those with intermediate valuations intermediate the most and resemble a core dealer. In Chang

and Zhang (2015), agents have both heterogeneous volatility and idiosyncratic realizations. In

contrast to these papers, in our model, the heterogeneity across dealers arises endogenously.

In the network literature, a large strand studies networks in the interbank lending market

(see, for example, Farboodi (2014) and Wang (2014)). We instead develop a model with a

broader application to any OTC market. The model, as a result, predicts transaction volumes,

bid-ask spreads, and liquidity provision. Other network models, such as Kondor and Babus

(2013), are based on asymmetric information. In contrast, we offer a search-based network

model. Yet another strand takes the network structure and hence the heterogeneity in network

6For other search models applied to financial markets see, for example, Weill (2008), Vayanos and Weill (2008),
Lagos and Rocheteau (2009), Duffie, Malamud, and Manso (2009), and Sambalaibat (2014).
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centrality as given (see, for example, Gofman (2011), Kondor and Babus (2013), and Malamud

and Rostek (2014)). We allow for endogenous network weights.7

In our model, some dealers in equilibrium intermediate more dealer-to-dealer trades than

other dealers. Bonds also travel through longer intermediation chains with peripheral deal-

ers than with core dealers. Thus, our paper relates to models of intermediation chains (e.g.,

Viswanathan and Wang (2004), Glode and Opp (2014), Gofman (2011), Colliard and Demange

(2014), Hugonnier, Lester, and Weill (2014), and Shen, Wei, and Yan (2015)).

2 Model

Time is continuous and goes from zero to infinity. There is one asset—a bond with supply S

paying a coupon flow δ—and two sets of agents: customers and n ex-ante identical dealers.

Dealers are indexed by i ∈ N , where N = {1, 2, 3, . . . n} is the set of dealers.8 Everyone is risk

neutral, infinitely lived, and discounts the future at a constant rate r > 0.

2.1 Customers

Customers are the end-users of the bond. As in standard search models, they have an idiosyn-

cratic high or low valuation for the bond. High types derive a flow utility δ from holding the

bond, while low types derive δ−x, where x > 0 represents a disutility of holding the bond. High

types thus in equilibrium want to own the bond; low types do not. Categorizing agents by their

valuation and asset holding, we label them according to their equilibrium trading strategy: a

buyer, owner, and seller.

Investors’ valuations, moreover, change randomly, thus generating a need to rebalance their

asset position and trade. In particular, high types experience a liquidity shock with intensity k

and switch to a low type. The low state is an absorbing state (that is, they do not switch back

to a high type). Upon a liquidity shock, as a result, investors exit the economy, or if they own

bonds, they first sell and then exit. Replenishing the exiting investors, new investors enter the

7The dealer network in our model is part exogenous and part endogenous. It is exogenous in that we assume
a fully connected dealer network and that dealers do not choose who to link to. Thus, we implicitly assume
a zero cost of forming a link. It is endogenous in that, once linked, link strengths (that is, network weights)
are endogenous. Farboodi (2014) and Chang and Zhang (2015), for example, treat more formally the network
formation process.

8Results on endogenous dealer specialization, which we show in the next section, hold for any number of
dealers: n ≥ 2. We need, however, at least n ≥ 3 to derive the core-periphery results because with just two
dealers, the amount of interdealer trades (and hence the network centrality) are necessarily the same across the
two dealers.
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economy as high type non-owners (that is, as buyers).

Investors, in addition, differ by their liquidity type, k: the rate with which they experience

the liquidity shock. The distribution over k is given by the density function f̂(k) on support

[k, k].9 A k-type investor expects to hold the bond for a period of 1
k ; thus, different liquidity

types have different expected trading horizons. Those with a high switching rate (k) have a

short trading horizon ( 1
k ) and expect to have to sell quickly, while those with a small k expect

to hold the bond longer. We refer to the former as liquidity investors and to the latter as

buy-and-hold investors.

Investors can only buy and sell through one of the dealers. Upon entering the economy, a

k-type buyer chooses dealer i with probability νi(k) according to

νi(k) =



1 V b
i (k) > max

j 6=i
V b
j (k)

[0, 1] if V b
i (k) = max

j 6=i
V b
j (k)

0 V b
i (k) < max

j 6=i
V b
j (k),

(1)

where V b
i (k) denotes the expected utility of a k-type buyer who is a customer of dealer i, and∑

i∈N
νi(k) = 1. Once an investor chooses a dealer, we assume that, from then on, she can trade

only through that dealer.

Figure 1 summarizes the life-cycle of investors. An investor enters the economy as a high

type non-owner (i.e. as buyers), picks, say, dealer i, and becomes a buyer-client of that dealer.

Upon buying the bond, she becomes an owner-client of the dealer. As an owner, she holds the

bond until she experiences a liquidity shock and becomes a seller. Upon selling the bond, the

investor exits the economy.

We denote by µsi , µ
b
i , and µoi the total measure of sellers, buyers, and owners of dealer i,

where

µbi ≡
∫ k

k
µ̂bi(k)dk (2)

µoi ≡
∫ k

k
µ̂oi (k)dk. (3)

The functions µ̂bi(k) and µ̂oi (k) are such that µ̂bi(k)dk and µ̂oi (k)dk are the measures of buyers

9The flow of new-entrants with liquidity types in [k, k+dk] is f̂(k)dk. We assume f̂(k) is a continuous strictly
positive function.
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and owners with switching rates k in [k, k + dk].

2.2 Dealers and Intermediations

Dealers intermediate bonds for customers. They do so in two ways. First, a dealer pairs up

buyers and sellers within its own client base according to

MD
i ≡ λdµsiµbi , (4)

where λd is an exogenous matching efficiency of a dealer.10 Adopting the notation from LS and

NHS, MD
i is the volume of CDC (Client-Dealer-Client) intermediation chains, where the first

C is the end-seller client, and the last C is the end-buyer client. We assume dealers do not hold

inventory: They buy from one client and instantly sell to another.

Second, a dealer intermediates for its clients by connecting with other dealers. We denote

the set of dealer connections of dealer i with Ni and assume that each dealer is connected to

every other dealer: Ni = {j ∈ N : j 6= i} for all i. We define dealers i and j as connected if

they share their clients with each other. In particular, using i’s sellers and j’s buyers, dealers

i and j together produce λddµ
s
iµ
b
j matches (i.e. CDDC chains), where i is the first D in the

chain, and λdd is a joint matching efficiency of the two dealers.11 Analogously, using j’s sellers

and i’s buyers, they produce λddµ
s
jµ
b
i CDDC chains, where i is now the second D in the chain.

Summing across all dealers j that dealer i is connected to, the total volume of CDDC chains

that dealer i intermediates is:

MDD
i ≡ λddµ

s
i

( ∑
j∈Ni

µbj

)
CDDC

+ λdd

( ∑
j∈Ni

µsj

)
µbi

CDDC

. (5)

Comparing (5) with (4), if, for example, λdd > λd, two-dealer intermediation chains are more

efficient than one-dealer chains. Figure 2 illustrates the environment.

We measure a dealer’s network centrality by its volume of interdealer trades, MDD
i , given

10A general functional form for the matching functions would be M(µb, µs) = λ (µb)
αb (µs)

αs . Thus, we
implicitly assume: αs = αb = 1. Although constant returns to scale is standard in search models applied to labor
markets, in the context of OTC financial markets, the standard assumption is increasing returns to scale. Weill
(2008) shows that comparative statics from a model with increasing returns to scale fit better the stylized facts
regarding, for example, liquidity and asset supply.

11CDDC means Client-Dealer-Dealer-Client chain, where the ordering captures the direction of the bond flow.
The first C is the end-seller client, and the last C is the end-buyer client. The first D is the dealer buying from
the end-seller and selling to the second dealer, and the second D is the dealer buying from the first D and selling
to the end-buyer client.
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in (5). Since, the number of links is identical across dealers, our measure is equivalent to: the

number of links weighted by the strength of the link (that is, by the volume of trade between

dealers). We thus define dealer i as more central (i.e., core) than dealer j if dealer i intermediates

a larger volume of interdealer trades (MDD
i ) than dealer j.

Definition 1. Dealers i and j are defined as relatively core versus peripheral dealer if MDD
i >

MDD
j .

In our environment, the source of inefficiency is that—due to matching frictions—investors

with a low valuation for a bond (i.e. sellers) are stuck holding the bond despite the availability

of willing buyers. Specifically, after receiving orders, dealers take time in producing matches

and thereby create wait times for clients even though clients can instantly contact and submit

an order with a dealer. Thus, trading frictions manifest as waiting periods after a client submits

an order with a dealer. In a frictionless environment (λd → ∞, λdd → ∞), a customer would

sell instantly, via their dealer, to another end-customer with a higher valuation (i.e. a buyer).

Our specification is realistic. In practice, customers (as well as dealers themselves) can easily

call up and put an order with a dealer, but immediate transactions are not guaranteed.

2.3 Market Clearing

The supply of bonds circulating among customers of dealer i—denoted by si and endogenously

determined—equals the measure of customers who currently hold the bond:

∫ k

k
µ̂oi (k)dk + µsi = si. (6)

For market clearing, the number of bonds circulating across all dealers’ clients has to equal the

aggregate supply of the bond, S: ∑
i∈N

si = S. (7)

2.4 Interdealer Trades

We ensure that, in the steady state, a dealer is not growing or shrinking:

λddµ
s
i

∑
j∈Ni

µbj

 = λdd

∑
j∈Ni

µsj

µbi . (8)
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The left- and right-hand sides are the total volume of bonds dealer i sells and buys on the

interdealer market, respectively. Equating the two ensures that the dealer is neither a net buyer

or a seller on the interdealer market.

2.5 Client Masses and Transitions

Customer masses have to be constant in the steady state. In particular, the flow of investors

switching to a particular type has to equal the flow of investors switching out of that type. The

mass of k-type buyers, as a result, is determined by

f̂(k)νi(k)dk

inflow

= kµ̂bi(k)dk + (
∑
j∈N

λijµ
s
j)µ̂

b
i(k)dk

outflow

, (9)

where λij = λdd if i 6= j; otherwise, λij = λd. The left-hand side is the flow of type k ∈ [k, k+dk]

investors who become a buyer of dealer i. On the right-hand side, the first term is the flow of

k-type buyers who experience a liquidity shock and exit the economy. The second term is the

flow of buyers who get matched; in particular, buyers find a bond through their dealer with

intensity
∑
j∈N

λijµ
s
j . Appendix C analogously characterizes the owner and seller masses.

2.6 Prices

Prices arise from a sharing rule and are illustrated in Figure 3. Denoting by V s
i , V b

i (k), and

V o
i (k) the expected utility of a seller-, buyer-, and owner-client of dealer i, the reservation values

of a buyer and a seller are V o
i (k) − V b

i (k) and V s
i , respectively. The total gains from trade is

the difference between the buyer and seller’s reservation values.

Prices are such that the end-seller of dealer i and the end-buyer of dealer j each capture zij

fraction of the total gains from trade, where zij = zdd if i 6= j (i.e. 2-dealer chain); otherwise,

zij = zd. We interpret zij as customers’ bargaining power. Dealers split equally the remaining

1 − 2zij fraction. Prices, as a result, are a weighted average of buyer and sellers’ reservation

values. A seller-client of dealer i sells to his dealer at the bid price p̂bidi,j (k) given in (C.7), who

turns around and sells to dealer j at the interdealer price P̂i,j(k) in (C.8). Dealer j, in turn,

sells to its buyer-client at the ask price p̂aski,j (k) in (C.9). Prices are, thus, specific to the dealers

and the end-customers involved in a chain.

When choosing dealers, however, a k-type buyer considers prices across all possible end-

sellers that he could be matched with and, as a result, considers the expected ask-price of a

9



dealer, paski (k). Similarly, a seller client considers the average bid-price across possible end-

buyers she could be matched with, pbidi . Appendix C characterizes these expected prices and

the expected bid-ask spread φi(k) customers face from their dealers. Equations (17)-(18) char-

acterize the probability of getting matched with a buyer, mb
i , and a seller, ms

i , respectively.

We make the following assumption on the bargaining powers and matching efficiencies. It

is a necessary assumption for dealer heterogeneity to arise.

Assumption 1.

λddzdd > λdzd. (10)

2.7 Continuation Values

Clients’ value functions solve their optimization problem. Consider, for example, a k-type

buyer who is a customer of dealer i. In a small time interval [t+ dt], a buyer could (a) receive a

liquidity shock and exit the economy before he could purchase the bond (with probability kdt

and get utility 0), (b) buy a bond (with probability
∑
j∈N

λijµ
s
jdt and get V o

i (k)− p̂askj,i (k)), or (c)

remain a buyer:

V b
i (k) = (1− rdt)

(
kdt0 +

∑
j∈N

λijµ
s
jdt(V

o
i (k)− p̂askj,i (k))+

+[1− kdt−
∑
j∈N

λijµ
s
jdt]V

b
i (k)

)
.

(11)

Appendix C analogously derives the value functions of owner and seller types.

The continuation value of a seller client, V s
i , summarizes the quality of a dealer’s liquidity

service and, as a result, plays an important role later. The Appendix shows that we can express

V s
i as

V s
i =

r

(r +mb
i)

(
δ − x
r

)
+

mb
i

(r +mb
i)

(
pbidi

)
, (12)

where mb
i is the rate at which dealer i executes sell orders and pbidi is the average bid-price of

dealer i. From (12), V s
i is a weighted average between the value of holding the bond forever,

δ−x
r , and the expected revenue from selling it, pbidi . If the probability of selling (mb

i) is high, the

seller puts more weight on the latter than on δ−x
r . Since pbidi > δ−x

r in equilibrium, the seller’s

continuation value increases in both the price she expects to sell back to the dealer (pbidi ) and

the dealer’s execution speed (mb
i). Thus, a dealer offers better liquidity than another dealer if

she either buys back at a higher bid-price, executes orders more quickly, or both.
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2.8 Equilibrium Characterization

Our analysis focuses on the steady state equilibrium. It is expected utilities
{
V o
i (k), V b

i (k), V s
i

}
i∈N ,

population measures
{
µ̂oi (k), µ̂bi(k), µsi

}
i∈N , the distribution of bonds across dealers {si}i∈N ,

prices
{
p̂bidi,j (k), p̂aski,j (k), P̂i,j(k)

}
i,j∈N

, and dealer choices {νi(k)}i∈N such that (i) value func-

tions solve investors’ optimization problems (C.4)–(C.6); (ii) population measures and the dis-

tribution of bonds across dealers solve inflow-outflow equations (9), (C.1), market clearing

conditions (6)–(7), and inter-dealer transactions equations (8), (iii) prices arise from bargaining

(C.7)–(C.9), and (iv) entry decisions solve (1) and
∑
i∈N

νi(k) = 1.

3 Main Results

To characterize the types of equilibria that arise in the model and the client structure in each

equilibrium, Lemma 1 establishes a sorting mechanism of clients into dealers. According to

Lemma 1, the quality of a dealer’s liquidity service—captured by the value function of a seller

client (V s
i )—arises as a sorting device. If dealer i provides better liquidity than dealer j (V s

i >

V s
j ), buyers with switching rates above some cutoff k∗ prefer dealer i over dealer j, while buyers

below the cutoff (those with k < k∗) prefer dealer j over dealer i. Thus, investors with greater

liquidity needs (i.e. high k buyers) select dealers offering better liquidity, while investors with

low liquidity needs select dealers offering low liquidity.

Lemma 1 (Sorting Device). Suppose k∗ is such that V̂ b
i (k∗) = V̂ b

j (k∗) for some dealers i, j ∈ N .

Then, V̂ b
i (k)− V̂ b

j (k) has the same sign as (k − k∗)
(
V s
i − V s

j

)
.

Lemma 1 narrows down the set of equilibria into two main types based on the equilibrium

heterogeneity in {V s
i }: symmetric and asymmetric. We define an equilibrium as symmetric if all

n dealers provide an identical liquidity service (V s
i = V s

j for all i, j in N) and asymmetric if it

features complete dealer heterogeneity (V s
i 6= V s

j for all i, j in N). In the next two subsections,

we discuss the existence of these equilibria, the distribution of clients across dealers, the resulting

dealer heterogeneity, and the interdealer network structure.

3.1 Symmetric Equilibrium

Lemma 2 shows that a symmetric equilibrium exists. It has the following client and interdealer

network structure. First, dealers do not specialize. Each dealer serves the entire spectrum of

11



customers from the most buy-and-hold (k) to the most liquidity investor (k). This is because,

using Lemma 1, investors are indifferent between the n homogenous dealers: νi(k) > 0 for all i ∈

N and all k ∈[k, k]. Second, dealers have identical network centrality (MDD
i ). This is because

dealers have identical client sizes. The left plot of Figure 5 illustrates the interdealer network

structure. These results show that, first, we do not have any baked-in dealer heterogeneity.

Second, client heterogeneity alone does not guarantee dealer heterogeneity.

Lemma 2 (Symmetric Equilibrium). A symmetric equilibrium exists in which dealers are ho-

mogenous in the liquidity service they provide to clients: V s
i = V s

j for all i, j ∈ N . In such

equilibria, dealers have identical client sizes and identical network centrality (µsi = µsj, µ
b
i = µbj,

µoi = µoj , M
DD
i = MDD

j for all i, j ∈ N).

3.2 Main Results: Endogenous Specialization and Dealer Heterogeneity

This section gives the main results of the paper.

Theorem 1 shows that an asymmetric equilibrium exists in which no two dealers have iden-

tical liquidity service.12 The heterogeneity in {V s
i } implies the following client structure across

dealers. Let us index dealers in the order of increasing liquidity service: V s
1 < V s

2 < . . . < V s
n .

This is without loss of generality. Then, according to Theorem 1, cutoffs {k∗1,2, k∗2,3, . . . k∗n−1,n}

exist where k < k∗1,2 < k∗2,3 < . . . k∗n−1,n < k, buyers of type k < k∗1,2 choose dealer 1, buyers

of type k ∈ [k∗1,2, k
∗
2,3] choose dealer 2, and so on. Buyers at the cutoff k = k∗i,j are indifferent

between dealers i and j : V b
i (k∗i,j) = V b

j (k∗i,j). Thus, in the asymmetric equilibrium, dealers

specialize. High liquidity quality dealers specialize in investors with frequent trading needs.

Low liquidity dealers specialize in the relatively buy-and-hold investors. Figure 4 illustrates the

clientele result.

Theorem 1 (Asymmetric Specialization Equilibrium). Suppose Assumption 10 holds. An

asymmetric equilibrium exists in which V s
1 < V s

2 < . . . < V s
n . It is characterized by cutoffs

{k∗1,2, k∗2,3, . . . , k∗n−1,n}, where k < k∗1,2 < . . . k∗n−1,n < k, buyers of type k < k∗1,2 choose dealer 1,

buyers of type k ∈ [k∗1,2, k
∗
2,3] choose dealer 2, buyers of type k ∈ [k∗2,3, k

∗
3,4] choose dealer 3 and

so on. Buyers at the cutoff k = k∗i,j are indifferent between dealers i and j: V b
i (k∗i,j) = V b

j (k∗i,j).

In such equilibrium, µs1 < µs2 < . . . < µsn and µb1 < µb2 < . . . < µbn.

12In the Appendix, we show that the equilibrium is unique for λd = λdd. Showing uniqueness for more general
parameter values is tedius.
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Dealers are heterogeneous not only in the composition of clients but also in the size of client

masses or, equivalently, in the volume of client orders they receive. From Theorem 1, high liquidity

dealers receive larger volumes of client orders, while low liquidity dealers receive smaller volumes.

The heterogeneity in the volume of client orders generates dealer heterogeneity on the in-

terdealer market. Theorem 2 shows that dealers specializing in liquidity investors—supported

by their large volume of client orders—intermediate larger volumes of interdealer trades and

consequently form the core. The mechanism reverses for peripheral dealers. The intuition is

simple. If a dealer receives a large volume of client orders, she intermediates a large number of

bonds both by herself (i.e. in-house) and by trading with other dealers (i.e. inter-house). Thus,

how clients form around dealers determines the shape of the interdealer network. It determines

the volume of orders dealers receive and, as a result, how much dealers trade on the interdealer

market. This is the main insight of the paper. Figure 5 illustrates the network structure in the

asymmetric equilibrium.

Theorem 2 (An Endogenous Core-Periphery Network). The dealers that specialize in investors

with relatively high switching rates (i.e. high liquidity need investors) intermediate more CDC

chains: MD
n > MD

n−1 > . . . > MD
2 > MD

1 . They also intermediate more interdealer (i.e.

CDDC) trades, MDD
n > MDD

n−1 > . . . > MDD
2 > MDD

1 , and, as a result, form the core of the

interdealer network. It is vice versa for dealers that specialize in investors with relatively low

switching rates (i.e. buy-and-hold investors).

3.3 Intuition

This section provides an intuition for (1) the tradeoffs clients face in choosing between deal-

ers; (2) why high liquidity dealers are also the dealers with larger client masses; and (3) the

mechanism generating the heterogeneity in {V s
i }.

For the clientele effect to arise, choosing the high liquidity dealer has to come at a cost.

Proposition 1 highlights the cost and thereby the tradeoff clients face in choosing between

dealers.

Proposition 1 (Properties of the Asymmetric Equilibrium). Suppose dealers i and j are such

that dealer i provides better liquidity: V s
i > V s

j . If λd ≥ λdd and r is small, dealer i charges a

higher expected ask-price than dealer j: paski (k) > paskj (k) for all k ∈ [k, k] .

Investors tradeoff a dealer’s liquidity service, V s
i , versus the price they expect to pay on
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average for the bond, paski (k). Some dealers charge a high ask-price on average but, in return,

offer better liquidity if the client has to return the bond: the dealer either buys back at a

higher bid-price, executes orders more quickly, or both. Others charge a cheaper ask-price but

offer worse liquidity. Buyers who expect to reverse their position quickly (i.e., those with high

switching rates, k) care more about what happens to them as a seller. They, as a result, choose

the dealer based on its liquidity and are willing to pay the higher ask-price. Buy-and-hold

investors, less concerned with turning into a seller later on, instead, choose the dealer offering

the cheapest price. Figure 6 illustrates the tradeoff. Appendix C.6 explains the tradeoff in

detail.

The heterogeneity in client sizes across dealers generates these tradeoffs. The tradeoffs

arise, in particular, if the high liquidity dealer is the larger client mass dealer. To see the

intuition, consider for simplicity the parameter range where dealers have identical execution

speed: λdd = λd. In this case, if the high liquidity dealer has a larger client mass, she charges

higher expected ask-prices. The mechanism has two parts. First, the ask-price a large client

mass dealer charges in in-house matches dictates its average ask-price. This is because the

larger client mass dealer fills a larger fraction of its client orders by itself (i.e. in-house) than

by involving another dealer (inter-house). Second, when λdd = λd, in-house matches result in

higher (hence, worse) prices for buyers than inter-house matches regardless of the dealer. This

is because when λdd ≤ λd, Assumption 1 requires zdd > zd, which says that clients have less

bargaining power (and thereby extract smaller gains from trade) in one-dealer chains than in

two-dealer chains. A buyer, as a result, pays a higher price (a price closer to her reservation

value) in one-dealer chains than in two-dealer chains. Now, recall that the dealer with a larger

client size is the relatively core dealer on the interdealer market. Put together, if an investor

becomes a client of a core dealer, she buys on average through an in-house match, has less

bargaining power against her dealer, and thereby pays a higher ask-price. The opposite holds

for a peripheral dealer. Their clients buy on average through an inter-house match, have more

leverage against their dealer (due to zdd > zd), and thereby buy at a cheaper ask-price. The

core dealer, as a result, is the higher cost dealer. But since the higher cost has to come with

a larger benefit, the core dealer must be the higher liquidity dealer. Thus, the heterogeneity

in client sizes ensures that choosing the larger client mass dealer involves both a larger benefit

and a larger cost.

The intuition for why a dealer specializing in liquidity investors offers a better value to its
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sellers is as follows. Substituting in the bid-prices, the continuation value of a seller is a weighted

sum of the expected trading surpluses from “in-house” and “inter-house” matches:

rV s
i = δ − x+ (λDzD) µbiE

b
i [ωii(k)]

gains from
in-house matches

+ (λDDzDD)
∑
j∈Ni

µbjE
b
j [ωji(k)]

gains from inter-
house matches

.

Due to assumption (10), the weight on the gains from inter-house matches is larger than the

weight on the gains from in-house matches. The expected utility of a seller, as a result, depends

more on the inter-house matches. For clients of a dealer specializing in liquidity investors, the

inter-house matches are with buy-and-hold buyers. A match with a buy-and-hold investor, in

turn, yields a larger trading surplus than a match with a liquidity investor because buy-and-

hold investors are the natural investors in the bond.13 Put together, a dealer specializing in

liquidity investors offers a better value to its sellers. The better value manifests as either a higher

bid-price, faster execution speed, or both. The mechanism reverses for dealers specializing in

buy-and-hold investors.

3.4 Key Ingredients

The endogenous dealer heterogeneity relies on three ingredients. The first ingredient is matching

frictions (λd < ∞, λdd < ∞) together with an imperfectly competitive dealer market. Absent

trading frictions (λd →∞, λdd →∞), the dealer heterogeneity and, hence, the core-periphery

structure do not arise.

The second ingredient is the parameter condition in (10): λddzdd > λdzd. It says that, for a

dealer heterogeneity to emerge, clients have to somehow benefit from interdealer intermediation

chains and, consequently, prefer a dealer who relies relatively more on intermediation chains.

Otherwise, they would either all pool with one dealer (consequently, only a monopoly dealer

exists) or choose all dealers with the same probability (that is, only the symmetric equilibrium

exists). The two ways to satisfy the condition are λdd > λd and zdd > zd. The first says that

two dealers are collectively more efficient in producing matches than if each worked on their own.

The second says that clients extract a larger fraction of the trading surplus in two-dealer chains

than in one-dealer chains. We abstract from potential micro-foundations for why intermediation

chains are beneficial. We, instead, capture them in a reduced form through (10). Glode and

13That is, buy-and-hold investors have a higher reservation value for the bond than liquidity investors: V o(k)−
V b(k) is decreasing in k.
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Opp (2014), for example, show that, in a model with adverse selection, when multiple dealers

are involved in a chain, more trades take place than without intermediation chains. Their

model, as a result, implies: λdd > λd. The main insight of our paper—that heterogenous

clients endogenously sort across different dealers, and that specialization, in turn, supports

dealer heterogeneity—does not depend on the underlying micro-foundations that generate the

parameter conditions.14

The third ingredient is dealer segmentation: a client can only sell through the dealer she

initially chooses. If clients can later sell through any dealer, specialization would not arise.

The dealer segmentation captures a fixed cost of building a client-dealer relationship that the

client, then, needs to recoup over multiple subsequent trades. Presumably, such costs exist due

to agency and contractual frictions, in the absence of which, clients would freely choose new

dealers. Thus, our results suggest that the core-periphery phenomenon inherently arises from

contractual frictions between OTC counterparties.15

The extent of all three ingredients increases the extent of dealer heterogeneity and, hence,

the core-periphery structure. For example, as matching frictions increase, the extent of dealer

heterogeneity and the core-periphery structure also increases.

4 Testable Predictions

We now tie the network centrality results with the previous results on specialization. We

highlight testable predictions of our model and compare them with the available empirical

evidence.

4.1 Client Trades

Our model has a broader interpretation. Core and peripheral dealers specialize in investment

positions with short and long holding periods, respectively. For this interpretation, it does not

matter if orders come from different clients or if the same client sends orders she expects to

reverse quickly to a core dealer and her buy-and-hold positions to a peripheral dealer.

If we assume each order is tied to a different client, a narrower interpretation emerges:

Peripheral and core dealers specialize in buy-and-hold and liquidity investors, respectively. In

14Other model implications, however, depend on whether λdd > λd or zdd > zd.
15The fact that the client segmentation is asymmetric—a buyer can choose over dealers, but a seller cannot—is

immaterial.
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the paper, we focus on this interpretation. Liquidity investors could be, for example, investment

funds that track indices and, hence, trade frequently, while buy-and-hold investors could be

pension funds. A direct evidence for this prediction so far does not exist because in a typical

dataset (such as that of LS and NHS) client identities are anonymous.16

4.2 CDC and CDDC Chains

A core dealer intermediates more CDC chains than a peripheral dealer:

MD
c > MD

p (13)

Thus, core dealers account for a larger fraction of not only interdealer trades (hence their

labels) but also client trades.17 This result is not trivial. The core-periphery phenomenon is a

statement about how dealers trade amongst each other, not how much they trade with clients.

The phenomenon by itself, as a result, does not preclude other theories predicting that, for

example, core dealers trade mainly with other dealers, and that peripheral dealers account for

most of the client trades. Such theories would still be able to argue that they explain the core-

periphery phenomenon. LS and NHS, however, document that core dealers also account for a

larger fraction of client trades.18 Thus, a convincing theory has to explain why core dealers

account for a larger fraction of both interdealer and client trades. We not only reconcile the

two facts but also show that core dealers’ large volumes of client trades are precisely why they

form the core.

A core dealer intermediates more CDC chains both in levels as in (13) and as a fraction of

all chains it intermediates:

MD
c

MD
c +MDD

c

>
MD
p

MD
p +MDD

p

(14)

Thus, a core dealer intermediates client trades more on its own than by relying on the inter-

dealer market. A peripheral dealer, in contrast, relies more on other dealers and hence on long

intermediation chains for its liquidity service to clients.19 For a peripheral dealer, CDDC chains

16LS find that core dealers specialize in medium-size trades. The medium size trades, in turn, tend to flow
from municipal mutual fund clients, who trade frequently. This finding is consistent with our mechanism.

17The total client trades of a dealer are 2MD
i + MDD

i (2 in front of MD
i captures the fact that a CDC chain

involves two client trades: the CD leg and DC leg). Thus, MD
c > MD

p and MDD
c > MDD

p imply that the total
volume of client trades are larger for a core dealer.

18LS document that the top 5.4% dealers (by centrality) account for 75% of all client transactions.
19To see this, multiply (13) by negative 1 and add 1 to both sides.
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comprise a larger fraction of all its intermediations than for a core dealer:

MDD
p

MD
p +MDD

p

>
MDD

c

MD
c +MDD

c

. (15)

Eq. (14) also implies that the average chain length is longer for a peripheral dealer:

MD
p

MD
p +MDD

p

(1) +
MDD
p

MD
p +MDD

p

(2) >
MD
c

MD
c +MDD

c

(1) +
MDD
c

MD
c +MDD

c

(2), (16)

where inside the brackets are the chain lengths. LS and NHS document the same patterns as

(13)-(16).

4.3 Execution Speed

The rate at which dealer i fills clients’ buy orders is:

ms
i ≡

MD
i + 0.5MDD

i

µbi
=
∑
j∈N

λijµ
s
j . (17)

The denominator is the total buy orders the dealer receives; the numerator is, out of the total,

how many it executes. The ratio captures the fraction of all buy orders the dealer executes.20

The rate of filling sell orders is analogously defined as:

mb
i ≡

MD
i + 0.5MDD

i

µsi
=
∑
j∈N

λijµ
b
j (18)

Consider the difference between execution speeds of any two dealers i and j:

mτ
i −mτ

j = (19)

=

λdµτi + λddµ
τ
j + λdd

∑
j∈N/{i,j}

µτj

−
λdµτj + λddµ

τ
i + λdd

∑
j∈N/{i,j}

µτj


= −(λdd − λd)

(
µτi − µτj

)
for τ = {s, b}. Thus, if λdd < λd, a core dealer executes at a faster rate: mτ

c > mτ
p for τ = {s, b}.

If λdd = λd, a core dealer offers the same execution speed as a peripheral dealer: mτ
i = mτ

j .

If λdd > λd, a core dealer executes at a slower rate: mτ
c < mτ

p . The intuition for the latter

20I refer to the ratio as the probability of trade although they are intensities, not probabilities. More precisely,
in a small time interval [t, t+ dt], the order is executed with probability ms

idt.
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is: A core dealer fills large volumes of client orders (the numerator in (17) and (18)), but the

volume of orders submitted to the dealer is even greater (the denominator). Peripheral dealers,

in contrast, transact fewer client volumes, but the amount of orders they receive is even fewer.21

4.4 Transacted and Quoted Ask- and Bid-Prices

A core dealer transacts, on average, at a lower ask-price than a peripheral dealer:

Ebc

[
paskc (k)

]
< Ebp

[
paskp (k)

]
(20)

Eq. (20) compares prices across dealers averaged in two dimensions. The first dimension, as

discussed earlier, is across possible end-sellers a k-type buyer could be matched with: paski (k).

The empirical counterpart to paski (k) would be dealers’ effective quoted prices. Recall that, for

a given k-buyer, a core dealer quotes a higher expected ask-price:

paskc (k) > paskp (k) (21)

Eq. (21) is the counterfactual we observe in the model. The second dimension, captured by

Ebi [], is across dealer i’s equilibrium buyer mass. Because ask-prices, paski (k), decrease with

the buyer type k, and a core dealer’s clients are in equilibrium high k buyers, in a transaction

price data, we would observe (20), not (21). Thus, (20) is the testable prediction relevant to

transaction price data, not (21).22

Whether a core dealer buys back at a higher bid-price depends on λd vs λdd. If λdd is

sufficiently low, a core dealer buys back at a lower return (i.e. bid-) price than a peripheral

dealer. The intuition is as follows. For a sufficiently low λdd, a core dealer is so fast that even if

it buys back at a lower price, it still offers a greater overall value to its sellers than a peripheral

dealer. Conversely, for a high value of λdd, a core dealer is slower. To compensate for its inferior

speed, it has to offer a narrower bid-ask spread. It does so by buying back at a higher price

than a peripheral dealer.

A dealer’s quoted and transacted bid-prices coincide because sellers do not differ by their

liquidity type and, hence, face the same bid-price.

21In the data (e.g. in LS and NHS), a dealer’s execution speed is unobservable because—although its transaction
volume (the numerator) is observable—the volume of orders it receives (the denominator) is not. Thus, a direct
empirical evidence on dealers’ execution speed is unavailable.

22In a data with both quoted and transaction prices, it is possible to check (21) also.

19



4.5 Transacted Bid-Ask Spread

A core dealer charges, on average, a narrower bid-ask spread than a peripheral dealer:

Ebc
[
φc(k)

]
< Ebp

[
φp(k)

]
, (22)

where, similar to the discussion of average ask-prices, Ebi
[
φi(k)

]
is an average across two di-

mensions. Eq. (22) can be seen in Figure 7. The trading surplus (for the entire intermediation

chain) decreases with the end-buyer’s liquidity type k. Bid-ask spreads, as a result, also decrease

with k because bid-ask spreads are proportional to the total gains from trade. This together

with the fact a core dealer’s buyers are high k buyers imply (22).

NHS document the same for the asset-backed securities market, but LS find the opposite

with the municipal bond market data. Both studies also document that longer intermediation

chains have wider bid-ask spreads. Consistent with this finding, our model predicts that the

average chain involving a peripheral dealer is longer and that peripheral dealers charge clients

wide spreads.

4.6 Quoted Bid-Ask Spread

Whether a core dealer also quotes a narrower bid-ask spread depends on if the core dealer

executes orders at a faster rate and by how much faster. The latter, in turn, depends on λdd.

Figure 7 shows how dealers’ bid-ask spreads differ. For a high value of λdd, a core dealer is

slower. To compensate for its inferior execution speed and to preserve V s
c > V s

p , a core dealer

has to offer to buy back a higher bid-price than a peripheral dealer. For a sufficiently high λdd,

the bid-price is so high that the core dealer offers a narrower bid-ask spread for all k.23 On the

other extreme, for a relatively low λdd, a core dealer is faster. As a result, the core dealer’s

bid-price can be lower, and hence its quoted bid-ask spread wider for all k. For an intermediate

values of λdd, at some k̃ ∈ [k, k], the two bid-ask spread curves cross so that φc(k) > φp(k) for

k ∈ [k, k̃), and φc(k) < φp(k) for k ∈ (k̃, k].24

23That is, the value of being a client of a core dealer comes from a narrower bid-ask spread, not execution
speed.

24In other words, as λdd decreases, the cutoff at which the two bid-ask spreads cross increases.
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4.7 Interdealer Trades

We now discuss the roles that core and peripheral dealers play on the interdealer market. Below

results are novel testable predictions. Appendix C characterizes prices {P bid, P ask}, bid-ask

spreads Φ, and execution speed dealers’ face from each other.

Proposition 2 (Prices and Liquidity Provision on the Interdealer Market). Suppose dealers

indexed c and p are relatively core and peripheral dealers, respectively. A core dealer charges

other dealers a higher ask-price, P askc > P askp , buys back at a lower bid-price, P bidc < P bidp ,

and hence charges other dealers a wider bid-ask spread, Φc > Φp, than a peripheral dealer. A

core dealer buys and sells more than a peripheral dealer: λddµ
s
dµ

b
c > λddµ

s
dµ

b
p and λddµ

b
dµ

s
c >

λddµ
b
dµ

s
p. A core dealer provides a faster execution speed: λddµ

τ
c > λddµ

τ
p for τ = {s, b}.

Core dealers—supported by the large volumes of clients’ orders—supply liquidity to other

dealers. They do so in two ways. First, they transact greater volumes.25 The number of bonds

an arbitrary dealer d sells to another dealer i is λddµ
s
dµ

b
i , and the number of bonds it buys from

dealer i is λddµ
s
iµ
b
d. Since a core dealer has a larger client mass, dealer d trades proportionally

more with a core dealer on both sides of the trade. Second, a core dealer offers a faster execution

speed to other dealers. The rate at which dealer i fills dealer d’s sell orders is

λddµ
s
dµ

b
i

µsd
= λddµ

b
i .

Thus, the execution speed of dealer i is proportional to its client size. Since a core dealer has a

larger buyer mass, it executes dealer d’s orders more quickly:

λddµ
b
c > λddµ

b
p.

It is analogous for dealer d’s buy-side trades.26

For the liquidity they provide, core dealers charge other dealers wide bid-ask spreads, Φc >

Φp, due to two effects. First, when a dealer buys from a core dealer, the dealer ultimately buys

from an end-seller who has a high reservation value.27 The end-seller’s high reservation value,

25This holds by construction because we define a dealer’s network centrality by its total interdealer volume.
26As in the earlier discussion of liquidity immediacy from clients’ perspective, because the amount of orders

dealers receive is unobservable (whether from clients or other dealers), we lack a direct empirical evidence on
liquidity immediacy.

27Recall that sellers of a core dealer have a higher value function V sc > V sp and, hence, a higher reservation
value for the bond.
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in turn, manifests as a high interdealer ask-price.28 Thus, from the perspective of a dealer,

it is more expensive to buy from a core dealer than from a peripheral dealer: P askc > P askp .

Second, on the reverse trip, when a dealer sells back to a core dealer, the dealer ultimately sells

to liquidity investors (high k buyers), who have low reservation values. A dealer, as a result,

sells back at a lower (bid-) price to a core dealer, P bidc < P bidp . Put together, a dealer faces a

wider bid-ask spread from a core dealer. Recall that the opposite holds for client transactions:

Core dealers charge clients narrower bid-ask spreads (on average, across its buyers).29

Bonds, as a result, cycle through the economy starting with, say, a core dealer’s client, then

the interdealer network, and eventually end with buy-and-hold investors who are concentrated

with peripheral dealers. The cycle repeats when a buy-and-hold investor gets a liquidity shock

and sells the bond. The sell order primarily gets absorbed, via the interdealer network, first

by core dealers and their clients. Thus, core dealers serve as a central conduit in transmitting

assets through the economy from one end-customer to another. Peripheral dealers consume the

liquidity core dealers supply and pass it down to their clients.

5 Additional Results

In Sections 5.1 and 5.2, we analyze how dealer interconnectedness and market fragmentation

affects prices, liquidity, and welfare. In Section 5.3, we analyze the welfare across asymmetric

and symmetric equilibria.

We start by characterizing customer welfare, dealer profits, and the total welfare. We define

customers’ welfare as

WC ≡
∑
i∈N

[

∫ k

k
µ̂bi(k)V b

i (k)dk +

∫ k

k
µ̂oi (k)V o

i (k)dk + µsiV
s
i . (23)

+
1

r

∫ k

k
V b
i (k)f̂(k)νi(k)dk]

28The interdealer price between any two dealers is the average between the end-buyer and end-seller reservation
values.

29LS consider how dealers split the total round-trip spread between prices at the CD to DC legs and find that
dealers closer to the end-buyer extract a bigger fraction of the total spread. They, however, do not focus on
how core vs. peripheral dealers split the intermediation surplus. NHS consider similar splits and conclude that
core dealers take a narrower chunk of the total spread. In contrast, we characterize bid-ask spreads from dealers’
perspective to understand the liquidity service core vs. peripheral dealers provide other dealers.
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For dealer i, the present value of the stream of flow profits is

WD
i ≡

1

r

∫ k

k
λdµ̂

b
i(k)µsi (1− 2zd)

(
V o
i (k)− V b

i (k)− V s
i

)
dk (24)

+
1

r

∑
j∈Ni

(∫ k

k
λddµ̂

b
i(k)µsj

(
1− 2zdd

2

)(
V o
i (k)− V b

i (k)− V s
j

)
dk

)

+
1

r

∑
j∈Ni

(∫ k

k
λddµ̂

b
j(k)µsi

(
1− 2zdd

2

)(
V o
j (k)− V b

j (k)− V s
i

)
dk

)
.

The first term captures profits from intermediations directly between its customers (that is,

CDC chains). The second and third terms are profits from buy and sell interdealer transactions,

respectively (that is, CDDC chains). The total profit across dealers is

WD ≡
∑
i∈N

WD
i . (25)

The total welfare of all agents in the economy is then

Wall ≡WC +WD. (26)

As Proposition 3 shows, the total welfare depends only on the aggregate mass of sellers, µsN =∑
i∈N

µsi .

Proposition 3. The total welfare is given by

Wall =
δ

r
S − x

r
µsN . (27)

The first term is the present value of the stream of bond coupon flows. The welfare in a

frictionless environment corresponds to this term because only investors that enjoy the full value

of the coupon flow own the bond. Matching frictions, however, create misallocations. Investors

(with mass µsN ) who dislike holding the bond (recall the disutility, x) own the bond also. Thus,

the second term represents the welfare loss from matching frictions.

To compare prices and bid-ask spreads across different environments, we take the weighted

average across dealers:

p̄ask ≡
1∑

i∈N

(
1
2M

DD
i +MD

i

)∑
i∈N

[(
1

2
MDD
i +MD

i

)
Ebi

[
paski (k)

]]
(28)
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p̄bid ≡
1∑

i∈N

(
1
2M

DD
i +MD

i

)∑
i∈N

[(
1

2
MDD
i +MD

i

)
pbidi

]
(29)

φ̄ ≡ 1∑
i∈N

(
1
2M

DD
i +MD

i

)∑
i∈N

[(
1

2
MDD
i +MD

i

)
Ebi
[
φi(k)

]]
. (30)

5.1 Dealer Interconnectedness

In this section, we contrast the environments with and without the interdealer market and show

that dealer interconnectedness through the interdealer market increases bond market liquidity

and the total welfare. Without the interdealer market, clients trade only locally with the clients

of the same dealer. This environment is similar to Vayanos and Wang (2007).30 Markets in

their setting are the counterparts to dealers in our setting. We assume the supply of bonds

circulating among customers of each dealer is identical at si = S/n.

In the absence of interdealer trades, clients sort into dealers analogous to the environment

with interdealer trades. Buyers tradeoff a dealer’s expected ask-price versus its liquidity service.

Buy-and-hold investors choose the dealer offering a cheaper price, while liquidity investors choose

the dealer offering better liquidity. Dealers specializing in high liquidity need investors have a

larger buyer and seller client mass than dealers specializing in low liquidity need investors.

Proposition 4 (The Effect of Interconnectedness). Dealer interconnectedness increases bond

market liquidity (the aggregate volume of trade and execution speeds), improves the allocation

of bonds (µsN ), and increases the total welfare (Wall).

The intuition for Proposition 4 is as follows. Due to interdealer trades, an investor trades

not only with the other clients of her dealer but also with the entire investor population in

the economy. Each dealer, as a result, intermediates between much larger pools of buyers

and sellers, produces greater volumes of trade, and fills client orders at a higher speed. The

increased market liquidity improves the allocation of bonds. Bond owners upon reverting to

a low-valuation investor now sell more quickly to another high-valuation investor. A larger

number of high-valuation investors, as a result, hold the bond. The improved asset allocation

increases the total welfare.31

30The model in Vayanos and Wang (2007) is a special case of our model with zij = 1 and Ni = {∅} for all i.
31As Appendix G.1 discusses, how interconnectedness affects clients’ welfare, dealer profits, and prices depends

on clients’ bargaining power.
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As Proposition 5 shows, dealer interconnectedness evens out the order imbalance across

dealers. We capture the order imbalance of a dealer by the ratio of its seller mass to its

buyer mass. Without the interdealer market, the ratio differs across dealers and is higher for

dealers specializing in buy-and-hold investors. Introducing the interdealer market removes the

heterogeneity. Imbalances at the dealer level are now proportional to the aggregate imbalance.

Thus, dealers achieve a full risk-sharing in their orders.

Proposition 5. In the presence of the interdealer market, the order balance is identical across

dealers: for all i ∈ N ,

µsi
µbi

=
µsN
µbN

. (31)

5.2 Market Fragmentation

In this section, we analyze how market fragmentation affects customer welfare, dealer profits,

prices, and liquidity. We capture market fragmentation with the aggregate number of dealers

in the economy (n) and, as in the main section, assume a complete network. We focus on the

parameter range λdd > λd, which is the more interesting range, and relegate to the appendix

the results under λdd ≤ λd.

Proposition 6. Suppose λdd > λd. Then, increasing the number of dealers in the economy

increases the aggregate volume of trade,
∑
i∈N

(
MD
i +MDD

i

)
and the total welfare in the economy,

Wall.

The intuition for Proposition 6 is as follows. With more dealers in the economy, each dealer

has a smaller client mass and, as a result, is more likely to involve another dealer to fill a client’s

order. But due to condition λdd > λd, two dealers working together produce more matches than

a dealer working alone. The result is a greater volume of trade, a better allocation of bonds,

and a higher social welfare.

As Figure 10 illustrates, how clients and dealers split the increase in the welfare depends on

clients’ bargaining power in two-dealer chains (zdd) relative to that in one-dealer chains (zd). If

it is significantly larger in two-dealer chains, clients not only extract the entire increase in the

welfare but also get a cut from dealers’ profit. That is, by lengthening the intermediation chain,

clients tilt the gains from trade in their favor at the expense of dealers. Dealers in this case are

better off in a concentrated market with as few other dealers as possible. For an intermediate

range of clients’ bargaining power in two-dealer chains, both clients and dealers benefit from

25



fragmentation. Finally, if clients’ bargaining power is smaller in two-dealer chains than in one-

dealer chains, now dealers extract the increase in the welfare. They do so at the expense of

customer welfare.

These changes in how clients and dealers split the gains from trade correspond to changes

in the bid-ask spreads clients pay. In particular, a decrease in dealer profits manifests as a

decrease in the bid-ask spreads clients face and vice versa for an increase in dealer profits.

5.3 Welfare Analysis

In this section, we analyze the social welfare in the asymmetric and symmetric equilibria and

contrast them with the socially optimal amount of dealer concentration. For exposition, we do

so in an environment with two dealers, where dealer 1 serves the low switching rate buyers, and

dealer 2 serves the high switching rate buyers.

Figure 12 illustrates how the level of heterogeneity (captured by
µs2
µs1

) changes with the cutoff.

Let us denote by k∗sym a cutoff such that the two dealers are identical (µs1 = µs2). Even though

this is not an equilibrium cutoff, the client masses at this cutoff correspond to the client masses

of the symmetric equilibrium.32 Then, for any cutoff k∗ < k∗sym, dealer 2 is the larger dealer. In

particular, the lower the cutoff is, the larger is the heterogeneity between the dealers (
µs2
µs1

). This

is because dealer 1’s client mass increases with the cutoff, while dealer 2’s decreases. Moreover,

the asymmetric equilibrium cutoff, k∗asym, has to be below k∗sym. This is because the dealer

that specializes in high switching rate buyers (i.e. dealer 2) has to be the larger dealer in the

asymmetric equilibrium.

Proposition 7. Suppose λdd > λd. Then, the socially optimal cutoff (k∗wel) is such that dealers

are heterogeneous: µs1 < µs2.

According to Proposition 7, the socially optimal cutoff prescribes dealer heterogeneity. The

intuition is as follows. Buy-and-hold investors are the most natural owners of the bond. The

quicker they can buy a bond and turn into an owner, the more efficient is the asset allocation in

the economy. In the symmetric equilibrium, every buyer faces the same probability of buying,

irrespective of her liquidity type k or her dealer choice (i.e. the probability of finding a seller is

a flat function of k). A social planner can Pareto improve on this by tilting the probability of

finding a seller so that the buy-hold investors buy more quickly. Dealer specialization achieves

32This is not an equilibrium cutoff because for dealers to specialize in equilibrium, dealers necessarily have to
be heterogenous.

26



precisely that. A dealer specializing in buy-and-hold investors provides a faster liquidity imme-

diacy than a dealer specializing in liquidity investors. Importantly, Proposition 7 implies that

dealer specialization and a core-periphery network are socially desirable. Figure 12 illustrates

with k∗wel the cutoff that maximizes the total welfare Wall.

Next, consider how the equilibrium level of dealer heterogeneity compares with the socially

optimal level. Let us allow buyers and sellers’ bargaining powers to differ because they affect

the equilibrium heterogeneity in opposite directions. Let us also focus on the parameter range

zdd > zd. As Figure 12 illustrates, increasing the buyers’ bargaining power in inter-house

matches (holding the other parameters fixed) reduces the equilibrium dealer heterogeneity. The

intuition is as follows. If we increase buyers’ bargaining power in inter-house matches (without

changing client masses), the marginal cost of choosing the larger dealer increases, while the

marginal benefit remains the same. Fewer buyers, as a result, choose the larger dealer (dealer

2). As dealer 2’s client size decreases (while dealer 1’s size increases), dealers become less

heterogenous. Reducing the dealer heterogeneity, in turn, starts to reverse the increase in

the marginal cost (pask2 (k) − pask1 (k)) while also increasing the marginal benefit. This process

continues until there is a buyer who is indifferent between the two dealers. The result is

more homogenous dealers. If buyers’ bargaining power is sufficiently large, dealer heterogeneity

(thereby, the extent of the core-periphery structure and concentration on the interdealer market)

falls short of the socially optimal level.

Sellers’ bargaining power has the opposite effect (as explained further in the Appendix).

Dealer heterogeneity increases with the sellers’ bargaining power. If sellers’ bargaining power

is sufficiently large, the equilibrium dealer heterogeneity (hence, the extent of concentration on

the inter-dealer market) can exceed the socially optimal level.

The discussion so far focuses on the parameter range λdd > λd. If instead λdd < λd, then

pooling all clients under one dealer (that is, merging dealers into a single monopoly dealer)

maximizes the social welfare. If λdd = λd, the aggregate mass of sellers and thereby the

total social welfare does not depend on how clients are organized around dealers.33 That is,

the symmetric and asymmetric equilibria yield the same welfare, and a social planner cannot

improve on them.

33Recall that maximizing the social welfare is equivalent to minimizing the aggregate measure of sellers, which
captures misallocations in the economy.
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6 Discussion

In this section, we discuss our assumptions and how relaxing them would affect our results.

In Section 3, we discussed the key assumptions that our main results rely on. Relaxing below

assumptions would make the environment more realistic but would not affect our main insights.

We assume a fully connected dealer network and that dealers do not choose who to connect

to. Implicitly, we assume a zero cost of both initially connecting and maintaining the connection.

We could relax this by assuming that dealers pay for an access to other dealers’ clients. If dealers

charge a cost per client, then we expect our results to remain the same. But if dealers charge a

fixed amount regardless of the client size, dealers would pay only for an access to core dealers’

clients. Our basic mechanism would go through, and the core-periphery structure would be

even more pronounced. Although important, we leave for future work showing pairwise and

group stability properties of the dealer networks in our model.

We take the aggregate number of dealers as fixed and do not model dealer entry and exit.

We could model dealer entry as follows. Dealers have an outside opportunity. Dealers enter

until the marginal dealer is indifferent between its outside opportunity and the profit it expects

to make as one of the dealers in the economy. Nevertheless, endogenizing dealer entry would

not change our main insight on dealer specialization.

We assume that dealers do not hold an inventory and that bonds sit on the balance sheet

of client-sellers. We can recast the model so that, instead of clients holding the bonds on their

balance sheet, dealers hold the bonds in their inventory. When a bond owner gets a liquidity

shock and wants to sell her bond, she sells immediately to her dealer. The dealer, in turn, holds

the bond in its inventory until it can match the bond with a buyer. With this interpretation,

a dealer’s inventory size would be proportional to its seller client size, and a core dealer, as a

result, would have a larger inventory.

In our model, intermediation chains involve at most two dealers. Although we observe

longer chains in the data, LS document that CDC and CDDC chains together comprise 90%

of all intermediation chains and that the average intermediation chain involves just one dealer.

Thus, our environment captures a majority of transactions. Nevertheless, we mention two ways

to allow for longer intermediations. First, in our matching function specification, for a dealer to

be involved in a chain, one of the end-customers has to be the dealer’s own client. If, instead, a

dealer can produce matches among clients of other dealers, intermediation chains can be longer
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than just two dealers. The second way is to allow dealers to hold inventory. In both ways, the

longest chain in the model can be as long as the aggregate number of dealers in the model.

We assume a full information structure. In particular, dealers know client types, and clients

know both their own and other dealers’ client structure. The latter is reasonable since clients

can figure out whether a dealer-brokerage firm is a large or small market player and, hence, a

relatively core versus peripheral dealer. Regarding dealers’ information on client types, Vayanos

and Wang (2007) show that a clientele effect still emerges in the presence of asymmetric in-

formation about buyers’ type. Thus, we predict that our main insight on dealer specialization

would hold in the presence of asymmetric information.

We abstract from adverse selection problems. We observe the core-periphery structure and

intermediation chains in markets where adverse selection problems are small. Currency and

municipal bonds markets are an example. Thus, adverse selection problems cannot be a first

order in explaining the core-periphery structure.

7 Conclusion

The network structure of over-the-counter markets exhibits a core-periphery structure: few

dealers are highly interconnected with a large number of dealers, while a large of number of

small dealers are sparsely connected. We build a search-based model of dealer network formation

and show that the core-periphery structure emerges from dealer specialization. The dealers that

attract a clientele of liquidity investors have a larger customer base, support a greater fraction

of interdealer transactions, and, thus, form the core. The dealers that instead cater to buy-and-

hold investors form the periphery.
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Appendix

A Tables

Table 1: Parameter Values

This table gives the parameter values chosen for the numerical analysis. We assume a uniform distribution for
f(k).

Variable Notation Value

Bond coupon blow δ 1
Disutility of holding the bond x 0.5
Support of customer distribution [k, k̄] [1,5]
Supply of bonds S 0.3
Risk-free rate r 0.04

B Figures

Figure 1: Clients of Dealer i: Buyers, Owners, and Sellers

The figure illustrates in dashed (black) lines clients’ life-cycle from a buyer, to an owner, to a seller. Upon a
liquidity shock, an investor’s bond valuation changes from δ to δ− x, where x is a disutility of holding the bond.
See Section 2 for more detail.

valuation δ buyers µb
i

liquidity
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& exits

k-buyer born
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liquidity
shock, κ
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Figure 2: Clients, Dealers, and Interdealer Trades

The figure illustrates the model environment, as an example, for n = 3 dealers. Dashed (black) lines represent
clients’ life-cycle between different client types (buyer, owner, and seller). Solid (blue) lines represent bond
transaction flows. The sizes of circles represent the sizes of client measures. See Section 2 for more detail.
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Figure 3: Transaction Prices

The figure illustrates how prices arise from a sharing rule. The total gains from trade is the difference between
the end-buyer’s reservation value (V oj (k)−V bj (k)) and end-seller’s reservation value (V si ). Prices, characterized in
(C.7)-(C.9), are such that the two end-customers each capture zd (zdd) fraction of the total surplus in one-dealer
(two-dealer) intermediation chains; dealer(s) split equally the remaining 1 − 2zd (1 − 2zdd) fraction. The top
plot illustrates prices in one-dealer intermediation chains, while the bottom plot illustrates prices for two-dealer
intermediation chains. See Sections 2.6 and C.3 for more detail.
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Figure 4: Endogenous Cutoffs and Specialization in Customers

The figure illustrates how in the asymmetric equilibrium dealers specialize in different clients with different
liquidity needs (k). See Section 3.2 for more detail.

k
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clients
of dealer 1

clients
of dealer 2

clients of
dealer n− 1

clients
of dealer n

buy-and-hold investors liquidity investors

Figure 5: An Endogenous Core-Periphery Structure

The figure illustrates the equilibrium interdealer network structure in the symmetric (the left plot) and in the
asymmetric equilibria (the right plot). Each node is a dealer. The sizes of nodes represent the buyer and seller-
client sizes of dealers. Lines represent trades between dealers. The thickness of the lines represent per period
volume of trade between pairs of dealers. The symmetric equilibrium features dealers who are identical in terms
of their client size and network centrality. The asymmetric equilibrium exhibits a core-periphery interdealer
network. See Sections 3.1-3.2 for more detail.

Figure 6: The Average Ask-Price vs. the Sellers’ Expected Utility

The figures illustrate the tradeoff that buyers face when choosing dealers, for exposition, in a two-tier environment.
The figures plot the expected ask-price (on the left) and the continuation value of a seller-client (on the right) as
functions of clients’ liquidity type k (in x-axis) for a relatively core versus central dealer. The expectation of the
ask-price is over possible sellers that a buyer could be matched with as a client of that dealer. The cutoff k∗ is
such that buyers with k < k∗ choose the peripheral dealer, while buyers with k ≥ k∗ choose the core dealer. See
Section 3.3 for more detail.
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Figure 7: The Quoted Average Bid-Ask Spread

The figures illustrate the expected bid-ask spread, φi(k), as functions of buyers’ liquidity type k (in x-axis) for
three different parameter regions: λdd < λd, λdd = λd, λdd > λd. The cutoff k∗ is such that buyers with k < k∗

choose the peripheral dealer, while buyers with k ≥ k∗ choose the core dealer. See Sections 4.5-4.6 for more
detail.
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Figure 8: The Effect of Dealer Interconnectedness on Welfare

The figures illustrate how the introduction of the interdealer market changes the total welfare, dealer profits, and
clients’ welfare. They illustrate the change in these variables across the symmetric equilibria and as functions of
clients’ bargaining power (zdd) and matching efficiency (λdd) in two-dealer chains. The parameter values used
for the plot are zd = 0.1 and zd = 0.3 in the environments with and without interdealer trades, respectively, and
λd = 100 for both. The other parameter values are in Table 1. See Section 5.1 for more detail.
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Figure 9: The Effect of Dealer Interconnectedness on Prices

The figures illustrate how the introduction of the interdealer market changes the average bid-ask spread, the
average ask-price, and the average bid-price. They illustrate the change in these variables across the symmetric
equilibria and as functions of clients’ bargaining power (zdd) and matching efficiency (λdd) in two-dealer chains.
The parameter values used for the plot are zd = 0.1 and zd = 0.3 in the environments with and without interdealer
trades, respectively, and λd = 100 for both. The other parameter values are in Table 1. See Section 5.1 for more
detail.
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Figure 10: The Effect of Market Fragmentation on Welfare

The figures illustrate the change in the total welfare, dealer profits, and clients’ welfare as the number of dealers
increase from n = 2 to n = 3. They illustrate the change in these variables across symmetric equilibria and as
functions of clients’ bargaining power (zdd) and matching efficiency (λdd) in two-dealer chains. The parameter
values used for the plot are zd = 0.2 and λd = 100. The other parameter values are in Table 1. See Section 5.2
for more detail.
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Figure 11: The Effect of Market Fragmentation on Prices

The figures illustrate the change in the average bid-ask spread, the average ask-price, and the average bid-price
as the number of dealers increase from n = 2 to n = 3. They illustrate the change in these variables across
symmetric equilibria and as functions of clients’ bargaining power (zdd) and matching efficiency (λdd) in two-
dealer chains. The parameter values used for the plot are zd = 0.2 and λd = 100. The other parameter values
are in Table 1. See Section 5.2 for more detail.
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Figure 12: Welfare Analysis

The figure plots the total welfare (on the left) and the level of dealer heterogeneity (on the right) as functions
of the cutoff k∗. It does so for a two-tier environment in which λdd > λd. The cutoff k∗sym is a cutoff such that
µs1 = µs2, and k∗wel is a cutoff that maximizes the total welfare. The actual asymmetric equilibrium cutoff, k∗asym,
will be in

(
k, k∗sym

)
. Where it falls depends on clients’ bargaining power. If the sellers’ bargaining power in two-

dealer chains (zsdd) is large, the cutoff is smaller implying more heterogenous dealers. If the buyer’s bargaining
power in two-dealer chains (zbdd) is large, the cutoff is larger (implying more homogenous dealers) and can even
exceed k∗wel. See Section 5.3 for more detail.
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C Masses, Value Functions, Prices, Liquidity, and Tradeoffs

C.1 Client Masses

The mass of k-type owners is given by∑
j∈N

λijµ
s
j

 µ̂bi(k) = kµ̂oi (k). (C.1)

The left-hand side is the flow of buyers that turn into a k-type owner of dealer i; the right-hand
side reflects the flow of owners that experience a liquidity shock and switch to a seller.

Later in the proofs, we will use the characterization of client masses given in the following
Lemma.

Lemma C.1. Taking the cutoff functions {νi(k)}i as given, the system of equations character-
izing {µsi}i is given by∫ k

k

f(k)

k + (λd − λdd)µsi + λddµsN
νi(k)dk =

µsi (c+ µsN )

µsN

for each dealer i, where µsN =
∑
i∈N

µsi and c ≡
∫ k̄
k f(k) 1

kdk − S > 0 is a constant.

Proof. The market clearing condition is∑
i∈N

ms
iµ
o
i +

∑
i∈N

µsi = S, (C.2)

where

µoi =

∫ k

k

1

k
µ̂bi(k)dk

and
ms
i = (λd − λdd)µsi + λddµ

s
N .

We can write

µbi =

∫ k

k

f(k)

k +ms
i

νi(k)dk

=

∫ k

k

1

k

k +ms
i −ms

i

k +ms
i

νi(k)f(k)dk

=

∫ k

k

f(k)

k
νi(k)dk −

∫ k

k

1

k

ms
i

k +ms
i

νi(k)f(k)dk

=

∫ k

k

1

k
νi(k)f(k)dk −ms

iµ
o
i

From this,

ms
iµ
o
i =

∫ k

k

1

k
νi(k)f(k)dk − µbi

Substituting this back into the market clearing condition, we get:∫ k

k

1

k
f(k)dk − µbN + µsN = S. (C.3)
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Eq. (C.3) together with system of interdealer constraints, µsi = µbi
µsN
µbN

for all i ∈ N , characterize

{µsi}i taking as given the dealer choice functions {νi(k)}i.

C.2 Value Functions

After simplifying and taking the continuous time limit of (11), we get

rV b
i (k) = k

(
0− V b

i (k)
)

+
∑
j∈N

λijµ
s
j

(
V o
i (k)− V b

i (k)− p̂askj,i (k)
)
. (C.4)

Inside the summation, if j = i, the transaction is with another customer of the same dealer. If
j 6= i, the transaction instead involves an interdealer intermediation chain, and the end-seller is
a customer of another dealer j. Analogously, the expected utility of a k-type bond owner who
is a customer of dealer i is given by

rV o
i (k) = δ + k (V s

i − V o
i (k)) . (C.5)

The expected utility of a seller who is a customer of dealer i is given by

rV s
i = δ − x+

∑
j∈N

(∫ k

k
λijµ̂

b
j(k)(p̂bidi,j (k)− V s

i )dk

)
. (C.6)

C.3 Characterization of Prices Specific to an Intermediation Chain

We first characterize prices specific to an intermediation chain (that is, specific to dealers and
customers involved in a chain). We denote interdealer prices with capital letters (P ) and client-
to-dealer prices with small letters (p). A seller-client of dealer i sells to his dealer at the bid-price

p̂bidi,j (k) = (1− zij)V s
i + zij(V

o
j (k)− V b

j (k)) (C.7)

when the end-buyer is a k-type buyer of dealer j. Dealer i turns around and sells to dealer j at
the interdealer price:

P̂i,j(k) =
1

2
V s
i +

1

2
(V o
j (k)− V b

j (k)). (C.8)

Dealer j, in turn, sells to its buyer-client at the ask price:

p̂aski,j (k) = zijV
s
i + (1− zij) (V o

j (k)− V b
j (k)). (C.9)

If j = i, the end-buyer and seller are clients of the same dealer i, and the interdealer price
P̂i,j(k) is irrelevant. If j 6= i, the bond transaction instead involves an interdealer trade, and
the end-buyer and seller are customers of different dealers.

C.4 Expected Prices and Liquidity from Clients’ Perspective

We now characterize the expected prices, expected bid-ask spreads, and probability of trade
that clients face from their dealers. Averaging across all possible end-sellers that a buyer could
be matched with, a k-type buyer-client of dealer i expects to buy at:

paski (k) ≡ 1

ms
i

∑
j∈N

λijµ
s
j p̂
ask
j,i (k) (C.10)
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We define the liquidity immediacy buyers of dealer i face as:

ms
i ≡

∑
j∈N

λijµ
s
j .

Analogously, the liquidity immediacy sellers of dealer i face is

mb
i ≡

∑
j∈{i,Ni}

(∫ k

k
λijµ̂

b
j(k)

)

Averaging across buyers of dealer i, an average buyer of dealer i expects to buy at:

paski ≡ Ebi
[
paski (k)

]
, (C.11)

where the expectation is over the buyer population measure.34

The price a seller of dealer i expects to sell at is the weighted average price across all buyers
that she could be matched with (that is, buyers of both dealer i and dealer i’s connections):

pbidi ≡
1

mb
i

∑
j∈N

λijµ
b
jE

b
j [p̂

bid
i,j (k)], (C.12)

where Ebj [p̂
bid
i,j (k)] is the weighted average price across buyers of dealer j.

We define the expected round-trip transaction cost from the perspective of a k-type buyer
of dealer i as the expected ask price minus the expected bid price normalized by the mid-point:

φi(k) ≡ paski (k)− pbidi
0.5(paski (k) + pbidi )

. (C.13)

Similarly, the round-trip transaction cost that an average buyer of dealer i expects is:

φi ≡
paski − pbidi

0.5(paski + pbidi )
. (C.14)

LS and NHS compute bid-ask spreads as follows. For a CDDC chain, for example, the
bid-ask spreads clients face is the transaction price at the DC leg of the chain (i.e. the price a
client buys at) minus the price at the CD leg (i.e. the price a client sells at) normalized by the
mid-point in NHS and by the price at the CD leg in LS. LS regress this bid-ask spreads on the
centrality of the first dealer.

Motivated by how clients in our model choose dealers, we instead take the perspective of a
client of a particular dealer. We first take all chains j such that {j : CDjDiC}, i.e. chains where
the buyer is a client of a dealer i, regardless of where dealer i finds the bond (other dealers,
core vs peripheral, or its own clients). Averaging the price at the DiC leg—across the chains
in this set—gives the expected price a buyer of dealer i expects to buy at, again regardless of
where the bond comes from. Second, we do the same on the CD leg: average the price at the
CDi leg across chains j such that {j : CDiDjC}. The average gives the expected selling price
for a seller-client of dealer i. The bid-ask spread is the difference normalized by the midpoint.
The difference in the computations matters only for chains longer than CDC and any averages
computed using both short and long chains. Since CDC chains comprise a majority of all chains,
our results are comparable to the results of LS and NHS.

34In particular, for some function f(k), Ebi [f(k)] ≡
∫ k
k

µ̂b
i (k)

µb
i

f(k)dk.
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C.5 Expected Prices and Liquidity from Dealers’ Perspective

We characterize now expected prices and bid-ask spreads that an arbitrary dealer, indexed d,
faces from another dealer i. We denote prices and bid-ask spreads from interdealer transactions
with capital letters, P and Φ, to contrast them from client-to-dealer transactions, p and φ.

Dealer d buys from dealer i ∈ Nd at price P̂i,d(k), defined in (C.8), if dealer d’s client is a
k-type buyer. The weighted average price across all buyers of dealer d is

P aski = Ebd[P̂i,d(k)]. (C.15)

Conversely, dealer d sells to dealer i at price P̂d,i(k) if dealer i’s client is a k-type buyer.
The weighted average price across buyers of dealer i is

P bidi = Ebi [P̂d,i(k)]. (C.16)

We define the bid-ask spread as the expected purchase price minus the expected selling price
normalized by the midpoint:

Φi =
P aski − P bidi

0.5P aski + 0.5P bidi
. (C.17)

Although P aski , P bidi , and Φi are specific to dealer d, for exposition, we suppress their dependence
on d.

C.6 Choosing Over Dealers

We now explain in detail how investors sort across dealers for general λdd and λd without
assuming their relative magnitudes. We first derive the expected utility of a buyer, owner, and
seller client.

Consider the buyer’s value function:

rV b
i (k) = k

(
0− V b

i (k)
)

+
∑

j∈{i,Ni}

λjiµ
s
j

(
V o
i (k)− V b

i (k)− p̂askj,i (k)
)
.

= k
(

0− V b
i (k)

)
+

∑
j∈{i,Ni}

λjiµ
s
j [V

o
i (k)− V b

i (k)]−
∑

j∈{i,Ni}

λjiµ
s
j p̂
ask
j,i (k)

= k
(

0− V b
i (k)

)
+ [V o

i (k)− V b
i (k)]

 ∑
j∈{i,Ni}

λjiµ
s
j

−ms
i

1

ms
i

∑
j∈{i,Ni}

λjiµ
s
j p̂
ask
j,i (k)

= k
(

0− V b
i (k)

)
+ [V o

i (k)− V b
i (k)]ms

i −ms
ip
ask
i (k)

Then,

V b
i (k) =

V o
i (k)ms

i −ms
ip
ask
i (k)

r + k +ms
i

=
r + k

r + k +ms
i

(0) +
ms
i

r + k +ms
i

(
V o
i (k)− paski (k)

)
Thus, the buyer’s value function is a weighted average between the utility of exiting upon a
valuation shock, 0, and the net benefit of owning a bond, V o

i (k) − paski (k). The latter is the
expected utility as a bond owner minus the cost of becoming an owner in the first place. The
relative probabilities of these outcomes determine the relative weights. If the probability of
switching and exiting is high, the buyer puts more weight on the value of that outcome. If,
instead, the probability of purchasing the bond (i.e. liquidity immediacy) is high, the buyer
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puts more weight on the net value of owning the bond.
Consider the owner’s expected utility:

rV o
i (k) = δ + k (V s

i − V o
i (k)) .

From here

V o
i (k) =

δ + kV s
i

r + k
.

=
r

r + k

(
δ

r

)
+

k

r + k
(V s
i ) (C.18)

Thus, the owner’s expected utility is the weighted average between δ
r (the present value of the

bond coupon flow if one were to hold the bond forever) and V s
i (the expected utility of a seller).

If the probability of getting a valuation shock and, consequently, turning into a seller is high
(i.e. k is high), a bond owner puts more weight on what happens to her as a seller, and less on
the coupon flow she receives in the meantime.

Finally, consider the seller’s expected utility:

rV s
i = δ − x+

∑
j∈{i,Ni}

[∫ k

k
λijµ̂

b
j(k)

(
p̂bidi,j (k)− V s

i

)]

= δ − x+mb
i

1

mb
i

∑
j∈{i,Ni}

[∫ k

k
λijµ̂

b
j(k)p̂bidi,j (k)

]
− V s

i

∑
j∈{i,Ni}

[∫ k

k
λijµ̂

b
j(k)

]
= δ − x+mb

ip
bid
i − V s

i m
b
i

From here,

V s
i =

δ − x+mb
ip
bid
i

(r +mb
i)

=
r

(r +mb
i)

(
δ − x
r

)
+

mb
i

(r +mb
i)

(
pbidi

)
. (C.19)

Thus, the seller’s value function is a weighted average between the value of holding the bond
forever, δ−x

r , and the expected revenue from selling it, pbidi .35 If the probability of selling, mb
i ,

is high, the seller puts more weight on the expected revenue from selling, and less on δ−x
r . The

expected utility of the seller, thus, increases with both the price she can sell at, pbidi , and the
probability of selling it, mb

i .
36

Thus, from (C.18), a liquidity investor (i.e. a high k investor) worries more about what
happens to her if she is forced to sell later. In particular, from (C.19), she worries about the
price at which the dealer buys back the bond from its clients, pbidi . Conversely, a buy-and-hold
investor cares relatively less about the dealer’s bid-price. This is how liquidity investors care
more about round trip transaction costs.

To see the benefit of choosing a core dealer specifically, substitute the owner and seller’s

35The value of holding the bond forever is simply the present value of the seller’s valuation of the bond coupon
flow.

36Whether V si is increasing in mb
i , depends on the sign of: pbidi − δ−x

r
. If pbidi − δ−x

r
is positive, then V si is

increasing in mb
i also. It must be positive because, intuitively, the seller must be willing to sell only because the

expected bid-price is higher than holding the bond forever.
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value functions into the buyer’s:

V b
i (k) =

=
ms
i

r + k +ms
i

(
V o
i (k)− paski (k)

)
=

ms
i

r + k +ms
i

[
r

r + k

δ

r
+

k

r + k
V s
i − paski (k)

]
(C.20)

=
ms
i

r + k +ms
i

(
r

r + k

δ

r
+

k

r + k

[
r

(r +mb
i)

δ − x
r

+
mb
i

(r +mb
i)
pbidi

]
− paski (k)

)
=

ms
i

r + k +ms
i

(
r

r + k

δ

r
+

k

(r + k)

r

(r +mb
i)

δ − x
r
−
[
paski (k)− k

(r + k)

mb
i

(r +mb
i)
pbidi

])
=

ms
i

r + k +ms
i

(
r

r + k

δ

r
+

k

(r + k)

r

(r +mb
i)

δ − x
r
− φeff (k)

)
,

where

φeffi ≡ paski (k)−
[

k

(r + k)

mb
i

(r +mb
i)

](
pbidi

)
is the effective round trip transaction cost: the expected bid-ask spread scaled by the liquidity
immediacy, mb

i , of the dealer. The effective round trip transaction cost declines (with k) at a
faster rate for the clients of a core dealer.37 Thus, the benefit of choosing a core dealer is that,
in relative terms (not necessarily in absolute levels), a core dealer offers a narrower transaction
cost. And, as above, prices serve as a sorting device.

Whether the core dealer offers a narrower transaction cost also in absolute levels depends
on the liquidity immediacy it offers compared to that of a peripheral dealer. The latter, in
turn, depends on λdd vs λd. If λdd > λd, a core dealer offers inferior liquidity immediacy:
mτ
i < mτ

j , and, compensating for its inferior liquidity, a core dealer offers a narrower bid-ask

spread (φi(k) < φj(k) for all k). If λdd = λd, core and peripheral dealers offer the same liquidity
immediacy, and the point at which a core dealer’s bid-ask spread becomes narrower coincides
with the endogenous cutoff, k∗. If λdd < λd, a core dealer offers better liquidity immediacy:
mτ
i > mτ

j , and a core dealer’s bid-ask spread becomes narrower at a point further to right of
k∗. In all cases, recall that the core dealer’s transaction cost is declining at a faster rate. The
intuition is as follows. Given the faster decline of the core dealer’s transaction cost, at some k
in [k, k], the two transaction costs cross, and the core dealer’s cost becomes lower. The worse
the liquidity immediacy of the core dealer, the core dealer’s transaction cost has to decline at
an even higher rate to compensate for its inferior liquidity immediacy. That is, the benefit of
choosing a core dealer has to kick-in sooner (i.e. the point at which they cross shifts to the left).
In some cases (as in λdd > λd ), it already starts off narrower in absolute levels.

37Similar results hold if we define the effective transaction cost as φeffi =
(

k
(r+k)

r

(r+µb
i )

) (
x
r

)
+ paski (k) −(

k
(r+k)

µb
i

(r+µb
i )

)
pbidi .
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D Proof of Lemma 1

Proof of Lemma 1. We start by characterizing further V̂ b
i (k) and V s

i for dealer i ∈ N . Con-
sider first V̂ b

i (k). Using the ask-prices, the value function of a buyer who is a client of dealer
i ∈ N is given by

(r + k)V̂ b
i (k) = uµsi

(
V̂ ob
i (k)− V s

i

)
+ uI

∑
j∈Ni

µsj

(
V̂ ob
i (k)− V s

j

)
= (u− uI)µsi

(
V̂ ob
i (k)− V s

i

)
+ uI

∑
j∈N

µsj

(
V̂ ob
i (k)− V s

j

)
, (D.1)

where Ni is the set all of dealers N except dealer i,

V̂ ob
i (k) ≡ V̂ o

i (k)− V̂ b
i (k)

is the reservation value of a buyer,
uI ≡ λddzdd,

and
u ≡ λdzd.

Combining the buyer and owner value functions, the reservation value of a buyer is

V̂ ob
i (k) =

δ + kV s
i − (uI − u)V s

i µ
s
i + uIV

s
N

k + r − (uI − u)µsi + uIµsN
, (D.2)

where

V s
N ≡

∑
j∈N

µsjV
s
j

Using (D.2) into (D.1), the buyer’s value function can be characterized as

V̂ b
i (k) =

1

r + k

−(k + r)uIV
s
N + uI (kV s

i + δ)µsN − (uI − u) (δ − rV s
i )µsi

k + r − (uI − u)µsi + uIµsN
(D.3)

Consider next the value function of a seller client. Using the bid-price (C.7), the value
function of a seller is

rV s
i = δ−x+u

(∫ k

k
µ̂bi(k)

(
V̂ ob
i (k)− V s

i

)
dk

)
+uI

∑
j∈Ni

(∫ k

k
µ̂bj(k)

(
V̂ ob
j (k)− V s

i

)
dk

)
. (D.4)

Integrating the reservation value of a buyer (D.2) over the buyer’s mass

∫ k

k
V̂ ob
i (k)µ̂bi(k)dk =

∫ k

k

δ + kV s
i − (uI − u)V s

i µ
s
i + uIV

s
N

k + r + (u− uI)µsi + uIµsN
µ̂bi(k)dk

= V s
i g

k
i + (δ − (uI − u)V s

i µ
s
i + uIV

s
N )gi

= V s
i (µbi − (r + (u− uI)µsi + uIµ

s
N )gi) + (δ − (uI − u)V s

i µ
s
i + uIV

s
N )gi

= V s
i (µbi − (r + uIµ

s
N )gi) + (δ + uIV

s
N )gi

where

gi ≡
∫ k

k

1

k + r + (u− uI)µsi + uIµsN
µ̂bi(k)dk
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gki ≡
∫ k

k

k

k + r + (u− uI)µsi + uIµsN
µ̂bi(k)dk

Thus, ∫ k

k
V ob
i (k)µ̂bi(k)dk = V s

i (µbi − (r + uIµ
s
N )gi) + (δ + uIV

s
N )gi (D.5)

Using (D.5), (D.4) becomes

rV s
i = (D.6)

= δ − x− (uI − u)

∫ k

k
V ob
i (k)µ̂bi(k)dk + (uI − u)µbiV

s
i + uIV

ob
N − uIµbNV s

i

= δ − x− (uI − u)[V s
i (µbi − (r + uIµ

s
N )gi) + (δ + uIV

s
N )gi] + (uI − u)µbiV

s
i + uIV

ob
N − uIµbNV s

i

= δ − x− (uI − u)[−V s
i (r + uIµ

s
N )gi + (δ + uIV

s
N )gi] + uIV

ob
N − uIµbNV s

i

Thus, rearranging we get

V s
i =

δ − x− (uI − u)(δ + uIV
s
N )gi + uIV

ob
N

r + uIµbN − (uI − u)(r + uIµsN )gi
, (D.7)

where

V ob
N ≡

∑
j∈N

(∫ k

k
µ̂bj(k)V ob

j (k)dk

)
.

Next, consider the relationship between V s
i and V s

j for any two dealers i and j in N . Using
(D.3),

(r + k)
(
V̂ b
j (k)− V̂ b

i (k)
)

=
(k + r) (uI − u) (uIV

s
N + δ)

(
µsi − µsj

)
− V s

i pjwi + V s
j piwj

pipj
, (D.8)

where
wi ≡ r (uI − u)µsi + kuIµ

s
N .

pi ≡ k + r + (u− uI)µsi + uIµ
s
N .

Then, at k∗ such that V̂ b
i (k∗) = V̂ b

j (k∗), the numerator of (D.8) is zero. Setting the numerator
to zero and solving for V s

j from it, we get:

V s
j =

(k∗ + r) (uI − u) (uIV
s
N + δ)

(
µsj − µsi

)
+ V s

i p
∗
jw
∗
i

p∗iw
∗
j

, (D.9)

where
w∗i ≡ r (uI − u)µsi + k∗uIµ

s
N .

p∗i ≡ k∗ + r + (u− uI)µsi + uIµ
s
N .

Moreover, using (D.9),

V s
j − V s

i

k∗ + r
=

(
µsj − µsi

)
(uI − u) ((uIV

s
N + δ)− (r + uIµ

s
N )V s

i )

p∗iw
∗
j

. (D.10)
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Next, plug the expression for V s
j from (D.9) into (D.8), simplify, and get

(r + k)
(
V̂ b
j (k)− V̂ b

i (k)
)

=

[
(k∗ + r) piwj − (k + r)p∗iw

∗
j

] (µsj − µsi) (uI − u) ((uIV
s
N + δ)− (r + uIµ

s
N )V s

i )

p∗iw
∗
j

1

pipj

Using (D.10), we can express it as

(r + k)
(
V̂ b
j (k)− V̂ b

i (k)
)

=

[
(k∗ + r) piwj − (k + r)p∗iw

∗
j

]
(k∗ + r) pipj

(
V s
j − V s

i

)
(D.11)

Using the definitions of pi, wj , p
∗
i , and w∗j and rearranging,

(r + k)
(
V̂ b
j (k)− V̂ b

i (k)
)

(D.12)

= (k − k∗)
(
V s
j − V s

i

)
×

[
(k + r) (k∗ + r)uIµ

s
N + ru2

Iµ
s
N

(
µsN − µsi − µsj

)
+ r (u− uI) 2µsiµ

s
j + ruuIµ

s
N

(
µsi + µsj

)]
(k∗ + r) pipj

The expression in square brackets is positive. Thus, the sign of V̂ b
j (k)− V̂ b

i (k) is the same sign

as that of (k − k∗)
(
V s
j − V s

i

)
.

This sorting mechanism of clients into dealers applies to any pair of dealers i and j even if
their equilibrium client sets are not connected to each other on [k, k]. That is, k∗ does not have
to correspond to one of the equilibrium cutoffs described in Theorem 1.
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E Existence Proofs

The asymmetric and symmetric equilibria are special cases of a more general equilibrium that
we refer to as a semi-asymmetric equilibrium. The semi-asymmetric equilibrium features a
tiered dealer structure. Let V s

τ,i denote the liquidity quality of dealer i in tier τ and Ωτ the set
of dealers in tier τ . Then, we define a tier as a group of dealers such that V s

τ,i = V s
τ,j for all i and

j in Ωτ . Analogous to the asymmetric equilibrium, let us index tiers in the order of increasing
liquidity so that V s

τ,i < V s
τ+1,j for all i ∈ Ωτ and j ∈ Ωτ+1. Thus, dealers are homogenous within

tiers but are heterogenous across tiers. Proposition E.1 shows that taking the number of tiers
(denoted by η) and the number of dealers within a tier ({nτ}τ ) as given, such equilibrium exists.
Then, the symmetric equilibrium is a special case with a single tier (η = 1) and n dealers in
that tier, while the asymmetric equilibrium is a special case with n tiers and a single dealer in
each tier.

The within tier economy is analogous to the economy under the symmetric equilibrium.
Dealers in the same tier offer identical liquidity (V s

τ,i) and prices (pbidi , p̂aski (k)), have client
masses of identical size, and serve the same set of investors. Investors are, in turn, indifferent
between dealers in the same tier.

The dealer heterogeneity across tiers is analogous to the dealer heterogeneity in the asym-
metric equilibrium. First, dealers in different tiers specialize in different investors. Those in
tiers in which dealers offer high liquidity attract relatively high switching rate investors, while
those in tiers with low liquidity dealers attract relatively buy-and-hold investors. When choos-
ing dealers in different tiers, investors face the same tradeoff as in Proposition 1. Second, dealers
in high liquidity tiers receive larger volumes of client orders than dealers in lower tiers. Third,
dealers in different tiers have different network centrality. Dealers in high liquidity tiers trade
more with other dealers, account for a larger fraction of the total interdealer volume, and form
the core of the interdealer network. It is vice versa for dealers in low liquidity tiers. Thus, the
results of the asymmetric equilibrium generalize to the semi-asymmetric equilibrium.

Proof of Lemma 2. The symmetric equilibrium is a special case of the semi-asymmetric equi-
librium of Proposition E.1 with a single tier and n dealers in that tier. The existence of the
symmetric equilibrium, as a result, is a corollary of Proposition E.1, which shows that semi-
asymmetric equilibria exist for any number of tiers η ≤ n and any number of dealers in each
tier {nτ}τ and taking them as given.

A continuum of symmetric equilibria exist. To see this, the aggregate buyer mass is

µbN =
∑
i∈N

µbi

=

∫ k

k

f(k)

k + (λd − λdd)
µsN
n + λddµsN

[∑
i∈N

νi(k)

]
dk

=

∫ k

k

f(k)

k + (λd − λdd)
µsN
n + λddµsN

dk.

Thus, the aggregate buyer mass µbN does not depend on the system of clients’ dealer choices
{ντ,j(k)}, but depends only on µsN . Then, plugging this into the market clearing condition
(C.3), ∫ k

k

1

k
f(k)dk −

∫ k

k

f(k)

k + (λd − λdd)
µsN
n + λddµsN

dk + µsN − S = 0. (E.1)

The left-hand-side is negative at µsN = 0, strictly increasing in µsN , and is equal to ∞ for
µsN = ∞. Hence, it has a unique solution in µsN . Although µsN is uniquely determined, a
continuum of dealer choice functions νi(k) satisfy (E.1). Thus, the multiplicity of the symmetric
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equilibrium is with respect to dealer choice functions, not client sizes.

Proof of Theorem 1. The asymmetric equilibrium is a special case of the semi-asymmetric
equilibrium of Proposition E.1 with η = n tiers and a single dealer in each tier (nτ = 1).

Proposition E.1 (Semi-Asymmetric Equilibrium). Suppose {Ωτ}τ , {nτ}τ=η
τ=1, and η are given,

where Ωτ is the set of dealers in tier τ , nτ is the number of dealers in tier τ , and η is the number
of tiers. An equilibrium exists in which V s

τ,i < V s
τ+1,j for all i ∈ Ωτ , j ∈ Ωτ+1, τ ∈ {1, 2, . . . , η−

1}. It is characterized by cutoffs {k∗1,2, k∗2,3, . . . , k∗η−1,η}, where k < k∗1,2 < . . . < k∗η−1,η < k,
buyers of type k < k∗1,2 choose one of the dealers in tier 1, buyers of type k ∈ [k∗1,2, k

∗
2,3]

choose one of the dealers in tier 2, and so on. Buyers at the cutoff k = k∗τ,τ+1 are indifferent

between dealers in tiers τ and τ + 1: V b
τ,i(k

∗
τ,τ+1) = V b

τ+1,j(k
∗
τ,τ+1).38 In such equilibrium,

µsτ,i < µsτ+1,j and µbτ,i < µbτ+1,j. Within any tier τ , µsτ,i = µsτ,j, µ
b
τ,i = µbτ,j, V

s
τ,i = V s

τ,j,

pbidτ,i = pbidτ,j , p
ask
τ,i (k) = paskτ,j for any two dealers i and j ∈ Ωτ .

Proof. We breakdown the proof into Lemmas E.1-E.4. In Lemma E.1, we show that Lemma 1
implies that (a) dealers with the same V s

i specialize in the same continuous subset of clients on
[k, k] and (b) the client sets of dealers with different V s

i ’s overlap at most at a single buyer type
k ∈ [k, k]. Then, Lemmas E.2-E.4 show the rest of the results.

Lemma E.1. The client sets of dealers with different V s
i ’s overlap at most at a single buyer

type k ∈ [k, k]. Dealers with the same V s
i specialize in the same continuous subset of clients on

[k, k].

Proof. These results are direct corollaries of Lemma 1.
First, suppose V s

i 6= V s
j for dealers i and j, and k∗ is such that V̂ b

j (k∗) = V̂ b
i (k∗). From

Lemma 1, the sign of V̂ b
j (k)− V̂ b

i (k) is given by (k − k∗) for all k. In turn, (k − k∗) 6= 0 for all

k 6= k∗. This means that for all k 6= k∗, V̂ b
j (k)− V̂ b

i (k) 6= 0. Thus, the client sets of dealers with

different V s
i ’s overlap at a single buyer type k ∈ [k, k].

Next, if V s
i = V s

j , then from Lemma 1, V̂ b
i (k) = V̂ b

j (k) for all k ∈ [k, k]. Thus, each buyer

k ∈ [k, k] is indifferent between all dealers with the same V s
i .

Lemma E.2. Let τ ∈ {1, 2, . . . η} index dealer tiers and Ωτ the set of dealers in tier τ . There
exist {k∗τ,τ+1}

τ=η−1
τ=1 such that for all tiers τ ∈ {1, 2, . . . , η − 1}

(i) k < k∗1,2 < k∗2,3 < . . . < k∗η−1,η < k,

(ii) V̂ b
τ,i(k

∗
τ,τ+1) = V̂ b

τ+1,j(k
∗
τ,τ+1) for all dealers i ∈ Ωτ and j ∈ Ωτ+1,

(iii) V̂ b
τ,i(k) > V̂ b

τ ′,i′(k) for all k ∈ (k∗τ−1,τ , k
∗
τ,τ+1), i ∈ Ωτ , τ ′ 6= τ , and i′ ∈ Ωτ ′, and

(iv) V̂ b
τ,i(k) = V̂ b

τ,j(k) for all k ∈ (k∗τ−1,τ , k
∗
τ,τ+1) and i, j ∈ Ωτ .

Proof. Lemmas 1 and E.1 imply the following client structure across dealers. Consider the last
two tiers: τ = η − 1 and τ = η. By definition, V s

η−1,i < V s
η,j for all i ∈ Ωη−1 and j ∈ Ωη. If

there is k∗η−1,η such that V̂ b
η−1,i(k

∗
η−1,η) = V̂ b

η,j(k
∗
η−1,η) for all for all i ∈ Ωη−1 and j ∈ Ωη, then

using Lemma 1 buyers with k > k∗η−1,η choose one of the dealers in tier η. Moreover, because
V s
η,i = V s

η,j for all i, j ∈ Ωη, these buyers are indifferent between all the dealers in tier τ = η.
Buyers with switching rates below the cutoff k < k∗η−1,η, on the other hand, prefer dealers in
tier η − 1 over dealers in tier η.

It is analogous for any pair of neighboring dealers τ −1 and τ. For example, consider dealers
in tiers τ = η − 2 and τ = η − 1. Again, by definition, V s

η−2,i < V s
η−1,j for all i ∈ Ωη−2 and

j ∈ Ωη−1. As a result, for some cutoff that we denote as k∗η−2,η−1, all buyers with k > k∗η−2,η−1

(but where k < k∗η−1,η) choose one of the dealers in tier η− 1, while buyers with switching rates
k < k∗η−2,η−1 prefer dealers in tier η − 2 over dealers in tier η − 1.

38Proposition F.1 in the Appendix shows that the equilibrium is unique for a two-tier λdd = λd environment.
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Given such client structure, we can define cutoffs {k1,2, k2,3, ...kη−1,η} such that (if they
exist) k ≤ k∗1,2 ≤ k∗2,3 ≤ . . . ≤ k∗η−1,η ≤ k and buyers of type [ki−1,i, ki,i+1] choose one of the
dealers in tier i. The remainder of this proof shows that such cutoffs exist.

Using (D.7) into (D.3), (r+k)
(
V̂ b
j (k)− V̂ b

i (k)
)

for any two dealers in tiers i and j simplifies

to

(r + k)
(
V̂ b
j (k)− V̂ b

i (k)
)

(E.2)

=
(uI − u) eij(k)A

pipj
(
r + uIµbN − (uI − u)

(
r + uIµsN

)
gi
) (
r + uIµbN − (uI − u)

(
r + uIµsN

)
gj
) , (E.3)

where

ei,j(k)

≡ (k + r)
(
µsj − µsi

) (
r + uIµ

b
N

)
+ (r (uI − u)µsi + kuIµ

s
N ) pjgj −

(
r (uI − u)µsj + kuIµ

s
N

)
pigi

A ≡ uIV s
N

(
r + uIµ

b
N

)
+ uIδ

(
µbN − µsN

)
+
(
x− uIV ob

N

)
(r + uIµ

s
N ) (E.4)

pi ≡ k + r − (uI − u)µsi + uIµ
s
N

pj ≡ k + r − (uI − u)µsj + uIµ
s
N

I show below in Lemma E.5 that A 6= 0. As a result, k∗i,j such that V̂ b
j (k∗i,j) − V̂ b

i (k∗i,j) = 0 is
characterized by eij(k

∗
i,j) = 0. Showing that the equilibrium exists amounts to showing that for

all tiers i ∈ {1, 2, . . . η − 1} and its neighboring tier j = i+ 1

ei,j(k
∗
i,j) =(k∗i,j + r)

(
µsi − µsj

) (
r + uIµ

b
N

)
+
(
r (uI − u)µsj + k∗i,juIµ

s
N

)
pigi −

(
r (uI − u)µsi + k∗i,juIµ

s
N

)
pjgj = 0

has a solution in k∗i,j where V s
j > V s

i . We illustrate the existence proof first for η = 3 tiers and
then generalize the proof to a general number of tiers, η.

Suppose that there can be at most three tiers (η = 3). Consider the first cutoff k∗1,2 charac-
terized by e1,2(k∗1,2) = 0:

e1,2(k∗1,2) =(k∗1,2 + r) (µs2 − µs1)
(
r + uIµ

b
N

)
(E.5)

+
(
r (uI − u)µs1 + k∗1,2uIµ

s
N

)
p∗2g2 −

(
r (uI − u)µs2 + k∗1,2uIµ

s
N

)
p∗1g1

= 0

To show that there exists a cutoff k∗1,2 ∈ (k, k) satisfying e1,2(k∗1,2) = 0, it is sufficient to show

that e1,2(k∗1,2 = k) > 0 and e1,2(k∗1,2 = k) < 0. If k∗1,2 = k, by definition of the cutoffs, k∗2,3 = k.

Then, ν1(k) > 0 for all k ∈
[
k, k
]
, µb1 > 0 and g1 > 0, while νi(k) = 0, µbi = 0, gi = 0, for all

i 6= 1. From the interdealer constraint (8), µsi =
µsN
µbN
µbi for any dealer i. This implies that µs1 > 0

and µsi = 0 for i 6= 1. As a result, e1,2(k∗1,2 = k) < 0:

−(k∗1,2 + r)µs1

(
r + uIµ

b
N

)
− k∗1,2uIµsNp∗1g1

If instead k∗1,2 = k, then the sign of e12(k∗1,2 = k) depends on whether k2,3 > k1,2 when k∗1,2 = k.

Whether k2,3 ∈ (k1,2, k] = (k, k] depends on the sign of e2,3(k2,3) evaluated at k2,3 = k1,2 and
k2,3 = k. If k2,3 = k, since k∗1,2 = k, we have that gi = 0, µbi = 0, µsi = 0, for all dealers i 6= 2;

thereby, e2,3(k2,3) < 0. If instead k2,3 = k1,2 = k, g3 > 0, µb3 > 0, µs3 > 0, while g2 = 0, µb2 = 0,
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µs2 = 0. As a result, e2,3(k2,3 = k) > 0. Put together, when k∗1,2 = k, there is k2,3 ∈ (k1,2, k)
satisfying e2,3(k2,3) = 0.

The existence of k2,3 ∈ (k1,2, k) = (k, k) implies that g2 > 0, µb2 > 0, µs2 > 0, g1 = 0,
µb1 = 0, µs1 = 0, and thereby e1,2(k∗1,2 = k) > 0 when k∗1,2 = k. Thus, e1,2(k∗1,2 = k) < 0

and e1,2(k∗1,2 = k) > 0. By continuity, there exists a cutoff k∗1,2 ∈ (k, k) satisfying eij(k
∗
1,2) = 0.

Given the equilibrium cutoff k∗1,2 ∈ (k, k), there exists k∗2,3 ∈ (k∗1,2, k) (the argument is analogous
to that of when k∗1,2 = k). Thus, all three dealers attract positive mass of clients and exist in
equilibrium.

We now show existence for general η number of tiers. Again, the first cutoff k∗1,2 is charac-

terized by e1,2(k∗1,2) = 0. To show that there exists a cutoff k∗1,2 ∈ (k, k) satisfying e1,2(k∗1,2) = 0,

it is sufficient to show that e1,2(k∗1,2 = k) > 0 and e1,2(k∗1,2 = k) < 0.

If k∗1,2 = k, by definition of the cutoffs, all the other cutoffs are also at the corner: k∗i−1,i = k.

Then, ν1(k) > 0 for all k ∈
[
k, k
]
, g1 > 0, µs1 > 0, while νi(k) = 0, gi = 0, µsi = 0 for all dealers

i other than dealer 1: i 6= 1. As a result, eij(k
∗
1,2 = k) < 0. If k∗1,2 = k, then the sign of

e12(k∗1,2 = k) depends on whether k2,3 > k1,2 when k∗1,2 = k.

Whether k2,3 ∈ (k1,2, k] depends on the sign of e2,3(k2,3) evaluated at k2,3 = k1,2 and k2,3 = k.
If k2,3 = k, since k∗1,2 = k, we have that gi = 0, µbi = 0, µsi = 0, for all dealers i 6= 2; thereby,
e2,3(k2,3) < 0. If instead k2,3 = k1,2 = k, then analogous to the above, the sign of e2,3(k2,3)
depends on whether k3,4 > k2,3 = k. Iterating these arguments forward until the very last
cutoff, ei−1,i(ki−1,i) evaluated at the left end of its feasible interval (i.e. at ki,i−1 = ki−2,i−1)
ultimately depends on the last cutoff kη−1,η when ki−1,i = k for all i < η.

Consider then the last cutoff kη−1,η when all the previous cutoffs are ki−1,i = k. When
kη−1,η = k, then gi = 0, µbi = 0, µsi = 0 for all dealers i < η, while gη > 0, µbη > 0, µsη > 0. As

a result, eη−1,η(kη−1,η = k) > 0. When instead kη−1,η = k, then gη−1 > 0, µbη−1 > 0, µsη−1 > 0,

while gη = 0, µbη = 0, µsη = 0. As a result, eη−1,η(kη−1,η = k) < 0. Put together, when ki−1,i = k

for all i < η, there exists k∗η−1,η ∈ (k, k) satisfying eη−1,η(k
∗
η−1,η) = 0.

The existence of k∗η−1,η ∈ (k, k) in turn establishes the existence of k∗η−2,η−1 ∈ (k, k) when

the cutoffs to its left are at the boundary, k. To see this, the existence of k∗η−1,η ∈ (k, k)

implies that gη−1 > 0, µbη−1 > 0, µsη−1 > 0, gη−2 = 0, µbη−2 = 0, µsη−2 = 0 and thereby

eη−2,η−1(kη−2,η−1 = k) > 0 when ki−1,i = k for all i < η. If kη−2,η−1 = k while the previous
cutoffs are at k, then gη−2 > 0, µbη−2 > 0, µsη−2 > 0 and the masses of the other dealers are zero.

As a result, eη−2,η−1(kη−2,η−1 = k) < 0. Put together, when k1,2 = k2,3 = ... = kη−3,η−2 = k,
there exists kη−2,η−1 ∈ (k, k).

We can iterate these results back to the first cutoff and show that treating the other cutoffs
{ki−1,i}i>2 as implicit functions of k1,2, there exists k∗1,2 ∈ (k, k) satisfying e1,2(k∗1,2 = k) = 0.

Given k∗1,2, there exists k∗2,3 ∈ (k∗1,2, k) satisfying e2,3(k∗2,3) = 0 because using the arguments

above e2,3(k2,3 = k) < 0 and e2,3(k2,3 = k) > 0. Analogously, there exists k∗3,4 ∈ (k∗1,2, k)
satisfying e3,4(k∗3,4) = 0 and so on. Thus, there exist cutoffs such that k < k∗1,2 < k∗2,3 < . . . <

k∗η−1,η < k and buyers of type [ki−1,i, ki,i+1] choose one of the dealers in tier i. This implies that
if we allow customers to sort across at most η tiers, all tiers exist in equilibrium.

Lemma E.3. V s
τ,i = V s

τ,j, µ
s
τ,j = µsτ,i, µ

b
τ,j = µbτ,j, p

bid
τ,i = pbidτ,j , p

ask
τ,i (k) = paskτ,j , MDD

τ,i = MDD
τ,j

for any two dealers i, j ∈ Ωτ and for any tier τ .

Proof. Consider the properties of dealers within a tier. By definition, dealers within a tier have
identical V s

τ . From Lemma E.1, any buyer k ∈ [k, k] is indifferent between all dealers with the
same V s

i . From (D.10), V s
τ,i = V s

τ,j for all i, j ∈ Ωτ implies that µsτ,i = µsτ,j for all i, j ∈ Ωτ .

Since µbi = µsi
µbN
µsN

, this also implies that µbτ,i = µbτ,j for all i, j ∈ Ωτ . Thus, dealers in the same

tier have identical client masses and serve the same segment of clients on [k, k].
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Although the masses are the same, the composition need not be. To see this, consider the
buyer mass for a particular dealer in tier τ

µbτ =

∫ k∗τ,τ+1

k∗τ−1,τ

f̂(k)ντ,i(k)

k +ms
τ

dk. (E.6)

Suppose the equilibrium value is µbτ = a for some constant a. Fixing cutoffs k∗τ−1,τ , k∗τ,τ+1, and
ms
τ , a continuum of functions ντ,i(k) exist such that the right-hand side equals a.

The additional result that pbidτ,i = pbidτ,j , p
ask
τ,i (k) = paskτ,j , MDD

τ,i = MDD
τ,j for any two dealers

i and j ∈ Ωτ are direct implications from the fact buyer and seller value functions and client
masses are identical across dealers within the same tier.

Lemma E.4. Suppose dealers in tier τ specialize in buyers with switching rates in [k∗τ−1,τ , k
∗
τ,τ+1],

while dealers in tier τ + 1 specialize in [k∗τ,τ+1, k
∗
τ+1,τ+2]. Then, V s

τ+1 > V s
τ , µsτ+1 > µsτ , and

µbτ+1 > µbτ , where the subscript denotes the tiers of the dealers.

Proof. Lemma E.6 shows that δ − rV s
τ + uI(V

s
N + V s

τ µ
s
N ) > 0 for any dealer in tier τ . Using

(D.10) and Assumption 10, V s
τ+1 > V s

τ if and only if µsτ+1 > µsτ . Let us consider then µsτ+1 and
µsτ .

At k∗τ,τ+1 such that V̂ b
τ (k∗τ,τ+1) = V̂ b

τ+1(k∗τ,τ+1), it has to be that eτ,τ+1(k∗τ,τ+1) = 0. That is,

0 = (k∗τ,τ+1 + r)
(
µsτ − µsτ+1

) (
r + uIµ

b
N

)
−
(
r (uI − u)µsτ + k∗τ,τ+1uIµ

s
N

)
pτ+1gτ+1 +

(
r (uI − u)µsτ+1 + k∗τ,τ+1uIµ

s
N

)
pτgτ

> (k∗τ,τ+1 + r)
(
µsτ − µsτ+1

) (
r + uIµ

b
N

)
−
(
r (uI − u)µsτ + k∗τ,τ+1uIµ

s
N

)
µbτ+1 +

(
r (uI − u)µsτ+1 + k∗τ,τ+1uIµ

s
N

)
µbτ

= (k∗τ,τ+1 + r)
(
µsτ − µsτ+1

) (
r + uIµ

b
N

)
− k∗τ,τ+1uIµ

s
Nµ

b
τ+1 + k∗τ,τ+1uIµ

s
Nµ

b
τ (E.7)

The inequality uses the fact that

pτgτ =

∫ k∗τ,τ+1

k∗τ−1,τ

k∗τ,τ+1 + r + (u− uI)µsτ + uIµ
s
N

(k + r + (u− uI)µsτ + uIµsN )
µ̂bτ (k)dk >

∫ k∗τ,τ+1

k∗τ−1,τ

µ̂bτ (k)dk = µbτ

pτ+1gτ+1 =

∫ k∗τ+1,τ+2

k∗τ,τ+1

k∗τ,τ+1 + r + (u− uI)µsτ+1 + uIµ
s
N

(k + r + (u− uI)µsτ+1 + uIµsN )
µ̂bτ+1(k)dk <

∫ k∗τ+1,τ+2

k∗τ,τ+1

µ̂bτ+1(k)dk = µbτ+1

The equality in (E.7) uses µsτµ
b
τ+1 = µsτ+1µ

b
τ (which is implied by the interdealer constraint (8)).

The interdealer constraint also implies µbτ+1 =
µbN
µsN
µsτ+1 and µbτ =

µbN
µsN
µsτ . Substituting these into

the right-hand-side of (E.7), we get

0 >
(
µsτ − µsτ+1

) [
(k∗τ,τ+1 + r)

(
r + uIµ

b
N

)
+ k∗τ,τ+1uIµ

b
N

]
The expression in square brackets is positive. Thus,

0 >
(
µsτ − µsτ+1

)
.

In turn, µsτ+1 > µsτ implies µbτ+1 > µbτ since µbi =
µbN
µsN
µsi .

Lemma E.5. A ≡ uIV s
N

(
r + uIµ

b
N

)
+ uIδ

(
µbN − µsN

)
+
(
x− uIV ob

N

)
(r + uIµ

s
N ) 6= 0.
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Proof. We prove by contradiction. Suppose

A ≡ uIV s
N

(
r + uIµ

b
N

)
+ uIδ

(
µbN − µsN

)
+
(
x− uIV ob

N

)
(r + uIµ

s
N ) = 0. (E.8)

From (D.7), V s
τ,i differ across dealers only if gτ,i differ across dealers. The derivative of the

right-hand side of (D.7) with respect to gτ,i is

(u− uI)
(
uIV

s
N

(
r + uIµ

b
N

)
+ uIδ

(
µbN − µsN

)
+
(
x− uIV ob

N

)
(r + uIµ

s
N )
)(

r + gτ,iru− gτ,iruI + uIµbN + gτ,i (u− uI)uIµsN
)

2

=
(u− uI)A(

r + gτ,iru− gτ,iruI + uIµbN + gτ,i (u− uI)uIµsN
)

2

Thus, since per our conjecture A = 0 , V s
τ,i do not differ across dealers (even if gτ,i differ across

dealers). Let V̂ s define the common V s
τ,i : V̂ s ≡ V s

τ,i for all τ and i. Using these implications,

(D.7), and (D.5) and solving for V̂ s, we get that for any dealer i in any tier τ

V̂ s =
δ

r
− 1

r

x

1 + (u− uI) gτ,i + uIgN
, (E.9)

where gN ≡
∑
j∈N

gj . Eq. (E.9) shows that gτ,h has to be the same across dealers also. Plugging

(E.9) and (D.5) back into the right-hand-side of (E.8),

A = x
r +

[
uIµ

b
N − (uI − u)(r + uIµ

s
N )gτ,i

]
1 + (u− uI) gτ,i + uIgN

Consider the expression in square brackets. Since gτ,i is the same across tiers, we can take the
tier τ such that µsτ ≤ µsτ ′ for all τ ′ and express it as[

uIµ
b
N − (r + uIµ

s
N ) (uI − u) gτ,i

]
= µsN

[
uI
µbN
µsN
− 1

µsN
(r + uIµ

s
N ) (uI − u) gτ,i

]
= µsN

[
uI
µbτ
µsτ
− 1

µsN
(r + uIµ

s
N ) (uI − u) gτ,i

]
=

1

µsτ

[
uIµ

b
τµ

s
N − µsτ (r + uIµ

s
N ) (uI − u) gτ,i

]
=

1

µsτ

∫ k

k

(
uIµ

s
N −

µsτ (r + uIµ
s
N ) (uI − u)

k + r + (u− uI)µsτ + uIµsN

)
f(k)ντ,i(k)

k + λdµsN
dk

=
1

µsτ

∫ k

k

kuIµ
s
N + r ((u− uI)µsτ + uIµ

s
N ) + uIµ

s
N (2uµsτ + uI (µsN − 2µsτ ))

k + r + (u− uI)µsτ + uIµsN

f(k)ντ,i(k)

k + λdµsN
dk

Since µsN − 2µsτ = (µsN − µsτ ) − µsτ = µsNτ − µ
s
τ and µsτ ′ ≥ µsτ for all τ ′, we have that uIµ

b
N −

(r + uIµ
s
N ) (uI − u) gτ,i > 0. Thus, A is strictly positive, and (E.8) is a contradiction.

Lemma E.6. δ − rV s
τ,i + uI(V

s
N + V s

τ,iµ
s
N ) ≥ 0 for any dealer i in tier τ .

Proof. Rearranging (D.7),

(uI − u) gτ,i
((
δ − rV s

τ,i

)
+ uI(V

s
N − µsNV s

τ,i)
)

= (δ − x)− rV s
τ,i + uIV

ob
N − V s

τ,iuIµ
b
N

Thus, the sign of δ − rV s
τ,i + uI(V

s
N + V s

τ,iµ
s
N ) depends on the sign of (δ − x)− rV s

τ,i + uIV
ob
N −
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V s
τ,iuIµ

b
N . Rearranging (D.6), we get

(uI − u)

∫ k

k

(
V̂ ob
τ,i − V s

τ,i

)
µ̂bτ,i(k) = δ − x− rV s

τ,i + uIV
ob
N − uIµbNV s

τ,i

On the left-hand-side, V̂ ob
τ,i −V s

τ,i is the gains from trade, which is nonnegative. Thus, δ−rV s
τ,i+

uI(V
s
N + V s

τ,iµ
s
N ) ≥ 0.
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F Equilibrium Uniqueness

Proposition F.1. Suppose λd = λdd, η = 2 is the number of tiers, n1 ≥ 1 and n2 ≥ 1 are
the number of dealers in tiers 1 and 2. A unique semi-asymmetric equilibrium exists for any
number of dealers in each tier.

Proof. In a two-tier structure, the market clearing and interdealer conditions are

c =
(
n1µ

b
1 + n2µ

b
2

)
− (n1µ

s
1 + n2µ

s
2) (F.1)

µs1µ
b
2 = µs2µ

b
1 (F.2)

where c ≡
∫ k̄
k f(k) 1

kdk − S > 0 is a constant and µbi and µsi denote the buyer and seller masses

of an individual dealer in tier i ∈ {1, 2}. Solving for µb1 and µb2 from (F.1) and (F.2), we get:

µb1 =
µs1 (c+ n1µ

s
1 + n2µ

s
2)

n1µs1 + n2µs2

µb2 =
µs2 (c+ n1µ

s
1 + n2µ

s
2)

n1µs1 + n2µs2

Using the definitions of µb1 and µb2, we have a system of two equations that characterize µs1 and
µs2 as implicit functions of k∗.∫ k∗

k

f(k)

k + λ11µs1 + λ12µs2
ν1,i(k)dk =

µs1 (c+ n1µ
s
1 + n2µ

s
2)

n1µs1 + n2µs2
(F.3)

∫ k

k∗

f(k)

k + λ21µs1 + λ22µs2
ν2,j(k)dk =

µs2 (c+ n1µ
s
1 + n2µ

s
2)

n1µs1 + n2µs2
(F.4)

where c ≡
∫ k̄
k f(k) 1

kdk − S > 0, where λ11 ≡ λd + (n1 − 1)λdd, λ12 ≡ n2λdd, λ21 ≡ n1λdd,

λ22 = λd + λdd (n2 − 1). Then, µs1, µs2, and the cutoff k∗ are the solution to a system of three
equations: (F.3), (F.4), and

e ≡(k∗ + r) (µs1 − µs2)
(
r + uIµ

b
N

)
(F.5)

+ (r (uI − u)µs1 + k∗uIµ
s
N ) p2g2 + (r (uI − u)µs2 + k∗uIµ

s
N ) p1g1 = 0

where pi = r + k∗ + (u− uI) + uIµ
s
N for i ∈ {1, 2}. Equations (F.3) and (F.4) characterize µs1

and µs2 as implicit functions of k∗. Then, to show that (F.5) has a unique solution in k∗, it is
sufficient to show that

∂e(k∗, µs1, µ
s
2)

∂k∗
=
∂e(k∗, µs1, µ

s
2)

∂k∗
+
∂e(k∗, µs1, µ

s
2)

∂µs1

∂µs1(k∗)

∂k∗
+
∂e(k∗, µs1, µ

s
2)

∂µs2

∂µs2(k∗)

∂k∗
> 0 (F.6)

In Lemmas F.1, F.2, and F.3, we show that ∂e0
∂k∗ > 0, ∂e0

∂µs1
> 0, and ∂e0

∂µs2
< 0, respectively. Put

together with
∂µs1
∂k∗ > 0 and

∂µs2
∂k∗ < 0 from Lemma F.4, we have (F.6).

Lemma F.1. ∂e
∂k∗ > 0 for any λd, λdd, z, and zdd.
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Proof. Taking the partial derivative of the left-hand side of (F.5) with respect to k∗, we get

∂e

∂k∗
= (µs1 − µs2)

(
r + uIµ

b
N

)
+ (uIµ

s
N ) (p1g1 − p2g2) (F.7)

+ (r (uI − u)µs2 + k∗uIµ
s
N ) g1 − (r (uI − u)µs1 + k∗uIµ

s
N ) g2 (F.8)

+ (r (uI − u)µs2 + k∗uIµ
s
N ) p1

∂g1

∂k∗
− (r (uI − u)µs1 + k∗uIµ

s
N ) p2

∂g2

∂k∗
(F.9)

where
∂g1

∂k∗
=

f (k∗) ν1,h (k∗)

r
(
k∗ + (u− uI)µs1 + uIµsN

) (
k∗ + (λd − λdd)µs1 + λddµsN

)
∂g2

∂k∗
= −

f (k∗) ν2,h (k∗)

r
(
k∗ + (u− uI)µs2 + uIµsN

) (
k∗ + (λd − λdd)µs2 + λddµsN

)
Since ∂g1

∂k∗ > 0 and ∂g2
∂k∗ < 0, the third row (F.9) is positive. Consider the combination of the

first two rows (F.7) and (F.8) . From (F.5),

(µs1 − µs2)
(
r + uIµ

b
N

)
=
− (r (uI − u)µs2 + k∗uIµ

s
N ) p1g1 + (r (uI − u)µs1 + k∗uIµ

s
N ) p2g2

r + k∗

Substitute this into the first two rows and simplify to get:

(g1 − g2)
(
r (u− uI) 2µs1µ

s
2 + uI

(
(k∗)2 + 2k∗r + r (r + (u− uI) (µs1 + µs2))

)
µsN + ru2

I (µsN ) 2
)

k∗ + r

This is positive. Thus, ∂e
∂k∗ > 0.

Lemma F.2. Suppose λd = λdd, then ∂e
∂µs1

> 0.

Proof. When λd = λdd, the aggregate seller mass µsN does not depend on the system of dealer
choices {ντ,j(k)} for tiers τ ∈ {1, 2} and j ∈ Ωτ . To see this, write the aggregate buyer mass as

µbN =
∑
i∈Ω1

µb1,i +
∑
i∈Ω2

µb2,i

=

∫ k∗

k

f(k)

k + λdµsN

∑
i∈Ω1

ν1,i(k)

 dk +

∫ k

k∗

f(k)

k + λdµsN

∑
i∈Ω2

ν2,i(k)

 dk
=

∫ k∗

k

f(k)

k + λdµsN
dk +

∫ k

k∗

f(k)

k + λdµsN
dk

=

∫ k

k

f(k)

k + λdµsN
dk.

Thus, the aggregate buyer mass µbN does not depend on the system of clients’ dealer choices
{ντ,j(k)}, but depends only on µsN . Then, plugging this into the market clearing condition
(C.3), ∫ k

k

1

k
f(k)dk −

∫ k

k

f(k)

k + λdµsN
dk + µsN = S, (F.10)

(F.10) pins down µsN . Since (F.10) does not depend on dealer choices {ντ,j(k)}, µsN also does
not depend on dealer choices. Derivatives of µbN and µsN with respect to the cutoff, k∗, as a
result, are zero.
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Taking the partial derivative of the left-hand side of (F.5) with respect to µs1, we get

∂e

∂µs1
= (r + k∗)

(
r + uIµ

b
N

)
− r (uI − u) p2g2 (F.11)

+ (r (uI − u)µs2 + k∗uIµ
s
N ) (uI − u)

(
−g1 + p1

∂g1

∂µs1

)
(F.12)

where ∂g1
∂µs1

> 0:

∂g1

∂µs1
=

∂

∂µs1

∫ k∗

k

1

k + r + (u− uI)µs1 + uIµsN

f(k)ν1,i(k)

k + λdµsN
dk

= (uI − u)

∫ k∗

k

1(
k + r − (uI − u)µs1 + uIµsN

)2 f(k)ν1,i(k)

k + λdµsN
dk

Consider the first row, (F.11):

(r + k∗)
(
r + uIµ

b
N

)
− r (uI − u) p2g2 = (r + k∗) r + k∗uIµ

b
N + ruI

(
µbN − p2g2

)
+ rup2g2.

To show that right-hand-side is positive, consider the expression µbN − p2g2 > 0:

µbN − p2g2 > µb2 − p2g2

=

∫ k

k∗

f(k)ν2,h(k)

k + λdµsN
dk − p2

∫ k

k∗

f(k)ν2,h(k)(
k + r + (u− uI)µs2 + uIµsN

) (
k + λdµsN

) dk
=

∫ k

k∗

(
1−

k∗ + r + (u− uI)µs2 + uIµ
s
N

k + r + (u− uI)µs2 + uIµsN

)
f(k)ν2,h(k)

k + λdµsN
dk.

Since k∗ < k, this is positive. Thus, (F.11) is positive.
To see the sign of the second row (F.12), consider −g1 + p1

∂g1
∂µs1

:

− g1 + p1
∂g1

∂µs1

= −
∫ k∗

k

f(k)ν1,h(k)(
k + r − (uI − u)µs1 + uiµsN

) (
k + λdµsN

)dk
+

∫ k∗

k

k∗ + r − (uI − u)µs1 + uIµ
s
N

k + r − (uI − u)µs1 + uiµsN

f(k)ν1,h(k)(
k + r − (uI − u)µs1 + uIµsN

) (
k + λdµsN

)dk
=

∫ k∗

k

(
−1 +

k∗ + r − (uI − u)µs1 + uIµ
s
N

k + r − (uI − u)µs1 + uIµsN

)
f(k)ν1,h(k)(

k + r − (uI − u)µs1 + uIµsN
) (
k + λdµsN

)dk
=

∫ k∗

k

(
k∗ − k

k + r − (uI − u)µs1 + uiµsN

)
f(k)ν1,h(k)(

k + r − (uI − u)µs1 + uIµsN
) (
k + λdµsN

)dk
This is positive. Thus, ∂e

∂µs1
> 0.

Lemma F.3. Suppose λd = λdd, then ∂e
∂µs2

< 0.
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Proof. Taking the partial derivative of the left-hand side of (F.5) with respect to µs2, we get

∂e

∂µs2
=− (r + k∗)

(
r + uIµ

b
N

)
+ r (uI − u) p1g1 + (r (uI − u)µs1 + k∗uIµ

s
N ) (uI − u) g2 (F.13)

− (r (uI − u)µs1 + k∗uIµ
s
N ) (uI − u) p2

∂g2

∂µs2
, (F.14)

where ∂g2
∂µs2

is positive:

∂g2

∂µs2
=

∂

∂µs2

∫ k

k∗

1

k + r + (u− uI)µs2 + uIµsN

f(k)ν2,h(k)

k + λdµsN
dk

= (uI − u)

∫ k

k∗

1(
k + r − (uI − u)µs2 + uIµsN

)2 f(k)ν2,h(k)

k + λdµsN
dk.

From (D.7), V s
2 > V s

1 implies that g2 < g1 . Then, using g2 < g1, the first row (F.13) is less
than

− (r + k∗)
(
r + uIµ

b
N

)
+ r (uI − u) p1g1 + (r (uI − u)µs1 + k∗uIµ

s
N ) (uI − u) g1

= − (r + k∗)
[
r + uIµ

b
N − (r + uIµ

s
N ) (uI − u) g1

]
Consider now the sign of

[
uIµ

b
N − (r + uIµ

s
N ) (uI − u) g1

]
[
uIµ

b
N − (r + uIµ

s
N ) (uI − u) g1

]
= µsN

[
uI
µbN
µsN
− 1

µsN
(r + uIµ

s
N ) (uI − u) g1

]
= µsN

[
uI
µb1
µs1
− 1

µsN
(r + uIµ

s
N ) (uI − u) g1

]
=

1

µs1

[
uIµ

b
1µ

s
N − µs1 (r + uIµ

s
N ) (uI − u) g1

]
=

1

µs1

∫ k∗

k

(
uIµ

s
N −

µs1 (r + uIµ
s
N ) (uI − u)

k + r + (u− uI)µs1 + uIµsN

)
f(k)ν1,i(k)

k + λdµsN
dk

=
1

µs1

∫ k∗

k

kuIµ
s
N + r ((u− uI)µs1 + uIµ

s
N ) + uIµ

s
N (2uµs1 + uI ((n1 − 1)µs1 + n2µ

s
2 − µs1))

k + r + (u− uI)µs1 + uIµsN

f(k)ν1,i(k)

k + λdµsN
dk

Since n2 ≥ 1 and µs2 > µs1, we have that uIµ
b
N − (r + uIµ

s
N ) (uI − u) g1 > 0. Thus, the first row

(F.13) is negative. The second row (F.14) is also negative. Put together, ∂e0
∂µs2

< 0.

Lemma F.4. Suppose λdd ≥ λd. Then,
∂µs1
∂k∗ > 0 and

∂µs2
∂k∗ < 0.

Proof. Lemma C.1 showed that the following system of two equations characterize µs1 and µs2
as implicit functions of k∗.∫ k∗

k

1

k + λ11µs1 + λ12µs2
ν1(k)dk =

µs1 (c+ n1µ
s
1 + n2µ

s
2)

n1µs1 + n2µs2
(F.15)

∫ k

k∗

1

k + λ21µs1 + λ22µs2
ν2(k)dk =

µs2 (c+ n1µ
s
1 + n2µ

s
2)

n1µs1 + n2µs2
(F.16)
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where λ11 ≡ λd + (n1 − 1)λdd, λ12 ≡ n2λdd, λ21 ≡ n1λdd, λ22 = λd + λdd (n2 − 1). I will use
the following distribution ν1(k) = 1

n1
and ν2(k) = 1

n2
.

Taking the derivative of both sides of (F.15) and (F.16) with respect to k∗, we get a linear
system of equations(

(µsN ) 2 (1 + b1λ11) + cn2µ
s
2

) ∂µs1
∂k∗

+
(
b1 (µsN ) 2λ12 − cn2µ

s
1

) ∂µs2
∂k∗

= f1 (µsN ) 2 (F.17)

(
b2 (µsN ) 2λ21 − cn1µ

s
2

) ∂µs1
∂k∗

+
(
(µsN ) 2 (1 + b2λ22) + cn1µ

s
1

) ∂µs2
∂k∗

= −f2 (µsN ) 2 (F.18)

where

f1 ≡
f (k∗) ν1,h (k∗)

k∗ +ms
1

f2 ≡
f (k∗) ν2,h (k∗)

k∗ +ms
2

b1 ≡
∫ k∗

k

1

(k + λ11µs1 + λ12µs2)2 ν1(k)dk (F.19)

b2 ≡
∫ k

k∗

1

(k + λ21µs1 + λ22µs2)2 ν2(k)dk (F.20)

Solving for
∂µs1
∂k∗ and

∂µs2
∂k∗ from (F.17) and (F.18), we get

∂µs1
∂k∗

=

(
(1 + b2λ22) (µsN ) 2 + cn1µ

s
1

) f(k∗)
n1

k∗+ms1
+
(
b1n2λdd (µsN ) 2 − cn2µ

s
1

) f(k∗)
n2

k∗+ms2

D
(F.21)

∂µs2
∂k∗

= −

(
(1 + b1λ11) (µsN ) 2 + cn2µ

s
2

) f(k∗)
n2

k∗+ms2
+ n1

(
b2λdd (µsN ) 2 − cµs2

) f(k∗)
n1

k∗+ms1

D
(F.22)

where

D ≡
(
(µsN ) 2 (1 + b1λ11) + cn2µ

s
2

) (
(µsN ) 2 (1 + b2λ22) + cn1µ

s
1

)
(F.23)

−
(
b1 (µsN ) 2λ12 − cn2µ

s
1

) (
b2 (µsN ) 2λ21 − cn1µ

s
2

)
.

Consider next the numerator in (F.21). It can be expressed as 1
f(k∗) (k∗ +ms

1) (k∗ +ms
2)

times

λdd (µsN ) 2 (k∗ +ms
1) b1 +

(µsN ) 2 (k∗ +ms
2)λ22

n1
b2 +

(µsN ) 2 (k∗ +ms
2)

n1
− c (ms

1 −ms
2)µs1 (F.24)

The last term in (F.24) can be written as−c (ms
1 −ms

2)µs1 = −µbNms
1µ

s
1+µbNm

s
2µ

s
1+µsN (ms

1 −ms
2)µs1.

Thus, all the terms except for−µbNms
1µ

s
1 is positive. If we combine−µbNms

1µ
s
1 with λdd (µsN ) 2 (k∗ +ms

1) b1
in (F.24), we get

λdd (µsN ) 2 (k∗ +ms
1) b1 −ms

1µ
s
1µ

b
N

= µsN

(
λddµ

s
N (k∗ +ms

1) b1 −ms
1µ

s
1

µbN
µsN

)
= µsN

∫ k∗

k

λddµ
s
N (k∗ +ms

1)−ms
1 (k +ms

1)

k + λ11µs1 + λ12µs2

f(k)ν1,h(k)

k + λ11µs1 + λ12µs2
dk
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This is positive since k∗ ≥ k and, for λdd ≥ λd, λddµ
s
N ≥ ms

1. Thus, combined with the result

that D > 0 shown in Lemma F.5,
∂µs1
∂k∗ > 0.

Consider now the numerator in (F.22). It can be expressed as 1
f(k∗) (k∗ +ms

1) (k∗ +ms
2)

times

−
(

(µsN ) 2 (k∗ +ms
1)λ11

n2
b1 + (µsN ) 2 (k∗ +ms

2)λddb2 +
(µsN ) 2 (k∗ +ms

1)

n2
+ c (ms

1 −ms
2)µs2

)
For λdd ≥ λd, ms

1 − ms
2 ≥ 0. Thus, together with the result D > 0 shown in Lemma F.5,

∂µs1
∂k∗ < 0.

Lemma F.5. D > 0, where D is given in (F.23).

Proof. Dividing by (µsN ) 2 and grouping terms with b1 and b2, D

(µsN)2
is

D(
µsN
)

2
=
(
µbNn1m

s
1 + µsN (µsNλ11 − n1m

s
1)
)
b1 +

(
µbNn2m

s
2 + µsN (µsNλ22 − n2m

s
2)
)
b2

+ (λ22λ11 − λ21λ12) (µsN ) 2b1b2 + µsNµ
b
N

where ms
1 = λ11µ

s
1+λ12µ

s
2 and ms

2 = λ21µ
s
1+λ22µ

s
2. Simplifying further and using the interdealer

condition µbi = µsi
µbN
µsN

,

D(
µsN
)

2
= (F.25)

µsN
µs2

(
µb2n1m

s
1 +

1

2
µs2 (λ22λ11 − λ21λ12)µsNb2

)
b1

+
µsN
µs1

(
µb1n2m

s
2 +

1

2
µs1 (λ22λ11 − λ21λ12)µsNb1

)
b2 (F.26)

+ µsN

(
n1µ

b
1 − (λdd − λd)n2µ

s
2b1 + n2µ

b
2 − (λdd − λd)n1µ

s
1b2

)
Using µb1 ≡

∫ k∗
k

1

(k+λ11µs1+λ12µs2)
ν1,h(k)f(k)dk and b1 ≡

∫ k∗
k

1

(k+λ11µs1+λ12µs2)
2 ν1,h(k)f(k)dk,

the expression µb1n2m
s
2 + 1

2µ
s
1 (λ22λ11 − λ21λ12)µsNb1 in (F.26) can be expressed as:

µb1n2m
s
2 +

1

2
µs1 (λ22λ11 − λ21λ12)µsNb1 =

=

∫ k∗

k

(
n2m

s
2 −

1

2
µs1µ

s
N (λ22λ11 − λ21λ12)

1

k +ms
1

)
ν1,h(k)f(k)

k +ms
1

dk

=

∫ k∗

k

(
2ms

1m
s
2n2 + (−λ22λ11 + λ21λ12)µs1µ

s
N

2 (k +ms
1)

+
kms

2n2

k +ms
1

)
ν1,h(k)f(k)

k +ms
1

dk

=
2ms

1m
s
2n2 + (−λ22λ11 + λ21λ12)µs1µ

s
N

2
b1 +

∫ k∗

k

kms
2n2

k +ms
1

ν1,h(k)f(k)

k +ms
1

dk
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Substituting this back to (F.25), (F.25) becomes

D(
µsN
)

2
= (F.27)[

µb2n1m
s
1 + 1

2µ
s
2 (λ22λ11 − λ21λ12)µsNb2

µs2
+

2ms
1m

s
2n2 + (λ21λ12 − λ22λ11)µs1µ

s
N

2µs1
b2

]
b1

+
1

µs1
b2

∫ k∗

k

kms
2n2

k +ms
1

f(k)

k + λdµs1 + λddµs2
dk

+ n1µ
b
1 − (λdd − λd)n2µ

s
2b1 + n2µ

b
2 − (λdd − λd)n1µ

s
1b2

Consider the expression inside the square bracket in (F.27). Using the definitions of ms
1,

ms
2, and µsN , it simplifies to

n1m
s
1

µs2
µb2 +

n2λ21λ11 (µs1) 2 + n2 (λ22λ11 + λ21λ12)µs1µ
s
2 + n2λ22λ12 (µs2) 2

µs1
b2

=

∫ k

k∗

(λ11µ
s
1 + λ12µ

s
2) (kn1µ

s
1 + (n1µ

s
1 + n2µ

s
2) (λ21µ

s
1 + λ22µ

s
2))

µs1µ
s
2 (k + λ21µs1 + λ22µs2)2 ν2(k)dk,

where the equality arises from using

µb2 ≡
∫ k

k∗

1

(k + λ21µs1 + λ22µs2)
ν2(k)d

and

b2 ≡
∫ k

k∗

1

(k + λ21µs1 + λ22µs2)2 ν2(k)dk

and rearranging. Thus, the first row in (F.27) is strictly positive.

Consider next the third row of (F.27). Using µb1 ≡
∫ k∗
k

1

(k+λ11µs1+λ12µs2)
ν1,h(k)dk and b1 ≡∫ k∗

k
1

(k+λ11µs1+λ12µs2)
2 ν1,h(k)dk and rearranging, n1µ

b
1 − (λdd − λd)n2µ

s
2b1 is

n1µ
b
1 − (λdd − λd)n2µ

s
2b1

=

∫ k∗

k

kn1 + n1 (λd + (n1 − 1)λdd)µs1 + n2 (λd + (n1 − 1)λdd)µs2
(k + λ11µs1 + λ12µs2)2 ν1,h(k)dk

Since n1 ≥ 1, n1µ
b
1 − (λdd − λd)n2µ

s
2b1 > 0. Analogously, using µb2 ≡

∫ k
k∗

1

(k+λ21µs1+λ22µs2)
ν2(k)d

and b2 ≡
∫ k
k∗

1

(k+λ21µs1+λ22µs2)
2 ν2(k)dk and rearranging, n2µ

b
2 − (λdd − λd)n1µ

s
1b2 is

n2µ
b
2 − (λdd − λd)n1µ

s
1b2

=

∫ k

k∗

kn2 + n1 (λd + (n2 − 1)λdd)µs1 + n2 (λd + (n2 − 1)λdd)µs2
(k + λ21µs1 + λ22µs2)2 ν2(k)dk

This is also positive. Put together, D is strictly positive (and this is regardless of λdd ≥ λd or
λdd < λd).
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G Proofs of Section 3-5 Results and Additional Discussion

Proof of Theorem 2. Consider two dealers indexed i and j where µsi − µsj > 0. Given that
dealer i has a larger buyer and seller client mass than dealer j, it is straightforward to see that
MD
i > MD

j .

Consider the interdealer volume, MDD
i . Due to the interdealer constraints (8), the first and

the second terms in (5) are equal. Hence, MDD
i is the twice the first term:

MDD
i = 2λddµ

s
i

∑
j∈Ni

µbj

 .

Using the fact that µbi = µsi
µbN
µsN

,

MDD
i = 2λddµ

s
i

∑
j∈Ni

µsj

 µbN
µsN

= 2λddµ
s
iµ
s
Ni

µbN
µsN

. (G.1)

Thus, the sign of MDD
i −MDD

j depends on the sign of:

µsiµ
s
Ni − µ

s
jµ
s
Nj

= µsi

(
µsj + µsN/{i,j}

)
− µsj

(
µsi + µsN/{i,j}

)
=
(
µsi − µsj

)
µsN/{i,j}.

Since µsi − µsj > 0, we have that MDD
i −MDD

j > 0.
These results also apply to the semi-asymmetric equilibrium. Since µsτ+1,i > µsτ,j for any

dealer i ∈ Ωτ+1 and j ∈ Ωτ , it follows that MD
τ+1,i > MD

τ,j and MDD
τ+1,i > MDD

τ,j .

Proof of Proposition 1. This proposition highlights the cost associated with choosing a dealer
that offers better liquidity. Consider the cost first for the parameter range λd ≥ λdd. From
(C.20),

V b
τ (k) =

ms
τ

r + k +ms
τ

[
r

r + k

δ

r
+

k

r + k
V s
τ − paskτ (k)

]
Solving for (r + k)p̄ask

τ (k), we get

(r + k)p̄ask
τ (k) = −(r + k)

(
r + k

ms
τ

+ 1

)
V̂ b
τ (k) + kV s

τ + δ

≤ −(r + k)

(
r + k

ms
τ+1

+ 1

)
V̂ b
τ (k) + kV s

τ + δ

The inequality uses the fact that ms
τ ≤ ms

τ+1 when λd ≥ λdd (see below results on execution
speed for more detail).

Taking the difference in prices, we get

(r + k)
(
p̄ask
τ+1(k)− p̄ask

τ (k)
)

≥ −(r + k)

(
r + k

ms
τ+1

+ 1

)
V̂ b
τ+1(k) + kV s

τ+1 + (r + k)

(
r + k

ms
τ+1

+ 1

)
V̂ b
τ (k)− kV s

τ

= −
(
r + k

ms
τ+1

+ 1

)
(r + k)

(
V̂ b
τ+1(k)− V̂ b

τ (k)
)

+ k
(
V s
τ+1 − V s

τ

)
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Using (D.11) and rearranging,

(r + k)
(
p̄ask
τ+1(k)− p̄ask

τ (k)
)

≥

k − (r + k +ms
τ+1

ms
τ+1

) [(
k∗τ,τ+1 + r

)
pτ (k)wτ+1(k)− (k + r)pτ (k∗τ,τ+1)wτ+1(k∗τ,τ+1)

](
k∗τ,τ+1 + r

)
pτ (k)pτ+1(k)


×
(
V s
τ+1 − V s

τ

)
=

B

ms
τ+1

(
k∗τ,τ+1 + r

)
pτ (k)pτ+1(k)

(
V s
τ+1 − V s

τ

)
where

B ≡ kms
τ+1

(
k∗τ,τ+1 + r

)
pτ (k)pτ+1(k)

−
(
r + k +ms

τ+1

) [(
k∗τ,τ+1 + r

)
pτ (k)wτ+1(k)− (k + r)pτ (k∗τ,τ+1)wτ+1(k∗τ,τ+1)

]
At the limit r → 0, B is kk∗τ,τ+1 times

(uµsτ + uI (µsN − µsτ ))
(
uµsτ+1 + uI

(
µsN − µsτ+1

)) (
λdµ

s
τ+1 + λdd

(
µsN − µsτ+1

))
+ k∗τ,τ+1uIµ

s
N

(
λdµ

s
τ+1 + λdd

(
µsN − µsτ+1

))
+ k2

(
(λd − λdd)µsτ+1 + (λdd − uI)µsN

)
+ k

(
k∗τ,τ+1uIµ

s
N +

(
u
(
µsτ + µsτ+1

)
+ uI

(
µsN − µsτ − µsτ+1

)) (
λdµ

s
τ+1 + λdd

(
µsN − µsτ+1

)))
This is strictly positive. Since V s

τ+1 − V s
τ > 0, p̄ask

τ+1(k) − p̄ask
τ (k) > 0 for all k ∈ [k, k] and

τ ∈ {1, 2, ..., η − 1}.
If the parameter range is instead λd < λdd, then p̄ask

τ+1(k)− p̄ask
τ (k) > 0 does not necessarily

hold. The cost associated with choosing a high liquidity dealer is instead worse execution speed.
To see this, from (19), the difference in the execution speed across any two dealers i and j is

ms
i −ms

j = −(λdd − λd)
(
µsi − µsj

)
from the perspective of a buyer client and

mb
i −mb

j = −(λdd − λd)
(
µbi − µbj

)
from the perspective of a seller client. Thus, when λd < λdd, the dealer with a larger client mass
offers worse execution speed than a dealer with a smaller client mass. The dealers with larger
client masses are the dealers with better overall liquidity, V s

τ , (this is true regardless of the
parameter values). Put together, the dealers with better overall liquidity offer worse execution
speed. Thus, for the parameter range λd < λdd, buyers tradeoff execution speed versus overall
liquidity.

Proof of Proposition 2. Using (C.8)

P aski,d ≡ Ebd
[
P̂i,d(k)

]
=

1

2
V s
i

∫ k

k

µ̂bj(k)

µbj
+

1

2

∫ k

k

µ̂bd(k)

µbd
(V o
d (k)− V b

d (k)).

=
1

2
V s
i +

1

2
Ebd

[
V ob
d (k)

]
. (G.2)

Since V s
c > V s

p ,

P askc,d > P askp,d .
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Thus, a dealer buys an asset at a higher ask-price from a core dealer than from a peripheral
dealer.

Now consider the price an arbitrary dealer d sells back to dealer i

P bidd,i =
1

2
V s
d +

1

2

∫ k

k

µ̂bi(k)

µbb
V ob
i (k). (G.3)

=
1

2
V s
d +

1

2
EbiV

ob
i . (G.4)

Since core dealer’s clients are high k-buyers, and high k-buyers have low reservation values,
Ebc
[
V o
c (k)− V b

c (k)
]
< Ebp

[
V o
p (k)− V b

p (k)
]
. Thus,

P bidd,c < P bidd,p

Combining the two, the core dealer charges a wider bid-ask spread:

P askc − P bidc
0.5P askc + 0.5P bidc

>
P askp − P bidp

0.5P askp + 0.5P bidp
.

The results on execution speed and volume are straightforward implications from the difference
in client sizes across dealers.

Proof of Proposition 3. Integrating the value functions over the respective client masses
yields:

r

∫ k

k
V o
i (k)µ̂oi (k)dk = δ

∫ k

k
µ̂oi (k)dk + k

∫ k

k
(V s
i − V o

i (k)) µ̂oi (k)dk.

r

∫ k

k
V b
i (k)µ̂bi(k) =

∫ k

k
k
(

0− V b
i (k)

)
µ̂bi(k)dk

+

∫ k

k

∑
j∈N

λijµ
s
jzij

(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk.

rV s
i µ

s
i = (δ − x)µsi +

∑
j∈N

(∫ k

k
λijµ

s
i µ̂
b
j(k)zij

(
V o
j (k)− V b

j (k)− V s
i

))
.

Adding these up, plus the new entrants expected utility
∫ k
k V

b
i (k)f̂(k)νi(k)dk and dealer profits

62



rWD
i , we get

r(WC
i +WD

i ) =δ

∫ k

k
µ̂oi (k)dk +

∫ k

k
k (V s

i − V o
i (k)) µ̂oi (k)dk

+

∫ k

k
k
(

0− V b
i (k)

)
µ̂bi(k)dk

+

∫ k

k

∑
j∈N

λijµ
s
jzij

(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk

+ (δ − x)µsi +
∑
j∈N

(∫ k

k
λijµ

s
i µ̂
b
j(k)zij

(
V o
j (k)− V b

j (k)− V s
i

))

+

∫ k

k
V b
i (k)f̂(k)νi(k)dk

+

∫ k

k
λijµ̂

b
i(k)µsi (1− 2z)

(
V o
i (k)− V b

i (k)− V s
i

)
dk

+
∑
j∈Ni

(∫ k

k
λijµ̂

b
i(k)µsj

(
1− 2zdd

2

)(
V o
i (k)− V b

i (k)− V s
j

)
dk

)

+
∑
j∈Ni

(∫ k

k
λijµ̂

b
j(k)µsi

(
1− 2zdd

2

)(
V o
j (k)− V b

j (k)− V s
i

)
dk

)
.

Simplifying it and replacing µ̂bi(k) and µ̂oi (k) with µ̂bi(k) = f̂(k)νi(k)
k+msi

and µ̂oi (k) =
f̂(k)νi(k)msi
k(k+msi )

, we

get

r(WC
i +WD

i ) =δ

∫ k

k

f̂(k)νi(k)ms
i

k (k +ms
i )
dk +

∫ k

k
(V s
i − V o

i (k))
f̂(k)νi(k)ms

i

(k +ms
i )

dk.

+

∫ k

k
k
(

0− V b
i (k)

) f̂(k)νi(k)

k +ms
i

dk

+

∫ k

k
λµsi

(
V o
i (k)− V b

i (k)− V s
i

)
µ̂bi(k)dk

+

∫ k

k

∑
j∈Ni

λijµ
s
j(

1

2
)
(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk

+ (δ − x)µsi +
∑
j∈Ni

(∫ k

k
λijµ

s
i µ̂
b
j(k)(

1

2
)
(
V o
j (k)− V b

j (k)− V s
i

))

+

∫ k

k
V b
i (k)f̂(k)νi(k)dk.

Adding the second term in the first row, the first term in the second row and the very last term,
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we get

r(WC
i +WD

i ) =δ

∫ k

k

f̂(k)νi(k)ms
i

k (k +ms
i )
dk − λµsiN

∫ k

k

(
V o
i (k)− V b

i (k)− V s
i

)
µ̂bi(k)dk.

+ λµsi

∫ k

k

(
V o
i (k)− V b

i (k)− V s
i

) f̂(k)νi(k)

k +ms
i

dk

+

∫ k

k

∑
j∈Ni

λijµ
s
j(

1

2
)
(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk

+ (δ − x)µsi +
∑
j∈Ni

(∫ k

k
λijµ

s
i µ̂
b
j(k)(

1

2
)
(
V o
j (k)− V b

j (k)− V s
i

))
.

Summing across all dealers i ∈ N and using the fact µbi = µsi
µbN
µsN

, all the expressions involving

V ’s cancel. We are left with:

∑
i∈N

(
δ

∫ k

k

f̂(k)νi(k)ms
i

k (k +ms
i )
dk + (δ − x)µsi

)
=
∑
i∈N

(δ(si − µsi ) + (δ − x)µsi )

= δS − xµsN ,

where the second equality comes from the market clearing condition.

G.1 Dealer Interconnectedness

Interconnectedness affects dealer profits and clients’ welfare as follows. Because introducing
the interdealer market lengthens the average intermediation chain, the effects are similar to the
effects of market fragmentation discussed in Section 5.2. As Figure 8 illustrates, how clients
and dealers split the increase in the welfare depends on clients’ bargaining power in two-dealer
chains (zdd) relative to that in one-dealer chains (zd). If it is significantly larger in two-dealer
chains, clients not only extract the entire increase in the welfare but also get a cut from dealers’
profit. That is, by lengthening the intermediation chain, clients tilt the gains from trade in
their favor at the expense of dealers. Dealers in this case are better off without the interdealer
market. For an intermediate range of clients’ bargaining power in two-dealer chains, both clients
and dealers benefit from interconnectedness. Finally, if clients’ bargaining power is smaller in
two-dealer chains than in one-dealer chains, now dealers extract the increase in the welfare.
They do so at the expense of customer welfare.

Proof of Proposition 4. The environments with and without the interdealer market are the
environments in which λdd > 0 and λdd = 0, respectively. Thus, to show the results of Proposi-
tion 4, showing how the total welfare and the volume of trade change with respect to λdd for all
values of λd and λdd is sufficient. Moreover, we prove Proposition 4 results by comparing the
symmetric equilibria with and without the interdealer market. The effect of interconnectedness
across the asymmetric equilibria is qualitatively the same but more tedious to prove analytically.

Since the total welfare depends only on the aggregates mass of sellers, µsN , consider µsN .

In the symmetric equilibrium, µsi =
µsN
n and µbi =

µbN
n for all i ∈ N . Applying (C.3) to the

symmetric equilibrium, we get∫ k

k

1

k
f(k)dk −

∫ k

k

f(k)

k + (λd + (n− 1)λdd)
µsN
n

dk + µsN = S. (G.5)
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Applying the Implicit Function Theorem to (G.5), the derivative of µsN with respect to λdd is

∂µsN
∂λdd

= −

(n−1)µsN
n

∫ k
k

f(k)(
k+(λd+(n−1)λdd)

µs
N
n

)2dk

1 + (λd + (n− 1)λdd) 1
n

∫ k
k

f(k)(
k+(λd+(n−1)λdd)

µs
N
n

)2dk
. (G.6)

The right-hand-side is negative for any λdd and λd. Thus, the aggregate mass of sellers decreases
with the introduction of the interdealer market. Using (27), this implies that the total welfare
increases with interconnectedness.

The aggregate volume is∑
i∈N

(
MD
i +MDD

i

)
= nµbi (λd + (n− 1)λdd)µsi

= (λd + (n− 1)λdd)
µsN
n

∫ k

k

f(k)

k + (λd + (n− 1)λdd)
µsN
n

dk, (G.7)

where the second equality substitutes in nµbi =
∫ k2
k1

f(k)
k+(λ+(n−1)λi)µs1

dk and µsi =
µsN
n . Then,

taking the derivative with respect to λdd and simplifying, we get

∂
∑
i∈N

(
MD
i +MDD

i

)
∂λdd

= (G.8)

=
∂ ((λd + (n− 1)λdd)µsN )

∂λdd

 1

n

∫ k

k

kf(k)(
k + (λd + (n− 1)λdd)

µsN
n

)2dk

 .

From (G.8), the sign depends on the derivative of the execution speed,
∂

(
(λd+(n−1)λdd)

µsN
n

)
∂λdd

:

∂ ((λd + (n− 1)λdd)µsN )

∂λdd
=
∂µsN
∂λdd

(λd + (n− 1)λdd) + (n− 1)µsN

Substituting in (G.6) and simplifying, we get

∂ ((λd + (n− 1)λdd)µsN )

∂λdd
=

(n− 1)µsN

1 + (λd + (n− 1)λdd) 1
n

∫ k
k

f(k)(
k+(λd+(n−1)λdd)

µs
N
n

)2dk
.

This is positive. Thus, both execution speeds and the aggregate volume of trade increase with
interconnectedness.

Proof of Proposition 5. The interdealer constraints are

µsiµ
b
Ni = µsNiµ

b
i .

Substituting in µbNi = µbN − µbi and µsNi = µsN − µsi , we get

µsi

(
µbN − µbi

)
= (µsN − µsi )µbi .
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As a result,

µbi = µsi
µbN
µsN

.

Or, alternatively,
µsi
µbi

=
µsN
µbN

.

G.2 Market Fragmentation

Proof of Proposition 6. Applying the Implicit Function Theorem to (G.5) and simplifying,
we get

∂µsN
∂n

= −

(λdd−λd)
n

µsN
n

∫ k
k

f(k)(
k+

(λdd+(n−1)λd)µ
s
N

n

)2dk

1 +
∫ k
k

1
n

(λdd+(n−1)λd)f(k)(
k+

(λdd+(n−1)λd)µ
s
N

n

)2dk
(G.9)

Thus, the sign depends on −(λdd − λd). If, for example, λdd − λd > 0, it is negative implying
that the total welfare increases in n.

Consider now how increasing the number of dealers affects the aggregate volume of trade.
Taking the derivative of (G.7) with respect to n, we get

∂

∂n

∑
i∈N

(
MD
i +MDD

i

)
=

∫ k

k

kf(k)(
k + (λd + (n− 1)λdd)

µsN
n

)2dk
∂

∂n

[
(λd + (n− 1)λdd)

µsN
n

]
(G.10)

The sign depends on
∂

(
(λd+(n−1)λdd)

µsN
n

)
∂n :

∂
(

(λd + (n− 1)λdd)
µsN
n

)
∂n

=

∂µsN
∂n (λd + (n− 1)λdd) + (λdd − λd)µsN

n2
.

Substituting in (G.9) and simplifying, we get

∂
(

(λd + (n− 1)λdd)
µsN
n

)
∂n

=
1

n2

(λdd − λd)µsN

1 +
∫ k
k

1
n

(λd+(n−1)λdd)f(k)(
k+

(λd+(n−1)λdd)µ
s
N

n

)2dk
.

Thus, the sign depends on λdd − λd and is positive if λdd − λd > 0.

Proof of Proposition 7. The welfare maximizing cutoff, k∗, is such that

∂µsN
∂k∗

=
∂(µs1 + µs2)

∂k∗
=
∂µs1
∂k∗

+
∂µs2
∂k∗

= 0.

Using (F.17) and (F.18) and simplifying, the welfare maximizing cutoff is characterized by:

µsN (k∗ + λdµ
s
1 + λddµ

s
2)b1 − µsN (k∗ + λddµ

s
1 + λdµ

s
2)b2 − (µs2 − µs1)µbN = 0. (G.11)

where b1 and b2 are given by (F.19) and (F.20). Divide (G.11) by µsN and use the interdealer
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condition µbi = µsi
µbN
µsN

:

(k∗ + λdµ
s
1 + λddµ

s
2)b1 − (k∗ + λddµ

s
1 + λdµ

s
2)b2 − (µb2 − µb1) = 0.

Rearranging it,

0 = (k∗ + λdµ
s
1 + λddµ

s
2)b1 + µb1 − (k∗ + λddµ

s
1 + λdµ

s
2)b2 − µb2

> 2(µb1 − µb2).

To see how the inequality arises, consider (k∗ + λdµ
s
1 + λddµ

s
2)b1 + µb1:

(k∗ + λdµ
s
1 + λddµ

s
2)b1 (G.12)

=

∫ k∗

k

(k∗ + λdµ
s
1 + λddµ

s
2)

(k + λdµs1 + λddµs2)2 ν1(k)dk (G.13)

>

∫ k∗

k

(k + λdµ
s
1 + λddµ

s
2)

(k + λdµs1 + λddµs2)2 ν1(k)dk (G.14)

=

∫ k∗

k

1

(k + λdµs1 + λddµs2)
ν1(k)dk (G.15)

= µb1. (G.16)

Thus,
(k∗ + λdµ

s
1 + λddµ

s
2)b1 > µb1.

Analogously, −(k∗ + λddµ
s
1 + λdµ

s
2)b2 > −µb2. Then, 0 > µb1 − µb2 or µb2 > µb1 at the welfare

maximizing cutoff.
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