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Abstract

This paper studies the classic information-sharing problem in a duopoly set-

ting in which firms learn information from a financial market. By disclosing

information, a firm incurs a proprietary cost of losing competitive advantage

to its rival firm but benefits from learning from a more informative asset mar-

ket. Firms’disclosure decisions can exhibit strategic complementarity, which

is strong enough to support both a disclosure equilibrium and a nondisclosure

equilibrium. Allowing minimal learning from asset prices dramatically changes

firms’disclosure behaviors: without learning from prices, firms do not disclose

at all; but with minimal learning from prices, firms can almost fully disclose

their information. Learning from asset prices benefits firms, consumers, and

liquidity traders, but harms financial speculators.
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1. Introduction

Information sharing among oligopoly firms has been a contentious topic in the an-

titrust field and has received substantial attention from academics and regulations on

trade associations. The literature shows whether firms want to voluntarily disclose

information depends upon the nature of competition (Cournot or Bertrand) and the

nature of information (common value or private value). Firms compete in quantities

in Cournot settings and they compete in prices in Bertrand settings. Common-value

information represents shocks affecting all firms (e.g., a common demand shock),

while private-value information represents shocks affecting each firm separately (e.g.,

idiosyncratic cost shocks). The literature finds that firms choose to withhold in-

formation in settings of Cournot/common-value and Bertrand/private-value, while

they choose to share information completely in settings of Cournot/private-value and

Bertrand/common-value.1

However, there is an important feature of real-world economies that is missing in

this line of research, namely that firms often learn new information from financial

markets and use this information to guide their production decisions. The archetypal

examples of these financial markets include the stock market and the commodity

futures market.2 Going back at least to Hayek (1945), researchers argue that asset

prices are a useful source of information for real decisions. Asset prices aggregate

different pieces of information from various traders who trade in financial markets for

their own profit motives. The trading process and the information aggregation are

1See, for example, Gal-Or (1986), Darrough (1993), Raith (1996), Vives (1984, 2008), and more
recently, Bagnoli and Watts (2015) and Arya, Mittendorf, and Yoon (2016).

2For instance, Fama and Miller (1972, p. 335) note: “at any point in time market prices of secu-
rities provide accurate signals for resource allocation; that is, firms can make production-investment
decisions....” Black (1976, p. 174—176) wrote: “futures prices provide a wealth of valuable infor-
mation for those who produce, store, and use commodities. Looking at futures prices for various
transaction months, participants in this market can decide on the best times to plant, harvest, buy
for storage, sell from storage, or process the commodity...The big benefit from futures markets is
the side effect: the fact that participants in the futures markets can make production, storage, and
processing decisions by looking at the pattern of futures prices, even if they don’t take positions in
that market.”
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expected to be affected by disclosure of firms. The question is then whether and how

incorporating this realistic feature of learning from asset prices affects the information-

sharing incentives of firms and the equilibrium disclosure policies in oligopoly settings.

In this paper, I develop a model to study these questions. My model builds on the

standard information-sharing duopoly setting with demand uncertainty and Cournot

competition (e.g., Vives, 1984; Gal-Or, 1985; Darrough, 1993), where two firms first

unilaterally decide whether to reveal their signals about product demand, and then,

after receiving signals and possibly revealing them, compete in production quantities.

In the standard setting without learning from asset prices, no information sharing

is the dominant strategy for firms and forms the unique Nash equilibrium. This

is because disclosure reveals strategic information to competitors and reduces the

disclosing firm’s competitive advantage, which is referred to as the “proprietary cost”

(Darrough, 1993) or “competitive disadvantage cost”/“loss of competitive advantage”

(Bhattacharya and Ritter, 1983; Foster, 1986). For instance, high demand of the

disclosing firm may be indicative of high demand for competitors (i.e., “a rising tide

lifts all boats”), which encourages competitors to expand their production, eroding

the disclosing firm’s profits.

I extend the standard setting by introducing a financial market, or more specifi-

cally, a futures market. The futures contract is on the commodity produced by the

two competing firms. Financial speculators, such as hedge funds or commodity index

traders, trade the futures contracts (against liquidity traders) based on their private

information about the later product demand. This information is aggregated into

the futures price. It is natural that the speculators’information and the firms’in-

formation are not identical and thus, firms look into the futures price to extract new

information possessed by speculators to guide real production decisions; that is, firms

learn information from asset prices.

In this extended setting, firms face the following trade-off in deciding on their

disclosure policies. The negative effect of disclosure is still the proprietary cost iden-
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tified in the previous literature (e.g., Vives, 1984; Gal-Or, 1985; Darrough, 1993). The

positive effect of disclosure comes from a more informative asset price that improves

firms’learning quality. Specifically, the payoff on the futures contract is driven by

three pieces of demand shocks, which are observed respectively by the two firms and

financial speculators. So, publicly releasing the private information of firms reduces

the uncertainty faced by financial speculators. This encourages risk-averse specu-

lators to trade more aggressively on their private information. In consequence, the

futures price will aggregate more of speculators’private information, benefiting firms’

learning from the asset price. Each firm weighs this benefit of improved learning from

the asset price against the proprietary cost to determine its optimal disclosure policy.

There are two types of equilibrium in my setting: a nondisclosure equilibrium,

in which firms do not disclose any information; and a partial disclosure equilibrium,

in which firms voluntarily disclose their private information with added noises. This

result arises in sharp contrast to the literature on Cournot/common-value duopoly

settings which shows that firms never disclose their private information about market

demand (e.g., Gal-Or, 1985; Darrough, 1993). In my setting, the nondisclosure equi-

librium is more likely to prevail only when financial speculators know less information

and when the financial market features less noise trading. This is because under both

conditions, firms have a weaker incentive to learn from the financial market. When

speculators know little information, firms do not have much to learn from speculators

via the asset price. When there is little noise trading in the financial market, the

asset price has already aggregated speculators’information very well and thus, the

scope to improve price informativeness via disclosure is small.

I show that firms’disclosure decisions can be a strategic complement. Comple-

mentarity arises when there is a lot noise trading in the financial market. If this

complementarity is suffi ciently strong, both a disclosure equilibrium and a nondisclo-

sure equilibrium can be supported. This multiplicity result also runs in sharp contrast

to the information-sharing literature which shows that there always exists a unique
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equilibrium. When multiplicity arises, both firms are better off on the disclosure

equilibrium than on the nondisclosure equilibrium for two reasons. First, disclosure

of each firm directly benefits its rival by releasing new information about product de-

mand. Second, disclosure of both firms reduces the uncertainty faced by speculators

who in turn trade more aggressively on their information. This makes the asset price

more informative, thereby benefiting both firms. Taken together, it is in the firms’

interests to coordinate on the disclosure equilibrium.

The most striking result in my analysis is that allowing minimal learning of firms

from the asset price can dramatically change firms’equilibrium disclosure behavior.

Specifically, as mentioned before, in a standard setting without learning from prices,

firms do not disclose at all. That is, the equilibrium disclosure precision is zero in

a setting in which the size of noise trading is infinity. Now consider a setting with

learning from prices and suppose that there is a lot noise trading so that multiple

equilibria arise. As argued above, firms prefer to coordinate on the disclosure equi-

librium. It can be shown that as the size of noise trading diverges to infinity, firms’

disclosure precision also diverges to infinity. Thus, there is a discontinuity of disclo-

sure policy at infinitely large noise trading. Intuitively, when the noise trading at the

financial market is infinity, firms cannot at all learn from the asset price and so the

benefit of disclosure disappears, leading to the nondisclosure equilibrium. However,

when the noise trading is finite (although large) so that firms can learn from the

asset price, they coordinate on a very aggressive disclosure equilibrium to improve

the informativeness of asset prices, which is beneficial for both firms.

Finally, I examine the welfare effect of allowing firms to learn from the asset

price. Relative to a setting without learning from asset prices, in a setting with

learning from prices, firms, consumers, and liquidity traders are better off, and only

financial traders are worse off. Allowing firms to learn from asset prices benefits

firms and consumers both directly and indirectly. First, because firms have an extra

signal (which is the asset price), they make more informed decisions, benefiting both
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firms and consumers. Second, in a setting with learning from prices, firms are more

likely to disclose information, and the extra disclosed information also benefits firms

and consumers. Liquidity traders benefit mainly from the extra disclosure, which

improves market liquidity and therefore lowers liquidity traders’ transaction costs.

Financial speculators lose also because of the extra disclosure that limits the benefits

of speculators in trading the risky futures contracts.

1.1. Related Literature

This paper is broadly related to two strands of literature. First, it contributes to

the classic literature on information sharing of firms in oligopoly (e.g., Gal-Or, 1986;

Darrough, 1993; Raith, 1996; Vives, 1984, 2008). As mentioned before, this literature

shows that firms choose not to disclose at all in settings of Cournot/common-value

and Bertrand/private-value, while they choose to share information completely in

settings of Cournot/private-value and Bertrand/common-value.

My paper builds on a Cournot/common-value setting which features the propri-

etary cost. My analysis extends the canon of existing studies to include the realistic

feature that firms learn information from asset prices. This extension generates two

novel insights. First, firms either choose not to disclose information at all, or to dis-

close information to the public, and if they disclose, they only disclose information

partially. This differs from the literature which finds that firms do not disclose in a

Cournot/common-value setting. Second, in the presence of learning from asset prices,

firms’disclosure decisions can be a strategic complement, which gives rise to multiple

equilibria. This also differs from the unique nondisclosure equilibrium identified in

the standard setting. When multiplicity arises in my setting, it is more likely for

firms to coordinate on the disclosure equilibrium, and on this coordinated disclosure

equilibrium, the disclosure precision goes to infinity as the noise in the financial mar-

ket becomes extremely volatile. This shows that adding minimal learning from prices

can dramatically change the equilibrium disclosure behavior of firms.
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The second related strand of literature is the literature on the real effect of a

financial market, where trading and prices in a financial market affects production

decisions, which in turn affect the traded asset’s cash flows. This effect is known

as the “feedback effect,”which is reviewed by Bond, Edmans, and Goldstein (2012).

Several papers provide supporting empirical evidence; see, e.g., Luo (2005), Chen,

Goldstein, and Jiang (2007), Bakke and Whited (2010), Foucault and Frésard (2014).

A few recent papers study the effect of disclosure in contexts that feature a feed-

back effect and the like. Gao and Liang (2013) show that disclosure crowds out

private-information production, which reduces price informativeness and harms man-

agers’ learning and investments. Banerjee, Davis, and Gondhi (2017) show that

public information can lower price effi ciency by encouraging traders choose to ac-

quire non-fundamental information exclusively. Han, Tang, and Yang (2016) show

that disclosure attracts noise trading that reduces price informativeness and harms

managers’learning quality. Amador and Weill (2010) show that releasing public in-

formation about monetary and/or productivity shocks can reduce welfare through

reducing the informational effi ciency of the good price system. Goldstein and Yang

(2018) show that disclosure can be either good or bad, depending on whether dis-

closure is about the dimension about which the firm already knows. In contrast, in

my paper, disclosure benefits rather than harms firms via the feedback effect, and

the cost of disclosure is endogenously generated from losing a competitive advantage

(the proprietary cost) that is unique to the oligopoly setting. In addition, almost all

the existing studies are conducted in a one-firm setting, while my analysis features

multiple firms, and this multi-firm feature generates coordination disclosure motives

among firms, which leads to the possibility of multiple disclosure equilibria.

The positive effect of disclosure in my paper is related to the “residual risk effect”

in Bond and Goldstein (2015) and the “uncertainty reduction effect” in Goldstein

and Yang (2015). That is, releasing information about shocks that are unknown to

traders reduces the uncertainty faced by traders. Since traders are risk averse, the re-
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duction in risk incentivizes them to trade more on their information. In consequence,

the price will aggregate more of traders’private information, benefiting the firms’

learning from the asset price. My analysis incorporates this uncertainty reduction

effect into a standard information-sharing duopoly setting that has so far ignored the

realistic feature that firms can extract information from financial markets to guide

production decisions. This extension has yielded many novel insights. For instance,

unlike in the standard information-sharing setting where firms hide information, in

my setting, firms can disclose information, and in some cases, multiple equilibria can

be supported. My analysis also shows that allowing minimal learning from asset

prices can dramatically change firms’disclosure behavior.

2. The Model

I consider a standard information-sharing duopoly setting (e.g., Vives, 1984; Gal-Or,

1985; Darrough, 1993), which is extended with a financial market, or more specifi-

cally, with a futures market on the commodity produced by two competitive firms.

There are three dates, t = 0, 1, and 2. On date 0, two competing firms, firm A

and firm B, simultaneously decide on their disclosure policies. On date 1, financial

speculators and liquidity traders trade commodity futures. Financial speculators are

endowed with private information about the later demand for the firms’products,

which is aggregated into the equilibrium futures price. Firms make inference on this

information from the futures price to guide their production decisions. On date 2,

the product market opens and the product price is determined.

2.1. Consumers: Demand for Products

The date-2 demand for firms’products is generated by a representative consumer who

maximizes consumer surplus,

C (Q, θA, θB, δ) = U (Q, θA, θB, δ)− pQ, (1)
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where Q is the amount of good purchased from the firms and p is the product price.

In (1), U (Q, θA, θB, δ) captures the consumer’s intrinsic utility from consuming the

products, while the term pQ is the cost of purchasing the products. Following the lit-

erature (e.g., Singh and Vives, 1984), I specify a quasi-linear intrinsic utility function

as follows:

U (Q, θA, θB, δ) = (m+ θA + θB + δ)Q− Q2

2
. (2)

Parameter m is a positive constant, which captures the size of the product market.

Variables θA, θB, and δ are three mutuality independent demand shocks that are

normally distributed; that is, θA ∼ N
(
0, τ−1

θ

)
, θB ∼ N

(
0, τ−1

θ

)
, and δ ∼ N

(
0, τ−1

δ

)
(with τ θ > 0 and τ δ > 0). These three demand shocks are observed by firm A, firm

B, and financial speculators, respectively.

The representative consumer chooses product quantity Q to maximize her prefer-

ence (1) taking the product price p as given. This maximization problem leads to the

following standard linear inverse demand function for firms’products:

p = (m+ θA + θB + δ)−Q. (3)

For the sake of simplicity, I have assumed that both firms produce identical products.

Alternatively, I can assume that firms produce differentiated products and the results

do not change under this alternative assumption.

2.2. Firms: Information Disclosure and Goods Production

The two firms make two decisions in the economy, a disclosure-policy decision on date

0 and a goods-production decision on date 1. Their production decisions determine

the supply of products in the product market. Following Darrough (1993), I assume

that on date 0, firms A and B respectively observe demand shocks θA and θB.3 Firms

3As mentioned in the Introduction, the information-sharing literature shows that the concern that
disclosure reveals strategic information to competitors and reduces the disclosing firm’s competitive
advantage– i.e., the “proprietary cost”(Darrough, 1993) or “competitive disadvantage cost”(Foster,
1986)– arise in Cournot/common-value and Bertrand/private-value settings. Therefore, I assume
that firms face demand uncertainty (common value) and engage in Cournot competition to capture
the proprietary cost induced by disclosure.
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precommit themselves in advance to a particular disclosure policy ex ante before

they receive their private information. Such a commitment may be coordinated and

enforced by trade associations or regulatory agencies such as the FASB or the SEC.

Firm A discloses a noisier version of θA to the public in the form of

x = θA + η,

where η ∼ N
(
0, τ−1

η

)
(with τ η ∈ [0,∞]) and η is independent of all other shocks.

Similarly, firm B discloses a nosier version of θB in the form of

y = θB + ξ,

where ξ ∼ N
(
0, τ−1

ξ

)
(with τ ξ ∈ [0,∞]) and ξ is independent of all other shocks.

The random variables η and ξ are the noises added respectively by the two firms

in their disclosed signals. The precision levels τ η and τ ξ are chosen by the firms at the

beginning of date 0 to maximize their unconditional expected profits. In particular, I

allow τ η and τ ξ to take values of 0 and∞, which correspond respectively to the case

in which the firms do not disclose (i.e., disclose with infinite noise) and to the case

in which the firms disclose their private information perfectly (i.e., disclose without

noise). In the literature, these two values are the only possible equilibrium choices

(see the survey by Vives (2008)). By contrast, I will show that in the presence of

learning from asset prices, firms can choose to disclose their information imperfectly

(i.e., τ η ∈ (0,∞) and τ ξ ∈ (0,∞)).

On date 1, firms make production decisions to maximize profits based on private

and public information. As mentioned above, firm A’s private information is θA and

firm B’s private information is θB. There are three pieces of public information:

public disclosure x released by firm A, public disclosure y released by firm B, and

the price f of a financial asset. The innovation of this paper is that firms extract

information from the asset price f to guide their production decisions. As discussed

in the Introduction, the literature labels this feature as the “feedback effect,”whereby

trading and prices in financial markets affect real investment decisions, which in turn

affect the financial asset’s payoffs (see the review article by Bond, Edmans, and
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Goldstein (2012)). In my setup, I assume that the financial asset is a futures contract

on the commodity produced by the two firms, and I will discuss its price formation

in the next subsection.

I normalize the marginal cost of production as 0. As known in the literature, this

normalization does not affect the results. Under this normalization, firm i’s profit is

Πi (qi, qj, θA, θB, δ) = pqi = (m+ θA + θB + δ − qj) qi − q2
i , (4)

for i, j ∈ {A,B} and i 6= j. Variables qi and qj are respectively the amount of

goods produced by the two firms. The second equality in (4) follows from the inverse

demand function (3) and Q = qA + qB. Thus, the optimal date-1 production q∗i of

firm i is determined by

max
qi

E
[
Πi

(
qi, q

∗
j , θA, θB, δ

)∣∣ θi, x, y, f] ,
where E [ ·| θi, x, y, f ] is the conditional expectation operator and q∗j refers to firm j’s

optimal production, which is taken as given in firm i’s production decision problem.

The optimal date-0 disclosure decision τ ∗η of firm A is determined by

max
τη

E [ΠA (q∗A, q
∗
B, θA, θB, δ)] .

Similarly, the optimal date-0 disclosure decision τ ∗ξ of firm B is determined by

max
τξ

E [ΠB (q∗A, q
∗
B, θA, θB, δ)] .

When making the disclosure policy choice, each firm takes the other firm’s disclosure

policy as given and also takes into account how its own disclosure affects the optimal

production decisions of both firms in the product market.

2.3. Financial Market

On date 1, a financial market opens. There are two tradable assets: a futures contract

and a risk-free asset. I normalize the net risk-free rate as 0. The payoff on the futures

contract is the date-2 product spot price p. Each unit of futures contract is traded

at an endogenous price f . The total supply of futures contracts is 0.

There are two groups of market participants: financial speculators and liquidity
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traders. Liquidity traders represent random transient demands in the futures market

and they as a group demand u units of the commodity futures, where u ∼ N (0, τ−1
u )

with τu ∈ (0,∞). As usual, liquidity traders, also known as “noise traders,”provide

the randomness (noise) necessary to make the rational expectations equilibrium par-

tially revealing. I do not endogenize the behavior of liquidity traders; rather, I view

them as individuals who are trading to invest new cash flows or to liquidate assets to

meet unexpected consumption needs.

There is a continuum [0, 1] of financial speculators who derive expected utility only

from their date-2 wealth. They have constant absolute risk aversion (CARA) utility

functions with a common coeffi cient of risk aversion γ > 0. Speculators are endowed

with cash only, and for simplicity I suppose that their endowment is 0. These traders

can be interpreted as hedge funds or commodity index traders.4 Financial speculators

privately observe demand shock δ and thus their trading injects this information into

the futures price f .

Three remarks are in order. First, for simplicity, I have assumed that the private

information δ of speculators is independent of the private information θA and θB of

firms. This assumption is not crucial for driving the result. What matters is that

speculators as a group own some information which is new to firms, so that firms

learn information from the asset price (which is the key feature in the literature on

feedback effects). Second, I have assumed that speculators observe identical informa-

tion. A more realistic view is that they own disperse information (potentially very

coarse) which is aggregated into the price, leading to a very valuable signal to firms

(e.g., Hayek (1945)). I do not take this alternative view for the sake of analytical

tractability,5 and the current setup is suffi cient for modeling the feature that firms

4According to Cheng and Xiong (2014, p. 424), “(o)ver the past decade, there has been a large
inflow of investment capital from a class of investors, so-called commodity index traders (CITs), also
known as index speculators.”

5Specifically, the current setup allows me to first analytically compute the product market equilib-
rium, which is then inserted into the speculators’demand function and the market-clearing condition
to compute the financial market equilibrium. By contrast, in a setting with diverse signals, I have
to simultaneously solve the product market equilibrium and the financial market equilibrium.
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Figure 1: Model Timeline

learn from asset prices. Third, firms do not participate in the futures market, which

allows me to isolate the informational role of asset prices in driving the results.

2.4. Timeline

The order of events is described in Figure 1. On date 0, firms simultaneously choose

their disclosure policies, τ η and τ ξ. Firms then receive their private information

(θA, θB) and disclose public signals (x, y) according to their policies, respectively. On

date 1, financial speculators observe private information δ and public information

(x, y), and trade futures against liquidity traders, which determines the asset price

f . Firms observe public information (x, y) and the asset price f , and simultaneously

choose their production quantities. On date 2, the product market opens, consumers

purchase from firms, and product price p is formed. Finally, consumers consume,

firms realize profits, and speculators and liquidity traders receive trading profits.

3. The Equilibrium

Following the literature, I consider symmetric equilibrium in which both firms choose

the same disclosure policy (i.e., τ ∗η = τ ∗ξ). As Gal-Or (1985, p. 330) argued,

12



“(s)ymmetric equilibrium is a reasonable solution concept for this model since all

firms face the same technology and observe signals of the same precision.”

Definition 1. An equilibrium consists of date-1 disclosure policies of firms
(
τ ∗η, τ

∗
ξ

)
,

date-1 production policies of firms qA (θA, x, y, f) and qB (θB, x, y, f), a date-1 trading

strategy of speculators D (δ, x, y, f), a date-1 futures price function f (δ, x, y, u), and

a date-2 spot price function p (θA, θB, δ, x, y, f), such that:

(a) Disclosure policies
(
τ ∗η, τ

∗
ξ

)
form a Nash equilibrium, i.e.,

τ ∗η = arg max
τη

E [ΠA (qA (θA, x, y, f) , qB (θB, x, y, f) , θA, θB, δ)] ,

τ ∗ξ = arg max
τξ

E [ΠB (qA (θA, x, y, f) , qB (θB, x, y, f) , θA, θB, δ)] ;

(b) Trading strategy D (δ, x, y, f) and futures price function f (δ, x, y, u) form a noisy

rational expectations equilibrium in the financial market, i.e.,

D (δ, x, y, f) = arg max
D

E
[
−e−γD[p(θA,θB ,δ,x,y,f)−f(δ,x,y,u)]

∣∣ δ, x, y, f] ,
D (δ, x, y, f) + u = 0;

(c) Production policies qA (θA, x, y, f) and qB (θB, x, y, f) form a Bayesian-Nash equi-

librium in the product market, i.e.,

qA (θA, x, y, f) = arg max
qA

E [ΠA (qA, qB (θB, x, y, f) , θA, θB, δ)| θA, x, y, f ] ,

qB (θB, x, y, f) = arg max
qB

E [ΠB (qA (θA, x, y, f) , qB, θA, θB, δ)| θB, x, y, f ] ; and

(d) The spot price p (θA, θB, δ, x, y, f) clears the product market, i.e.,

qA (θA, x, y, f) + qB (θB, x, y, f) = (m+ θA + θB + δ)− p (θA, θB, δ, x, y, f) .

A linear equilibrium is an equilibrium in which policy functions and price functions

are linear.

Depending on whether firms disclose information in equilibrium, there are two

types of equilibrium as defined below.

Definition 2. If τ ∗η = τ ∗ξ = 0, then the equilibrium is referred to as the “nondisclosure

equilibrium.” If τ ∗η = τ ∗ξ > 0, then the equilibrium is referred to as a “disclosure

equilibrium.”
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Before formally characterizing the equilibrium, I first analyze a benchmark setting

in which firms do not learn from a financial market.

3.1. A Benchmark Setting without Feedback Effects

If I shut down the feature that firms learn information from the asset price f , the

model degenerates to a standard information-sharing setting with demand shocks and

Cournot competition. As well-known in the literature (e.g., Gal-Or, 1985; Darrough,

1993), concealing information is a dominant strategy, so that both firms choose not to

disclose information in equilibrium. This is because disclosure reveals strategic infor-

mation to competitors, thereby reducing the disclosing firm’s competitive advantage.

I summarize the equilibrium of this benchmark setting in the following proposition,

where I label variables with superscript “∅”to indicate that in this setting, firms do

not extract information from an asset price. The proof is standard and hence omitted.

Proposition 1. (No Learning from Asset Prices) In a setting where firms do not

learn information from a financial market, there exists a unique linear Bayesian-Nash

equilibrium in the product market for given disclosure policies (τ η, τ ξ), in which

q∅A =
m

3
+

1

2
θA −

τ η
6 (τ θ + τ η)

x+
τ ξ

3 (τ θ + τ ξ)
y,

q∅B =
m

3
+

1

2
θB +

τ η
3 (τ θ + τ η)

x− τ ξ
6 (τ θ + τ ξ)

y,

and on date 0, no firm chooses to disclose information, i.e., τ∅η = τ∅ξ = 0.

In the following two subsections, I will derive the equilibrium in a setting where

firms learn information from the financial market. There will be two main results that

differ from Proposition 1. First, firms may choose to disclose information on date 0,

i.e., τ ∗η = τ ∗ξ > 0 for some parameters. Second, there may exist multiple equilibria due

to the coordination motives across firms, that is, it is possible that both τ ∗η = τ ∗ξ = 0

and τ ∗η = τ ∗ξ > 0 can be supported as an equilibrium.
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3.2. Equilibria in Product Market and Financial Market

Following the literature (e.g., Gal-Or, 1985; Darrough, 1993), I consider linear Bayesian-

Nash equilibria in the product market. That is, the production policies of firms A

and B are linear in their information variables as follows:

q∗A = a0 + aθθA + axx+ ayy + aff, (5)

q∗B = b0 + bθθB + bxx+ byy + bff, (6)

where the a coeffi cients and the b coeffi cients are endogenous constants.

The optimal productions q∗A and q
∗
B are determined respectively by the first-order

conditions (FOCs) of the profit-maximization problems in Part (c) of Definition 1

(the second-order conditions (SOCs) are always satisfied),

q∗A =
E (m+ θA + θB + δ − q∗B|θA, x, y, f)

2
, (7)

q∗B =
E (m+ θA + θB + δ − q∗A|θB, x, y, f)

2
. (8)

A Bayesian-Nash equilibrium requires that the above implied policy functions (7)—(8)

agree with the conjectured policy functions (5)—(6). In doing so, one needs to express

out the conditional moments in (7)—(8), namely to figure out how each firm uses

both private and public information (in particular, the asset price f) to forecast later

demand shocks and its opponent’s production.

Take firm A as an example. Inserting the conjectured production policy (6) of

firm B into the FOC (7) of firm A’s profit-maximization problem yields

q∗A =
m+ θA + E (δ|θA, x, y, f) + (1− bθ)E (θB|θA, x, y, f)− (b0 + bxx+ byy + bff)

2
.

(9)

So, firm A needs to forecast two variables, θB and δ. The idea is that the public signal

y disclosed by firm B is useful for predicting θB, while the asset price f , together with

public disclosure x and y, is useful for predicting δ, because the trading of speculators

injects information on δ into the futures price f . I now turn to the futures market to

figure out how firms extract information from the asset price f .

Solving the speculators’utility-maximization problem in Part (b) of Definition 1
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gives rise to their demand function under CARA preference,

D (δ, x, y, f) =
E (p|δ, x, y, f)− f
γV ar (p|δ, x, y, f)

, (10)

where E ( ·| δ, x, y, f) and V ar ( ·| δ, x, y, f) are the conditional expectation and vari-

ance, respectively. Inserting the conjectured policy functions (5)—(6) into the market-

clearing condition of product market in Part (d) of Definition 1 yields

p = (1− aθ) θA + (1− bθ) θB

+ (m− a0 − b0) + δ − (ax + bx)x− (ay + by) y − (af + bf ) f. (11)

Since speculators observe {δ, x, y, f}, they only need to forecast (1− aθ) θA+(1− bθ) θB
in the above expression of p. In doing so, speculators use public information x to pre-

dict θA and public information y to predict θB. Applying Bayes’ rule to compute

E (p|δ, x, y, f) and V ar (p|δ, x, y, f), which are in turn inserted into demand function

(10) and the market-clearing condition of the futures market, D (δ, x, y, f) + u = 0, I

derive the futures price function as follows:

f =
m− a0 − b0

af + bf + 1
+

δ

af + bf + 1

+

(1−aθ)τη
τθ+τη

− (ax + bx)

af + bf + 1
x+

(1−bθ)τξ
τθ+τξ

− (ay + by)

af + bf + 1
y

+
γ
[

(1−aθ)2

τθ+τη
+ (1−bθ)2

τθ+τξ

]
af + bf + 1

u. (12)

Thus, to firm A, the futures price f is equivalent to the following signal in pre-

dicting demand shock δ:

s ≡ (af + bf + 1) f − (m− a0 − b0)

−
[

(1− aθ) τ η
τ θ + τ η

− (ax + bx)

]
x−

[
(1− bθ) τ ξ
τ θ + τ ξ

− (ay + by)

]
y

= δ + γ

[
(1− aθ)2

τ θ + τ η
+

(1− bθ)2

τ θ + τ ξ

]
u, (13)

which has an endogenous precision level of

τ s =
τu

γ2
[

(1−aθ)2

τθ+τη
+ (1−bθ)2

τθ+τξ

]2 . (14)

The signal s formalizes the fact that firms learn information about δ from the asset
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price f , and its precision τ s captures the informational content in the asset price. I

follow the literature and refer to variable τ s as “price informativeness.”

Firm A’s information set {θA, x, y, f} is equivalent to {θA, x, y, s}, among which

y and s are respectively useful for predicting demand shocks θB and δ. Applying

Bayes’rule to compute E (δ|θA, x, y, f) = E (δ|s) and E (θB|θA, x, y, f) = E (θB|y)

and combining with the expression of s in (13), I can express q∗A in (9) as functions of

(θA, x, y, f). Comparing this expression with the conjectured policy in (5), I can form

five conditions in terms of the unknown a coeffi cients and b coeffi cients. Conducting

a similar analysis for firm B leads to another five conditions in terms of a’s and b’s.

Solving this system of ten equations yields the values of a’s and b’s. Finally, inserting

the values of a’s and b’s into equations (11) and (12) gives rise to the spot price

function and the futures price function, respectively.

Proposition 2. (Product and Futures Markets) For any disclosure polices (τ η, τ ξ),

there exists a unique linear Bayesian-Nash equilibrium in the product market, in which

q∗A = a0 + aθθA + axx+ ayy + aff,

q∗B = b0 + bθθB + bxx+ byy + bff,

where

a0 = b0 =
τ δ

τ s + 3τ δ
m, aθ = bθ =

1

2
,

ax = − τ s + τ δ
2 (τ s + 3τ δ)

τ η
τ θ + τ η

, bx =
τ δ

τ s + 3τ δ

τ η
τ θ + τ η

,

ay =
τ δ

τ s + 3τ δ

τ ξ
τ θ + τ ξ

, by = − τ s + τ δ
2 (τ s + 3τ δ)

τ ξ
τ θ + τ ξ

,

af = bf =
τ s

τ s + 3τ δ
,

and

τ s =
τu

γ2

(
1

4(τθ+τη)
+ 1

4(τθ+τξ)

)2 .
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The date-2 spot price function is

p =
τ s + τ δ
τ s + 3τ δ

m+
1

2
θA +

1

2
θB + δ

− τ δ − τ s
2 (τ s + 3τ δ)

τ η
τ θ + τ η

x− τ δ − τ s
2 (τ s + 3τ δ)

τ ξ
(τ θ + τ ξ)

y − 2τ s
τ s + 3τ δ

f.

The date-1 futures price function is

f =
1

3
m+

τ s + 3τ δ
3 (τ s + τ δ)

δ +
τ η

3 (τ θ + τ η)
x+

τ ξ
3 (τ θ + τ ξ)

y +
τ s + 3τ δ

3 (τ s + τ δ)

√
τu
τ s
u.

By the expression of τ s in Proposition 2, disclosing information improves firms’

learning quality from the asset price. Intuitively, demand shocks θA and θB in the spot

price p in (11) are the uncertainty exposed to speculators when they trade futures

contracts. Releasing information about these two shocks reduces the uncertainty

faced by speculators. Being risk averse, speculators then trade more aggressively on

their own private information δ, thereby injecting more information on δ into the

futures price f . This effect shares a similar flavor as the “residual risk effect”in Bond

and Goldstein (2015) and the “uncertainty reduction effect” in Goldstein and Yang

(2015).

Corollary 1. (Price Informativeness) Disclosure of firms improves the informational

content of the asset price. That is, ∂τs
∂τη

> 0 and ∂τs
∂τξ

> 0.

3.3. Equilibrium Disclosure Policy

3.3.1. Profit Function

At the beginning of date 0, firms choose disclosure policies to maximize unconditional

expected profits. Again, take firm A as an example. Using the FOC of firm A’s profit-

maximization problem in Part (c) of Definition 1 and the equilibrium production

policy in Proposition 2, I can compute firm A’s expected profit as follows:

EΠA (τ η, τ ξ) =
m2

9︸︷︷︸
market size

+
9τ θ + 4τ η

36τ θ (τ θ + τ η)︸ ︷︷ ︸
proprietary cost

+
τ ξ

9τ θ (τ θ + τ ξ)︸ ︷︷ ︸
disclosure by firm B

+
τ s

9τ δ (τ s + τ δ)︸ ︷︷ ︸ .
learning from prices

(15)

Here, I explicitly expressEΠA as functions of disclosure precision (τ η, τ ξ) to emphasize

the dependence of expected profit on disclosure policies. Firm A chooses its optimal
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disclosure policy τ ∗η to maximize EΠA

(
τ η, τ

∗
ξ

)
, taking as given the optimal disclosure

τ ∗ξ of firm B.

There are four terms that go into firm A’s expected profit in (15). The first

term m2

9
is simply the size of the product market. Disclosure has no effect on this

term. The second term 9τθ+4τη
36τθ(τθ+τη)

captures the “proprietary cost”(Darrough, 1993)

or “competitive disadvantage cost”(Foster, 1986), whereby disclosing private infor-

mation reduces the disclosing firm’s competitive advantage. Disclosure harms firm

A’s profits via this second term; that is, ∂
∂τη

9τθ+4τη
36τθ(τθ+τη)

< 0. The third term τξ

9τθ(τθ+τξ)

captures the benefit from observing the public signal disclosed by the competing firm

B, which is determined by firm B’s disclosure precision τ ξ and so independent of

firm A’s disclosure precision τ η. The last term τs
9τδ(τs+τδ)

represents the benefit from

learning from the asset price f . Disclosure benefits firm A via this last term. That

is, ∂
∂τη

τs
9τδ(τs+τδ)

= 1
9(τs+τδ)

2
∂τs
∂τη

> 0, since ∂τs
∂τη

> 0 by Corollary 1.

In sum, the trade-off faced by firm A in the disclosure choice can be captured by

the following FOC:
∂EΠA (τ η, τ ξ)

∂τ η
= − 5

36 (τ θ + τ η)
2︸ ︷︷ ︸

<0, proprietary cost

+
1

9 (τ s + τ δ)
2

∂τ s
∂τ η︸ ︷︷ ︸

>0, learning from prices

. (16)

That is, disclosing private information harms firm A via the proprietary cost but

benefits firm A via improving price informativeness.

3.3.2. Disclosure Policy Characterization

The equilibrium disclosure policies
(
τ ∗η, τ

∗
ξ

)
form a Nash equilibrium. That is,

τ ∗η = arg max
τη

EΠA

(
τ η, τ

∗
ξ

)
and τ ∗ξ = arg max

τξ
EΠB

(
τ ∗η, τ ξ

)
,

where firm A’s profit function EΠA (τ η, τ ξ) is given by equation (15) and firm B’s

profit function EΠB (τ η, τ ξ) is defined similarly. There are two types of disclosure

policies in a symmetric equilibrium: (1) a “nondisclosure equilibrium,”where both

firms do not disclose information (i.e., τ ∗η = τ ∗ξ = 0); and (2) a “disclosure equilib-

rium,”where both firms disclose information (i.e., τ ∗η = τ ∗ξ > 0). The following two
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theorems respectively characterize these two types of equilibrium.

Theorem 1. (Nondisclosure Equilibrium) In equilibrium, both firms choose not to

disclose information (i.e., τ ∗η = τ ∗ξ = 0) if and only if one of the following two sets

conditions holds:

(a) 48γ2τuτ
3
θ ≤ 5

(
γ2τ δ + 4τuτ

2
θ

) (
γ2τ δ + 16τuτ

2
θ

)
,

28γ2τuτ
3
θ ≤ 5

(
γ2τ δ + 4τuτ

2
θ

) (
γ2τ δ + 8τuτ

2
θ

)
,

16γ2τuτ
3
θ ≤ 5

(
γ2τ δ + 4τuτ

2
θ

)2
;

or

(b) 48γ2τuτ
3
θ ≤ 5

(
γ2τ δ + 4τuτ

2
θ

) (
γ2τ δ + 16τuτ

2
θ

)
,

28γ2τuτ
3
θ > 5

(
γ2τ δ + 4τuτ

2
θ

) (
γ2τ δ + 8τuτ

2
θ

)
,

2γ2τ θ
(
5γ2τ 2

δ + 2τuτ
3
θ + 20τuτ

2
θτ δ
)
≤ 25τ δ

(
γ2τ δ + 4τuτ

2
θ

)2
.

Theorem 2. (Disclosure Equilibrium) A disclosure equilibrium
(
τ ∗η, τ

∗
ξ

)
∈ R2

++ (with

τ ∗ξ = τ ∗η) is characterized by the following three conditions:

(a) (FOC) τ ∗η > 0 is a solution to the fourth order polynomial,

F
(
τ ∗η
)
≡ F4τ

∗4
η + F3τ

∗3
η + F2τ

∗2
η + F1τ

∗
η + F0 = 0;

(b) (SOC) τ ∗η satisfies the second-order condition,

S
(
τ ∗η
)
≡ S6τ

∗6
η + S5τ

∗5
η + S4τ

∗4
η + S3τ

∗3
η + S2τ

∗2
η + S1τ

∗
η + S0 ≤ 0;

(c) (Global maximum) τ ∗η is a global maximum of EΠA

(
τ η, τ

∗
ξ

)
, that is,

EΠA

(
τ ∗η, τ

∗
ξ

)
≥ EΠA

(
τ η, τ

∗
ξ

)
, for τ η ∈ {0,∞, τ̂ η} ,

where τ̂ η is the positive roots of the fourth order polynomial:

G
(
τ ∗η
)
≡ G4τ̂

4
η +G3τ̂

3
η +G2τ̂

2
η +G1τ̂ η +G0 = 0.

The F -coeffi cients, S-coeffi cients, and G-coeffi cients are given in the appendix.

Theorem 1 characterizes the conditions that support the nondisclosure equilib-

rium. Theorem 2 characterizes a disclosure equilibrium in three conditions in the

form of polynomials of the disclosure policy τ ∗η. The first two conditions respectively

correspond to the first and second order conditions, while the last condition ensures
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that the optimal disclosure maximizes ex ante expected profits globally, rather than

only locally. Theorems 1 and 2 suggest the following four-step algorithm to compute

all the linear symmetric equilibria:

Step 1: Employ Theorem 1 to check whether the nondisclosure equilibrium is supported.

Step 2: Compute all the positive roots τ ∗η of the fourth order polynomial in Part (a) of

Theorem 2 to serve as candidates of disclosure equilibria.

Step 3: For each root τ ∗η computed in Step 2, check whether the SOC in Part (b) of

Theorem 2 is satisfied. Retain those roots that satisfy the SOC.

Step 4: For each value retained in Step 3, check whether the condition in Part (c) of

Theorem 2 is satisfied. If yes, then it is a disclosure equilibrium; otherwise, it

is not.

Figure 2 plots the regimes of equilibrium types in the parameter space of (τu, τ δ)

when τ θ = 1 and γ = 5. I use “x” to indicate the nondisclosure equilibrium (i.e.,

τ ∗η = τ ∗ξ = 0) and “+”to indicate a disclosure equilibrium (i.e., τ ∗η = τ ∗ξ > 0). Hence,

in the area marked with “*”, both a disclosure equilibrium and the nondisclosure

equilibrium are supported. Two observations emerge from Figure 2, both of which

are unique to a setting with learning from asset prices.

First, unlike a standard setting with demand uncertainty and Cournot competition

in which no disclosure forms a dominant strategy for firms (e.g., Gal-Or, 1985, 1986;

Darrough, 1993; Vives, 1984, 2008), introducing learning from asset prices causes

firms to disclose information in some cases and not to disclose in other cases. Firms

are more likely to withhold information only when τ δ or τu are suffi ciently high.

When τ δ is high (i.e., V ar (δ) is low), speculators know little new information so that

the value of learning from asset prices is low and hence firms choose not to disclose

because of the proprietary-cost concern as in the standard setting. When τu is high

(i.e., V ar (u) is low), there is little noise trading in the financial market and thus, the
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Figure 2: Disclosure and Nondisclosure Equilibria

This figure plots the regions of disclosure and nondisclosure equilibria in the parameter space of

(τu, τ δ). Parameter τu denotes the precision of noise trading in the financial market, and parameter

τ δ is the precision of fiancial speculators’private information. I have set τθ = 1 and γ = 5. I use

“x” to indicate the nondisclosure equilibrium (i.e., τ∗η = τ∗ξ = 0) and “+”to indicate a disclosure

equilibrium (i.e., τ∗η = τ∗ξ > 0). In the area marked with “*”, both a disclosure equilibrium and the

nondisclosure equilibrium are supported.

market is already very effi cient in communicating speculators’information to firms.

Again, in this case, the value of learning from prices is low and the only equilibrium

is the nondisclosure equilibrium.

Proposition 3. (Nondisclosure)When τu or τ δ is suffi ciently high, the nondisclosure

equilibrium prevails as the unique linear symmetric equilibrium.

The second observation emerging from Figure 2 is that multiple equilibria can

be supported. That is, when τu and τ δ are relatively small, both the nondisclosure
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equilibrium and a disclosure equilibrium can be supported. This is also different from

the standard setting where the nondisclosure equilibrium prevails as the unique equi-

librium. The multiplicity of equilibrium is generated by the coordination motivates

among firms, which are explored in detail in the next subsection.

3.4. Disclosure in a Very Noisy Financial Market

3.4.1. Complementarity and Multiplicity

Now suppose that there is a lot of noise trading in the financial market (i.e., τu is

low and so V ar (u) is high). The following theorem characterizes the equilibrium for

these economies with a noisy financial market.

Theorem 3. (Multiplicity) Suppose that τu is suffi ciently low. Then:

(a) If 4τ θ ≥ 5τ δ, there are two symmetric linear equilibria:

τ ∗η = τ ∗ξ = 0 and τ ∗η = τ ∗ξ =
γ2

5τu
+ o (1) ,

where o (1) is a term that converges to zero as τu → 0.

(b) If 4τ θ < 5τ δ, there exists a unique symmetric linear equilibrium, which is the

nondisclosure equilibrium.

Theorem 3 shows that with a very noisy financial market, multiplicity arises if

and only if

4τ θ ≥ 5τ δ ⇐⇒
V ar (δ)

V ar (θA + θB + δ)
≥ 38.46%.

That is, multiple equilibria are supported if and only if the financial market knows

more than 38.46% of the total demand shock. This condition sounds likely to hold in

reality, given that the market aggregates information from a large number of market

participants (although many of them are noise traders).

On the qualitative side, Theorem 3 says that multiplicity is more likely to arise

when speculators know more information that is useful to firms (i.e., V ar (δ) is rel-

atively large). This multiplicity is driven by a strategic complementarity in the dis-

closure decisions of firms. Specifically, recall that in the profit expression (15), the
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benefit of disclosing information comes from the fact that firms learn from the asset

price. When there is a lot noise trading in the market, the scope to improve price in-

formativeness via disclosure is large; it is particularly helpful for both firms to disclose

information to reduce the uncertainty faced by speculators, which in turn encourages

speculators to trade more aggressively on their private information δ. When this

complementarity is suffi ciently strong, both disclosure and nondisclosure equilibria

are supported.

Proposition 4. (Complementarity)When there is a lot noise trading in the financial

market, there is strategic complementarity in disclosure decisions. That is, ∂
2EΠA
∂τη∂τξ

> 0

and ∂2EΠB
∂τη∂τξ

> 0 for suffi ciently low values of τu.

3.4.2. Shaping Price Informativeness by Coordinated Disclosure

When the size of noise trading is infinitely large, both firms choose not to disclose

in equilibrium. That is, τ ∗η = τ ∗ξ = 0 when τu = 0. This is because firms do not

learn from asset prices when the financial market is populated with infinitely many

liquidity traders (and thus the economy degenerates to the standard setting without

learning from asset prices).

Now suppose that τu is small but positive, so that there is very minimal learning

of firms from the financial market. As Part (a) of Theorem 3 shows, when τu is small

but positive, a disclosure equilibrium is supported provided 4τ θ ≥ 5τ δ. In addition,

as τu → 0, the optimal disclosure policy τ ∗η diverges to infinity on the disclosure

equilibrium (i.e., τ ∗η = τ ∗ξ = γ2

5τu
+ o (1)→∞ as τu → 0). In addition, this disclosure

equilibrium is a preferred equilibrium from the perspective of firms: both firms are

better off on the disclosure equilibrium than on the nondisclosure equilibrium. This

is because on the disclosure equilibrium firms make more informed decisions after

equipped with more public information (the additional public information disclosed

by both firms and the more informative asset price). In this sense, the disclosure

equilibrium is more likely to be selected by firms. Thus, adding minimal learning
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from prices dramatically changes the firms’ disclosure behavior: without learning

from prices, firms do not disclose information at all; in contrast, with minimal learning

from prices, firms may coordinate to disclose their information almost perfectly.

On the disclosure equilibrium, firms choose to disclose more information when

there is more noise trading (i.e., τ ∗η increases as τu decreases). So, firms effectively

coordinate to disclose information to offset the negative effect of added noise trading

on price informativeness. In addition, the increased noise trading helps firms to coor-

dinate since when the size of noise trading is large, the marginal effect of coordinated

disclosure on price informativeness is large. As a result, as τu decreases, price infor-

mativeness τ ∗s increases, and firms’production policies rely more on asset prices, i.e.,

both af and bf increase.

Proposition 5. (Coordinated Disclosure and Price Informativeness)

(a) When τu = 0, the unique symmetric linear equilibrium is the nondisclosure equi-

librium (i.e., τ ∗η = τ ∗ξ = 0). When τu → 0 and when 4τ θ ≥ 5τ δ, there are two

symmetric linear equilibria: τ ∗η = τ ∗ξ = 0 and τ ∗η = τ ∗ξ = γ2

5τu
+ o (1); and firms are

better off on the disclosure equilibrium than on the nondisclosure equilibrium.

(b) Suppose 4τ θ ≥ 5τ δ. On the disclosure equilibrium, as τu decreases toward 0,

disclosure policies τ ∗η and τ
∗
ξ gradually increase toward ∞, and investment-price sen-

sitivities af and bf gradually increase toward 1.

Figure 3 graphically illustrates Proposition 5 for the parameter configuration

τ θ = 1, τ δ = 0.15, and γ = 5. In Figure 3, I plot the equilibrium disclosure poli-

cies (τ ∗η = τ ∗ξ), firms’expected profits (EΠ∗A = EΠ∗B), price informativeness (τ
∗
s), and

investment-price sensitivities (af = bf) against the precision τu of noise trading in the

financial market. The nondisclosure equilibrium is in red while the disclosure equi-

librium is in blue. Indeed, for suffi ciently small values of τu, there are two equilibria:

the nondisclosure equilibrium τ ∗η = τ ∗ξ = 0 and a disclosure equilibrium τ ∗η = τ ∗ξ > 0.

Firms are better off on the disclosure equilibrium than on the nondisclosure equilib-

rium. On the disclosure equilibrium, as τu gradually decreases to 0, both disclosure
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Figure 3: Disclosure and Multiplicity

This figure plots the equilibrium disclosure policies (τ∗η = τ∗ξ), firms’expected profits (EΠ∗
A = EΠ∗

B),

price informativeness (τ∗s), and investment-price sensitivity (af = bf ) against the precision τu of

noise trading in the financial market. The nondisclosure equilibrium is plotted in red and the

disclosure equilbrium is plotted in in blue. The other parameters are: τθ = 1, τ δ = 0.15, and γ = 5.

policies τ ∗η and τ
∗
ξ and price informativeness τ

∗
s diverge to ∞, and investment-price

sensitivities af and bf increase to 1.

Proposition 5 relates to but differs from Goldstein and Huang (2017). Goldstein

and Huang (2017) also highlight the possibility of a discontinuity of the real effect

of asset prices in parameters affecting price informativeness. Specifically, they show

that the asset price becomes almost uninformative when either the noise trading is

extremely volatile or the speculators have very imprecise information. However, the

real effects, measured by the sensitivity of investments to asset prices (i.e., af and bf

in the notation of this paper), are trivial in the former case but are significant in the

latter case. In contrast, in my setting, as the noise trading becomes extremely volatile,
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firms optimally respond by disclosing extremely precise information, which thereby

causes the asset price to become extremely informative, leading to a significant real

effect (investment-price sensitivity), as opposed to the trivial effect in Goldstein and

Huang (2017).

4. Welfare Effects of Financial Market Feedback

In this section, I examine the normative implications of allowing firms to learn from

asset prices. Again, I use the setting described in Section 3.1. as a benchmark, in

which firms make production decisions without observing the futures price f . Specif-

ically, I modify the order of date-1 events in the benchmark setting as follows: firms

observe public signals (x, y) and simultaneously choose their production quantities;

then speculators receive private information δ, observe public signals (x, y), and trade

futures against liquidity traders, which determines the asset price f .

I still use “∅”and “*”to respectively label the equilibrium variables in the bench-

mark setting without learning from asset prices and in the main setting with learning

from prices. The welfare variables of interest are: the expected profits of firms, EΠA

and EΠB; the expected consumer surplus, CS; the certainty equivalent of financial

speculator, CES; and the expected trading revenue of liquidity traders, ERL.

Allowing firms to learn from asset prices benefits all agents except for financial

speculators. That is, EΠ∗A ≥ EΠ∅
A, EΠ∗B ≥ EΠ∅

B, CS
∗ ≥ CS∅, ER∗L ≥ ER∅L ,

and CE∗S ≤ CE∅S . It is intuitive that both firms and consumers benefit from the

financial feedback effect, since in the setting with learning from prices, firms make

more informed decisions by accessing to more information (the public information

(x, y) disclosed by both firms and the futures price f).

Following Grossman and Stiglitz (1980), I compute the ex-ante certainty equiva-

lent of financial traders as follows:

CES =
1

2γ
log

[
1 +

γ2

2τu (τ θ + τ η)

]
. (17)
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So, public disclosure of firms harms speculators (i.e., ∂CES
∂τη

< 0). This is because

releasing public information about later commodity demand shocks brings the asset

price closer to its fundamental, which therefore limits the benefit of speculators in

trading a risky asset. This idea shares a similar spirit as the well-known “Hirshleifer

effect” (Hirshleifer, 1971; see also Kurlat and Veldkamp (2015) and Goldstein and

Yang (2017) for related discussions). Given that firms sometimes choose to disclose

information in a setting with learning from prices and that they always choose to with-

hold information in the benchmark setting without learning from prices, speculators

are weakly worse off in the former than in the latter settings; that is, CE∗S ≤ CE∅S

because τ ∗η ≥ τ∅η = 0.

I have not formally modeled the behavior of liquidity traders and thus it is impos-

sible to conduct a complete welfare analysis on this type of traders. Instead, I follow

the microstructure literature and compute their expected trading revenue to proxy

for the welfare of liquidity traders. This captures the idea that liquidity traders are

better off if they can realize their hedging or liquidity needs at a lower expected oppor-

tunity cost (see Easley, O’Hara, and Yang (2016) for more discussions). Intuitively,

the revenue that liquidity traders receive from buying u shares is

ERL = E [(p− f)u] = − γ

2 (τ θ + τ η) τu
< 0. (18)

Therefore, ERL is the negative of the expected opportunity cost associated with a

trade of u shares and thus, it is positively related to liquidity traders’welfare to the

extent that their exogenous hedging or liquidity needs are largely exogenous.

Disclosure improves the welfare of liquidity traders (i.e., ∂ERL
∂τη

> 0 in equation

(18)). This is because disclosing public information improves market liquidity. Intu-

itively, more precise public information implies that there is less uncertainty about

the asset value and so speculators trade more aggressively against liquidity traders.

As a result, changes in liquidity trading are absorbed with a smaller price change,

which benefits liquidity traders. Given that there is weakly more public disclosure

in a setting with learning from prices than in a setting without, liquidity traders are
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Figure 4: Welfare Effects of Learning from Asset Prices

The top two panels plot the equilibrium disclosure policies (τ∗η = τ∗ξ) and price informativeness (τ
∗
s)

against the precision τu of noise trading in the financial market. The other panels respectively plot

firms’expected profits EΠA and EΠB , expected consumer surplus CS, certainty equivalent CES of

speculators, and expected trading revenue ERL of liquidity traders. The solid curves correspond to

the setting in which firms learn information from asset prices, while the dashed curves correspond

to the benchmark setting in which firms do not learn information from asset prices. The other

parameters are: m = 1, τθ = 1, τ δ = 0.15, and γ = 5.

weakly better off in the former than in the latter settings. That is, ER∗L ≥ ER∅L by

τ ∗η ≥ τ∅η = 0.

Theorem 4. (Welfare) Learning from asset prices benefits firms, consumers, and

liquidity traders, but weakly harms financial speculators. That is, EΠ∗A > EΠ∅
A,

EΠ∗B > EΠ∅
B, CS

∗ > CS∅, ER∗L ≥ ER∅L , and CE
∗
S ≤ CE∅S .

Figure 4 graphically illustrates Theorem 4 for the parameter configuration m = 1,
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τ θ = 1, τ δ = 0.15, and γ = 5. In the top two panels, I plot the equilibrium disclosure

policies (τ ∗η = τ ∗ξ) and price informativeness (τ
∗
s) against the precision τu of noise

trading in the financial market. In the other four panels, I respectively plot firms’

expected profits EΠA and EΠB, expected consumer surplus CS, certainty equivalent

CES of speculators, and expected trading revenue ERL of liquidity traders in a setting

with learning from prices (in blue solid curves) and in the benchmark setting without

learning from prices (in red dashed curves). Indeed, allowing firms to learn from asset

prices improves the welfare of both firms and consumers no matter on the disclosure

equilibrium or on the nondisclosure equilibrium. For financial market participants,

as long as firms choose to disclose information in equilibrium, speculators are worse

off and liquidity traders are better off in a setting with learning from prices.

5. Conclusion

I study the classic information-sharing problem in a duopoly setting with demand

uncertainty and Cournot competition. My setup is a hybrid of Gal-Or (1985) and

Grossman and Stiglitz (1980) and incorporates the realistic feature that firms learn

information from a financial market, as highlighted by Hayek (1945). Disclosure

improves price informativeness via reducing the uncertainty faced by financial specu-

lators and thus, disclosure causes firms to face a trade-off between incurring the pro-

prietary cost and improving learning quality from asset prices. As a result, firms may

optimally choose to disclose information in a setting with learning from asset prices,

which differs from the standard setting where firms always withhold information. In

addition, firms’disclosure decisions can be a strategic complement. When this com-

plementarity is suffi ciently strong, both a disclosure equilibrium and a nondisclosure

equilibrium are supported, and the nondisclosure equilibrium are more preferred by

firms. My analysis shows that adding minimal learning from asset prices dramati-

cally changes the firms’disclosure behavior: without learning from prices, firms do
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not disclose information at all; in contrast, with minimal learning from prices, firms

may coordinate to disclose their information almost perfectly. Finally, I show that

relative to a setting in which firms do not learn from prices, in a setting in which

firms do learn from prices, firms, consumers, and liquidity traders are better off,

while financial speculators are weakly worse off. Overall, my analysis highlights the

importance of incorporating the feature of learning from asset prices in understanding

firms’disclosure behavior.

Appendix: Proofs

Proof of Proposition 2

After expressing q∗A in (9) as functions of (θA, x, y, f) and comparing with the conjec-

tured policy in (5), I obtain the following five conditions in terms of the unknown a

coeffi cients and b coeffi cients:

2a0 = m− τ s
τ δ + τ s

(m− a0 − b0)− b0,

2aθ = 1,

2ax = − τ s
τ δ + τ s

[
(1− aθ) τ η
τ θ + τ η

− (ax + bx)

]
− bx,

2ay = − τ s
τ δ + τ s

[
(1− bθ) τ ξ
τ θ + τ ξ

− (ay + by)

]
+

(1− bθ) τ ξ
τ θ + τ ξ

− by,

2af =
τ s

τ δ + τ s
(af + bf + 1)− bf .

Conducting a similar analysis for firm B leads to the following additional five equa-

tions:

2b0 = m− τ s
τ δ + τ s

(m− a0 − b0)− a0,

2bθ = 1,

2bx = − τ s
τ δ + τ s

[
(1− aθ) τ η
τ θ + τ η

− (ax + bx)

]
+

(1− aθ) τ η
τ θ + τ η

− ax,

2by = − τ s
τ δ + τ s

[
(1− bθ) τ ξ
τ θ + τ ξ

− (ay + by)

]
− ay,

2bf =
τ s

τ δ + τ s
(af + bf + 1)− af .
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Solving the above system yields the expressions of a’s and b’s in Proposition 2.

The expressions of τ s, p, and f in Proposition 2 are obtained by plugging a’s and b’s

respectively into equations (14), (11), and (12).

Proof of Corollary 1

By the expression of τ s in Proposition 2, direct computations show
∂τ s
∂τ η

=
32τu (τ θ + τ η) (τ θ + τ ξ)

3

γ2 (2τ θ + τ ξ + τ η)
3 > 0,

∂τ s
∂τ ξ

=
32τu (τ θ + τ ξ) (τ θ + τ η)

3

γ2 (2τ θ + τ ξ + τ η)
3 > 0.

Proof of Theorem 1

Nondisclosure is an equilibrium if and only if τ ∗η = 0 is the best response to τ ∗ξ = 0,

i.e., if and only if

EΠA (0, 0) ≥ max
τη

EΠA (τ η, 0) .

By the expression of τ s in Proposition 2 and the expression of expected profitEΠA (τ η, τ ξ)

in (15), direct computations show that

EΠA (0, 0)− EΠA (τ η, 0) ≥ 0⇐⇒ H (τ η) ≡ H2τ
2
η +H1τ η +H0 ≤ 0,

where

H2 = 48γ2τuτ
3
θ − 5

(
γ2τ δ + 16τuτ

2
θ

) (
γ2τ δ + 4τuτ

2
θ

)
,

H1 = 4τ θ
[
28γ2τuτ

3
θ − 5

(
γ2τ δ + 4τuτ

2
θ

) (
γ2τ δ + 8τuτ

2
θ

)]
,

H0 = 4τ 2
θ

[
16γ2τuτ

3
θ − 5

(
γ2τ δ + 4τuτ

2
θ

)2
]
.

Thus, nondisclosure is an equilibrium if and only if

H (τ η) ≤ 0,∀τ η ≥ 0. (A1)

Clearly, a necessary condition for (A1) to hold is H0 ≤ 0. Now suppose H0 ≤ 0

and discuss the possible values of H2 and H1 to check when condition (A1) holds.

If H2 > 0, then H (τ η) > 0 for suffi ciently large τ η, so that condition (A1) is

violated.

If H2 = 0, then H (τ η) becomes linear, and condition (A1) holds if and only if

H1 ≤ 0.
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Suppose H2 < 0. If in addition, H1 ≤ 0, then the range of τ η > 0 lies on the

right branch of H (τ η) and thus condition (A1) holds. If H1 > 0, then condition

(A1) holds if and only if the discriminant of H (τ η) is nonpositive (i.e., if and only if

H2
1 − 4H2H0 ≤ 0).

To summarize, (A1) holds if and only if one of the following two sets of conditions

holds:

{H2 ≤ 0, H1 ≤ 0, H0 ≤ 0} or
{
H2 < 0, H1 > 0, H2

1 − 4H2H0 ≤ 0
}
,

which are respectively the two sets of conditions in Theorem 1.

Proof of Theorem 2

A symmetric disclosure equilibrium requires that τ ∗η > 0 is the best response to

τ ∗ξ = τ ∗η > 0. That is,

τ ∗η = arg max
τη

EΠA

(
τ η, τ

∗
η

)
.

I characterize the value of τ ∗η in three steps. First, I use the FOC to find the candidates

for τ ∗η. Second, I use the SOC to ensure that τ
∗
η is a local maximum of EΠA

(
τ η, τ

∗
η

)
.

Third, I compare EΠA

(
τ ∗η, τ

∗
η

)
with the other extreme values of EΠA

(
τ η, τ

∗
η

)
to

ensure that τ ∗η is a global maximum of EΠA

(
τ η, τ

∗
η

)
.

For the FOC, direct computations show
∂EΠA (τ η, τ ξ)

∂τ η

∣∣∣∣
τξ=τη

= 0⇐⇒ F (τ η) ≡ F4τ
4
η + F3τ

3
η + F2τ

2
η + F1τ η + F0 = 0,

where

F4 = −80τ 2
u, F3 = 16τu

(
γ2 − 20τuτ θ

)
,

F2 = 8τu
(
6γ2τ θ − 5γ2τ δ − 60τuτ

2
θ

)
,

F1 = 16τuτ θ
(
3γ2τ θ − 5γ2τ δ − 20τuτ

2
θ

)
,

F0 = 16γ2τuτ
3
θ − 5γ4τ 2

δ − 40γ2τuτ
2
θτ δ − 80τ 2

uτ
4
θ.

Thus, any candidate disclosure policy τ ∗η > 0 must satisfy F
(
τ ∗η
)

= 0.

For the SOC, direct computations show
∂2EΠA (τ η, τ ξ)

∂τ 2
η

∣∣∣∣
τξ=τη

≤ 0⇐⇒ S (τ η) ≡ S6τ
6
η+S5τ

5
η+S4τ

4
η+S3τ

3
η+S2τ

2
η+S1τ η+S0 ≤ 0,
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where

S6 = 320τ 3
u, S5 = −80τ 2

u

(
γ2 − 24τuτ θ

)
,

S4 = −80τ 2
u

(
5γ2τ θ − 3γ2τ δ − 60τuτ

2
θ

)
,

S3 = −4τu
(
γ4τ δ + 200γ2τuτ

2
θ − 1600τ 2

uτ
3
θ − 240γ2τuτ θτ δ

)
,

S2 = 4τu
(
15γ4τ 2

δ − 3γ4τ θτ δ + 1200τ 2
uτ

4
θ + 360γ2τuτ

2
θτ δ − 200γ2τuτ

3
θ

)
,

S1 = 4τuτ θ
(
30γ4τ 2

δ − 3γ4τ θτ δ + 480τ 2
uτ

4
θ − 100γ2τuτ

3
θ + 240γ2τuτ

2
θτ δ
)
,

S0 = 5γ6τ 3
δ − 4γ4τuτ

3
θτ δ + 60γ4τuτ

2
θτ

2
δ − 80γ2τ 2

uτ
5
θ + 240γ2τ 2

uτ
4
θτ δ + 320τ 3

uτ
6
θ.

Hence, any candidate disclosure policy τ ∗η > 0 must satisfy S
(
τ ∗η
)
≤ 0.

Finally, fixing τ ξ = τ ∗η, I can find the interior extreme values of EΠA (τ η, τ ξ) by

setting its FOC at zero, that is,
∂EΠA (τ η, τ ξ)

∂τ η
= 0⇐⇒ G (τ η) ≡ G4τ

4
η +G3τ

3
η +G2τ

2
η +G1τ η +G0 = 0,

where

G4 = 5γ4τ 2
δ + 1280τ 2

uτ
4
θ + 1280τ 2

uτ
4
ξ − 128γ2τuτ

3
θ

−128γ2τuτ
3
ξ + 5120τ 2

uτ θτ
3
ξ + 5120τ 2

uτ
3
θτ ξ

+7680τ 2
uτ

2
θτ

2
ξ + 160γ2τuτ

2
θτ δ − 384γ2τuτ θτ

2
ξ

−384γ2τuτ
2
θτ ξ + 160γ2τuτ δτ

2
ξ + 320γ2τuτ θτ δτ ξ,

G3 = 4



1280τ 2
uτ

5
θ − 160γ2τuτ

4
θ − 32γ2τuτ

4
ξ

+10γ4τ θτ
2
δ + 5γ4τ 2

δτ ξ + 1280τ 2
uτ θτ

4
ξ + 5120τ 2

uτ
4
θτ ξ

+5120τ 2
uτ

2
θτ

3
ξ + 7680τ 2

uτ
3
θτ

2
ξ − 576γ2τuτ

2
θτ

2
ξ

+240γ2τuτ
3
θτ δ − 256γ2τuτ θτ

3
ξ − 512γ2τuτ

3
θτ ξ

+80γ2τuτ δτ
3
ξ + 400γ2τuτ θτ δτ

2
ξ + 560γ2τuτ

2
θτ δτ ξ


,

G2 = 2



3840τ 2
uτ

6
θ − 576γ2τuτ

5
θ + 15 360τ 2

uτ
5
θτ ξ + 60γ4τ 2

θτ
2
δ

+15γ4τ 2
δτ

2
ξ + 3840τ 2

uτ
2
θτ

4
ξ + 15 360τ 2

uτ
3
θτ

3
ξ + 23 040τ 2

uτ
4
θτ

2
ξ

−1152γ2τuτ
2
θτ

3
ξ − 2304γ2τuτ

3
θτ

2
ξ + 1040γ2τuτ

4
θτ δ

−192γ2τuτ θτ
4
ξ − 1920γ2τuτ

4
θτ ξ + 80γ2τuτ δτ

4
ξ

+60γ4τ θτ
2
δτ ξ + 2400γ2τuτ

2
θτ δτ

2
ξ + 800γ2τuτ θτ δτ

3
ξ + 2720γ2τuτ

3
θτ δτ ξ


,
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G1 = 4



1280τ 2
uτ

7
θ − 224γ2τuτ

6
θ + 5120τ 2

uτ
6
θτ ξ + 40γ4τ 3

θτ
2
δ

+5γ4τ 2
δτ

3
ξ + 1280τ 2

uτ
3
θτ

4
ξ + 5120τ 2

uτ
4
θτ

3
ξ + 7680τ 2

uτ
5
θτ

2
ξ

−96γ2τuτ
2
θτ

4
ξ − 512γ2τuτ

3
θτ

3
ξ − 960γ2τuτ

4
θτ

2
ξ + 30γ4τ θτ

2
δτ

2
ξ

+60γ4τ 2
θτ

2
δτ ξ + 480γ2τuτ

5
θτ δ − 768γ2τuτ

5
θτ ξ + 560γ2τuτ

2
θτ δτ

3
ξ

+1360γ2τuτ
3
θτ δτ

2
ξ + 80γ2τuτ θτ δτ

4
ξ + 1360γ2τuτ

4
θτ δτ ξ


,

G0 = 1280τ 2
uτ

8
θ − 256γ2τuτ

7
θ + 5120τ 2

uτ
7
θτ ξ + 80γ4τ 4

θτ
2
δ + 5γ4τ 2

δτ
4
ξ

+1280τ 2
uτ

4
θτ

4
ξ + 5120τ 2

uτ
5
θτ

3
ξ + 7680τ 2

uτ
6
θτ

2
ξ − 128γ2τuτ

3
θτ

4
ξ

−640γ2τuτ
4
θτ

3
ξ − 1152γ2τuτ

5
θτ

2
ξ + 40γ4τ θτ

2
δτ

3
ξ + 160γ4τ 3

θτ
2
δτ ξ

+120γ4τ 2
θτ

2
δτ

2
ξ + 640γ2τuτ

6
θτ δ − 896γ2τuτ

6
θτ ξ

+160γ2τuτ
2
θτ δτ

4
ξ + 960γ2τuτ

3
θτ δτ

3
ξ + 2080γ2τuτ

4
θτ δτ

2
ξ + 1920γ2τuτ

5
θτ δτ ξ,

with τ ξ = τ ∗η.

The extreme values of EΠA (τ η, τ ξ) include (1) the positive roots of G (τ η) = 0;

and (2) the two boundaries τ η = 0 and τ η =∞.

Proof of Proposition 3

When τu is large

Fix the other parameters and let τu → ∞. Condition (a) in Theorem 1 is satisfied

and thus nondisclosure is an equilibrium.

Condition (a) in Theorem 2 is violated, because all the F coeffi cients are negative

for suffi ciently large values of τu, which implies F (τ η) < 0 for all τ η > 0. So, there

are no disclosure equilibria.

When τ δ is large

Fix the other parameters and let τ δ → ∞. Condition (a) in Theorem 1 is satisfied

and thus nondisclosure is an equilibrium.

Now check condition (a) in Theorem 2. Suppose this condition is satisfied for some

τ ∗η > 0. If τ ∗η is finite as τ δ →∞, then F
(
τ ∗η
)
∝ 8τu (−5γ2τ δ) τ

∗2
η +16τuτ θ (−5γ2τ δ) τ

∗
η−

5γ4τ 2
δ < 0, which violates the condition of F

(
τ ∗η
)

= 0. If τ ∗η diverges to ∞ as

τ δ → ∞, then F4τ
∗4
η + F3τ

3
η = (−80τ 2

u) τ
4
η + 16τu (γ2 − 20τuτ θ) τ

3
η ∝ (−80τ 2

u) τ
4
η < 0
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and F2τ
∗2
η + F1τ

∗
η + F0 < 0, and so F

(
τ ∗η
)
< 0, which again violates the condition of

F
(
τ ∗η
)

= 0. Hence, there are no disclosure equilibria.

Proof of Theorem 3

Fix (γ, τ θ, τ δ) and let τu → 0. Condition (a) of Theorem 1 is satisfied for small

values of τu and thus the nondisclosure equilibrium is supported. The key is to

characterize the disclosure equilibrium. I conduct this characterization in four steps.

First, I use the FOC in Part (a) of Theorem 2 to compute all the candidates for a

disclosure equilibrium. It turns out that there are two possible values of disclosure

policy τ ∗η, which I label as τ
large
η and τ smallη , respectively. Second, I employ the SOC

in Part (b) of Theorem 2 to rule out candidate τ smallη and retain the other candidate

τ largeη . Third, I compare EΠA

(
0, τ largeη

)
with EΠA

(
τ largeη , τ largeη

)
to show that under

condition 4τ θ < 5τ δ, the unique equilibrium is the nondisclosure equilibrium (i.e.,

Part (b) of Theorem 3). Lastly, I show that if 4τ θ ≥ 5τ δ, then τ ∗η = τ ∗ξ = τ largeη is

supported as a disclosure equilibrium (i.e., Part (a) of Theorem 3).

Compute disclosure equilibrium candidates

A disclosure equilibrium requires F (τ ∗η) = 0 in Part (a) of Theorem 2. I can rewrite

this equation as follows:

−80
(
τ θ + τ ∗η

)4
τ 2
u + 8γ2 (τ θ + τ η)

2 (2τ θ − 5τ δ + 2τ ∗η
)
τu = 5γ4τ 2

δ . (A2)

Now consider the process of τu → 0 and examine the order of τ ∗η. Clearly, τ
∗
η must

diverge to ∞ as τu → 0, because if τ ∗η converges to a finite value, then the left-

hand-side (LHS) of equation (A2) converges to 0, which cannot maintain equation

(A2).

The highest order of the LHS of equation (A2) is −80τ ∗4η τ
2
u + 16γ2τ ∗3η τu. Thus,

by equation (A2),

−80τ ∗4η τ
2
u + 16γ2τ ∗3η τu ∝ 5γ4τ 2

δ , (A3)

where ∝ means that the LHS has the same order as the right-hand-side (RHS).

Equation (A3) determines the order of τ ∗η.
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Given that the RHS of (A3) is positive and that only the term 16γ2τ ∗3η τu in the

LHS of (A3) is positive, there are two possibilities. First, −80τ ∗4η τ
2
u has a lower order

than 16γ2τ ∗3η τu, i.e., −80τ ∗4η τ
2
u = o

(
16γ2τ ∗3η τu

)
, where the notation X2 = o (X1)

means limτu→0
X2
X1

= 0. Second, −80τ ∗4η τ
2
u has the same order as 16γ2τ ∗3η τu, i.e.,

−80τ ∗4η τ
2
u = O

(
16γ2τ ∗3η τu

)
, where the notation X2 = O (X1) means X2

X1
converges to

a finite constant as τu → 0.

Case 1. −80τ ∗4η τ
2
u = o

(
16γ2τ ∗3η τu

)
By equation (A3),

16γ2τ ∗3η τu = 5γ4τ 2
δ + o (1)⇒ τ ∗η =

3

√
5γ2τ 2

δ

16

1

τu
+ o

(
3

√
1

τu

)
.

I denote this candidate disclosure policy as τ smallη .

Case 2. −80τ ∗4η τ
2
u = O

(
16γ2τ ∗3η τu

)
In this case, τ ∗η diverges at the order of

1
τu
, that is, τuτ ∗η converges to a finite value

as τu → 0. By equation (A3),

−80τ ∗4η τ
2
u + 16γ2τ ∗3η τu = 5γ4τ 2

δ = O (1)⇒

16τuτ
∗
η

(
γ2 − 5τuτ

∗
η

)
τ ∗2η = O (1) .

Note that 16τuτ
∗
η = O (1) and τ ∗2η = O

(
1
τ2u

)
, and thus

γ2 − 5τuτ
∗
η = O

(
1

τ ∗2η

)
⇒ 5τuτ

∗
η = γ2 +O

(
1

τ ∗2η

)
⇒ τ ∗η =

γ2

5τu
+O (τu) .

Hence, the other candidate is:

τ ∗η =
γ2

5τu
+ o (1) ,

which is labeled as τ largeη , where the superscript “large”follows from γ2

5τu
> 3

√
5γ2τ2δ

16
1
τu

for small values of τu.

Check the SOC

Inserting the candidate disclosure policy τ smallη = 3

√
5γ2τ2δ

16
1
τu

+ o
(

3

√
1
τu

)
into the SOC

in Part (b) of Theorem 2 and keeping the highest order, I compute S
(
τ smallη

)
∝

15
4
γ6τ 3

δ > 0. That is, the SOC is violated and thus τ smallη cannot be supported as a

disclosure equilibrium.

Similarly, for the other candidate policy τ largeη = γ2

5τu
+ o (1), I can compute
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S
(
τ largeη

)
∝ − 16

3125
γ12

τ3u
< 0, which means that τ largeη is a local maximum for func-

tion EΠA

(
·, τ largeη

)
.

In sum, the value of τ largeη serves as the only candidate for a disclosure equilibrium.

Compare EΠA

(
τ largeη , τ largeη

)
with EΠA

(
0, τ largeη

)
(Proof of Part (b))

By the profit expression (15) and using τ largeη = γ2

5τu
+ o (1), I can show:

EΠA

(
τ largeη , τ largeη

)
< EΠA

(
0, τ largeη

)
⇐⇒(

−200 000τ 6
θ

)
τ 5
u − 20 000γ2τ 4

θ (6τ θ + 5τ δ) τ
4
u − 500γ4τ 2

θ

(
44τ 2

θ + 25τ 2
δ + 100τ θτ δ

)
τ 3
u

−100γ6τ θ
(
4τ 2

θ + 25τ 2
δ + 85τ θτ δ

)
τ 2
u + 5γ8

(
48τ 2

θ − 25τ 2
δ − 120τ θτ δ

)
τu + 4γ10 (4τ θ − 5τ δ) < 0.

For suffi ciently small τu,

EΠA

(
τ largeη , τ largeη

)
< EΠA

(
0, τ largeη

)
⇐⇒ 4τ θ < 5τ δ.

Thus, if 4τ θ < 5τ δ, τ largeη does not form a global maximum for function EΠA

(
·, τ largeη

)
,

and hence τ largeη cannot be supported as a disclosure equilibrium. Given that τ largeη

is the only disclosure equilibrium candidate, there is no disclosure equilibrium when

4τ θ < 5τ δ and τu is suffi ciently small.

Proof of Part (a)

Now suppose 4τ θ ≥ 5τ δ, so that EΠA

(
τ largeη , τ largeη

)
> EΠA

(
0, τ largeη

)
for suffi ciently

small τu. I then examine the shape of EΠA

(
·, τ largeη

)
and show that τ largeη forms a

global maximum of EΠA

(
·, τ largeη

)
. Using Part (c) of Theorem 2 and the expression

of τ largeη = γ2

5τu
+ o (1), I can show that the FOC of EΠA

(
·, τ largeη

)
has the same sign

as

A (τ η) = A4τ
4
η + A3τ

3
η + A2τ

2
η + A1τ η + A0,

where

A4 = −1280τ 2
u, A3 = 128τu

(
γ2 − 40τuτ θ

)
,

A2 = 32τu
(
12γ2τ θ − 5γ2τ δ − 240τuτ

2
θ

)
,

A1 = 64τuτ θ
(
6γ2τ θ − 5γ2τ δ − 80τuτ

2
θ

)
,

A0 = −
(
5γ4τ 2

δ + 1280τ 2
uτ

4
θ − 128γ2τuτ

3
θ + 160γ2τuτ

2
θτ δ
)
.
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Thus, for suffi ciently small τu, if 4τ θ ≥ 5τ δ, then A4 < 0, A3 > 0, A2 > 0, A1 > 0, and

A0 < 0.

Taking derivative of A (τ η) yields:

A′ (τ η) = 4A4τ
3
η + 3A3τ

2
η + 2A2τ η + A1.

Given 4A4 < 0, 3A3 > 0, 2A2 > 0, and A1 > 0, it must be the case that A′ (0) > 0 and

A′ (∞) < 0 and that A′ (τ η) changes signs only once (by Descartes’“rule of signs”).

Hence, A (τ η) first increases and then decreases. Given that A (τ η) is negative at small

and large values of τ η and that τ largeη is a local maximum for function EΠA

(
·, τ largeη

)
(i.e., A

(
τ largeη − ε

)
> 0 for suffi ciently small ε), A (τ η) crosses zero twice, which

corresponds to two local extreme values of τ η. Recall that A (τ η) has the same

sign as the FOC of EΠA

(
·, τ largeη

)
, function EΠA

(
·, τ largeη

)
must first decrease, then

increase, and finally decrease. Thus, the two local maximum values are 0 and τ largeη .

Given that EΠA

(
τ largeη , τ largeη

)
> EΠA

(
0, τ largeη

)
(under the condition 4τ θ ≥ 5τ δ),

it is clear that τ largeη forms a global maximum of EΠA

(
·, τ largeη

)
, which implies that

τ largeη is supported as a disclosure equilibrium.

Proof of Proposition 4

By the FOC (16) in firm A’s disclosure decision problem,
∂2EΠA

∂τ η∂τ ξ
=

∂

∂τ ξ

[
1

9 (τ s + τ δ)
2

∂τ s
∂τ η

]
.

Using the expression of τ s in Proposition 2, I can show that
∂

∂τ ξ

[
1

9 (τ s + τ δ)
2

∂τ s
∂τ η

]
∝ −16 (τ θ + τ η)

2 (τ θ + τ ξ)
2 τu + 3γ2τ δ (2τ θ + τ ξ + τ η)

2 .

Hence, when τu is suffi ciently small, ∂
2EΠA
∂τη∂τξ

> 0. Given symmetry, ∂
2EΠB
∂τη∂τξ

> 0.

Proof of Proposition 5

Proof of Part (a)

When τu = 0, price informativeness τ s is equal to 0, and so the profit expression in

equation (15) becomes

EΠA (τ η, τ ξ)|τu=0 =
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

+
τ ξ

9τ θ (τ θ + τ ξ)
.
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Taking derivatives shows
∂ EΠA(τη ,τξ)|

τu=0

∂τη
< 0. Thus, no disclosure is a dominant

strategy, which implies that the nondisclosure equilibrium serves as the unique equi-

librium (i.e., τ ∗η = τ ∗ξ = 0).

The multiplicity result follows immediately from Part (a) of Theorem 3.

Using the expression of τ ∗η = τ ∗ξ = γ2

5τu
+o (1) and the profit expression in equation

(15), I can show that EΠA

(
γ2

5τu
, γ2

5τu

)
− EΠA (0, 0) has the same sign as

∆Π (τu) = −2000τ 4
θτ

3
u−1000γ2τ 2

θτ δτ
2
u+5γ4

(
32τ 2

θ − 25τ 2
δ − 40τ θτ δ

)
τu+4γ6 (4τ θ − 5τ δ) .

Thus, when τu is suffi ciently small, ∆Π (τu) > 0 provided 4τ θ > 5τ δ.

Proof of Part (b)

By τ ∗η = τ ∗ξ = γ2

5τu
+ o (1), it is clear that τ ∗η decreases with τu and diverges to ∞ as

τu → 0.

By the expression of τ s and af in Proposition 2, direct computations show that

τ ∗s and af increase with τ η, and that τ
∗
s →∞ and af → 1, as τ ∗η →∞.

Proof of Theorem 4

In the main text, I have already proved ER∗L ≥ ER∅L and CE
∗
S ≤ CE∅S . Now I prove

EΠ∗A > EΠ∅
A and CS

∗ > CS∅.

Proof of EΠ∗A > EΠ∅
A

Let τ s (τ η, τ ξ) denote the expression of τ s in Proposition 2, i.e., τ s (τ η, τ ξ) =
16τu(τθ+τη)2(τθ+τξ)

2

γ2(2τθ+τξ+τη)
2 .

By profit expression (15), firm A’s expected profit in the setting with learning from

prices is:

EΠ∗A = max
τη

[
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

+
τ ∗ξ

9
(
τ θ + τ ∗ξ

)
τ θ

+
τ s
(
τ η, τ

∗
ξ

)
9τ δ
(
τ s
(
τ η, τ ∗ξ

)
+ τ δ

)] .
Similarly, firm A’s expected profit in the benchmark setting without learning from

prices is:

EΠ∅
A = max

τη

[
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

]
=
m2

9
+

1

4τ θ
.
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Hence,

EΠ∗A = max
τη

[
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

+
τ s
(
τ η, τ

∗
ξ

)
9τ δ
(
τ s
(
τ η, τ ∗ξ

)
+ τ δ

)]+
τ ∗ξ

9
(
τ θ + τ ∗ξ

)
τ θ

> max
τη

[
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

+
τ s
(
τ η, τ

∗
ξ

)
9τ δ
(
τ s
(
τ η, τ ∗ξ

)
+ τ δ

)]

> max
τη

[
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

]
≥ m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

for any τ η ⇒

EΠ∗A > max
τη

[
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

]
= EΠ∅

A.

Proof of CS∗ > CS∅

Using the FOC of consumers’problem, I can compute:

CS∗ =
E
[
(q∗A + q∗B)2]

2
.

Then using the expressions of q∗A and q
∗
B in Proposition 2, I can obtain

CS∗ =
2m2

9
+

9τ θ + 16τ η
36τ θ (τ θ + τ η)

+
2τ s

9τ δ (τ s + τ δ)
.

Similarly, in the setting without learning from prices,

CS∅ =
2m2

9
+

1

4τ θ
.

Thus,

CS∗ − CS∅ =
7τ ∗η

36τ θ (τ θ + τ η)
+

2τ ∗s
9τ δ (τ ∗s + τ δ)

> 0⇒ CS∗ > CS∅.
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