
FTG Working Paper Series

Rational-expectations whiplash*

by

Efstathios (Stathi) Avdis
Efstathios Avdis

Masahiro Watanabe
Efstathios Avdis

Masahiro Watanabe

Working Paper No. 00019-00

Finance Theory Group

www.financetheory.com



*FTG working papers are circulated for the purpose of stimulating discussions and generating comments. 
They have not been peer?reviewed by the Finance Theory Group, its members, or its board. Any comments 

about these papers should be sent directly to the author(s).



Rational-expectations whiplash∗

Efstathios Avdis Masahiro Watanabe

February 26, 2018

Abstract

We present a financial market with investors who have nested private informa-

tion. Small perturbations of price informativeness, originating from fat-finger errors or

algorithmic glitches of well-informed investors, can trigger an oscillating shock through-

out the economy that destabilizes the feedback loop between prices and expectations.

Moreover, decreasing the volatility of liquidity trading makes the equilibrium less sta-

ble. We investigate what the distribution of informed investors implies for equilib-

rium stability and for the risk premium of the asset. We find that different investor

distributions have different implications, depending on whether adverse-selection or

risk-sharing effects dominate in the economy.
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1 Introduction

The recent history of financial markets contains several episodes in which prices move vio-

lently in either direction within a few minutes. The press reports some of these episodes by

alluding to two unusual trading patterns: fat-finger mistakes of human traders, or program-

ming glitches in algorithmic trading. These phenomena are severe enough to have attracted

the attention of several exchanges, who, through the Financial Industry Regulatory Author-

ity (FINRA) and other self-regulatory organizations, have adopted increasingly sophisticated

rules aimed at curbing what they call “extraordinary volatility.”1

Although press reports offer little explanation of extraordinary volatility, they do contain

three specific ingredients of a modern financial theory. First, an understanding that there

is a usual pattern of economic behavior, that is, equilibrium. Second, a hypothesis that

extraordinary volatility is due to out-of-equilibrium shocks coming from erroneous trading.

Third, an intuition that the market may not able to recover from such shocks.

We present a model that formalizes the intuition that out-of-equilibrium shocks may in-

deed destabilize markets. Our financial market consists of different types of investors with

nested information sets. The model is thus related to the rational-expectations equilibrium

in Grossman and Stiglitz (1980) and several other papers with asymmetric information. Our

information structure, however, is more general, and it can generate predictions about market

stability that are not possible with simpler structures of asymmetric information. An im-

portant feature of our model is that the out-of-equilibrium shocks really come from mistakes

1On May 31, 2012, the Securities Exchange Commission (SEC) approved the Limit Up/Limit Down
(LULD) plan. The plan allows the NYSE Group, Nasdaq, Bats Global Markets, and other FINRA exchanges
to briefly pause trading following price movements outside a certain band, with the intent to protect investors
and promote fair and orderly markets (U.S. Securities and Exchange Commission, 2012). The LULD plan
differs from previous circuit-breaker rules in several regards. First, the plan imposes limits on bilateral
price movements, not just declines. Second, the plan applies on trade of individual securities; in addition,
price bands are calculated using the price history of the corresponding security, rather than using an index.
Third, the exchanges do not suspend trade unless a security trades at the price-band limits for several
seconds. Incidental hits of the price-band limits do not trigger suspension automatically. The plan has
received a number of amendments, the latest of which—at the time of writing—took effect on November 20,
2017.
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that investors make when they submit their trades—the shocks have a literal interpretation

as either fat-finger errors or trading glitches.

Our motivating example is an equities market with three investor types: household in-

vestors, mutual funds, and hedge funds. We assume that households can only see public

information about financial assets, that mutual funds have information about assets that

households do not, and that hedge funds have even more information about assets than

mutual funds do.2

In what follows, we take a general approach that does not rely on a specific number

of investor types that may be present in the real world, or on whether the investors are

humans or algorithms. We do, however, assume that the different investor types have strictly

nested beliefs. We can therefore think of the model as a market where investors are split

into different groups, which we call “information classes.” All the groups together form a

structure that we call the “information hierarchy.” We also assume that all investors are

rational utility maximizers given their information.

Because investors trade against each other in the market, their beliefs about fundamentals

are interconnected through the price. An important question therefore arises. How does our

system of interconnected beliefs respond to an out-of-equilibrium shock to the economy?

Does the nested structure of information attenuate the effects of such a shock, or does it

amplify it? Our model extends Grossman and Stiglitz (1980), which has a provably stable

equilibrium. We might therefore be inclined to think that nested information stabilizes the

economy, and that it attenuates external shocks. And yet, shocks can easily propagate

throughout the economy, because investors’ actions are interconnected through their beliefs.

Thus, if we have an amplification mechanism anywhere in the market, then a small shock

can potentially destabilize the entire economy.

As we explain below, we have, in fact, two distinct amplification mechanisms. Generally

2We give some examples of this information structure in Section 2, by appealing to geographical and
temporal microfoundations.
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speaking, there is a feedback loop between asset prices and expectations. The information

content of prices determines the formation of expectations, and expectations determine ag-

gregate demand and feed into the price through market clearing. The first mechanism, which

we discuss next, makes shocks accumulate in investors’ feedback loops. The second mech-

anism, which we discuss later, determines whether the investors’ beliefs can withstand the

accumulated shocks.

Let us consider a fat-finger error of a well-informed class. We assume that there are

no changes whatsoever to any relevant state variables—the dividend information does not

change, and the demand of liquidity traders remains the same. This type of error is equivalent

to an out-of-equilibrium shock to the coefficients in the demand strategy of this class.

Because demands determine prices through market clearing, a fat-finger error provides

a shock to price informativeness for all classes with less information. Moreover, because

information is nested, the total effect of this shock for each less-informed class contains

the accumulated reactions to that shock by all better-informed classes. Going back to our

motivating example above, a hedge-fund trading glitch shocks the information content of

prices for mutual funds and for households. Mutual funds respond by adjusting their own

demand for the asset, which provides a further shock to the information content of prices

for households. Herein, therefore, we have our first amplification channel—a small shock

originating in a well-informed class grows as it progresses through the information hierarchy.

As we discuss next, the ramifications of this shock for sufficiently uninformed investors

can be so large as to destabilize the feedback loop between prices and expectations. The end

result is that the entire equilibrium becomes unstable. Given that our equilibrium is also

unique, we interpret this phenomenon as complete market breakdown.

To explain how in more detail, we must first point out that when investors trade they

use two different types of information: information they know directly, and information they

learn from prices. We call the former type of information “first-hand information,” because

it is information that investors are endowed with. We call the latter type of information
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“second-hand information,” because it is information that investors disentangle from prices

by using their first-hand information.

From the perspective of individual investors, prices contain both first-hand and second-

hand information of all better-informed investors. In our motivating example, prices partially

reveal three things to households: what hedge funds know directly (first-hand information,)

what mutual funds know directly (first-hand information,) and what mutual funds are learn-

ing about (second-hand information.) Of course, two of these things contain the same in-

formation; what mutual funds are learning about is what hedge funds know directly. Thus,

when households use prices to learn about the first-hand information of hedge funds, they

must be careful not to double-count the presence of information. One implication of this fact

is that in equilibrium households downweigh how much information prices really contain.

A further implication, however, is that the feedback loop between expectations and prices

for the less-informed investors exhibits negative feedback. For example, when households ob-

serve a downwards shock to the informativeness of prices, they adjust this shock in the op-

posite direction, to account for that prices contain second-hand information. This negative-

feedback property creates oscillations in how the economy responds to out-of-equilibrium

shocks in price informativeness.

The question now becomes whether the oscillations created by the shock self-attenuate

or self-amplify. Herein we have a potentially second amplification mechanism. While it is

intuitive that the oscillations should attenuate, it is not necessarily always so. It is well

known that negative feedback can be too strong, and—as anyone who has ever held a mi-

crophone too close to a speaker can attest—that negative-feedback systems can be unstable.

Whether oscillations attenuate or amplify depends on how much second-hand information

is contained in prices. In our motivating example, the more mutual funds rely on prices

to learn about what hedge funds know, the more households have to downweigh the true

informativeness of prices, and the stronger the negative feedback is. We construct examples

in which the economy is indeed unstable, and it cannot restore equilibrium in response to
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an external demand shock. We call this phenomenon the “rational-expectations whiplash,”

because the impulse-response function of investors’ beliefs looks like a wave of ever-increasing

fluctuations.

Our result on stability has an important policy implication. From the perspective of

a policy maker, it may seem beneficial to discourage noise trading in financial markets,

with the aim of improving information revelation and potentially aiding economic recovery.

Our model suggests that such interventions may undermine market stability. Reducing the

volatility of noise trading makes prices more informative, but it also forces investors to

rely more on price information when they trade. Because shocks to price informativeness are

transmitted from better-informed investors to less-informed investors through prices, making

prices more informative amplifies the shock-transmission mechanism. Reducing price noise

therefore makes markets more susceptible to shocks.

We also examine how the structure of different information hierarchies affects key features

of the economy, such as the size of the risk premium and the stability of equilibrium. Using a

partial-equilibrium analysis, we conduct two types of comparative statics. First, we increase

the proportion of informed agents by changing the distribution of investors in the sense of

first-order stochastic dominance (FOSD.) Second, we make the economy more concentrated

around the average information class by changing the distribution of investors in the sense

of second-order stochastic dominance (SOSD.) We are able to document the following main

properties.

First, the risk premium is lower in hierarchies with higher proportions of well-informed

investors. This finding reflects the casual intuition that more information makes the asset

safer to hold.

Our second finding is perhaps more surprising. Under natural assumptions about in-

vestors’ precisions, we find that the risk premium is higher in more concentrated hierarchies.

This is essentially a converse risk-sharing effect. Concentrating the hierarchy makes the

economy more homogeneous in terms of information. This erodes the informational advan-
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tage of the well-informed investors, because it reduces the number of investors they can

exploit. Thus, concentrating the hierarchy makes the well-informed investors less able to

bear risk, which reduces the overall risk-sharing capacity of the economy, and increases the

risk premium.

In addition, we can show that increasing or decreasing the proportion of well-informed in-

vestors may not have a direct effect on stability. Nonetheless, we also find that concentrating

the hierarchy around the average information class makes the economy less stable.

As in our discussion for the risk premium, decreasing the proportion of well-informed

investors, either in a FOSD or a SOSD manner, reduces the risk-bearing capacity of an

economy. This makes the economy more susceptible to shocks. Nevertheless, decreasing

the proportion of well-informed investors also reduces adverse selection. In particular, it

strengthens the ability of less-informed investors to absorb shocks because they face fewer

adversarial trading partners, and it therefore makes the economy less susceptible to shocks.

Exactly how these two effects combine depends on how we change the distribution of in-

vestors. For FOSD changes the two effects cancel each other out completely, whereas for

SOSD changes the risk-sharing effect dominates.

1.1 Literature review

This paper complements a growing literature that documents various consequences of re-

stricting market operations (Subrahmanyam, 1994; Chen et al., 2017).3 This literature treats

regulatory restrictions due to concerns about price swings as a point of departure. A less-

well understood question, however, is where the price swings, the very cause of concern for

regulators, actually come from. We propose an answer to this question in the form of market

instabilities coming from fat-finger errors and trading glitches.

Our model can be thought of as a generalization of Grossman and Stiglitz (1980). In

3A related paper is Hong and Wang (2000), which examines the effect of periodic market closures on
returns and trade.

6



Grossman and Stiglitz (1980) there is one class of informed agents and one class of unin-

formed agents, whereas our model accommodates an arbitrary number of different informa-

tion classes with nested information sets. We can therefore think of the information structure

in Grossman and Stiglitz (1980) as a special case, with a degenerate information hierarchy

described by only two classes: one class with only public information, and another class with

public and private information.

It is needless to say that there are numerous models with two classes of asymmetric

information. Models with more than two levels of information asymmetry, however, are

scarce. In a model in which a seller with market power inefficiently screens a privately

informed buyer, Glode and Opp (2016) show that trade efficiency can improve by introducing

moderately informed intermediaries. Their most general model features an arbitrary number

of intermediaries with nested information sets. Chakraborty and Yilmaz (2008) use a model

in which an informed trader bluffs to ambiguate his existence to the market maker. They

show that the incentive for bluffing intensifies if the market involves rational traders with

nested information. In both of these models, the traders are strategic and risk neutral. We

study an economy with competitive, risk-averse investors.

Another related paper is Goldstein and Yang (2015), which discusses the trading and

information-acquisition behavior of investors with two-dimensional information about the

fundamentals of a security. Goldstein and Yang (2015) show that—in addition to the usual

strategic substitutability in between differentially informed investors—there is also strategic

complementarity, stemming from that aggressive trading in one dimension of information

increases uncertainty about the other dimension of information. Our information structure

is nested, rather than two-dimensional. Moreover, we study the stability of financial market

equilibrium, rather than complementarities in trading and information acquisition. We show,

in particular, that nested information can make the substitutability among investors’ beliefs

too strong, and that it can render the equilibrium unstable.

The implications of feedback loops on equilibrium stability are extensively studied by
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Manzano and Vives (2011). They construct a general noisy rational expectations equilib-

rium model in which traders learn from up to three sources of information: private signals,

the market price, and endowment shocks. As such, their model nests a spectrum of asym-

metric and heterogeneous information structures employed by Grossman and Stiglitz (1980),

Hellwig (1980), Diamond and Verrecchia (1981), and numerous subsequent extensions, but

it does not nest ours. Manzano and Vives (2011) find that strong complementarity under

correlated signals is necessary for the multiplicity of equilibria, and that the equilibrium with

strong complementarity in information acquisition is unstable. Albagli (2015) constructs an

overlapping generations model in which heterogeneously informed investors live for an arbi-

trary number of periods. He shows that the high volatility equilibrium is unstable, which

can be proven for the full-information two-period case of Watanabe (2008). The unstable

equilibria of Albagli (2015) and Watanabe (2008) are a strict subset of multiple equilibria,

and are always unstable. In contrast, our equilibrium is unique, and whether it is stable or

not depends on supply volatility.

All the models above confine attention to linear price functions. It is nevertheless possible

to construct models with nonlinear price functions. Gennotte and Leland (1990) demonstrate

that hedging strategies can turn the price into a nonlinear function of signals. This nonlin-

earity can bend the aggregate excess demand curve backwards, and it can create multiple

equilibria. Moreover, one of the equilibria can slide down the demand curve upon negative

news. The economy can then jump to another equilibrium, causing a discontinuous drop in

price that resembles a crash. Likewise, non-normal distributions can have conditional mo-

ments that are nonlinear in conditioning signals. These distributions can therefore give rise

to nonlinear price functions. Breon-Drish (2015) presents such an example for a binomially

distributed payoff. We stay within the framework with normally-distributed state variables,

constant absolute risk aversion (CARA) preferences, and continuous linear price functions.
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2 The model

Our model for the financial market is a noisy rational expectations equilibrium. It is a

standard model other than the structure of the information sets. The economy comprises a

continuum of investors of total mass one. The utility function of each investor is

u(c) = −e−αc, (1)

where α is the coefficient of constant absolute risk aversion. Every investor can invest in a

safe bond with constant net interest rate normalized to zero, and in a risky, dividend-paying

stock. We assume that the payoff D of the risky asset is

D = σµ

N∑
i=1

qi−1 µi + ε, (2)

where µi, i = 1, . . . , N , are independent identically distributed standard Normal random

variables, and ε ∼ N (0, σ2
ε), independently of µi for all i. In addition, qi−1, i = 1, . . . , N

are constants, and N is a finite natural number. Each random variable µi, i = 1, . . . , N ,

represents an incrementally acquirable piece of information about the dividend. The shock

ε, represents residual risk, that is, it is not observable by anyone.

For notational convenience, we let

D1,i = σµ

i∑
j=1

qj−1 µj (3)

denote the sum of the first i components of dividend information, and we let

Di+1,N = σµ

N∑
j=i+1

qj−1 µj (4)
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denote the sum of the last N − i components of dividend information. (For regularity, we

define D1,0 = 0 and DN+1,N = 0.) We can think of the random variables D1,i and Di+1,N as

partial payoffs of the asset. The total stock supply is

θ̄ + θ, (5)

where θ ∼ N (0, σ2
θ), independently of ε and µi for all i, and θ̄ is a constant. The price of

the asset is P , and it is publicly observable.

For a specific i between one and N , a proportion φi of investors observe the random

variables µ1, . . . , µi−1, µi. We adopt the name information class i for the investors who

observe this information. By convention, the investors in information class i = 0 do not

observe any dividend information—we have φ0 of them. Moreover, for j > i, information

class j has strictly more information than information class i. In sum, we have N classes with

increasing amounts of private information and one class without any private information,

for a total of N + 1 classes. Our information structure implies that investors in information

class i observe the dividend component D1,i, and, as we explain below, they must look at

the price in order to make inferences about Di+1,N .

We must stress that although our information structure is ultimately a modeling assump-

tion, it does arise naturally in different microeconomic settings. Examples involve securities

for which information is nested due to geographical and temporal patterns.

We take securities of manufacturing companies as one general example, and the stock

of the German car company BMW as a specific instance. German households trading the

stock of BMW in the Frankfurt Stock Exchange may look at the stock price to infer informa-

tion about BMW. Savvy investors, however, may have information about its sales prospects

within Germany. In addition, mutual funds may have additional information about the

sales prospects of BMW, by forecasting sales within the larger European Union (EU) mar-

ket. What is more; hedge funds may have even more information than mutual funds, by
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forecasting sales globally.

We can model this setting by assuming that the information set of hedge funds contains

that of the mutual funds’, which contains that of the savvy investors’, which in turn contains

that of the households’. This example corresponds to our setting with N = 3, where µ1 is

information about German sales, µ2 is information about sales in the EU excluding Germany,

and µ3 is information about global sales outside the EU.

Yet another context is that of forecasting the future dividends of a company. Here,

we can represent the information environment with a nested structure if we have investors

with increasing financial expertise—especially if better expertise enables investors to forecast

deeper into the future. For example, households may not be able to forecast dividends, but

savvy investors may be able to forecast next quarter’s dividends. Mutual funds may able to

forecast dividends for the next two quarters, while hedge funds may able to forecast for the

next three quarters. In this example, N = 3, and µ1, µ2, and µ3 are the dividend forecasts

of one, two, and three quarters.

We note that φ is a probability mass function (pmf), so that

N∑
i=0

φi = 1. (6)

We let

Φi =
i∑

h=0

φh (7)

be the cumulative distribution function (cdf) corresponding to φ. In what follows we also

use the cumulative sum of the cdf of φ, which we define as

Ψs =
s∑

k=0

Φk, (8)

for any s between zero and N . We adopt the name “super-cumulative” distribution function

11



(scdf) for Ψ.

Definition 1 For a given probability mass function of informed agents φ, an equilibrium is

a price function P such that

(i) the market clears, and

(ii) every agent sets their expectations of the dividend by learning rationally from their

private information and the price.

2.1 Derivation of equilibrium

We conjecture that the price of the risky asset is

P = pc + σµ

N∑
i=1

pµ (i− 1) qi−1 µi + pθ θ, (9)

where pc and pθ are constants, and pµ(·) is a vector, to be determined in equilibrium. We let

Fi denote the information set of class i, that is, the σ-algebra generated by P and µ1, . . . , µi.

We define the ratio

pµθ (i) =
pµ (i)

pθ
, (10)

which we call the price informativeness for classes i = 0, . . . , N − 1. We set

pµθ (N) = 0. (11)

We also define the N × 1 dimensional vector

pµθ =
(
pµθ (0) pµθ (1) . . . pµθ (N − 1)

)T
, (12)

which we call the informativeness vector.
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We note that class i does not observe the partial payoff Di+1,N directly. Because, however,

class i knows the shocks µ1, . . . , µi, the information content of the price for them is

Ki = σµ

N∑
j=i+1

pµθ (j − 1) qj−1 µj + θ. (13)

The boundary condition (11) is equivalent to imposing that the information content of the

price for class N is

KN = θ. (14)

This says that the most-informed class observes the realization of supply. This is a standard

feature in economies with asymmetric information.

Given that Di+1,N and Ki are normal for every i, the usual projection theorem gives the

following result about the dividend inferences of class i (see Lemma A.1 of the Appendix for

details.) The conditional expectation of class i about the unknown part of the dividend is

E
[
Di+1,N

∣∣Fi] = βiKi, (15)

where βi is a constant that depends on pµθ (j) and qj, j = i, . . . , N − 1. The conditional

variance of the dividend for class i, Var
(
D
∣∣Fi), is also a constant that depends on pµθ (j)

and qj, j = i, . . . , N − 1.

The market clears if and only if aggregate supply equals aggregate demand for every

realization of stochastic supply. The market-clearing condition is therefore

θ̄ + θ =
N∑
i=0

φiXi, (16)
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where Xi is the optimal demand of information class i. It is straightforward to show that

Xi = δ0i +
i∑

j=1

δDi (j − 1)µj − δPiP, (17)

where the coefficients δ0i, δDi(0), . . . , δDi(i− 1), and δPi are constants specific to class i. We

show the demand coefficients in more detail in Lemma A.2 of the Appendix, but the impor-

tant thing is that they depend on the equilibrium price coefficients, and more specifically,

on the informativeness vector pµθ.

The expression in (17) gives the investors’ demand as a linear function of their observables.

The payoff components µ1, . . . , µi are private state variables for investors in class i, because

these investors observe them directly. What is more; the price P is publicly observable.

Therefore—as is standard rational expectations equilibria—we can think of the demand in

(17) as the best response function of investors to private and public signals.

We now derive the equilibrium. We substitute the demand function in (17) into the

market-clearing condition (16). We rearrange the result into an equation that expresses P

as a noisy aggregation of private signals and dividend expectations. We get

P =

(
N∑
k=0

φkδPk

)−1

·

(
N∑
i=0

φiδ0i − θ̄ +
N∑
i=0

φiδDi (j − 1)µj − θ

)
. (18)

Contained within (18) is a loop in which the vector of price coefficients (pµ(0), . . . , pµ(N − 1), pθ, pc)
T

feeds back into itself. Investors know that the price has the form of (9), so they set their de-

mand as in (17), wherein the demand coefficients depend on the price coefficients explicitly.

Their demands clear the market as in (16). For the market to clear, the price must then

be as in (18). This price, however, must also be consistent with the form of (9), which the

investors use to set their demand. The fixed point of this feedback loop is our equilibrium.
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For notational convenience, we define

τi =
[
Var

(
D
∣∣Fi)]−1

(19)

to be the precision of class i. We obtain the equilibrium by adapting the usual method of

matching coefficients to our model.

Theorem 2 For a given distribution of informed agents φ, the informativeness vector pµθ

is the solution to the recursive equations

pµθ(j) = − 1

α

N−1∑
i=j

φi+1τi+1 + pµθ(j)
1

α

N−1∑
i=j

φi+1τi+1βi+1 (20a)

for j = N − 1, . . . , 0, subject to the boundary condition

pµθ (N) = 0, (20b)

where for k > j, the precision τk and the projection coefficient βk depend on elements of

pµθ with indices strictly higher than j. Moreover, given the solution of the informativeness

vector pµθ as above, the supply coefficient is

pθ =

(
N∑
i=0

φiτiβi − α

)(
N∑
i=0

φiτi

)−1

, (20c)

the price offset is

pc = −αθ̄

(
N∑
i=0

φiτi

)−1

, (20d)

and for i = 0, . . . , N , the ith dividend coefficient is

pµ (i) = pµθ (i) pθ. (20e)
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The only price coefficient that appears in the fixed-point problem (20a) is the informa-

tiveness vector, pµθ. This is so because the vectors β and π are in terms of sums over the

elements of pµθ for a given distribution φ, and therefore the expression in (20a) pins down

pµθ. Moreover, for every i = 0, . . . , N , Equation (20e) gives pµ (i) in terms of pθ, where pθ is

itself in terms of the entire vector pµθ as in (20c), given φ. Thus, for a given distribution of

informed agents φ, Theorem 2 provides a complete characterization of the price coefficients.

What is more, we can solve for the equilibrium in a recursive manner. The right-hand

side of Equation (20a) is linear in pµθ(j). In addition, as we prove in Lemma A.1 of the

Appendix, the precisions τk and the projection coefficients βk for k > j depend on elements

of pµθ with indices strictly higher than j. Thus, (20a) gives a unique analytical solution for

pµθ(j) recursively from j = N − 1 to j = 0, expressed as

pµθ(j) =

∑N−1
i=j φi+1τi+1∑N−1

i=j φi+1τi+1βi+1 − α
, (21)

which establishes the following important corollary.

Corollary 3 For a given distribution of informed agents φ, the equilibrium of Theorem 2 is

unique.

2.2 Fat fingers and trading glitches

We now provide a formal representation of fat-finger errors and trading glitches originating

from a particular class of investors. We consider class k to be the one committing the

fat-finger error, and we show how to model the resulting out-of-equilibrium shock in our

framework. In later sections of the paper we show how fat-finger errors propagate throughout

the economy.

As we can see in (17), the demand of investors in information class k depends on the price,

their direct private information, and a constant. We may also view (17) as an equilibrium
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demand strategy. Given the economic equilibrium, the investors need only consult what δ0k,

δDk(0), . . . , δDk(k − 1), and δPk are in order to form their demand.

Suppose now that investors in class k make a mistake when they submit their demand—

that is, they do not submit Xk to the market, but rather, some other quantity X ′k. All

other classes follow their equilibrium demand strategies correctly. We adopt the view that

this error is not due to mistaken observations of state variables, but, rather literally, it is a

fat-finger error. The investors observe their private information and the price correctly, but

instead of typing the number Xk into their trading software, they type X ′k.
4

This kind of glitch is equivalent to shocking at least one of the demand coefficients

out of equilibrium. Our underlying mathematical representation of equilibrium, however,

is the price informativeness vector pµθ. All other equilibrium objects, including the price

coefficients and the demand coefficients, are functions of it. We must therefore provide a

model of what a fat-finger error does to the vector pµθ.

We are agnostic about which demand coefficient is shocked by the fat-finger error, be-

cause, as we show shortly, it is not possible to shock the demand coefficients independently.

We are similarly agnostic about the direction or the magnitude of the shock, because, as we

see in later sections, such things do not matter explicitly for stability. The only thing that

does matter is whether there is a shock to begin with.

Lemma 4 An out-of-equilibrium shock to the demand of class k is equivalent to shocking

the price informativeness for class k − 1, leaving all other classes unchanged. This has the

representation of perturbing the equilibrium vector pµθ by an N-dimensional vector with one

in the kth element and zeros everywhere else.

As we can see in our Lemma above, fat-finger errors and trading glitches that come from class

k have the representation of a unit vector pointing along the kth axis of an N -dimensional

4There are other potential sources of this kind of trading error. This error can arise as a programming
bug in the investors’ trading software. It can also arise in a situation where several investors have a common
broker-dealer, who submits aggregated orders for all his clients together, and makes a mistake.
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Cartesian coordinate system. We use the notation ιk for this type of shock.

3 Properties of the equilibrium

In this section we discuss the properties of our fixed-point mapping. We begin with provid-

ing intuition for how price informativeness is determined in equilibrium. We then lay out

some mathematical tools that can aid our analysis, and we apply these tools on our vector

equilibrium. We conclude with comparative statics on the risk premium and on stability.

3.1 First-hand information, second-hand information, and stabil-

ity of equilibrium as a sequence of scalars

If we look at fixed-point mapping of (20a) as an equation in the price informativeness pµθ(j)

of class j, we see two terms on the right-hand side. The first term,

− 1

α

N−1∑
i=j

φi+1τi+1, (22)

is a constant that depends only on the precisions of higher information classes. The second

term is the coefficient
1

α

N−1∑
i=j

φi+1τi+1βi+1 (23)

times the equilibrium object, pµθ(j). Each term reflects a different type of information that

investors use when they trade.

The first type of information on which investors trade is their own private information.

As is standard in many rational-expectations models, the more intensely investors trade on

their private information, the more of it they reveal to those who do not know it. We call

this type of private information “first-hand” information. For information class j, the effect
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that first-hand information has on price informativeness is captured by the term in (22),

which is nothing other than the aggregate trading intensity of all investors with strictly

more information, adjusted by a negative sign to accommodate that pµθ is a negative vector.

The second type of information on which investors trade is the dividend information

that they disentangle from prices by utilizing their first-hand information. Prices, however,

contain information that the higher classes infer from prices, in a recursive manner up to

the highest class. Thus, what a particular investor learns from the price is what others learn

about what others are learning. We call this type of private information “second-hand”

information. For class j, the effect that second-hand information has on price informativeness

is captured by the coefficient in Equation (23). We call this coefficient the “learning-adjusted

trading intensity,” because it is an aggregate version of trading intensities of all investors

with strictly more information, where each trading intensity is adjusted for learning effects

by the projection coefficient β.

It is important to note that the same piece of dividend information shows up in prices

through two different channels. For example, a piece of information known only by the

highest classes will be partially revealed to the lowest classes both through the trading of

the highest classes and through the learning-and-trading of the middle classes. Therefore the

amount of information that the price provides for any particular piece of dividend information

must be discounted. The equilibrium accounts for this effect by adjusting the magnitude of

price informativeness downwards. We can see this in Equation (20a) because the coefficient

of pµθ(j) on the right-hand side is negative (Equation (51) of Lemma A.1 shows that β is

a negative vector.) Moreover, the magnitude of pµθ(j) is adjusted downwards in a manner

related to the amount of second-hand information. The higher the learning-adjusted trading

intensity, the larger the adjustment for second-hand information.

This fact has important implications for the stability of the equilibrium. Let us consider

a graphical interpretation of the fixed-point mapping of Equation (20a). The right-hand side

is a linear function in the space of pµθ(j), where the constant in (22) is the intercept, and
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the learning-adjusted trading intensity in (23) is the slope. The left-hand side of Equation

(20a) is a 45◦ line in the space of pµθ(j). The equilibrium price informativeness for class j

is the point where these two lines cross. Of course, the intercept and slope of pµθ(j) depend

on the price informativeness of higher classes. Nevertheless, due to the recursive nature of

the equilibrium solution, we can think of the vector equilibrium in Theorem 2 as a sequence

of scalar fixed-point mappings. Setting aside, for the time being, that the equilibrium is

a vector rather than a scalar, we can see that the economy responds to out-of-equilibrium

shocks in the following manner.

Any perturbations away from the equilibrium point will produce oscillations around the

equilibrium point. The intuition for why comes from iterating the fixed-point mapping of

(20a) using an out-of-equilibrium value for pµθ(j) as an initial condition. First, using an out-

of-equilibrium value for pµθ(j) is the same as shocking the value of pµθ(j), and is therefore

equivalent to a fat-finger shock of class j + 1. Second, the slope of the mapping is negative

due to second-hand-information effects. Thus, the reaction of the economy to a shock to

pµθ(j) is to overcorrect, and to move the shock to the opposite side of the equilibrium value.

This happens every time we iterate the fixed-point mapping, resulting in oscillations

around the equilibrium value. Whether iterating the mapping attenuates these oscillations,

in which case the equilibrium is eventually restored, or whether it amplifies these oscillations,

in which case the equilibrium is destroyed, depends solely on the slope of the mapping. It

is well-known that the mapping is unstable if its slope is smaller than negative one. We

can see these effects clearly by drawing a traditional cobweb diagram for out-of-equilibrium

analysis; we therefore turn to a brief graphical illustration.

In Figure 1 we show an example economy with N = 4 groups of nested private informa-

tion. We can see that the slopes of the fixed-point mappings are negative, and that they are

steeper for lower classes than for higher classes. This is intuitive, because the slope measures

how much second-hand information the price contains for each class, and for lower classes

the price conveys information about more unknown dividend components. We can also see
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that when the volatility of supply is low, the slope of the scalar mappings for the lowest

classes can become quite steep. In fact, in our example with σθ = 0.1 in panel (i), the fixed-

point mapping of class zero has a slope of −1.56, and is therefore unstable. The fixed-point

mapping of class one has a slope of −0.97, just above the threshold value of negative one,

which implies that this mapping is stable.

[Figure 1 here]

In Figure 2 we show a demonstration of the oscillations around the equilibrium using a

cobweb diagram. We draw examples of how the economy responds to an out-of-equlibrium

shock, for two classes from the first panel of Figure 1: class zero, and class one. In either

example we assume that each class responds in isolation from all other classes.5

As we can see on the left, the scalar mapping for pµθ(0) is unstable. We move pµθ(0)

to the right of its equilibrium value, and the economy starts responding according to the

rational-expectations feedback loop. Class zero adjusts the informativeness of prices down-

wards, which results in a subsequent shock to price informativeness, albeit on the opposite

side. Because, however, the amount of second-hand information in prices is very large,

class zero adjusts the informativeness of prices downwards so much that its reaction to the

original shock is larger than the original shock itself. This happens every time the rational-

expectations feedback loop operates, so that the price informativeness moves further and

further away from its equilibrium value.

In contrast, as we can see on the right, the scalar mapping for pµθ(1) is stable. The amount

of second-hand information for class one is not as large as it is for class zero. Consequently,

the reaction of class one to a shock in price informativeness is less pronounced—the reaction

to a shock is smaller than the shock itself. Thus, in this case, successive iterations of the

5As we outline in the introduction, the shock in a particular class gets transmitted to all other less-
informed classes. The scalar analysis we conduct here does not fully incorporate these shocks, but it is useful
in terms of intuition for what follows. To account for shock transmission we need multidimensional tools,
which we develop in Section 3.2 below.
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rational-expectations feedback loop move the price informativeness closer and closer to the

equilibrium value.

[Figure 2 here]

We show the solutions of some more examples in Figure 3. We use two different settings

for how many information classes we have, N = 4 and N = 2, and for each N , we use two

different distributions of informed investors.6 The setting of N = 2 is the minimum number

of information classes for which we have nested information effects; the information structure

of Grossman and Stiglitz (1980) in our setting corresponds to N = 1. All of the effects that

we describe below are feasible with N = 2, but we focus on our example with N = 4 to

showcase how general our model is.

Two patterns stand out in Figure 3. First, the price informativeness for lower classes

has a larger magnitude than that for higher classes. In addition, because information is

nested, we have fewer investors with higher-class information than investors with lower-class

information. Thus, one economic lesson from Figure 3 is that less-widely-known information

matters less for prices.

Second, the price informativeness vector pµθ has a lower magnitude for lower supply

noise. This appears to be counterintuitive, because the elements of pµθ are signal-to-noise

ratios for the individual dividend components. We may thus have expected to see these

ratios increase in magnitude as noise decreases. This line of argument, however, ignores an

important source of noise for the lower information classes, which, when taken into account,

explains the pattern in Figure 3. To convey the intuition, we appeal to our motivating

example of hedge funds, mutual funds, and households. Nevertheless, we must clarify that

our argument here is on the informativeness of prices as measured by a ratio of coefficients,

6For each N we show, we use a pair of distributions such that one is a mean-preserving spread of the
other. The details of how we set each distribution are in the corresponding panels of Figure B.1 of the
Internet Appendix. We return to the underlying distributions of informed investors in a later section of the
paper, where we conduct comparative statics on the shapes of the distributions.
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and not about conditional precision.

On the one hand, when supply noise decreases the demand strategy of hedge-fund in-

vestors does not change. These investors know every state variable, they are price-takers,

and their proportion in the economy is fixed—there is thus no reason for them to modify

how they trade collectively as a block. This implies that the informativeness of prices about

what the hedge funds know, but the mutual funds do not, remains unaffected.7

On the other hand, when supply noise decreases the informativeness of prices about

what the mutual funds know—but the households do not—actually increases. This happens

because for the households the price contains two pieces of information. The first piece is

what the mutual funds know, but the households do not; the second piece is what the mutual

funds glean from prices. As supply noise decreases, the second piece of information becomes

more accurate. This automatically implies that, in relative terms, the price becomes a more

noisy version of the first piece of information.

The converse of this property is that as supply becomes more noisy the price becomes

more informative about each incremental piece of dividend information. We therefore have

a certain type of complementarity in information, similar to the effects discussed in different

settings in Hellwig and Veldkamp (2009), Amador and Weill (2010), Garćıa and Strobl

(2011), Goldstein and Yang (2015), Avdis (2016), and others.

[Figure 3 here]

It is important to point out that neither the instability of equilibrium nor the dependence

of price informativeness on supply volatility is present in the seminal model of Grossman and

Stiglitz (1980). In that model we have only one group of informed investors, which maps into

our model by setting N = 1. Moreover, there is only one price-informativeness equation, for

7We can see this in the demand coefficients of Lemma A.2, where for the highest information class we

obtain δDN = δPN =
(
ασ2

ε

)−1
.
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the investors with public information. From (21) and Lemma A.1 we obtain that

pGSµθ (0) = − φ1

ασ2
ε

. (24)

This expression brings forth two points.8 First, the equilibrium of Grossman and Stiglitz

(1980) is always stable; there is no second-hand-information term on the right-hand side of

(24), only a first-hand-information term. Second, to have pµθ depend explicitly on supply

noise we need more than one class of private information. We can think of the last two classes

in isolation, classes N−1 and N , as a Grossman and Stiglitz (1980)-type economy embedded

within a larger economy with N ≥ 2. As we can see in Figure 3, the price informativeness

does not react when we change supply noise for the last two classes in each graph. In this

light, Figure 3 confirms that supply noise does not matter for pµθ unless N ≥ 2.

The larger economic takeaway here is that the equilibrium becomes more unstable as

supply becomes less noisy. This fact is an important property of our model, and it has an

interesting policy implication. From the perspective of a policy maker, it might, on occasion,

seem beneficial to discourage noise trading in financial markets. The rationale would be that

such a policy might promote information revelation, which might in turn help promote

economic growth. Our model suggests that such interventions, however well-intended they

might appear, would instead make markets more unstable.

Another important note is that the shock to price informativeness for class i does not

necessarily have to come from a fat-finger error of class i + 1. Because the price informa-

tiveness for a class depends recursively on the price informativeness for all higher classes,

a shock to pµθ (j), for j > i, will propagate down to pµθ (i). Recalling that every element

of the price informativeness vector reacts by oscillating around its equilibrium, we can see

that a shock which starts in any class will cause a wave-like pattern of reactions in all lower

8We use the superscript “GS” in (24) to clarify that this computation is for class zero as it would apply
in Grossman and Stiglitz (1980), but not in our setting for general N .
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classes.

This pattern of reaction is the rational-expectations whiplash.9 We must admit, however,

that our analysis so far relies on scalars, and that we carry it out as if each mapping gets

shocked independently of each other. To fully analyze the stability of our equilibrium we

must be able to capture what happens in between classes. We must therefore turn to a

vector-based analysis for stability, which is the subject of our next section.

3.2 A multidimensional analysis of stability

Our analysis would be standard if price informativeness was a scalar quantity. For example, it

is well-known that a scalar fixed point x0 of a scalar-valued mapping f(x) is stable whenever

∣∣f ′(x0)
∣∣ < 1. (25)

In our case, however, the equilibrium is a vector. We write our fixed-point mapping in vector

notation as

pµθ = F (pµθ) , (26)

where the jth element of F is given by the right-hand side of (20a). We now discuss how

the stability condition of (25) generalizes to multiple dimensions.

First, we note that the vector-space equivalent of the derivative is the Jacobian matrix.

The Jacobian matrix is defined as the derivative of the mapping in (26) with respect to the

vector pµθ, that is, a matrix where the (i, j)th element is

∂

∂pµθ (j)
F (. . . , pµθ (i) , . . .) . (27)

9There is an analogous phenomenon in industrial organization, and more specifically in supply-chain
management, called the “bullwhip effect.” That phenomenon describes how an impulse in customer orders
causes order fluctuations to build up in the supply chains of vertically integrated industries. See Forrester
(1961) for seminal work and Forrester (1968) for an early survey of that literature.

25



We write this matrix in compact notation as

DpµθF. (28)

Second, the condition for equilibrium stability is that all eigenvalues of the Jacobian

matrix, evaluated at the equilibrium vector pµθ, have magnitude less than one. In sum, the

condition for stability of the equilibrium vector pµθ is

max
{
|χ| : χ is an eigenvalue of DpµθF

}
< 1 (29)

Of course, each eigenvalue of the Jacobian matrix is associated with an eigenvector, which

we denote as ν. At the equilibrium vector pµθ we have

(
DpµθF

)
ν = χν (30)

for conformable eigenvectors ν. Our next theorem gives analytical expressions for the

eigenvalue-eigenvector pairs of the fixed-point mapping.

Theorem 5 For each k = 0, . . . , N − 1, the kth eigenvalue is

χk =
1

α

N−1∑
i=k

φi+1τi+1βi+1 (31a)

with associated eigenvector

νk =


ξk

1

0N−k−1

 (31b)

of size N , where ξk is an auxiliary vector of size k which depends on the top left (k+1)×(k+1)
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entries of DpµθF . Moreover, the eigenvectors ν0, . . . , νN−1 are linearly independent.10

The eigenvalue χk in Theorem 5 coincides with the slope of the scalar fixed point-mapping

for class k in Theorem 2. This is intuitive, because the Jacobian matrix is the multidimen-

sional slope of the vector fixed-point mapping. In addition, the eigenvector νk represents a

direction in N -dimensional space along which we can push the equilibrium vector pµθ. If

the associated eigenvalue χk has magnitude less than one, then the economy will return to

equilibrium; otherwise it will not. In this sense, Theorem 5 says that the intuition we extract

from the scalar analysis of section 3.1 extends to the multidimensional case. Of course, we

must still address exactly how each information class may transmit shocks to others, and we

do so below. Our point here is that the multidimensional condition for stability is identical

to a “collection” of stability conditions we can derive from thinking in terms of a sequence

of scalars.

According to (31a), the kth eigenvalue is the learning-adjusted trading intensity of class

k. Since φi+1τi+1 > 0 and βi+1 ≤ 0, the magnitude of the kth eigenvalue decreases in k

(χk is negative, and it decreases in k.) This is important, because if the magnitude of any

eigenvalue exceeds one, our stability condition in (29) is violated, and the equilibrium is

unstable. It is straightforward to see that the eigenvalue with the largest magnitude is that

of class zero. Thus, a quick way to check whether the equilibrium is unstable is to check

whether the eigenvalue for class zero falls below negative one. We therefore single out that

particular eigenvalue,

χ0 =
1

α

N−1∑
i=0

φi+1τi+1βi+1, (32)

and we refer to it as the “public eigenvalue,” because class zero consists of investors who

have only public information in their hands.

As we discuss above, reducing the supply noise makes the equilibrium less stable because

10We note that the matrix Dpµθ
F is upper triangular, so its eigenvalues are its diagonal elements. 0N−k

is a column vector of N − k zeros, with the convention that it is empty if k = N . The vector ξk−1 is empty
for k = 1. The eigenvalue χN−1 is zero.
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it makes the price more informative, and this in turn amplifies the second-hand information

effect that is responsible for oscillations. Figure 4, in which we plot the eigenvalues, confirms

this intuition. As we can see in panels (A) through (D), each eigenvalue becomes more

negative as supply noise decreases. In each example we draw, the public eigenvalue is below

the stability threshold for low enough noise. (It is also entirely possible for several classes

to be unstable at the same time.) We can also see that how close each eigenvalue comes to

the stability threshold depends on the distribution of informed investors. We return to this

property in a later section, after we discuss how shocks propagate.

[Figure 4 here]

3.3 The propagation of fat-finger errors and the rational-expectations

whiplash

We now discuss what happens to the economy when a particular class of investors commits

a fat-finger error using the tools that we developed in Theorem 5. Suppose we perturb the

economy away from the equilibrium vector pµθ by an arbitrary vector ε of small magnitude.

How will the economy respond? A first-order Taylor approximation of the resulting fixed-

point mapping gives that

F (pµθ + ε) ≈ F (pµθ) +
(
DpµθF

)
ε = pµθ +

(
DpµθF

)
ε, (33)

where the last equality is due to that F (pµθ) = pµθ. Applying the fixed-point mapping and

the Taylor approximation once more gives

F 2 (pµθ + ε) = F (F (pµθ + ε)) ≈ F
(
pµθ +

(
DpµθF

)
ε
)
≈ pµθ +

(
DpµθF

)2
ε. (34)

We may further iterate this argument an arbitrary number of times. The distance of the
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price-informativeness vector from its equilibrium after n iterations is

F n (pµθ + ε)− pµθ ≈
(
DpµθF

)n
ε. (35)

As we can see in (35), whether the economy comes closer to equilibrium or whether it moves

farther away depends on the nth power of the Jacobian and the perturbation vector ε.

We are interested in what happens when a particular class commits a fat-finger error.

According to Lemma 4, we can model a fat-finger error of class k as the perturbation vector

ε = ιk. At this conjuncture we are able to use the linear-independence property of the

eigenvectors to our advantage—the eigenvectors form a vector basis of RN . This implies

that we can express the fat-finger shock ιk as

ιk =
N−1∑
i=0

ci,kνi, (36)

where the coefficients c0,k, . . . , cN−1,k are the coordinates of ιk in the eigenvector basis. We

can now combine (35) and (36) with the definition of the eigenvalues in (30) to obtain11

F n (pµθ + ιk) ≈ pµθ + (−1)n
k−1∑
i=0

ci,k|χi|nνi. (37)

There are two economic lessons we can derive from (37). First, a shock that originates in

a particular information class propagates to all other less-informed classes. In particular, as

we can see from the right-hand side of (37), a shock to price informativeness for the kth class

appears as a shock to price informativeness for the first k − 1 classes within one iteration.

By the same token, each of those shocks gets transmitted to all lower classes within one

iteration, and so on. This keeps happening until all the shocks generated in this manner

11We note that the right-hand side of (37) does not depend on the last N−k eigenvectors and eigenvalues,
because the last N − k coordinates of ιk are zero. See Lemma A.3 of the Appendix for the proof.
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either potentially die down, and the economy potentially converges to equilibrium, or until

the economy diverges from equilibrium, and the market fails.

Second, the relation in (37) also shows that whether the economy converges or diverges

depends on the largest eigenvalue associated with a non-zero coordinate in the eigenvector

basis. It therefore suffices to check if the magnitude of the public eigenvalue is larger than

one, and if it does, whether the coordinate c0,k is non-zero.

We can readily perform this check, because—as we prove in Lemma A.3 of the Appendix—

we can obtain the coordinates of ιk in the eigenvector basis by inverting a matrix composed

of all the eigenvectors. As we know from Figure 4, the magnitude of the public eigenvalue is

larger than one when supply noise is low enough. Furthermore, as we can see in Table 1, the

coordinates of fat-finger errors associated with the public eigenvalue have non-zero values,

no matter in which class they originate.12

[Table 1 here]

We now come to a demonstration of the rational expectations whiplash as a response

to a fat-finger error. In Figure 5 we draw an example with four groups of nested private

information, and one group with public information. This economy also appears in Figures

1, 2, and panel (A) of Figures 3 and 4; we note that class zero is unstable, and all other

classes are stable.

We show how the economy responds to a one-time fat-finger error of class three in several

frames. The leftmost frame of the first row shows the economy in equilibrium. The second

frame of the first row shows the fat-finger error. (From Lemma 4 we know that a fat-finger

error of class three shows up as an impulse to the price informativeness of class two.) The

subsequent frames show successive iterations of the fixed-point mapping. We can see that

12In numerous equilibrium solutions we have always found that c0,k 6= 0 for at least one k. Of course, it is
possible to tweak the parameter values we use to make one particular c0,k equal zero (except for k = 1, as we
discuss shortly) but that would be a knife-edge case. We have not been able to discover any constellations of
parameter values that make all c0,k equal zero. Moreover, a result that is contained in the proof of Lemma
A.3 is that c0,1 = 1 always.
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the impact of the shock on class two dies down quickly. Moreover, the initial reactions of

class zero and class one are quite small, almost imperceptible. In fact, the impact of the

shock on class one also dies down quickly.

What the fat-finger error does to class zero, however, is a very different story. Even

though the impact is initially small, the shock makes the price informativeness of class

zero oscillate and grow with every iteration. These oscillations keep growing as long as the

feedback loop between asset prices and expectations is operating. In addition, because the

price coefficients are functions of price informativeness, fat-finger errors naturally translate

to unstable price swings. Consequently, prices oscillate despite the complete lack of shocks

to fundamentals or to liquidity trading.

One effective way to stop these oscillations is for the exchange authorities to halt trading

momentarily, according to the provisions of the LULD plan. This brief pause can presumably

give market participants the opportunity to recognize that the price swings are due to trading

errors of no real economic significance, so that when trading restarts the economy resumes

from an orderly equilibrium.

[Figure 5 here]

3.4 Comparative statics with respect to the information hierarchy

As we demonstrate above, certain distributions of investors can produce unstable equilibria

when supply volatility is small enough. Can we avoid instability if we change the structure

of the information hierarchy? For example, is stability better in an economy with rela-

tively more highly-informed investors? Moreover, are economies where investors are spread

out in the two extreme classes, 0 and N , more stable than economies where investors are

concentrated around the middle information classes?

Furthermore, as we can see in Equation (20d), the risk premium of the asset depends

explicitly on the aggregate precision of all investors in the economy. The precision of each
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investor depends on the price informativeness, which in turn depends on the distribution

of investors in different information classes. It therefore stands to reason that different

information hierarchies would be associated with different risk premiums. What effect does

the shape of the distribution of investors have on the risk premium? Can we somehow

“rank” different information hierarchies with respect to the size of their corresponding risk

premium?

To answer these questions, we must first develop a good working definition of what we

mean by “changing” the distribution of investors. We once again employ tools from vector

calculus, and we derive two comparative statics. In the first comparative static, we shift the

mass of the investors more towards the higher information classes, so that we can investigate

what happens when the hierarchy contains more information overall. We ask what happens

to a particular quantity of interest Q when we change the cdf of informed investors, Φ, in

a direction υ in the space of all cumulative distribution functions (cdfs.) We thus calculate

the quantity

(DΦQ) υ (38)

We note that a negative direction υ moves the distribution of informed agents towards

first-order stochastically more dominant distributions—the effect is that Φi, the cumulative

number of informed agents up to class i, decreases for every i. Of course, this is equivalent to

increasing the number of informed agents above class i. In other words, a negative direction

υ corresponds to increasing the amount of well-informed agents in the hierarchy.

In the second comparative static, we change the degree of homogeneity of information in

the hierarchy. To simplify the exposition, we define υ∗ to be a direction of differentiation with

respect to the scdf Ψ, but one that leaves the average information class
∑N

i=0 iφi unchanged,

that is, (
DΨ

N∑
i=0

iφi

)
υ∗ = 0. (39)
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We refer to such a υ∗ as a “mean-preserving direction,”13 and we calculate the quantity

(DΨQ) υ∗. (40)

Here we note that a negative direction υ∗ moves the distribution of informed agents towards

second-order stochastically more dominant distributions, because taking the derivative along

υ∗ < 0 decreases Ψ. In addition, because υ∗ does not affect the average information class,

moving the distribution of informed investors in a negative direction υ∗ makes the distribu-

tion more concentrated around the average information class.

We must note that our analysis below is admittedly partial, because we fix the informa-

tiveness of prices when we change the distribution of informed investors. We do so because it

is not possible to obtain tractable closed-form results if we allow the vector pµθ to incorporate

changes in the vector φ. Nevertheless, we opt for cleaner results, with the understanding

that our analysis below is meant to highlight the effect of certain economic forces, rather

than to provide conclusive results. The effects we discuss below would, in any case, still play

a major role in a more general analysis.

3.4.1 Hierarchical information and stability

Here we carry out comparative statics on the public eigenvalue, and we interpret changes in

the information hierarchy that increase the public eigenvalue as making the economy more

stable. We similarly interpret changes in the information hierarchy that decrease the public

eigenvalue as making the economy less stable. To simplify our analysis, we assume that the

direction of change is a vector with identical elements.

13Our terminology here echoes the “mean-preserving spread” of Rothschilds and Stiglitz (1970). We note,
however, that condition (39) describes a direction of change in the space of distribution functions that leaves
the mean unchanged, whereas the mean-preserving spread of Rothschilds and Stiglitz (1970) compares one
distribution to another directly. In addition, condition (39) does not specify whether υ∗ is a direction that
moves distributions towards those that are more spread out or less spread out; it only says that the mean
does not change.
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Theorem 6 For a given equilibrium informativeness vector pµθ,

(i) the derivative of the public eigenvalue with respect to the cdf Φ in any direction υ with

identical elements is zero.

(ii) The derivative of the public eigenvalue with respect to the scdf Ψ in a negative mean-

preserving direction υ∗ with identical elements is negative.

Let us consider a direction υ in the space of cdfs Φ. We recall that a negative direction

moves the distribution of investors towards distributions with higher proportions of well-

informed investors, and that a positive direction has the opposite effect. Let us pick a

negative direction. As we can see in part (i) of Theorem 6, moving the distribution of

informed investors along υ has no direct effect on the stability of the economy. This may

seem puzzling, because increasing the proportion of well-informed investors definitely widens

the information asymmetry in the economy. We have, however, two different economic factors

associated with information asymmetry.

On the one hand, we have adverse selection—well-informed investors exploit poorly-

informed investors. Widening the information asymmetry makes the economy less capable

to withstand a shock, because the poorly-informed investors have to absorb part of the shock

while simultaneously bearing the increased costs of adverse selection.

On the other hand, we also have risk sharing—investors with different asset information

trade with each other to insure against uncertain payoffs. Here, widening the information

asymmetry improves the amount of risk sharing in the economy. Having more investors with

better information than others allows the better-informed investors to absorb more of the

risk of the asset, precisely because these investors can handle risk better. Better risk sharing

makes the asset safer overall, which increases the capacity of the economy to absorb shocks.

Bearing in mind that the differentiation along υ is partial—and that it therefore does not

include indirect effects on the price coefficients—part (i) of Theorem 6 shows that adverse
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selection and risk sharing cancel each other out perfectly. In contrast, there is a clear winner

in part (ii).

Let us consider a negative direction υ, which, as we discuss above, makes the economy

more homogeneous in terms of information. Changing the hierarchy in this manner improves

adverse selection, but it diminishes risk sharing. In this case, the risk-sharing properties of

the economy deteriorate enough to overwhelm the improvement in risk sharing. The overall

result is that the economy becomes less stable.

3.4.2 Hierarchical information and the risk premium

Equation (20d) implies that the risk premium of the asset is

E [D − P ] = −pc = αθ̄

(
N∑
i=0

φiτi

)−1

. (42)

We use this expression to explore what happens to the risk premium if we change the

information hierarchy, in a manner similar to the comparative statics above. Here we do not

restrict the direction of change to have identical elements.

Theorem 7 For a given equilibrium informativeness vector pµθ,

(i) the derivative of the risk premium with respect to the cdf Φ in a negative direction υ is

negative.

(ii) Suppose that the conditional precision τi is a convex function of the class i.14 Then, the

derivative of the equity premium with respect to the scdf Ψ in a negative mean-preserving

direction υ∗ is positive.

14In numerous computational solutions we have always found the conditional precision to be a convex
function of the information class. See Figure B.3 of the Internet Appendix for examples with the economies
that we have considered in Figures 1, 3, and 4 of the main text. It is, however, extremely algebraically
elaborate to provide conditions under which τi is convex in i.
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Part (i) of Theorem 7 has a straightforward interpretation. As we point out above, a neg-

ative υ is equivalent to shifting the distribution of informed investors towards first-order

stochastically more dominant distributions. In other words, part (i) of Theorem 7 says that

increasing the proportion of well-informed investors decreases the risk premium. This ef-

fect is consistent with the casual intuition that more information, in this case indicated by

increased proportions of well-informed investors, makes the asset safer to hold.

To interpret part (ii) of Theorem 7, let us take the derivative of the risk premium with

respect to Ψ in a negative mean-preserving direction υ∗. Because υ∗ is negative, taking the

derivative along υ∗ decreases Ψ, which moves the distribution of informed agents towards

second-order stochastically more dominant distributions. This has the effect of concentrating

the distribution of informed agents, without affecting the mean. According to Theorem 7,

concentrating the information hierarchy in this manner increases the risk premium.

It may appear a little paradoxical that a more concentrated information hierarchy is

associated with a higher risk premium. After all, a more concentrated hierarchy is more

homogeneous in terms of information, which implies that there is less adverse selection. As

we discuss above, however, concentrating the hierarchy also affects the risk-sharing properties

of the economy, albeit negatively. In this case the risk-sharing effect dominates the adverse-

selection effect, so that a more homogeneous economy has a higher risk premium.

4 Conclusion

We construct an equilibrium where investors have increasing amounts of private information.

Perturbing how much a particular information class contributes to overall price informative-

ness can trigger a whiplash that renders the rational-expectations mechanism unstable. Such

perturbations may arise as out-of-equilibrium shocks to demand strategies of well-informed

investors, and they have a natural interpretation as fat-finger errors or algorithmic-trading

glitches. Our model suggests that reducing price noise can have a destabilizing effect on
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the economy, even though it makes prices more informative. An additional important im-

plication of our model is that how investors are distributed in different information classes

matters for the risk premium and for stability.

Our general message is that financial markets can be inherently fragile. This paper

suggests that nested information is one possible avenue for subsequent work on market

instability, so that, at some point in the future, we are able to go beyond what the financial

press reports as “blaming the Flash Crash on a UK man who lives with his parents is like

blaming lightning for starting a fire” (Traders Magazine, 2015).
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A Appendix

Lemma A.1 For class i, 0 ≤ i < N ,

E
[
Di+1,N

∣∣Fi] = βi

(
σµ

N∑
j=i+1

pµθ (j − 1) qj−1 µj + θ

)
, (44)

where

βi =

∑N
j=i+1 pµθ (j − 1) q2

j−1∑N
j=i+1 p

2
µθ (j − 1) q2

j−1 +
σ2
θ

σ2
µ

, (45)

and

τ−1
i = Var

(
D
∣∣Fi) = σ2

ε + σ2
µ

[
N∑

j=i+1

q2
j−1 − βi

N∑
j=i+1

pµθ (j − 1) q2
j−1

]
. (46)

For class N ,

E
[
DN+1,N

∣∣FsN ] = 0, (47)

βN = 0, (48)

and

τ−1
N = Var

(
D
∣∣FN) = σ2

ε . (49)

Proof. For class i, 0 ≤ i < N , by normality and the projection theorem we get

E
[
Di+1,N

∣∣Fi] = βiKi = βi

(
σµ

N∑
j=i+1

pµθ (j − 1) qj−1µj + θ

)
, (50)

where

βi =
Cov (Di+1,N , Ki)

Var (Ki)
=

∑N
j=i+1 pµθ (j − 1) q2

j−1∑N
j=i+1 p

2
µθ (j − 1) q2

j−1 +
σ2
θ

σ2
µ

, (51)
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Moreover, normality also implies

Var
(
D
∣∣Fi) = Var (Di+1,N + ε)− Cov2 (Di+1,N + ε,Ki)

Var (Ki)

= σ2
ε + σ2

µ

[
N∑

j=i+1

q2
j−1 − βi

N∑
j=i+1

pµθ (j − 1) q2
j−1

]
. (52)

We note that from (52), Var
(
D
∣∣Fi) depends only on pµθ (j − 1) and qj−1, j = 1, . . . , N and

the parameters σ2
ε , σ

2
µ and σ2

θ , because βi depends only on pµθ (j − 1) and qj−1, j = 1, . . . , N

and the parameters σ2
µ and σ2

θ . Conditions (47), (48), and (49) are immediate for class N .

Lemma A.2 The demand coefficients of information class i are

δ0i = −pc
pθ

τi
α
βi (53a)

δDi (j − 1) =
τi
α

[1− βipµθ (j − 1)]σµqj−1 (53b)

δPi =
τi
α

(
1− 1

pθ
βi

)
(53c)

Proof.

It is straightforward to show that

Xi =
E
[
D − P

∣∣Fi]
αVar

(
D
∣∣Fi) =

τi
α

[
−pc
pθ
βi + σµ

i∑
j=1

[1− βipµθ (j − 1)] qj−1µj +

(
1

pθ
βi − 1

)
P

]
,

(54)

which proves that the coefficients in the representation

Xi = δ0i +
i∑

j=1

δDi (j − 1)µj − δPiP (55)

are as in (53).
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Proof of Theorem 2. Substituting (17), with the demand coefficients as in Lemma A.2

above, into the market clearing condition (16) and rearranging we get

P =

[
N∑
i=0

φiτi

(
1− βi

pθ

)]−1

·

{
−αθ − pc

pθ

N∑
i=0

φiτiβi − αθ̄ + σµ

N∑
i=0

φiτi

i∑
j=1

[1− βipµθ (j − 1)] qj−1µj

}
.

(56)

Matching the coefficient of supply on the right-hand side of (56) with the coefficient of supply

in the price conjecture (9) gives

pθ =

[
N∑
i=0

φiτi

(
βi
pθ
− 1

)]−1

α, (57)

whereas matching constants gives

pc =

[
N∑
i=0

φiτi

(
βi
pθ
− 1

)]−1(
αθ̄ +

pc
pθ

N∑
i=0

φiτiβi

)
. (58)

Solving (57) for pθ gives (20c), and solving (58) for pc gives (20d). Condition (20b) obtains

immediately by the regularity condition (11). What remains is to establish (20a).

After matching coefficients on supply and the constants, the remaining terms to match

on the two sides of (56) are

σµ

N∑
j=1

pµ (j − 1) qj−1 µj =

[
N∑
i=0

φiτi

(
1− βi

pθ

)]−1

·

{
σµ

N∑
i=0

φiτi

i∑
j=1

[1− βipµθ (j − 1)] qj−1µj

}
.

(59)

Diving through by σµpθ we get, after using (57) on the right-hand side to express pθ, that

N∑
j=1

pµθ (j − 1) qj−1 µj =
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− 1

α

{
N∑
i=0

φiτi

i∑
j=1

[1− βipµθ (j − 1)] qj−1µj

}
= − 1

α

{
N∑
i=1

φiτi

i∑
j=1

[1− βipµθ (j − 1)] qj−1µj

}

= − 1

α

N∑
i=1

φiτi

i∑
j=1

qj−1µj +
1

α

N∑
i=1

φiτi

i∑
j=1

βipµθ (j − 1) qj−1µj, (60)

where the second equality follows because the i = 0 term in the outer summation represents

an empty sum in the inner summation (µ0 is empty.) Exchanging the order of summation

in the double summations on the right-hand side of (60) we obtain

N∑
j=1

pµθ (j − 1) qj−1 µj = − 1

α

N∑
j=1

qj−1

(
N∑
i=j

φiτi

)
µj +

1

α

N∑
j=1

pµθ (j − 1) qj−1

(
N∑
i=j

φiτiβi

)
µj.

(61)

Matching the coefficient of each µj, j = 1, . . . , N on the two sides of (61) and dividing by

qj−1 shows that

pµθ (j − 1) = − 1

α

N∑
i=j

φiτi + pµθ (j − 1)
1

α

N∑
i=j

φiτiβi. (62)

Equation (20a) follows by shifting indices in (62).

Proof of Lemma 4. By inspection of system (53) of Lemma A.2 and Equation (46) of

Lemma A.1, there is only one way to perturb the demand coefficients of class k without

perturbing the demand coefficients of any other class, and this is to perturb βk without per-

turbing any other quantity. From Equation (20a) of Theorem 2 we can see that perturbing βk

is mathematically equivalent to perturbing pµθ (k − 1), leaving pµθ (j − 1), j 6= k unchanged.

Note that pµθ (k − 1) appears in the kth entry of the vector pµθ. We may therefore represent

a shock to βk that leaves everything else in equilibrium as a unit vector pointing in the kth

direction of the axes of an N -dimensional Cartesian coordinate system.
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Proof of Theorem 5. By inspection of (20a) we obtain that

DpµθF =



∂F(pµθ(0),...)
∂pµθ(0)

∂F(pµθ(0),...)
∂pµθ(1)

· · · ∂F(pµθ(0),...)
∂pµθ(N−1)

∂F(...,pµθ(1),...)
∂pµθ(0)

∂F(...,pµθ(1),...)
∂pµθ(1)

. . .
...

...
. . . . . .

∂F(...,pµθ(N−2),...)
∂pµθ(N−2)

∂F(...,pµθ(N−2),...)
∂pµθ(N−1)

∂F(...,pµθ(N−1))
∂pµθ(0)

∂F(...,pµθ(N−1))
∂pµθ(N−2)

∂F(...,pµθ(N−1))
∂pµθ(N−1)



=



1
α

∑N−1
i=0 φi+1τi+1βi+1

∂F(pµθ(0),...)
∂pµθ(1)

· · · ∂F(pµθ(0),...)
∂pµθ(N−1)

0 1
α

∑N−1
i=1 φi+1τi+1βi+1

...
...

. . . . . .

0 · · · 0 1
α
φN−1τN−1βN−1

∂F(...,pµθ(N−2),...)
∂pµθ(N−1)

0 · · · 0 0


.

Because DpµθF is upper triangular, it follows that the elements in its diagonal are its eigen-

values. This proves (31a).

We now derive the eigenvectors of DpµθF . To simplify exposition, we use the following

notational conventions. For a N × N matrix J , Jt:b,l:r is the matrix block where the top-

left corner has matrix coordinates (t, l) and the bottom right corner has matrix coordinates

(b, r). In is the identity matrix of size n × n. 0n×m is an (n,m) matrix of zeros, with the

convention that it is empty if n = 0 or m = 0.

We make the conjecture that eigenvector νk has the structure in (31b), with ξk to be

determined. The eigenvalue-eigenvector equation for νk is

(
DpµθF − χkI

)
νk = 0, (63)
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which we can write in block form as
(
DpµθF

)
1:k,1:k

− χkIk
(
DpµθF

)
1:k,k+1:k+1

(
DpµθF

)
1:k,k+2:N

01×k 0
(
DpµθF

)
k+1:k+1,k+2:N

0(N−k−1)×k 0(N−k−1)×1

(
DpµθF

)
k+2:N,k+2:N

− χkIN−k−1




ξk

1

0(N−k−1)×1

 = 0N×1.

(64)

The bottom N − k− 1 rows in (64) are satisfied due to the trailing zeros in νk. The k+ 1th

row in (64) is satisfied because element (k + 1, k + 1) of the matrix on the left-hand side is

zero. Thus, νk has the structure of (31b), which verifies our conjecture. Solving the first k

rows in (64) for ξk we get

ξk =
[
χkIk −

(
DpµθF

)
1:k,1:k

]−1 (
DpµθF

)
1:k,k+1:k+1

. (65)

This establishes (31b) with ξk as in (65). Finally, the eigenvectors ν0, . . . , νN−1 are linearly

independent because the eigenvalues χ0, . . . , χN−1 are distinct.

Lemma A.3 The coefficients of the fat-finger shock of class k in the equilibrium eigenvector

basis is the kth column of the matrix

[
ν0 . . . νN−1

]−1

, (66)

which is an upper triangular matrix.

Proof. The fat-finger shocks ι1, . . . , ιN , are the vectors of the standard basis of RN . Col-

lecting them into a matrix we obtain the identity matrix IN . Let V denote the eigenvectors

basis in the form of a matrix,

V =
[
ν0 . . . νN−1

]
, (67)

and let G denote the matrix of coordinates of the standard basis of RN in the eigenvector

basis. We note that the matrix V is invertible because by Theorem 5 its columns are linearly
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indepedent. Changing bases from V to the standard basis of RN implies that G satisfies

IN = VG, (68)

which is equivalent to

G = V−1. (69)

By Theorem 5 the matrix V is upper triangular, and hence so is its inverse G.

Lemma A.4 Any change in the vector Ψ such that the underlying vector φ remains a proba-

bility mass function must satisfy the constraint ΨN = ΨN−1 +1. Consequently, any direction

of change υ in the space of Ψ such that φ remains a probability mass function must satisfy

υN−1 = υN .

Proof. Notice that by definition of Ψ, we can write

φi = (Ψi −Ψi−1)− (Ψi−1 −Ψi−2) . (70)

We define Ψ−1 = Ψ−2 = 0. This is for notational convenience and does not affect our

proof, but it does make the exposition easier. A necessary condition for the vector φ to be

a probability mass function is that
N∑
i=0

φi = 1. (71)

Substituting (70) into (71) and rearranging gives

N∑
i=0

(Ψi −Ψi−1) =
N∑
i=0

(Ψi−1 −Ψi−2) + 1 (72)

Telescoping the sums on both sides gives, after using Ψ−1 = Ψ−2 = 0, that

ΨN = ΨN−1 + 1. (73)
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It now follows that any change in ΨN must be reflected by changing ΨN−1 in the same

amount, and therefore any direction υ in the space of Ψ such that φ remains a probability

mass function must satisfy υN−1 = υN .

Lemma A.5 Let

Ē [k] =
N∑
k=0

kφk (74)

denote the average information class. Any change in any element of the vector Ψ affect only

ΨN through the average information class Ē [k], and thus, if the average information class

remains the same, ΨN is not allowed to vary. Consequently, any direction of change υ in

the space of Ψ such that Ē [k] remains the same must satisfy υN = 0.

Proof. Notice that by definition of Ψ, we can express ΨN as

ΨN =
N∑
k=0

(N + 1− k)φk = (N + 1)
N∑
k=0

φk −
N∑
k=0

kφk = (N + 1)− Ē [k] (75)

where the second equality follows by summation by parts. Equation (75) proves that any

changes in Ψ only affect ΨN through the average information class Ē [k]. Thus, holding Ē [k]

fixed we can allow Ψi to vary for any i strictly less than N . It immediately follows that any

direction of change υ in the space of Ψ such that Ē [k] remains fixed must satisfy υN = 0.

Proposition A.6 For a given equilibrium informativeness vector pµθ,

(i) the derivative of the public eigenvalue with respect to the cdf Φ in the direction υ is

(DΦχ0) υ = −υ0τ1β1 +
N−1∑
i=1

υi (τiβi − τi+1βi+1) . (76a)

(ii) The derivative of the public eigenvalue with respect to the scdf Ψ in a mean-preserving
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direction υ∗ is

α (DΨχ0) υ∗ = υ†0 [(τ2β2 − τ1β1)− τ1β1]+
N−2∑
i=1

υ∗i [(τi+2βi+2 − τi+1βi+1)− (τi+1βi+1 − τiβi)] .

(76b)

Proof. We have

χ0 =
1

α

N−1∑
i=0

φi+1τi+1βi+1. (77)

Because φi = Φi − Φi−1, we can write

αχ0 = (Φ1 − Φ0) τ1β1 + . . .+ (ΦN−1 − ΦN−2) τN−1βN−1 + (ΦN − ΦN−1) τNβN . (78)

Note that because ΦN = 1 by definition, we are not allowed to vary ΦN , and thus we can

only vary Φi, i = 0, . . . , N − 1. Differentiating (78) with respect to Φi, i = 1, . . . , N − 1 we

obtain that

α
∂

∂Φi

χ0 = τiβi − τi+1βi+1, (79)

and differentiating (78) with respect to Φ0 we obtain that

α
∂

∂Φ0

χ0 = −τ1β1, (80)

and therefore

α (DΦχ0) υ = −υ0τ1β1 +
N−1∑
i=1

υi (τiβi − τi+1βi+1) . (81)

This establishes part (i).

Next, because φi = (Ψi −Ψi−1)− (Ψi−1 −Ψi−2), we can write

αχ0 = [(Ψ1 −Ψ0)− (Ψ0 −Ψ−1)] τ1β1 + [(Ψ2 −Ψ1)− (Ψ1 −Ψ0)] τ2β2 + . . .
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+[(ΨN−1 −ΨN−2)− (ΨN−2 −ΨN−3)] τN−1βN−1 +[(ΨN −ΨN−1)− (ΨN−1 −ΨN−2)] τNβN .

(82)

Differentiating (82) with respect to Ψj, j = 1, . . . , N − 2 we obtain that

α
∂

∂Ψj

χ0 = (τjβj − τj+1βj+1)− (τj+1βj+1 − τj+2βj+2) , (83)

where j = N − 1 is a special case, for which

α
∂

∂ΨN−1

χ0 = (τN−1βN−1 − τNβN)− τNβN , (84)

j = N is another special case, for which

α
∂

∂ΨN

χ0 = τNβN , (85)

and j = 0 is yet another special case, for which

α
∂

∂Ψ0

χ0 = −τ1β1 − (τ1β1 − τ2β2) . (86)

The derivative of the public eigenvalue with respect to the vector (Ψ0, . . . ,ΨN) in an arbitrary

direction υ† is

α (DΨχ0) υ† = υ†0 [−τ1β1 − (τ1β1 − τ2β2)]+
N−2∑
i=1

υ†i [(τiβi − τi+1βi+1)− (τi+1βi+1 − τi+2βi+2)]

+ υ†N−1 [(τN−1βN−1 − τNβN)− τNβN ] + υ†NτNβN . (87)

By Lemma A.4 above, any direction υ∗ in the space of well-defined distributions must be

such that υ∗N−1 = υ∗N . In addition, by Lemma A.5 above, we must also have υ∗N = 0 for υ∗

to be mean-preserving, which implies that υ∗N−1 = υ∗N = 0. Therefore, the derivative of the
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public eigenvalue with respect to the vector (Ψ0, . . . ,ΨN−1) in the mean-preserving direction

υ∗ is

α (DΨχ0) υ∗ = υ∗0 [−τ1β1 − (τ1β1 − τ2β2)] +
N−2∑
i=1

υ∗i [(τi+2βi+2 − τi+1βi+1)− (τi+1βi+1 − τiβi)] .

(88)

This establishes part (ii).

Proof of Theorem 6. To prove (i), consider Equation (76a) of Proposition A.6 above. Set

every element of the vector υ that is allowed to be nonzero to be the same, that is, υi = L,

i = 0, . . . , N − 1, where L is a non-zero scalar. The sum in (76a) telescopes, which gives

α (DΦχ0) υ = −Lτ1β1 + L (τ1β1 − τNβN) = −LτNβN = 0, (89)

where the second equality follows because βN = 0 by Lemma A.1.

To prove (ii), consider Equation (76b) of Proposition A.6 above. Set every element of

the vector υ∗ that is allowed to be nonzero to be the same. In particular, set υ∗i = L∗,

i = 0, . . . , N − 2, where L∗ is a negative scalar. The sum in (76b) telescopes, and it gives

α (DΨχ0) υ∗ = L∗ [(τ2β2 − τ1β1)− τ1β1] + L∗ [− (τ2β2 − τ1β1) + (τNβN − τN−1βN−1)]

= −L∗ (τ1β1 + τN−1βN−1) < 0, (90)

where the second equality follows because βN = 0 by Lemma A.1, and the inequality follows

because L∗ < 0 and β1, βN−1 < 0 by inspection.

Proposition A.7 For a given equilibrium informativeness vector pµθ,

(i) the derivative of the equity premium with respect to the cdf Φ in the direction υ is

(DΦE [D − P ]) υ = αθ̄

(
N∑
i=0

φiτi

)−2 N−1∑
i=0

υi (τi+1 − τi) , (91a)
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(ii) the derivative of the equity premium with respect to Ψ, the cumulative sum of the cdf,

in a mean-preserving direction υ∗ is

(DΨE [D − P ]) υ∗ = −αθ̄

(
N∑
i=0

φiτi

)−2{N−2∑
i=0

υ∗i [(τi+2 − τi+1)− (τi+1 − τi)]

}
, (91b)

Proof. The proof follows along the lines of the proof of Proposition A.6 above. Defining

Φ−1 = 0, and because φi = Φi − Φi−1, we can write

N∑
i=0

φiτi = (Φ0 − Φ−1) τ0 +(Φ1 − Φ0) τ1 + . . .+(ΦN−1 − ΦN−2) τN−1 +(ΦN − ΦN−1) τN . (92)

As in the proof of Proposition A.6 above, we are not allowed to vary ΦN because ΦN = 1

by definition, and thus we can only vary Φi, i = 0, . . . , N − 1 only. Differentiating (92) with

respect to Φi, i = 0, . . . , N − 1 we obtain that

∂

∂Φi

N∑
i=0

φiτi = τi − τi+1 (93)

and therefore

(DΦE [D − P ]) υ = αθ̄

DΦ

(
N∑
i=0

φiτi

)−1
 υ = αθ̄

(
N∑
i=0

φiτi

)−2 N−1∑
i=0

υi (τi+1 − τi) , (94)

where the second equality follows by (92) and the chain rule. This proves part (i).

Next, because φi = (Ψi −Ψi−1)− (Ψi−1 −Ψi−2), we can write

N∑
i=0

φiτi = [(Ψ0 −Ψ−1)− (Ψ−1 −Ψ−2)] τ0 + [(Ψ1 −Ψ0)− (Ψ0 −Ψ−1)] τ1 + . . .

+ [(ΨN−1 −ΨN−2)− (ΨN−2 −ΨN−3)] τN−1 + [(ΨN −ΨN−1)− (ΨN−1 −ΨN−2)] τN . (95)
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Differentiating (95) with respect to Ψj, j = 0, . . . , N − 2 we obtain that

∂

∂Ψj

N∑
i=0

φiτi = (τj − τj+1)− (τj+1 − τj+2) , (96)

where j = N − 1 is a special case, for which

∂

∂ΨN−1

N∑
i=0

φiτi = (τN−1 − τN)− τN , (97)

and j = N is another special case, for which

∂

∂ΨN

N∑
i=0

φiτi = τN . (98)

The derivative of the risk premium with respect to the vector (Ψ0, . . . ,ΨN−1) in an arbitrary

direction υ† is

(DΨE [D − P ]) υ† = αθ̄

DΨ

(
N∑
i=0

φiτi

)−1
 υ†

= −αθ̄

(
N∑
i=0

φiτi

)−2{N−2∑
i=0

υ†i [(τi+2 − τi+1)− (τi+1 − τi)]

+ υ†N−1 [(τN−1 − τN)− τN ] + υ†NτN

}
, (99)

where the second equality follows by (95) and the chain rule.

As in the proof of Proposition A.6 above, for υ∗ to be a mean-preserving direction in the

space of well-defined distributions we must constrain υ∗N−1 = υ∗N = 0. Thus, the derivative
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of the risk premium with respect to the mean-preserving direction υ∗ is

(DΨE [D − P ]) υ∗ = −αθ̄

(
N∑
i=0

φiτi

)−2{N−2∑
i=0

υ∗i [(τi+2 − τi+1)− (τi+1 − τi)]

}
, (100)

which establishes part (ii).

Proof of Theorem 7. Consider Equation (91a) of Proposition A.7 above. The difference

term inside the summation of Equation is positive, because the conditional precision of class

i is increasing in i. Therefore, if the direction υ is negative, the derivative of the risk premium

is negative. This proves part (i).

To prove part (ii), consider Equation (91b) of Proposition A.7. If the conditional precision

is a convex function of the class i, the sign of the second difference of precisions in (91b) is

positive, and because the direction υ∗ is negative, the sign of (91b) is positive.
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Figure 1. Fixed-point-mapping plot for an economy with N = 4 groups with nested private information,

and one class with publicly available information (class zero), for three different supply volatilities. The blue

line is the 45◦ line. The four black lines are the slopes of the fixed-point mapping on the right-hand side of

(20a). The four red points are the solutions of the price informativeness pµθ(j) for each information class j.

The order of the different information classes for all panels is as in panel (iii): lower classes are in lower parts

of the 45◦ line. Class N is the most-informed class (we have pµθ(N) = 0 as a boundary condition.) The

fixed-point mapping of class N − 1 always has a slope of zero. Lower information classes have fixed-point

mappings with steeper slopes, an effect which comes from accumulated second-hand information. Panel (i)

shows an unstable equilibrium, for which the slope of the mapping becomes steeper than −1 for class zero

in the bottom left region. In contrast, Panels (ii) and (iii) show stable equilibria because the slopes of the

linear fixed-point mappings are within the threshold, −1, for every information class. Our parameter values

are α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1 for j = 0, . . . , N . The distribution φ of informed investors is

a discretized version of a Beta distribution with shape parameters a and b, set to a = b = 3. We show this

discretized distribution in more detail in Figure B.1, panel (A), of the Internet Appendix.
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Figure 2. Cobweb diagrams for the fixed-point mappings of class zero and class one of Figure 1, assuming

that the equilibrium for other classes does not change. The economy has N = 4 groups with nested private

information, and one class with publicly available information (class zero). The blue line is the 45◦ line. The

black lines are the slopes of the fixed-point mapping on the right-hand side of (20a). The blue circles are

the equilibrium price informativeness pµθ(j) for information classes j = 0, 1. The red squares represent the

shocked price informativeness pµθ(j) for information classes j = 0, 1. The numbers on the x and y axes are

the number of iterations of the fixed-point mapping for each class. The orange arrows represent how pµθ(j)

changes when we apply the fixed-point mapping to a previous value (vertical arrows) and how it changes

when we feed the new value back into the price (horizontal arrows). Panel (i) shows an unstable scalar

mapping, for which the slope is steeper than −1. Successive iterations of the fixed-point mapping move the

price informativeness farther away from equilibrium. In contrast, Panel (ii) shows a stable scalar mapping

because the slope is within the threshold, −1. Here, successive iterations of the fixed-point mapping bring

the price-informativeness closer to equilibrium. Our parameter values are α = 1, σµ = 0.5, σε = 1, σθ = 0.1,

θ̄ = 1, and qj = 1 for j = 0, . . . , N . The distribution φ of informed investors is a discretized version of a

Beta distribution with shape parameters a and b, set to a = b = 3. We show this discretized distribution in

more detail in Figure B.1, panel (A).

55



i

p
µ
θ
(i

)

(A) N = 4, a = b = 3

σθ = 0.1

σθ = 0.3

σθ = 1

i
p
µ
θ
(i

)

(B) N = 4, a = b = 5

i

p
µ
θ
(i

)

(C) N = 2, a = b = 3

i

p
µ
θ
(i

)

(D) N = 2, a = b = 5

Figure 3. Equilibrium price informativeness vector for four economies with N groups of nested private

information, for three different supply volatilities for each economy: σθ = 1 (dotted lines,) σθ = 0.3 (dashed

lines,) and σθ = 0.1 (solid lines.) Our parameter values are α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1 for

j = 0, . . . , N . In panels (A) through (D) the distribution φ of informed investors is a discretized version of a

Beta distribution with shape parameters a and b. The economy of Figure 1 is in panel (A). For each N we

consider, the distributions with a = b = 3 are mean-preserving spreads of the distributions with a = b = 5.

We show the discretized distributions in more detail in the corresponding panels of Figure B.1 of the Internet

Appendix.
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Figure 4. The eigenvalues χi of the Jacobian matrix of the fixed-point mapping for four economies with N

groups of nested private information, for three different supply volatilities for each economy: σθ = 1 (dotted

lines,) σθ = 0.3 (dashed lines,) and σθ = 0.1 (solid lines.) For each N we consider, the distributions with

a = b = 3 are mean-preserving spreads of the distributions with a = b = 5. The values of the remaining

parameters are α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1 for j = 0, . . . , N . In panels (A) through (D) the

distribution φ of informed investors is a discretized version of a Beta distribution with shape parameters a

and b. We show these discretized distributions in more detail in the corresponding panels of Figure B.1 of

the Internet Appendix.
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Table 1. The loadings c0,k of Equation (37), which show how strongly the public eigenvalue χ0 matters for

reactions to fat-finger shocks originating in class k = 1, . . . , N . In panels (A) through (D) we show the values

of the loadings c0,k for the different N and the different distributions φ of the economies in the corresponding

panels in Figures 3 and 4. In this table we confine ourselves to the unstable case, in which supply volatility

is σθ = 0.1. Our remaining parameters are α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1 for j = 0, . . . , N .

We show graphs of the coefficients c0,k for all the values of σθ that we consider in Figure B.4 of the Internet

Appendix.

(A) N = 4, a = b = 3 (B) N = 4, a = b = 5

k k

1 2 3 4 1 2 3 4
c0,k 1.000 −0.604 2.937 118.590 c0,k 1.000 −0.043 9.181 828.014

(C) N = 2, a = b = 3 (D) N = 2, a = b = 5

k k

1 2 1 2
c0,k 1.000 9.716 c0,k 1.000 8.945
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Figure 5. Example of the rational-expectations whiplash with N = 4 classes with nested private information; class zero can only

observe prices. We show the evolution of a fat-finger error committed by class three (this corresponds to an out-of-equilibrium shock

received by class two.) Classes one, two, and three are stable, but class zero is unstable. The economy we show here is the same as

that in panel (i) of Figure 1 and panel (A) of Figures 3 and 4 (drawn as a solid line.) Our parameters are α = 1, σµ = 0.5, σε = 1,

σθ = 0.1, θ̄ = 1, N = 4, and qj = 1 for j = 0, . . . , N . The distribution φ of informed investors is a discretized version of a Beta

distribution with shape parameters a and b, set to a = b = 3. We show this distribution in more detail in panel (A) of Figure B.1 of

the Internet Appendix.
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B Internet Appendix: Supplementary Figures
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Figure B.1. The distribution φ of informed investors is based on a continuous symmetric Beta distribution

B(a, b) with shape parameters a and b. We discretize the probability distribution function of the B(a, b)

distribution by chopping the unit interval [0, 1] intoN+1 pieces, and assigning the total mass that corresponds

to each piece of [0, 1] to the integers 0, . . . , N .
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Figure B.2. The projection coefficient βi of each information class i = 0, . . . , N , for different N and different

distributions, with three different supply volatilities: σθ = 1 (dotted lines,) σθ = 0.3 (dashed lines,) and

σθ = 0.1 (solid lines.) In panels (A) through (D) the distribution φ is that of the corresponding panel in

figure B.1. Our parameters α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1 for j = 0, . . . , N .
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Figure B.3. The precisions τi of each information class i = 0, . . . , N , for different N and different distribu-

tions, with three different supply volatilities: σθ = 1 (dotted lines,) σθ = 0.3 (dashed lines,) and σθ = 0.1

(solid lines.) In panels (A) through (D) the distribution φ is that of the corresponding panel in figure B.1.

Our parameters α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1 for j = 0, . . . , N .
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Figure B.4. The absolute values of the loadings c0,i of Equation (37) in logarithmic scales. We show the

loading attached to the public eigenvalue χ0, for fat-finger shocks originating in each class i = 1, . . . , N ,

for different N and different distributions, with three different supply volatilities: σθ = 1 (dotted lines,)

σθ = 0.3 (dashed lines,) and σθ = 0.1 (solid lines.) In panels (A) through (D) we plot the loadings for the

distribution φ of the corresponding panel in figure B.1. The loading c0,1 attached to the public eigenvalue

for the eigenvector of class one is always one. Our parameters α = 1, σµ = 0.5, σε = 1, θ̄ = 1, and qj = 1

for j = 0, . . . , N .
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