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Abstract

We study a capital reallocation problem in which investors can enter into a new market where they

compete with each other in identifying the best deals. While ex ante investors are uncertain about

their relative advantage in identifying the best deals, they can devote costly resources to learning

about their relative advantage in a fully flexible way. We find that investors might allocate too much

or too little capital to the new market. Increasing competition between investors induces them to

learn more, shifting the distribution of entrants towards those with a relative advantage. However,

competition does not change overall entry, so it does not affect the efficiency of capital allocation.

Thus, learning induced by competition turns out to be wasteful and welfare decreasing. Allowing

investors to learn in a fully flexible way – as opposed to requiring Gaussian signals – is what makes

our argument transparent. We study several extension.
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1 Introduction

Global capital allocation is increasingly dominated by “smart money”, such as hedge funds and venture

capitalists. These investors devote vast resources to finding better investment opportunities than their

competitors. Does increasing competition make markets more efficient and does it increase welfare?

We study a capital reallocation problem in which some investors have the opportunity to enter

into a new market, for example, an emerging market or a new technology sector. Investors compete

with each other in identifying the highest surplus deals in this market. However, ex ante they do not

know their relative advantage in identifying the best deals. Each investor designs a signal structure

to learn about its relative advantage and decides whether to enter accordingly. Depending on the

technological parameters, potential shocks and investors characteristics, investors might allocate too

much or too little capital to the new market. Increasing competition between investors induces them

to learn more, shifting the distribution of entrants towards those with a relative advantage. However,

competition does not change overall entry, thus it neither alleviates nor aggravates the inefficiency

of capital allocation. Thus, incremental learning due to fiercer competition turns out to be wasteful

and welfare decreasing. We show that allowing investors to precisely target learning to maximize the

private payoff of information in a fully flexible way – as opposed to requiring Gaussian signals – is an

important part of the argument.

Our model is a novel entry-game with heterogenous agents and rational inattention. Each agent

(investor hereon) decides whether to enter a new market. Investors’ pay-off from entering depends on

their type relative to other entrants. In the baseline model we analyze, each entering investor’s pay-off

is decreasing in the mass of investors entering with a better type. We show that this is the natural

assumption if the new market features a decreasing returns to scale aggregate technology. In general,

each investor’s pay-off might also be harmed or improved by the mass of entrants with a worse type.

We show that this can be due to aggregate or idiosyncratic liquidity shocks. In our model, the market

might get crowded because the median entrant is hurting other entrants’ payoff.
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To avoid entering crowded markets, investors can learn about their relative type. In equilibrium,

this is similar to learning about the mass of investors entering with a better type. Following the

rational inattention approach of Sims (1998, 2003); Woodford (2008); Yang (2015a), we allow investors

to acquire optimally chosen flexible signals about their type. This choice is subject to a constant

marginal cost of reducing uncertainty about their type as measured by entropy. By information

theory, this marginal cost is the cost of an additional line in a computer code optimally mapping a

large amount of information into a single decision whether to invest. Formally, each investor chooses

a function mapping its ex ante unknown type into a probability of entry. For example, entering with a

constant probability regardless of its type is free of learning cost, as this function does not require any

reduction in uncertainty about its type. However, entering only when very few other investors with

a better type entered is costly, because this requires a large reduction in uncertainty. This approach

has several advantages: it parsimoniously captures the joint choice of entry and learning, it allows for

full flexibility in learning, and it also has an axiomatic foundation based on information theory.

Our main focus is to analyze how the allocation of capital and welfare change as the competition

among investors increases. We model increased competition by increasing the mass of investors who

may learn about the investment opportunity and invest. Unless the mass is so small that the entry

decision is trivial, increasing competition does not improve the efficiency of capital allocation. Instead,

the total capital reallocated stabilizes at an inefficiently low or high level. To understand this result,

note that investors adjust their entry decisions along two main dimensions as competition increases.

First, the marginal benefit of knowing your type more precisely before entering is increasing in com-

petition because there are more investors with a better type. Thus investors choose entry strategies

that are more contingent on their types. We refer to this as the “rat race effect”. Second, with more

investors present, crowding becomes a bigger concern. This means each investor is less likely to enter

on average, we refer to this as the “crowding effect”. We show that these two effects cancel out in the

aggregate. Thus aggregate entry remains constant and allocative efficiency does not improve due to

increased competition.
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Whether there is over- or under-entry does not depend on the level of competition but instead on

the characteristics of the new investment opportunity and the potential shocks. In particular, we find

that markets are more prone to over-investment when: (1) idiosyncratic liquidity shocks are less likely,

(2) aggregate shocks are more likely or more severe, and (3) learning is harder. Intuitively, a market

with more investors provides easier exit opportunities for those hit by an idiosyncratic liquidity shock.

This is not internalized by market participants leading to under-entry of investors. Also over-entry

is more likely for investments with more likely and more severe aggregate shocks, since investors do

not internalize the fire sale externalities. Finally, markets with higher cost of learning are more prone

to over-investment because investors have a harder time conditioning on their relative type to avoid

over-entry and thus the outcome resembles the tragedy of commons.

Nevertheless, as competition increases, welfare decreases. The key insight is that the “rat race

effect” increases with competition, thus investors choose to learn more. While ceteris paribus more

learning can alleviate inefficient over-entry, more learning due to increased competition does not

change the amount of entry. In equilibrium, learning induced by competition simply makes better

type investors more likely and worse type less likely to enter. However, as the best entrants always find

the highest surplus deals, only the total mass of entrants matters for welfare, not their distribution.

Thus the higher learning cost implied by more competition is socially wasteful.

The full flexibility of information acquisition plays a crucial role in our argument. It implies

that investors can precisely tailor their learning to yield the highest private return. To illustrate the

importance of flexibility, we show that if investors were restricted to obtaining Gaussian signals our

argument would be obscured. Gaussian signals are suboptimal as they provide information that is

unnecessary for the investor to decide whether to enter. This unused information is too costly, leading

investors to learn less, implying that the crowding effect dominates the rat rate effect. Thus aggregate

entry tends to increase with competition. However, the insight that over-learning decreases welfare is

still true. Given that in todays professional market investors are pouring vast resources in optimizing
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their information gathering processes, we believe that assuming precisely targeted learning technology

is realistic, and understanding its implications is important.

We analyze two extensions. First, we show that when better types find socially more valuable

deals in the new market, then more competition often leads to a more efficient allocation of capital

compared to the planner’s solution. However, this is due to over-learning and thus it decreases

welfare. Second, we also extend our model to the case in which there is heterogeneity across investors:

some are more sophisticated than others. Keeping the mass of all investors fixed but increasing

the share of sophisticated investors might also decrease welfare. Initially, increasing the fraction of

sophisticated investors increases welfare since it raises the average sophistication of investors and this

can alleviate over-entry. However, further increasing the fraction of sophisticated investors beyond a

certain threshold, less sophisticated investors are afraid of being ripped off and exit the market. Once

less sophisticated investors exit, sophisticated investors engage in a vicious “rat race” of learning

which leads to decreasing welfare. Identifying the most sophisticated investors as high frequency

traders connects this result to the policy debate on the social benefit of ultra high frequency trading.1

Our main contribution is to embed learning in a model of capital allocation. Our paper is con-

nected to various branches of literature. First, a growing literature analyzes the consequences of

limited information processing capacity based on the rational inattention approach pioneered by Sims

(1998, 2003). Maćkowiak and Wiederholt (2009), Hellwig and Veldkamp (2009) and Kacperczyk,

Nieuwerburgh, and Veldkamp (2016) study the allocation of limited attention across signals but re-

strict the signals to be Gaussian. Fully flexible information acquisition in rational inattention models

is employed by Matějka and McKay (2015), Woodford (2008), Yang (2015a,b). Typically, these papers

focus on learning about common value uncertainty. Our paper introduces a novel entry game in which

agents learn about relative values. Also, none of the above papers directly analyze capital allocation.

Second, there are numerous papers showing excessive investment in learning or effort. In models

of high frequency trading, Budish, Cramton, and Shim (2015) and Biais, Foucault, and Moinas (2015)

1See, for example, Securities and Commission (2010).
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show that there is excessive investment in speed if trading is continuous in time. Our framework

is conceptually different: investors cannot change their individual type (speed), but more learning

results in better types entering (higher speed) in the aggregate. Furthermore, our insights also work

on longer time horizons. There is also a distinct literature on the social value of private learning: e.g.

in Hirshleifer (1971) private information can change ex ante incentives for insurance, in Glode, Green,

and Lowery (2012) learning effects ex-post trading opportunities. More generally, socially inefficient

effort choice has also been emphasized in very different settings: e.g. Tullock (1967), Krueger (1974),

and Loury (1979). Our focus is different compared to the above papers: we are interested in how

learning affects capital allocation.

Third, there is a literature analyzing entry/exit in the presence of externalities from other investors.

Stein (2009) introduces a simple model of crowded markets but leaves the effect of learning in such

models for future research. Abreu and Brunnermeier (2003) and Moinas and Pouget (2013) show that

the inability to learn about one’s relative position versus that of other investors’ is a key ingredient

in sustaining excessive investment in bubbles. This highlights our contribution in adding learning to

a model of crowded markets with potential over-entry.

The rest of the paper is structured as follows. In Section 2 we present our reduced form model

and also give a structural microfoundation. In Section 3 we present the optimal choice of entry and

learning and analyze its implications for aggregate entry, market efficiency, the median entrant and

welfare. In Section 4 we analyze different variations of the payoff function, cost function and also allow

for heterogeneity in investor sophistication. Section 5 concludes. All proofs are relegated to Appendix

A.
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2 A model of learning and investing in crowded markets

In this part we describe our set up. We first present the reduced form payoff function, then describe

a micro-foundation. We then introduce the flexible learning technology and define the real outcomes.

2.1 Payoffs

The heart of our model is an entry game with a continuum (mass M) investors, each with a type

θ ∈ [0, 1]. Each investor can decide to take an action: whether to enter in a market or not. θ is

characterizing the investor’s ability to identify better deals in this new market than others. Lower θ

implies a better type. The utility gain (or loss, if negative) from entry is given by

∆u(θ) = 1− β · b(θ) + α · a(θ)− κ · θ (1)

where α and β are constant parameters. b (θ) denotes the equilibrium mass of entrants with a type

better than θ. a(θ) denotes the equilibrium mass of entrants whose type is worse than θ. We show in

the microfoundation that the following two assumptions are natural. We assume that, β+α > 0, which

is without loss of generality, it is simply consistent with the interpretation that a lower θ represents a

better type. Second, β−α > 0, such that the median entrant imposes a negative externality on others,

that is, the market is prone to getting crowded from a social point of view. The two assumptions

together imply that β > 0 while α could be positive or negative. When κ > 0, better investors have

an absolute advantage, that is, better types derive more utility from entering regardless of the entry

decision of others. Section 4.1.2 discusses this case, otherwise we analyze the simpler case of κ = 0.

As we specify below, players do not know their type, but can gather information about it through

a costly learning process.
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While throughout the paper we work with the reduced form payoff (1), to clarify the economic

interpretation of the parameters α, β and κ it is useful to develop a model microfounding the reduced

form (1). In the next part we present the core of such a model in the context of capital reallocation:

this is our leading microfoundation.2 A richer model is presented in Section 4.1.1.

2.2 Microfoundation: Capital reallocation

There are two islands A and B indexed by i ∈ {A,B}. Each island is divided into infinitesimal

farms owned by a farmer. On both islands, the farmer and her land are both indexed by ϑ uniformly

distributed over [0, 1]. The quality of farms is heterogenous, lower ϑ means a better farm. Namely,

on each island if there is a cow on farm ϑ, it produces γ− δ ·ϑ of the consumption good, where δ < γ.

Initially, on island A, each farmer ϑ ∈ [0, kA,0] has a cow, while the rest of the farmers do not have

any. On island B there are no cows. Farmers cannot move and transfer cows across islands, however,

there is a mass M of investors uniformly distributed over types denoted by θ ∈ [0, 1] who can. Each

can take a single cow from island A and take it to island B. Of those who decide to do so, the better

types (lower θ) will be able to pick the cows on the worse quality (higher ϑ) non-empty farms on A not

yet picked by a better a investors and take them to the best quality (lowest ϑ) empty farms on island

B. This is consistent with the interpretation that θ measures investors ability, as better investors are

matched with higher surplus deals. Investors have a large endowment of the consumption good which

they can use to pay the farmers for the cows. For simplicity, we assume that each farmer contacted

by an investor engages in Nash bargaining over the surplus from transferring the cows. As a result,

investors end up with ξ ∈ (0, 1] share of the surplus.

In this abstract level, cows stands for capital, and island B is representing a profitable investment

opportunity. In fact, our analysis might apply in various contexts. One interpretation that fits well

2In an earlier version of this paper, Kondor and Zawadowski (2016), we provide microfoundations in various other contexts,
including production with local spill-overs, consumption with externalities, and academic publications. The critical feature
of all microfoundations is that each player’s pay-off is lower if better types also enter, while worse entrants can either help or
hurt.
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is a real-economy decision in which global firms decide whether to enter a new market segment. In

another interpretation, venture capitalists decide which start-up to support knowing that they will

make a profit only if they identify the start-up which can produce the best product in that future

market segment. Alternatively, we can interpret our variables in a financial context where hedge funds

and other sophisticated investors are deciding whether to be active in a novel trading strategy like

trading the CDS-bond basis. In this context, relative advantage might mean that they can identify

a given profitable strategy earlier than others.3 Finally, our results might also shed light on welfare

effects of high-frequency trading where participants can make profit only if they can be the fastest

traders among those who decide to enter. In this latter case, relative type is relative speed.

We show the following result. Note that all proofs are relegated to Appendix A.

Lemma 1. Microfoundation of reduced form parameters. Choosing kA,0 = 1
ξ·δ , the expected

payoff of investor θ from transporting capital (given that investor θ can enter at time t) simplifies

to (1) with α = 0 and β = 2δ · ξ. This results in both our parametric assumptions being met as

β − α = α+ β = 2δ · ξ > 0.

Note that both our parameter assumptions, β − α > 0 and α + β > 0, are driven by δ which

measures the extent of decreasing return to scale. That is, entering with a better type is beneficial

because there are more profitable investment opportunities available when not many better investors

have entered. This shows that in this context our parameter restrictions are natural even in the

absence of any externalities. While in this simple setup α = κ = 0, in Section 4.1.1, we show how

introducing shocks in this same model leads to α > 0 or α < 0, while in Section 4.1.2 we show that if

the technology of transferring the cows depends on the investors’ type, that leads to κ > 0.

To simplify the exposition in the rest of the paper we set ξ = 1. Setting ξ < 1 does not change

any of our main insights and the analysis is relegated to Appendix B.

3We explicitly consider a dynamic interpretation of our static model in Section 3.4.
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2.3 Learning cost based on entropy

Before entry, investors can engage in costly learning about their type. Observe that if H (·) is any

intuitive measure of uncertainty then H (θ) − H (θ|s), the reduction of uncertainty after observing

signal s, is a measure of learning induced by signal s. Following Sims (1998), we measure uncertainty

by specifying H (·) as the Shannon-entropy of a random variable.4 Therefore, we specify the cost of

learning a signal s as being proportional to the induced reduction in entropy of θ : H (θ)−H (θ|s) . This

quantity is often called as the mutual information in θ and s. As Sims (1998) argues, the advantage

of such a specification is that it both allows for flexible information acquisition and can be derived

based on information theory. Note that the payoff (1) for a given θ in our model is linear in entry.

Woodford (2008) derives the optimal signal structure and entry decision rule for such problems which

we restate in the lemma below.

Lemma 2. Optimal signal choice. The optimal signal structure is binary: investors choose to

receive signal s = 1 with probability m(θ) and s = 0 with probability 1−m(θ), given their type θ. The

optimal entry decision conditional on the signal is: enter if s = 1, stay out if s = 0.

Thus, similar to Yang (2015a) the conditional probability of entry m(θ), or equivalently, the

conditional probability of getting a signal 1, is the only choice variable. The intuition for the binary

signal structure is that the only reason investors want to learn about θ is to be able to make a binary

decision of whether or not to enter. Given the linearity of the problem, the “cheapest” signal to

implement the optimal entry strategy is also binary, it simply tells the investor whether or not to

enter.

We now write the cost of learning, defined by the reduction in entropy, in case of a binary infor-

mation structure. Denote the amount of learning L using the mutual information in signal s defined

4The entropy of a discrete variable is defined as
∑
x P (x) log 1

P (x) , where the random variable takes on the value x with

probability P (x), see MacKay (2003).
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in Lemma 2 and in θ,

L(m) ≡ H (θ)−H (θ|s) = H (s)−H (s|θ) = (2)(
−p log

[
1

p

]
− (1− p) log

[
1

1− p

])
−
∫ 1

0

(
−m(θ) log

[
1

m(θ)

]
− (1−m(θ)) log

[
1

1−m(θ)

])
dθ

where and the first equation is a property of Shannon-entropy. p denotes the unconditional probability

of entry and is defined by:

p =

∫ 1

0
m(θ̃)dθ̃ (3)

The expression for learning (2) can be understood in the following way. There is no learning if the

signal is uninformative about the state, that is, if it prompts the investor to enter with probability p

unconditional on its type θ. Indeed, it is easy to check that when m (θ) is constant at p then L (m) = 0.

Thus, learning depends on how much information the signal contains of the state. Intuitively, the

steeper m(θ) becomes in θ (keeping average entry p constant), the more the investor is differentiating

its entry decision according to its type and the higher the entropy reduction, thus the higher the

learning cost. The highest cost is achieved when m (θ) is a step function. Note that L is bounded

from above but might generate infinite marginal cost of learning.

Our measure of the cost of learning induced by a signal defined in Lemma 2 is µ ·L (m) where µ is

an exogenous marginal cost parameter. We assume that investors have to decide about the amount of

information acquisition ex ante without any knowledge about the action of others. We interpret this

as the cost of building an information gathering and evaluation “machine” which includes the costs

of gathering and optimally evaluating the right data.5 Note that instead of explicitly considering the

5The interpretation of the size of µ also depends on the economic context. In the real economy context, it might measure
the uncertainty about the most valued product characteristics in the given market segment. In the financial context, µ might
depend on the extent prices are informative about the mass of early entrants into a strategy. Examples for a trade with low
µ would be that of twin stocks or on-the-run-off-the-run bonds: a large price gap implies that the strategy is not yet very
crowded. Another example is merger arbitrage, where the price offered by the bidder is known. On the other hand, with
high µ, it is very hard for the investor to determine whether to enter, e.g. because there is no clear price signal whether the
trade is still profitable. Examples for such trades include: emerging markets, carry trade, January effect. In the language of
Stein (2009), high µ represents unanchored strategies.
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information content of equilibrium prices, we assume that prices are part of the set of inputs for the

optimal signal construction. That is, we implicitly assume that inverting prices are just as costly as

interpreting any other type of information.6

Conveniently, standard results in information theory implies that the entropy of a random variable

is proportional to the average number of bits needed to optimally convey its realization. Hence, the

parameter µ can be interpreted as the cost of building a marginally larger information gathering

and evaluating machine or writing a longer “code”.7 We believe that given today’s markets where

professional traders invest vast resources in systems and practices of mapping large amount of data

into investment strategies, this is an appropriate modelling approach.

2.4 Definition of allocative efficiency, median entrant and welfare

In this part, we define our main economic objects of interest.

Note first, that under symmetric strategies, the mass of lower types entering (“better” than investor

θ) becomes:

b(θ) = M ·
∫ θ

0
m(θ̃)dθ̃ (4)

mass of higher types entering:

a(θ) = M ·
∫ 1

θ
m(θ̃)dθ̃ (5)

thus M · p = b(θ) + a(θ) is the aggregate entry of investors.

The expected revenue of an investor, before taking into account the cost of information acquisition,

is:

R ≡
∫ 1

0
m(θ) ·∆u(θ) · dθ (6)

6While this assumption makes our problem very tractable, it is not without loss of generality. It might be that certain θ’s
are easier to learn from prices than others: we leave this theoretical question for future research.

7An alternative would be to think of capacity as limited and µ being the Lagrange multiplier of the capacity constraint.
We choose to use a fixed µ instead of a fixed capacity because we think in this context learning capacity can be expanded
freely at a fixed marginal cost: e.g. it is always possible to hire new staff or allocate more attention to this specific trade at
the expense of other trades.

11



Recall from section 2.2 that in our leading application, investors gain in the aggregate if and only if

they reduce the difference in marginal returns of capital across locations. Therefore, in this economy,

aggregate revenue M · R can be also interpreted as a measure of efficiency of capital allocation or

allocative efficiency.

The total expected payoff (value) per unit of investor is the revenue from entering, net of the ex

ante cost of learning:

V ≡ R− µ · L (7)

which is what investors maximize. Using the same notation the overall welfare in the whole economy

can be computed as

W ≡M · V. (8)

We will be also interested in the type distribution of entrants. One simple measure of it is the

median entrant type θ1/2 defined implicitly as

∫ θ1/2

0
M ·m(θ)dθ =

M · p
2

.

3 Model Solution

In this section we present our main results. We allow the payoff defined by (1) using arbitrary β

and α satisfying our parameter restrictions but restrict κ to 0. We analyze the κ > 0 case in Section

4.1.2. First, we formulate and solve the investors’ and the planner’s problem. Second, we analyze

the efficiency of capital allocation. Third, we analyze welfare. Finally, we explore implications on the

speed of capital reallocation under a dynamic interpretation.
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3.1 Optimal strategies

The private problem of any investor is to choose its conditional entry m(θ) to maximize its value

function V , which can be written as the following:

max
m(θ)

∫ 1

0
(m(θ) ·∆u(θ)− µ · L(m)) dθ. (9)

where ∆u is the utility gain of entrants defined by (1). We contrast the private solution with that

of a social planner who can choose the amount of learning and entry for all investors. This gives us a

benchmark against which we can evaluate learning and entry decisions in the competitive equilibrium.

The main difference between the competitive solution and the social planer’s one is that the social

planner takes into account the externalities that investors exert on each other. i.e. that ∆u depends

not only on θ but on the choice function m of all other investors. The social planner chooses the

symmetric function ms(θ) to maximize

max
ms(θ)

∫ 1

0
(ms(θ) ·∆u(θ,ms)dθ − µ · L(ms)) dθ (10)

We derive the first order condition (FOC) of these problems using the variation method, i.e. we

look for the function m(θ) such that if we take a very small variation around the function, the value

function of the investors does not change.

Lemma 3. First order conditions. Denote the strategy function of all other players as m̃(θ). The

first-order condition of the competitive problem is:

M · α ·
∫ 1

θ
m̃(θ̃)dθ̃ −M · β ·

∫ θ

0
m̃(θ̃)dθ̃ + 1 = µ ·

[
log

(
m(θ)

1−m(θ)

)
− log

(
p

1− p

)]
. (11)
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The first-order condition of the social problem (assuming the same entry function ms for all in-

vestors) is:

M · (α− β) · ps + 1 = µ ·
[
log

(
ms(θ)

1−ms(θ)

)
− log

(
p

1− p

)]
(12)

We define the equilibrium as a Nash equilibrium: all investors choose the m(θ) function that is

their best response to others’ m̃(θ). We look for a symmetric Nash equilibrium in which all agents

choose the same m(θ) function. To achieve this, we differentiate the FOC with respect to θ. That

gives an ordinary differential equation for m(θ) where the original FOC at θ = 0 (an integral equation)

is the boundary condition. The following Proposition presents the solution of this ordinary differential

equation up to a constant m(0) (the boundary value).

Proposition 1. Competitive entry strategies. If M is below a threshold M ≤ M̄ , all investors

enter without learning m(θ) = 1. If M is above the threshold M > M̄ , the optimal entry function is

given by:

m(θ) =
1

1 +W0

(
e
M ·α+β

µ
·θ+ 1−m(0)

m(0)
+log

(
1−m(0)
m(0)

)) , (13)

where W0 denotes the upper branch of the Lambert function8 and m(0) is pinned down by the boundary

condition ( (11) evaluated at θ = 0):

M · α · p+ 1 = µ ·
[
log

(
m(0)

1−m(0)

)
− log

(
p

1− p

)]
. (14)

The threshold M̄ is pinned down by the following implicit equation:

M̄ · (α+ β)

µ
= e
− 1−β·M̄

µ − e−
1+α·M̄
µ . (15)

Using a similar similar derivation, we obtain the following solution for the planner’s problem.

8The definition of the upper branch of Lambert function is z = W0(z) · eW0(z) if z > 0.
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Proposition 2. Socially optimal entry strategies. If M is below a threshold M ≤ M̄s = 1
β−α

then all investors enter ms(θ) = 1. If M is above the threshold M > M̄s then the socially optimal

entry function is flat in θ:

ms(θ) =
1

M · (β − α)
. (16)

The first feature to note is that investors want to differentiate between states, but the planner does

not. The planner chooses a flat entry function. The reason for this over-learning in the competitive

equilibrium is that every investor wants to know whether (s)he is better than the other investors even

if this is wasteful from the social planner’s point of view.

3.2 Allocative efficiency: over- and under-entry

Since the allocative efficiency of capital in the markets depends on the overall entry of all investors,

in this subsection we analyze how aggregate entry M · p changes as the mass of investors M grows.

To better understand the optimal strategies and aggregate entry, we look first at the extreme cases of

µ→ 0 (full information) and µ→∞ (no information).

Lemma 4. Entry under full and no information. For full information (µ = 0), the competitive

functions m(θ) is a step function, resulting in the best M ·p investors entering. In the social planner’s

optimum, M · ps mass of investors enter but many (symmetric) strategies are permissible, e.g. all

investors entering with unconditional probability ps. The aggregate amount of entrants in competitive

and social planner’s optimum are, respectively:

M · p|µ=0 = min

(
1

β
, 1

)
(17)

M · ps|µ=0 = min

(
1

β − α
, 1

)
(18)

For no information (µ → ∞), both the competitive and social planner’s entry functions m(θ) are

flat. All investors enter with the same unconditional probability. The aggregate amount of entrants in
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competitive and social planner’s optimum are, respectively:

M · p|µ→∞ = min

(
2

β − α
, 1

)
(19)

M · ps|µ→∞ = min

(
1

β − α
, 1

)
. (20)

Under full information, whether there is under- or over-entry, compared to the social planner’s

choice, depends on the sign of α. There is competitive under-entry (over-entry) if α > 0 (α < 0),

since investors with higher θ do not take into account the positive (negative) effect of their entry that

accrues to entrants with lower θ. Note that under full information without externalities α = 0, private

entry choice is socially optimal.

Under no information, there is competitive over-entry under any parameter values: investors enter

twice as often than they should. The intuition is analogous to the “tragedy of commons”. While

each investor internalizes that if others enter more often, that reduces its own revenue, (s)he does not

internalize that her own entry reduces the benefit of entry for everyone else. Note that there is over-

entry even in our benchmark microfoundation without externalities (α = 0). In this particular case,

the “externality” comes from the decreasing returns to scale technology and the lack of information.

Figure 1: Competitive entry functions for different levels of competition
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M = 1 (solid line), and M = 2 (dashed line). Parameters: β = 4, α = 2, µ = 0.5, κ = 0.
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To understand the effect of M on incentives in the general solution, see Figure 1 which shows the

competitive and social planner’s optimal entry function for different levels of M . The left panel shows

the unscaled functions, while the right panel is scaled by M , thus showing the aggregate entry by

type in equilibrium. For small M = 0.25, investors enter for sure and there is no need for learning

since revenues in the market are high. To gain intuition on how m(θ) changes as M increases from

1 to 2, consider the effect of larger M on the benefit of entry ∆u (θ) for a given investor, keeping

the others’ strategy constant. First, note that we can measure the relative incentive for entering

earlier by differentiating ∆u (θ) in θ, giving M · (α + β) · m̃ (θ) . Therefore, keeping other investors’

strategies fixed, the incentive to learn more and follow a more differentiated strategy is increasing in

M . Loosely speaking, this results in a steeper m (θ) as it is apparent on the right panel of Figure 1.

We refer to this as the rat race effect. Second, note that the benefit of entry for the average investor

is ∆u
(

1
2

)
= M · α ·

∫ 1
1
2
m̃(θ̃)dθ̃ −M · β ·

∫ 1
2

0 m̃(θ̃)dθ̃, hence, keeping others’ strategy constant

∂∆u
(

1
2

)
∂M

= α ·
∫ 1

1
2

m̃(θ̃)dθ̃ − β ·
∫ 1

2

0
m̃(θ̃)dθ̃ < (α− β)

p

2
< 0

where the first inequality comes from the fact that m̃ (θ) is decreasing in equilibrium. This suggests

that for the average investor with θ = 1
2 , increasing M is deceasing the incentive to enter as it is

apparent in the left panel of Figure 1. We refer to this as the crowding effect that relies on β−α > 0.

While in equilibrium the strategy of other investors m̃(θ̃) also changes, implying further adjustments,

as Figure 1 demonstrates, the total effect is still driven by this intuition. In the next proposition we

show that these two effects exactly cancel out.

Proposition 3. Entry in the competitive and socially optimal solution. The competitive

aggregate entry is M · p = min
(
M, M̄

)
. The aggregate entry in the social planner’s solution is

M · ps = min
(
M, 1

β−α

)
.

Just as in the planner’s solution, investors in the competitive equilibrium also enter with probability

one for smallM and aggregate entryM ·p is constant whenM is large. However, that constant level, M̄,
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is in general different from the social optimum M̄s = 1
β−α . That is, whenever M > M̄ , increasing the

number of investors neither improves the efficiency of capital allocation, nor does it lead to additional

crowding. Figure 2 illustrates this part by showing the amount of total entry M · p as a function of

the mass of investors M .

Figure 2: Real outcomes as a function of investor competition
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the social optimum, the thick lines are the competitive outcomes for three different values of µ: µ = 0.2 (dotted line), µ = 0.5 (solid line), µ = 5
(dashed line). Parameters: β = 4, α = 2, κ = 0.

For the intuition, recall that changing M changes the optimal strategy m (θ) for every investor

through the rat race effect and the crowding effect. As the rat race effect primarily affects the slope

of the entry function, as opposed to its level, it has little influence on M · p. In contrast, due to the

crowding effect the average entry, p, decreases. In equilibrium, the decrease in p is exactly proportional

to the increase in M, keeping M · p constant. This can be observed on Figure 1: even though the
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entry functions look very different in case of M = 1 and M = 2, the areas under the scaled entry

functions, i.e. aggregate entry, are the same. In Section 4.1.1 we extend our microfoundation to better

understand the determinants of α and β and analyze the effect of the underlying externalities on

allocative inefficiency.

Allowing investors to flexibly choose their information structure is crucial in generating the result

of constant entry as the mass of investors increases. With flexible learning the investors can optimally

devise their information to exactly counter the increase in the mass of investors and thus enter at a

constant aggregate rate. When learning is constrained, this is not necessarily the case: we demonstrate

this in Section 4.2 in which investors can only buy Gaussian signals about their type subject to the

same entropy cost as before.

3.3 Decoupling of welfare and allocative efficiency

Now we turn to the question of welfare as more and more investors enter. We show that the presence

of some investors (M < M̄) unambiguously increases welfare in the competitive equilibrium. Note

that in the small M case, welfare does not depend on µ since no resources are spent on learning. The

total mass of investors is small in this range, hence they do not try to beat each other by learning

about their relative type. Instead, all decide to enter without putting resources in learning. As their

mass is marginally increasing, in terms of our microfoundation, they are able to allocate more capital

to the new market, which increases the efficiency of capital allocation. Thus allocative efficiency and

welfare go hand-in-hand. The above insight that larger M means (at least weakly) higher welfare

and a more efficient capital allocation remains true in case of the social planner’s optimum since no

learning is chosen in that case.

In the competitive equilibrium, raising M above M̄ leads to decoupling of welfare and allocative

(or market) efficiency: while allocative efficiency stays constant (even though at a suboptimal level),

welfare decreases, see Figure 2. The reason is that as the amount of investors in the market grows,

they start worrying about crowding and thus their relative type θ, inducing them to learn about it. A
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rat race ensues with increasing amounts invested in learning and reduced welfare. Thus an increasing

mass of investors leads to a drop in welfare not because of crowding (the total amount of investors

entering is constant) but because of increased spending on learning.

Proposition 4. Welfare. If M > M̄ , the efficiency of capital allocation (aggregate revenue of

investors) stays constant as we increase M . However, welfare becomes decoupled from allocative effi-

ciency, and converges to zero from above as M →∞:

W (M̄) > lim
M→∞

W (M) = 0 (21)

The welfare in the social planner’s optimum for M > M̄s is constant:

Ws(M) =
1

2 · (β − α)
. (22)

Note that learning is useful in limiting crowding, albeit at a cost. One can see this by comparing

the above positive welfare for any M > 0 with the case of M > 2
β−α when learning is prohibitively

expensive as µ → ∞. In the latter case, investors do not learn but enter until their payoff is zero,

leading to zero welfare. In the context of our structural model, the above result also implies that

increasing the mass of investors M from below M̄ to above M̄ might make markets more efficient

from an allocative point of view and decrease welfare at the same time. This is due to the fact that

increased allocative efficiency is achieved at the cost of spending on learning.

Finally, it is instructive to see how the cost of learning µ affects welfare. While the cost of learning

µ does not only influence the amount of entry for a given mass M of investors but it does effect the

welfare, see Figure 2. First, for high levels of M , easier learning (lower µ) means higher welfare W .

This holds irrespective of the fact that a very low µ might lead to less entry than the social optimum.

The reason is that with many investors, they all have to spend an increasing fraction of their revenues

on learning in order to stabilize entry and this is more costly if the marginal cost of learning µ is high.
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This also highlights that learning can be beneficial from a welfare point of view, especially if the cost

is not that high. The intuition is that this is not a zero sum game, there is “production” in this game

which might make information valuable, c.f. Hirshleifer (1971). Second, for lower mass M of investors,

welfare might be higher when learning is more expensive. The intuition here is that for α > 0, higher

learning cost µ deters learning and thus helps avert under-entry. Thus if the policymaker can influence

the transparency of the market (change µ), it would want to make markets with lots of investors more

transparent, while markets with fewer investors and high α might benefit from less transparency.

3.4 Speed of capital: a dynamic interpretation

While we analyze a static game, we can give the results a dynamic interpretation. We can interpret

the type θ of an agent as the instant when she learns about the investment opportunity and can

decide whether to enter. Thus, a lower θ agent can find a larger surplus deal, because she learns about

the opportunity earlier. Under this interpretation, our analysis of the type distribution of entrants

provides the endogenization of the speed of capital reallocation.9 This interpretation is useful if we

think of our model in the context of hedge funds looking for profitable trading strategies. In particular,

as the median type of entrants, θ1/2 is getting smaller, capital reallocation is getting faster.

As the lower left panel on Figure 2 illustrates, increasing competition implies faster capital reallo-

cation in our baseline model. The right panel of Figure 1 gives the intuition why this is so. As more

learning implies a steeper scaled entry function M ·m (θ) , better types who decide earlier, enter with

higher probability, while worse types enter with lower probability. Therefore, in the aggregate, each

unit of capital is reallocated earlier. We state the formal result in the next proposition.

9 The dynamic interpretation connects our work to a recent and growing literature on slow moving capital, see Pedersen,
Mitchell, and Pulvino (2007), Duffie (2010), Duffie and Strulovici (2012), Oehmke (2009),and Greenwood, Hanson, and Liao
(2015). They also assume that capital does not frictionlessly move to markets where it is scarce but focus on the asset pricing
implications. We focus on the endogenous choice of the amount of capital transferred and show that even though increasing
the amount of investors might lead to better, e.g. faster, investors entering, markets do not converge to efficiency and welfare
deteriorates.
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Proposition 5. Median entrant. The median entrant in the social planner’s optimum is θ1/2 = 1
2 .

If the mass of investors is small M ≤ M̄ , in the decentralized solution θ1/2 = 1
2 . If the mass of

investors is large M > M̄ , the median type is lower θ1/2 <
1
2 , that is, capital reallocation is too fast.

As the number of investors increases, in the limit it converges to:

lim
M→∞

θ1/2 =
1

1 + e
M̄·(α+β)

2µ

(23)

In the dynamic interpretation, increasing the number of investors increases the speed at which

capital is reallocated. Regardless whether too much or too little capital is reallocated in equilibrium,

it is always moves too fast from a social perspective. However, in our baseline model, there is no social

benefit of this increased speed. In fact speed just destroys welfare since more information is necessary

for higher speed and learning is costly. Contrary to what one might expect, the equilibrium speed

is not infinite even with a large amount of investors, i.e. θ1/2 converges to a positive constant. The

intuition is that the amount of aggregate learning is bounded from above by the total revenue. If only

the very first were to enter, that would necessitate large amounts of aggregate learning.

In Section 4.1.2 we introduce a variation in the model in which early entry, thus speed, is valuable

and show that this does not change any of the major insights. We further discuss how the equilibrium

speed depends on deep parameters of our micro-foundation in Section 4.1.1.

4 Discussion and extensions

4.1 The payoff function

We now analyze the payoff function in more detail. First, we provide a more detailed microfoundation

with direct externalities that can generate reduced form parameters α 6= 0. We use this to analyze

how deep parameters of the model effect the amount of entry in the model. Second, we consider the

case of type-dependent capital reallocation technologies leading to κ > 0.
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4.1.1 Introducing shocks in the microfoundation

Remember from the baseline microfoundation in Section 2.2, that on each island if there is a cow on

farm ϑ, it produces γ− δ ·ϑ of the consumption good. In the present extension, we allow δ to be state

and island-contingent and denote it by δi. For simplicity we assume that investors have full bargaining

power (ξ = 1).

To explore the effect of various direct externalities in our problem, we consider the possibility that

the reallocation of cows (capital) is subject to shocks. There are two time periods t = 0, 1. At t = 0

the investor decides whether to transfer a cow. The transfer is concluded at t = 1, by which time a

shock could hit the investor or the island. In particular, suppose that the transport is successful only

with probability 1 − ν, with probability ν ≥ 0, the investor is hit by an idiosyncratic (“liquidity”)

shock and has to go back to island A and sell the cow there at t = 1. Furthermore, with ex ante

probability η ≥ 0, even if the capital transfer is successful, upon arriving on island B, there is an

aggregate shock (“crisis”) and all investors have to sell their cows in a fire sale.10 In case of a fire sale

the relative advantage of investors does not matter, they sell their cows on island B randomly, i.e. the

best investors are not matched with the best farmers. While on island A, we still always have δi = δ,

on island B, δi = δ only if there is no crisis, but δi = δc + δ if there is a crisis (aggregate shock) where

δc > 0.

Note that unless there is an idiosyncratic shock, investors buy cows from the farmers at its marginal

product on island A and sell capital at its marginal product on island B. Whenever this activity is

profitable, it also decreases the difference between the marginal return on cows across the two islands,

that is, it increases market efficiency. Idiosyncratic shock complicates this picture only to the extent

that it introduces some redistribution among investors; an element which washes out by aggregation.

Therefore, we can still interpret the aggregate revenue of investors as a measure of market efficiency.

10 For technical reasons we assume ν
1−ν < η · δc2δ , which ensures that not more than kA,0 cows are transported from island

A.
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We interpret our deep parameters as follows. δ captures the extent of decreasing return to scale in

each market. Conceptually, this is a technological parameter of the sectors or firms which are subject

to the capital reallocation. δc characterizes the depth of the financial market where claims on these

firms and sectors are traded. When δc is large, a sudden selling pressure of the participating investors

drives the price down significantly. In contrast, η and ν characterize the investors as opposed to the

markets. A large η is interpreted as a large probability for a common liquidity shock for all investors,

for example, because of large common exposure to risk factors outside of the model. A large ν is a

large probability of an idiosyncratic liquidity shock, for example, because investors are professional

investors with a volatile investor base. The below lemma shows that this model is equivalent to the

reduced form payoff of Section 2.2.

Lemma 5. Reduced form parameters with shocks. The microfounded model with shocks is

equivalent to the reduced form model with parameters:

α =

(
1

2
+ (1− ν)2

(
(1− η)

2
− 1

))
· δ − 1

2
(1− ν)2 · η · δc (24)

β =

(
1

2
+ (1− ν)2

(
(1− η)

2
+ 1

))
· δ +

1

2
(1− ν)2 · η · δc (25)

These satisfy the parametric assumptions β − α > 0 and β + α > 0.

To interpret α and β, it is useful to first consider the case without idiosyncratic shock (ν = 0) . In

this case, α = −1
2η (δ + δc) and β = 2δ+ 1

2η(δc−δ), implying β−α = 2δ+η ·δc and α+β = (2−η) ·δ.

Note that the crowding parameter, β − α, is increasing in the probability of the aggregate liquidity

shock, η, and the illiquidity of the market, δc. That is, entrants impose a negative externality on each

other, because it is more costly to exit when more investors want to exit at the same time. Finally,

note that α is negative without idiosyncratic shock, because of the same logic: better entrants harm

worse (higher θ) entrants because they aggravate crowding. Without idiosyncratic shock, the effect of

more worse entrants in a liquidity crisis is the same as the effect of more entrants, worse or better.
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While the introduction of idiosyncratic shock affects all our reduced form parameters, its main

qualitative effect is that it changes the sign of α. Indeed, α is monotonically increasing in ν, reaching

1
2 · δ > 0 when v = 1. The intuition is that for large v better entrants benefit from worse entrants since

if they have to liquidate their position, they can do so at a higher price (by selling to better farms

which are empty). This means that α is likely to be positive in markets where entrants need enough

subsequent liquidity to exit at a reasonable price.

In Proposition 3 we showed that whether there is under- or over-entry is independent of the mass of

investors M for M > M̄ . In the following Proposition 6 we show that the level of under- or over-entry

is determined by other characteristics of the capital reallocation problem.

Proposition 6. Comparative statics of crowding. Under weak assumptions specified in the Ap-

pendix, if there is a sufficient mass M > max[M̄, M̄s] of investors, the relative amount of competitive

aggregate entry to social aggregate entry M̄
M̄s

is

1. increasing in µ, the marginal cost of information

2. decreasing in δ, the rate of decreasing returns to scale of the technology in the presence of aggre-

gate shocks, i.e. if η > 0

3. increasing in δc, i.e. decreasing in market depth in crisis in the presence of aggregate shocks, i.e.

if η > 0

4. increasing in η, the probability of aggregate shocks

5. decreasing in ν, the probability of idiosyncratic shocks

More frequent aggregate liquidity shocks (larger η) and less market depth (higher δc) make markets

more crowded since they increase fire sales externalities. More costly information leads to more

crowding, because the game is closer to a tragedy of commons problem as explained in Section 3.1.

A slower decrease in marginal product of capital (higher δ) in the technology also makes the market

more crowded in the presence of aggregate shocks. On the other hand, more frequent idiosyncratic
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liquidity shocks (larger ν) makes the market less crowded since it leads to under-entry due to worse

entrants not internalizing the positive effect they have on earlier entrants.

Using the dynamic interpretation in Section 3.4, we showed in Proposition 5 that the speed of

capital allocation converges to a constant as we increase the mass of investors. In the following

Proposition 7, we use the dynamic interpretation to show how the equilibrium speed in the limit is

determined by the deep parameters of the market and the investors.

Proposition 7. Comparative statics of speed. Under weak assumptions specified in the Appendix,

in the limit of a large mass of investors (M →∞), the equilibrium speed of entry 1
θ1/2

is

1. decreasing in µ, the marginal cost of information

2. increasing in δ, the rate of decreasing returns to scale of the technology in the presence of aggregate

shocks, i.e. if η > 0

3. decreasing in δc, i.e. increasing in market depth in crisis

4. decreasing in η, the probability of aggregate shocks

5. increasing in ν, the probability of idiosyncratic shocks

In the limit, with M →∞, welfare goes to zero, see Proposition 4. Thus in the limit all revenues

from improving the capital allocation are used for learning. Thus it seems obvious that the easier it is

to learn (lower µ), the higher the equilibrium speed of trading, since holding the amount of expenditure

fixed, more can be learned at lower cost, increasing the speed. The intuition for the other results can

also be understood from a similar perspective: the higher the rate of decreasing returns to scale δ,

the higher revenues from capital reallocation and thus more can be spent for learning. Markets with

more severe (higher δc) or more likely (higher η) aggregate shocks offer less revenues in expectation,

again decreasing the amount spent on learning and thus equilibrium speed.
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4.1.2 Socially more efficient types

Until now we analyzed the case where payoff of an investor θ depended only on its rank among those

who entered. As a result, the type-dependent part of utility was simply redistributive. That is, the

planner was not interested in which type enters only in aggregate entry. In this part, we consider the

case of κ > 0, where better types are more efficient in reallocating capital both in a social and in a

private sense. In our microfoundation, this would be the result of the assumption that worse types

deliver less healthy cows to island B resulting in a loss of marginal productivity of −κθ.

The next proposition characterizes the equilibrium in this case.

Proposition 8. Equilibrium with socially more efficient types. If better types are socially

more efficient, (κ > 0), the competitive optimal strategy m(θ) in the symmetric equilibrium solves the

differential equation

(α+ β) ·m(θ) + κ = −µ · m′(θ)

m(θ) · (1−m(θ))
(26)

with the boundary condition

α · p+ 1 = µ ·
[
log

(
m(0)

1−m(0)

)
− log

(
p

1− p

)]
. (27)

With socially more efficient types (κ > 0), the socially optimal strategy ms(θ) in the symmetric

equilibrium solves the differential equation

κ = −µ · m′s(θ)

ms(θ) · (1−ms(θ))
(28)

subject to the boundary condition

(α− β) · ps + 1 = µ ·
[
log

(
ms(0)

1−ms(0)

)
− log

(
ps

1− ps

)]
. (29)
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From the differential equation (28) it is obvious, that the social planner also wants to differentiate

between states: ms is no longer flat, it is also downward sloping. However, the incentive for private

learning is even higher in (26) since private incentives include the rat race effect: every investor wants

to know whether it is ahead of the others. No closed form can be attained in general for the private

solution,11 thus we resort to numerical simulations.

Figure 3: Competitive and social optimum if speed has value
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The red dotted lines denote the social optimum and the blue solid lines the competitive solution. Other parameters are: β = 4, α = 2, µ = 0.5,
κ = 0.5.

Figure 3 shows the competitive and social outcome for κ > 0. As competition increases, more

learning makes the median entrant a better type even in the social solution as better (lower θ) entrants

are socially beneficial. Note that more investors imply higher entry in both the competitive and the

social optimum because better type entry has increasing benefit as the mass of investors increases and

11While (28) can be solved in closed form up to constant, to our best knowledge, (26) can only be solved for the special
case α+ β = κ.
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there are more potential good entrants. Competitive investors learn too much about their type, so

competitive total entry increases too much with the mass of investors M . Total revenue is increasing

faster in the mass M of investors than entry because most of the additional revenue comes from the

better entrants, not simply more entry. Investors are also motivated by the rat race so there is still

overlearning, though the welfare loss is partially offset by the welfare gain from the shifting type

distribution of entry (lower θ entry). Nevertheless, the revenue gains from better entrants, which is a

side-effect of over-learning, cannot offset the loss from excessive learning, thus welfare still converges

to zero.

4.2 The cost function: Suboptimal Gaussian learning

We now show that full flexibility of information acquisition plays a crucial role in our argument.

We contrast our framework with fully flexible learning with the perhaps more standard Gaussian

formalization (see e.g. Hellwig and Veldkamp (2009)). We show that if investors were restricted to

obtain Gaussian signals our argument would be confounded. Gaussian signals are suboptimal as they

provide information that is unnecessary for the investor to decide whether to enter. This suboptimality

of signals results in new effects that obscure our basic argument.

Suppose that each investor observes a Gaussian signal about its type θ of a chosen precision and

enter if and only if this signal is larger than a chosen threshold. We show that as long as we specify the

cost of learning analogously to our baseline model, this alternative structure amounts to a restriction

on the functional form of m (θ) . We refer to this as the Gaussian problem and show how this restriction

affects the results. In the following, Φ (.;σ) and φ (.;σ) denote, respectively, the cdf and the pdf of a

normally distributed variable with zero mean and σ standard deviation. Φ−1 (.;σ) denotes the inverse

of Φ (.;σ).

First, we introduce the transformed type variable ζi = Φ−1 (θi;σζ). Clearly, as θi is uniform on

the unit interval, ζi ∼ N
(

0, σ2
ζ

)
. Investor i with type ζi can, at a cost C (σεi), choose the standard
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deviation σεi of a signal si = ζi + εi about its type where εi ∼ N
(
0, σ2

εi

)
and εi is independent of ζi.

12

After having received the signal si, investor i decides whether to enter.

As for the cost of learning function, we consider two cases, both of which use the reduction in

entropy. In the first specification, which we denote full cost, we specify the cost of learning Cf (σεi)

as the reduction in entropy in knowledge after the observation of the signal si, which, by the property

of the normal distribution is:

Cf (σεi) =
1

2
· log

(
1 +

σ2
εi

σ2
ζ

)
. (30)

This is the standard cost function employed in the literature and means that the agent has to pay for

all the information acquired through learning the Gaussian signal, irrespective of whether it is then

used in the entry decision.

In the second specification, which we denote partial cost Cp (σεi), we assume the cost is identical to

our baseline specification (2) with the only exception that the entry function m (θ) resulting from the

entry decision based on the received signal is restricted. Intuitively, under this specification investors

pay only for the information they use for their binary actions, instead of all the information they learn.

Since the investor does not have to pay for unused information, we call this partial cost learning. This

second specification is somewhat arbitrary but it allows us to analyze what leads to the difference

in results between the our baseline and the Gaussian specification: whether it is the constraints on

m(θ) or the fact that investors have to pay for unnecessary information. The following proposition

describes the equilibrium in both cases.

Proposition 9. Equilibrium with Gaussian learning. In a symmetric equilibrium with Gaussian

learning, the optimal strategy of the investor can be fully described by a choice of the signal noise σε

and the entry cutoff s̄. The investor enters if and only if it receives a signal si < s̄. The entry function

has the form of

mG (θ) = Φ
(
s̄− Φ−1 (θ;σζ) ;σε

)
, (31)

12This is equivalent to drawing the type and signal from a bivariate normal:

(
ζi
si

)
∼ N

((
0
0

)
,

(
σ2
ζ σ2

ζ

σ2
ζ

√
σ2
ζ + σ2

εi

))
.
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and the probability of unconditional entry is:

p = Φ
(
s̄;
√
σ2
ζ + σ2

ε

)
. (32)

The equilibrium σε and s̄ are pinned down by their respective first-order conditions for both cost

specification (see the proof).

With full cost learning, if M is large enough no symmetric equilibrium exists, but there is an

equilibrium with some investors learning and entering, other investors not entering at all. In this

mixed-strategy equilibrium, all investors achieve zero profits.

Note that mG(.) can be fully described using two parameters: the standard deviation of signal noise

σε and the entry cutoff s̄. mG(.) is thus constrained compared to the completely unrestricted choice of

m(.) in the baseline model (which yields a Lambert function). The entry function is constrained due to

the fact that the signal structure is constrained and that the investor has to decide on entering based

on this restricted signal. Thus constraining learning automatically means constraining the entry

strategies. In fact, for partial cost learning this restriction is the only deviation from the baseline

model.

Since we could not attain a closed form solution, we perform a numerical analysis. Figure 4

illustrates the outcome of the Gaussian problem with both cost specifications. For comparability, we

included the competitive outcome from the baseline model using the same parameters (originally in

Figure 2). For partial cost learning, there is only a small difference between the Gaussian specification

and the baseline which all comes from the restriction on the form of the entry function (31) implied

by the Gaussian specification. Aggregate entry is not completely flat in the mass of investors but

relatively close to the benchmark.

For full cost learning, the difference is larger compared to the baseline. Total entry is monotoni-

cally increasing up to a point as an increasing mass of investors have the possibility to enter to the

new market. The intuition is that learning is so expensive, due to having to pay for unnecessary
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Figure 4: Increasing the mass of investors using different learning costs
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information, that investors cannot learn enough and the equilibrium looks more and more like that in

the tragedy of commons game. Another interesting observation is that if M is large enough, learning

is so expensive that in the symmetric equilibrium all investors entering would get negative payoffs.

Thus some investors decide to stay out ex ante without even learning. In equilibrium enough stay

out, such that the payoff to all learning and entering is zero, same as for those choosing the stay out.

This is similar to the mixed strategy in Grossman and Stiglitz (1980), even though here it happens

even though learning is a continuous choice.

To sum up, our exercise in this subsection emphasizes the importance of the flexible specification

for entry and learning. It shows that the main reason the results in the Gaussian case are different
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from those in our baseline specification is that investors are forced to pay for information they do

not use.13 Our analysis also highlights that flexible learning is more tractable than the Gaussian

framework in our context. While changing the cost to be Gaussian changes the exact behavior of the

observable outcomes, the main insight remains to be true: the behavior of market efficiency, speed

and welfare do not coincide as we raise the amount of competition.

4.3 Heterogenous investors

In this section we consider an extension with heterogenous investors. In the financial context, one can

think of high frequency traders and certain hedge funds as more sophisticated than pension funds.

We analyze how changing the composition of investors, instead of their total mass M , influences

allocative efficiency and welfare. This allows us to draw conclusions on e.g. the increasing presence of

high frequency traders in markets.

We consider two groups of investors: ω ·M mass of investors is sophisticated and faces a lower

learning cost of µL, while (1− ω) ·M mass of investors is unsophisticated and faces a higher learning

cost of µH > µL. Both groups of investors have types θ that are evenly distributed over [0, 1]. We

consider the symmetric equilibrium in which sophisticated investors choose the same entry strategy of

mL(θ), while unsophisticated investors choose the same mH(θ). To simplify the problem, we assume

that the unsophisticated cannot learn at all, i.e. µH →∞, resulting in a constant mH in θ. Otherwise

the solution would be a set of two joint differential equations which cannot be easily solved.14

Proposition 10. Equilibrium with heterogenous investors. If µH → ∞, the optimal interior

solution for mL(θ) and mH is given by the following system of equations. The optimal strategy mL of

the sophisticated is given by

ω · log

(
(1− ω) ·mH + ω ·mL(θ)

mL(θ)

)
+ (1− ω) ·mH · log

(
1−mL(θ)

mL(θ)

)
−
M · (α+ β) · (1− ω) ·mH · ((1− ω) ·mH + ω)

µL
· θ =

ω · log

(
(1− ω) ·mH + ω ·mL(0)

mL(0)

)
+ (1− ω) ·mH · log

(
1−mL(0)

mL(0)

)
(33)

13Yang (2015a) makes a related point in coordination games.
14See the proof of Proposition 10 for the full problem.
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and mH is pinned down by the indifference condition of the unsophisticated

1−M · (β − α) · (1− ω) ·mH +M · ω ·
∫ 1

0

[
α ·
∫ 1

θ
mL(θ̃)dθ̃ − β ·

∫ θ

0
mL(θ̃)dθ̃

]
dθ = 0 (34)

where mL(0) is pinned down by the boundary condition (the FOC of the sophisticated)

M · α · [ω · pL + (1− ω) ·mH ] + 1 = µL ·
[
log

(
mL(0)

1−mL(0)

)
− log

(
pL

1− pL

)]
(35)

and pL =
∫ 1

0 mL(θ̃)dθ̃ is the average entry of the sophisticated abritrageur.

Figure 5: Real outcomes with varying composition of investors
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We solve the above set of equations numerically since it is analytically intractable. In Figure

5 we vary the portion ω of sophisticated investors who can learn with cost µL. Thus the overall

mass of investors M is kept constant but a growing fraction of investors is sophisticated. At ω = 0

only unsophisticated are present and thus they enter until revenue is zero (given that M is large

enough), yielding zero welfare. As ω initially increases, welfare increases since the average investor is

more sophisticated. This is very similar to the result in the case of homogenous investors that welfare

increases as the average sophistication of investors increases (i.e. as µ decreases). There are two effects

leading to decreasing welfare as ω increases further. First, if the sophisticated are very sophisticated

(low µL) then having lots of sophisticated leads to under-entry for α > 0, thus decreasing welfare.

This is like the case of homogenous investors where lowering µ is welfare reducing at low levels of µ

since it aggravates under-entry. Second, and more interestingly, welfare can be decreasing in the share

of sophisticated investors ω even for high µL in the absence of under-entry. The reason is that as ω

increases, the unsophisticated are less likely to enter (mH decreases) and above a threshold they are

completely driven out of the market. Once the unsophisticated are not present, welfare is decreasing in

ω. The intuition is similar to the baseline result in case of homogenous entrepreneurs that increasing

the number of investors M , welfare eventually decreases as investors spend their revenue on learning.

Figure 5 also highlights the intricate interplay between the entry and learning strategies of the

sophisticated and the unsophisticated. First, the remaining unsophisticated are less likely to enter

as the fraction ω of sophisticated increases because there is more and more aggregate entry at low

θ, cream-skimming the market and leaving less revenues for unsophisticated investors who enter in-

discriminately. Second, unsophisticated investors are completely driven out of the market for high ω

when sophisticated investors are also not perfectly sophisticated (if µL > 0), thus they are competitors

of the unsophisticated, cannibalizing their revenues and eventually driving them out. The intuition

is similar to that in high frequency trading where some investors may stay out of the market because

they are afraid of very fast investors front-running them.
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In fact, if the sophisticated investors are sophisticated enough (µL close to zero), unsophisticated

investors will never be completely driven out of the market, see Figure 5. The reason is that perfectly

sophisticated investors follow cutoff strategies with the last entrant at the cutoff getting zero payoff

and being indifferent (see µL = 0 of the baseline model). If only sophisticated investors are present

in the market, then an unsophisticated investor with a uniform prior about its θ knows it can get

positive payoff if its θ is smaller than the cutoff of the perfectly sophisticated investors and gets zero

payoff (equal to that of the last perfectly sophisticated to enter) with θ higher than the cutoff since

there are no other entrants with higher θ in equilibrium. Figure 5 shows that in this case with ω close

to one, all unsophisticated enter.

The above analysis also highlights how a not very well informed (unsophisticated) investor should

behave if it learns about an arbitrage opportunity. It should enter with relatively high probability

if it thinks investors in the market are predominantly sophisticated but only if it believes that the

sophisticated investors are very sophisticated. On the other hand, it should not enter at all, if it

thinks the other sophisticated investors are not extremely sophisticated. It may also choose to enter

if it thinks that investors are predominantly unsophisticated.

5 Conclusions

We develop a model of capital reallocation to analyze whether the presence of more investors improve

the efficiency and speed of capital allocation and welfare. Trades can become crowded due to imperfect

information and externalities but investors can devote resources to learn about the number of earlier

entrants. In general, more investors having the choice to enter into a trade neither improves the

efficiency of capital allocation nor does it aggravate crowding. In fact, whether there is eventually too

little or too much capital allocated to the new sector is determined solely by the technology in that

sector, the cost of learning, the depth of the market, and the severity of the potential shocks, but

not the mass of investors present. However, the presence of more investors decreases welfare, as they
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use more aggregate resources learning about each others’ position. In the dynamic interpretation,

this excessive learning leads to inefficiently fast moving capital. Overall, our analysis cautions against

using market efficiency or speed of capital allocation as proxies for welfare.
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Maćkowiak, Bartosz, and Mirko Wiederholt, 2009, Optimal sticky prices under rational inattention,

American Economic Review 99, 769–803.
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A Proofs

Proof of Lemma 1

Proof. b(θ) is the mass of investors who chose to enter (i.e. engage in transporting a cow) with a type better (lower) than θ. Thus

investor of type θ will transfer the cow from the farm indexed by ϑ = kA,0 − b(θ) on island A and move it to the farm indexed by

ϑ = b(θ) on island B. The revenue of investor θ is

ξ ·
[
γ − δ · b(t)

]
︸ ︷︷ ︸

sell price

− ξ ·
[
γ − δ · [kA,0 − b(t)]

]
︸ ︷︷ ︸

buy price

= ξ · δ · kA,0 − 2 · ξ · δ · b(t)

Choosing kA,0 = 1
δ·ξ yields α and β in the Lemma.

To show that the amount of cows transferred is less than the amount of cows kA,0 available, we use the independently proven

Lemma 4 that the maximum entry is 2
β−α when µ→∞ and the payoff to every entrant is zero. In the case of this microfoundation,

using α and β in the Lemma, 2
β−α = 2

2·δ·ξ = kA,0, thus at most all cows will be moved to the other island.

Proof of Lemma 2

Proof. The proof follows that of Lemma 1 in Woodford (2008).

Proof of Lemma 3

Proof. For the private FOC we use a perturbation method similar to the proof in Yang (2015a). In the first order perturbation

we set m(θ) + χ · ε(θ) as m(θ), while we keep the entry decision of the others m̃ fixed:

∫ 1

0
((m(θ) + χ · ε(θ)) ·∆u(m̃, θ)− µ · L(m(θ) + χ · ε(θ))) dθ. (36)

We then take derivative w.r.t. χ and then set χ = 0 yielding the FOC:

∫ 1

0
ε(θ) ·

(
∆u(m̃, θ)− µ ·

[
log

(
m(θ)

1−m(θ)

)
− log

( ∫ 1
0 m(θ̃)dθ̃

1−
∫ 1
0 m(θ̃)dθ̃

)])
dθ = 0. (37)

Since the original equation is an optimum, the above equality has to hold for any ε(θ): thus the part multiplying ε(θ) has to be zero

for all θ. Setting m̃ = m we arrive at the symmetric solution we get (11). For the social FOC we also use a perturbation method

similar to the proof in Yang (2015a). In the first order perturbation we set ms(θ) + χ · ε(θ) as ms(θ), take derivative w.r.t. χ and

then set χ = 0 in order to arrive at the following equation that has to hold for any function ε(θ):

∫ 1

0
ε(θ) ·

(
M · α ·

∫ 1

θ
ms(θ̃)dθ̃ −M · β ·

∫ θ

0
ms(θ̃)dθ̃ − µ ·

[
log

(
ms(θ)

1−ms(θ)

)
− log

( ∫ 1
0 ms(θ̃)dθ̃

1−
∫ 1
0 ms(θ̃)dθ̃

)])
dθ+ (38)

+

∫ 1

0
ms(θ) ·

(
M · α ·

∫ 1

θ
ε(θ̃)dθ̃ −M · β ·

∫ θ

0
ε(θ̃)dθ̃

)
dθ = 0 (39)
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We choose ε(θ) = δθ̂(θ) where δθ̂ is the Dirac-Delta function. Thus
∫ 1
θ ε(θ̃)dθ̃ = 1θ<θ̂ where 1 is the heaviside function. Substituting

θ̂ = θ, the equation becomes:

M · α ·
∫ 1

θ
ms(θ̃)dθ̃ −M · β ·

∫ θ

0
ms(θ̃)dθ̃ + 1− µ ·

[
log

(
ms(θ)

1−ms(θ)

)
− log

( ∫ 1
0 ms(θ̃)dθ̃

1−
∫ 1
0 ms(θ̃)dθ̃

)]
+ (40)

+M · α ·
∫ θ

0
ms(θ̃)dθ̃ −M · β ·

∫ 1

θ
ms(θ̃)dθ̃ = 0 (41)

which simplifies to (12).

Proof of Proposition 1

Proof. Differentiating the FOC (11) we arrive at the following differential equation:

(M · α+M · β) · m̃(θ) = −
µ ·m′(θ)

m(θ) · (1−m(θ))
. (42)

thus the competitive equilibrium strategy m(θ) in the symmetric equilibrium (m = m̃) has to solve the above differential equation

with the original FOC (e.g. evaluated at θ = 0) as a boundary condition which is (14). If there is an interior solution (s.t. m(θ) 6= 1),

it can be written in the form
1

m(θ)
+ log

(
1−m(θ)
m(θ)

)
M(α+ β)

= C +
θ

µ
(43)

for an appropriate constant C. Setting θ = 0 above and subtracting from the above we can eliminate C and thus arrive at (44).

1

m(θ)
+ log

(
1−m(θ)

m(θ)

)
−
M(α+ β)

µ
· θ =

1

m(0)
+ log

(
1−m(0)

m(0)

)
, (44)

Taking logs and using the definition of the Lambert function (upper branch if z > 0) yields (13). To calculate the level of M̄ we

use the observation (independently proven in Proposition 3) that M · p is constant, including in the limit as M → ∞. At M̄ still

all investors enter with probability 1, thus p = 1 and M̄ can be expressed as:

M̄ = lim
µ→∞

(M · p) (45)

Thus we focus on expressing M · p in the limit for large M . As a first step note that as M → ∞, given that M · p is constant,

m(θ)→ 0 for every θ. Thus the implicit equation (44) for m(θ) can be approximated by

1

m
−M(α+ β)

(
C +

θ

µ

)
= 0 (46)
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since for m ≈ 0: 1
m
� log

(
1
m

)
. A closed form solution can be obtained in this limit case:

m(θ) =
µ

M(α+ β)(Cµ+ θ)
(47)

for a specific C. By the definition of the average entry p this implies

M · p = M ·
∫ 1

0
m(θ)dθ =

µ

α+ β
· log

(
1

Cµ
+ 1

)
. (48)

Substituting this into the boundary condition (14) yields:

α
µ

α+ β
log

(
1

Cµ
+ 1

)
+ 1 = µ

log

(
1

CM(α+ β)− 1

)
− log

M(α+ β)− µ log
(

1
Cµ

+ 1
)

µ log
(

1
Cµ

+ 1
)

 (49)

Since M · p is a constant for any M > M̄ , C also has to converge to a finite constant as M →∞. Using this insight, one can take

the limit of the above equation as M →∞:

µ(−α− β) log

(
1

C

)
+ (α+ β)

(
µ log

(
µ log

(
1

Cµ
+ 1

))
+ 1

)
+ αµ log

(
1

Cµ
+ 1

)
= 0 (50)

Using the relation between C and M · p in (48), one can eliminate C:

(α+ β)

(
µ log(M · p · (α+ β))− µ log

(
µ

(
e
M·p·(α+β)

µ − 1

))
+ αM · p+ 1

)
= 0 (51)

using (45) and rearranging yields equation (15) in the proposition.

Proof of Proposition 2

Proof. The derivative of FOC (12) w.r.t. θ delivers the differential equation

0 = −
µ ·m′s(θ)

ms(θ) · (1−ms(θ))
(52)

subject to the boundary condition (setting θ = 0 in (12))

M · (α− β) · ps + 1 = µ ·
[
log

(
ms(0)

1−ms(0)

)
− log

(
ps

1− ps

)]
. (53)

This trivially yields

ms (θ) = C (54)
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for some constant C, implying ps = C. The boundary condition (53) simplifies to

M · (α− β)ps + 1 = 0 (55)

implying (16). If the implied entry probability is > 1, then we have the corner solution that all enter with m(θ) = 1.

Proof of Lemma 4

Proof. Under complete information, in the competitive optimum the investor with the highest θ = θ̄ to enter is indifferent between

entering and not:

−M · β · θ̄ + 1 = 0 (56)

yielding Eq. 17.

Because learning is free and only the aggregate amount of entrants matters from the social planner, we could choose many

symmetric entry functions. For simplicity, let us choose the strategy in which all investors with θ < θ̄ enter, the others stay out.15

θ̄ is given by maximizing: ∫ θ̄

0

(
(M · α) · (θ̄ − θ)−M · β · θ + 1

)
dθ =

M · α−M · β
2

· θ̄2 + 1 · θ̄ (57)

yielding the interior optimum in Eq. 18 if M · (β − α) > 1. If on the other hand, M · (β − α) < 1, everyone enters: m(θ) = 1 is

optimal. Under no information, in the competitive equilibrium every investor enters with probability p and they are all indifferent

given they do not know their θ and use a uniform prior. Expected payoff to entering:

∫ 1

0
(M · α · (1− θ) · p−M · β · θ · p+ 1) dθ = 0 (58)

yielding the unconditional entry probability in Eq. 19. If M is low and the implied entry is > 1, then the revenue is not driven

to zero and everyone enters for sure implying p = 1. In the social planner’s optimum every investor enters with probability p and

they maximize social planner’s welfare

∫ 1

0
p · (M · α · (1− θ) · p−M · β · θ · p+ 1) dθ (59)

taking derivative w.r.t. p and setting to zero, this implies the entry probability in Eq. 20. As before, of the implied entry probability

is > 1, then everyone enters for sure m(θ) = 1 implying ps = 1. Note that there are infinite other solutions since the social planner

does not care about who exactly enters.

Proof of Proposition 3

15In fact for the case κ > 0 this is the unique solution.
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Proof. To show that M · p is constant in M once the solution m is interior, first write the system of 3 equations determining p.

First, the difference of FOC (11) at θ = 0 and θ = 1.

p =
µ
(

log
(

m(0)
1−m(0)

)
− log

(
m(1)

1−m(1)

))
M(α+ β)

(60)

Second, the boundary condition (11) at θ = 0

αMp+ 1 = µ

(
log

(
m(0)

1−m(0)

)
− log

(
p

1− p

))
. (61)

Third, the implicit equation for m(θ) evaluated at θ = 1.

log

(
m(0)

1−m(0)

)
− log

(
m(1)

1−m(1)

)
=
M(α+ β)

µ
+

1

m(0)
−

1

m(1)
(62)

Substituting

x0 = log

(
m(0)

1−m(0)

)
(63)

and

x1 = log

(
m(1)

1−m(1)

)
(64)

the system of three equations can be written as:

p =
µ(x0 − x1)

M(α+ β)
(65)

αMp+ 1 = µ

(
x0 − log

(
p

1− p

))
(66)

x0 − x1 =
M(α+ β)

µ
+ e−x0 − e−x1 (67)

Substituting out p from (65), (66), (67) we arrive at a system of two equations:

F = µ

(
x0 − log

(
µ(x0 − x1)

M(α+ β) + µ(x1 − x0)

))
−
(
αµ(x0 − x1)

α+ β
+ 1

)
= 0 (68)

G =
M(α+ β)

µ
− (x0 − x1) + e−x0 − e−x1 = 0 (69)

To prove M · p is constant, it is sufficient to prove
∂(M·p)
∂M

= 0 which from (65) is equivalent to

∂x0

∂M
=
∂x1

∂M
(70)
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We apply Cramer’s rule both for x0 and x1 to the system of equations (68) and (69):

∂x0

∂M
=

∣∣∣∣∣∣∣
∂F
∂x0

− ∂F
∂M

∂G
∂x0

− ∂G
∂M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂F
∂x0

∂F
∂x1

∂G
∂x0

∂G
∂x1

∣∣∣∣∣∣∣
(71)

∂x1

∂M
=

∣∣∣∣∣∣∣
− ∂F
∂M

∂F
∂x1

− ∂G
∂M

∂G
∂x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂F
∂x0

∂F
∂x1

∂G
∂x0

∂G
∂x1

∣∣∣∣∣∣∣
(72)

We check numerically that the denominator (which is the same for both derivatives) is non-zero thus the two equations are indeed

independent. It is thus sufficient to show that the numerators of the Cramer rule for the two derivatives are equal, yielding the

sufficient condition

(α+ β)e−x0−x1
(
ex0+x1 (M(α+ β) + µ(x1 − x0))− µex0 + µex1

)
M(α+ β) + µ(x1 − x0)

= 0. (73)

It follows from (67) that the denominator is non-zero if x0 6= x1. Thus it is sufficient to prove that

M(α+ β)

µ
+ (x1 − x0) +

1

ex0
−

1

ex1
= 0, (74)

which is exactly the function G = 0 defined in (69). Thus the identity holds and we have proved that M · p is constant in M for

interior solutions.

Proof of Proposition 4

Proof. By Proposition 1 when M < M̄ all investors enter with probability 1. Hence, all equilibrium objects are the same for the

planner and in the decentralized solution. In particular, average entry of an investor is p = 1 thus expected aggregate entry is M .

Total revenue and welfare are

M ·R = W = M ·Rs = Ws = M ·
∫ 1

0
(M · α · (1− θ)−M · β · θ + 1) dθ = M −

M2 (β − α)

2
. (75)

To arrive at a formula for W (M) one can rearrange the aggregate learning from (2) to get:

M · L = M

∫ 1

0
m(θ) · µ ·

(
log

(
m(θ)

1−m(θ)

)
− log

(
p

1− p

))
· dθ −M

∫ 1

0
µ log

(
1− p

1−m(θ)

)
· dθ (76)
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where the interior part of the first integral multiplying m(θ) can be replaced using the FOC (11) to yield:

M · L = M

∫ 1

0
m(θ) ·

[
M · α ·

∫ 1

θ
m̃(θ̃)dθ̃ −M · β ·

∫ θ

0
m̃(θ̃)dθ̃ + 1

]
dθ −M

∫ 1

0
µ log

(
1− p

1−m(θ)

)
· dθ (77)

thus the first integral is exactly the definition of aggregate revenue. Since M ·p is constant if M ≥ M̄ (Propostion 3), so is aggregate

revenue M ·R. Rearranging yields the below expression for W : In general, one can write:

W (M) = M ·
∫ 1

0
log

(
1− p

1−m(θ)

)
dθ (78)

We now show that welfare converges to zero for large M . For large M , m ≈ 0 and p ≈ 0 thus in the M →∞ limit (78) converges to

zero. This convergence happens from above, since the payoff per investor W
M

cannot be negative, otherwise investors would choose

not to enter. In the social planner’s interior optimum every investor enters with probability p = 1
M·(β−α)

and thus welfare becomes

Ws = M ·
∫ 1

0
p · (M · α · (1− θ) · p−M · β · θ · p+ 1) dθ =

1

2 · (β − α)
. (79)

Proof of Proposition 5

Proof. For flat entry function m(θ), the median entrant is exactly at θ1/2 = 1
2

. For M > M̄ , the privately optimal entry function

is downward sloping. This can be seen by observing that (42) implies that m′(θ) is always strictly negative. A decreasing m(θ)

implies that the median entrant is smaller than 1
2

. Finally, for M → ∞ we use the result from the proof of Proposition 1 that in

the limit m(θ) converges to (47) where C converges to a finite constant. Solving for θ1/2 using the approximation in the limit:

∫ θ1/2

0
M ·m(θ)dθ =

∫ θ1/2

0

µ

(α+ β)(Cµ+ θ)
dθ =

M̄

2
(80)

Evaluating the integral and using the relationship between C and M̄ in (48) to substitute out C, one gets the expression for θ1/2

stated in the Lemma.

Proof of Lemma 5

Proof. With probability ν the investor is reverted to island A and ν · (a(t) + b(t)) capital is sold by investors at t = 1 with random

matching between the reverted investors and the best available empty farms. The farmer and the reverted investor engage in Nash

bargaining with the investor getting all the surplus. In case of a crisis, (1 − ν) · (a(t) + b(t)) capital is sold on island B in a fire

sale, with random matching between the investors and the best available farms. Overall, the revenue of an investor that chooses
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to transport capital at time t is:

(1− η) · (1− ν) ·
[
γ − δ · (1− ν) · b(t)

]
︸ ︷︷ ︸

sell price (no shock)

+η · (1− ν) ·
[
γ − (δc + δ) · (1− ν) ·

a(t) + b(t)

2

]
︸ ︷︷ ︸

sell price (crisis)

+

ν ·
[
γ − δ ·

(
kA,0 − [a(t) + b(t)] + ν ·

a(t) + b(t)

2

)]
︸ ︷︷ ︸

sell price (idiosyncratic shock)

−
[
γ − δ · [kA,0 − b(t)]

]
︸ ︷︷ ︸

buy price

(81)

Choosing kA,0 = 1
δ·(1−ν)

, the expected payoff of investor θ from transporting capital (given that investor θ can enter at time t)

simplifies to (1) if α and β are given by the equations in the lemma. Resulting in positive crowding and rat-race parameters of:

β − α = (1− ν)2 · (η · δc + 2δ) > 0 (82)

α+ β = (1 + (1− ν)2 (1− η)) · δ > 0 (83)

for all parameter values.

We now check that not more than all the capital is transported from island A. We know from the independently proven Lemma

4 that the maximum entry is 2
β−α when µ → ∞ and the payoff to every entrant is zero. Thus 2

β−α is the maximum amount of

capital that is moved from island A and this has to be less than kA,0:

2

(1− ν)2 · (η · δc + 2δ)
=

2

β − α
< kA,0 =

1

δ · (1− ν)

where we used the expression for β − α from above. The above condition is equivalent with

ν

1− ν
< η ·

δc

2δ

which is assumed in footnote 10.

Proof of Proposition 6

Proof. Denote

A = e
M̄(α+β)

µ − 2e
αM̄+1
µ + 1 (84)

and

B = β

(
e
αM̄+1
µ − e

M̄(α+β)
µ

)
+ α

(
e
αM̄+1
µ − 1

)
. (85)
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To facilitate the proof we assume that A > 0, B < 0 and B·M̄+e
M̄(α+β)

µ −1
B

> 0. These are the conditions under which we state

the Proposition. In fact we did not find any counterexamples to these restrictions given our assumptions about α and β, that is

why we refer to them as weak assumptions. Remember that M̄ is defined by the implicit equation 15:

F =
M̄ · (α+ β)

µ
− e−

1−β·M̄
µ + e

− 1+α·M̄
µ = 0. (86)

Using the result from Eq. 16 that M̄s = 1
β−α and the implicit function theorem, the derivative of interest

∂ M̄
M̄s
∂.

for any parameter

“.” becomes:
∂ M̄
M̄s

∂.
=
∂M̄

∂.
· (β − α) +

∂(β − α)

∂.
· M̄ = −

∂F
∂.
∂F
∂M̄

· (β − α) +
∂(β − α)

∂.
· M̄ (87)

Basic algebra and the conditions stated at the beginning of the proof yield:

∂ M̄
M̄s

∂β
= −

A

B
· α · M̄ (88)

the sign of which is the same as the sign of α, and

∂ M̄
M̄s

∂α
=
A

B
· β · M̄ < 0 (89)

∂ M̄
M̄s

∂µ
=
B · M̄ + e

M̄(α+β)
µ − 1

B
·
β − α
µ

> 0 (90)

The last expression proves the first part of the Proposition. For the other parts, we use the total derivative to get the effect of the

parameters of our full model:

∂ M̄
M̄s

∂δ
=
∂ M̄
M̄s

∂β
·
∂β

∂δ
+
∂ M̄
M̄s

∂α
·
∂α

∂δ
= −

(
−
A

B
· M̄
)
·

1

2
δc · η · (1− ν)2 ·

(
(1− η)(1− ν)2 + 1

)
≤ 0 (91)

∂ M̄
M̄s

∂δc
=
∂ M̄
M̄s

∂β
·
∂β

∂δc
+
∂ M̄
M̄s

∂α
·
∂α

∂δc
=

(
−
A

B
· M̄
)
·

1

2
δ · η · (1− ν)2 ·

(
(1− η)(1− ν)2 + 1

)
≥ 0 (92)

with equality if and only if η = 0. Furthermore,

∂ M̄
M̄s

∂η
=
∂ M̄
M̄s

∂β
·
∂β

∂η
+
∂ M̄
M̄s

∂α
·
∂α

∂η
=

(
−
A

B
· M̄
)
·

1

2
δ · (1− ν)2 ·

(
(1− ν)2(2δ + δc) + δc

)
> 0 (93)

∂ M̄
M̄s

∂ν
=
∂ M̄
M̄s

∂β
·
∂β

∂ν
+
∂ M̄
M̄s

∂α
·
∂α

∂ν
= −

(
−
A

B
· M̄
)
· δ · (1− ν) · (2δ + δcη) < 0 (94)

where we used δ > 0, A > 0, B < 0 and M̄ > 0.
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Proof of Proposition 7

Proof. Again, the condition under which we prove the Proposition is B < 0, where B is defined by (85). Remember that M̄

is defined by the implicit equation (86) in an implicit form as F (M̄) = 0. Denote limM→∞ θ1/2 = θ̄1/2. Using the result that

θ̄1/2 = 1

e
M̄·(α+β)

2µ +1

and the implicit function theorem, the derivative of interest
dθ̄1/2

d.
for any parameter “.” becomes:

dθ̄1/2

d.
=
∂θ̄1/2

∂M̄
·
∂M̄

∂.
+
∂θ̄1/2

∂.
=
∂θ̄1/2

∂M̄
·
(
−

∂F
∂.
∂F
∂M̄

)
+
∂θ̄1/2

∂.
(95)

Basic algebra yields:

∂θ̄1/2

∂β
=

αM̄C

2(−B)µ
(96)

the sign of which is the same as the sign of α.

∂θ̄1/2

∂α
= −

βM̄C

2(−B)µ
< 0 (97)

∂θ̄1/2

∂µ
=

(α+ β)C

2(−B)µ2
> 0 (98)

where C is defined by:

C =
e
M̄(α+β)

2µ(
e
M̄(α+β)

2µ + 1

)2
·
(
e
M̄(α+β)

µ − 1

)
. (99)

Where we have assumed that B < 0. Also,
M̄(α+β)

µ
> 0 implies e

M̄(α+β)
µ > 1 and thus C > 0. This yields the above signs. The

last expression proves the first part of the Proposition. For the other parts, we use the total derivative to get the effect of the

parameters of our full model:

∂θ̄1/2

∂δ
=
∂θ̄1/2

∂β
·
∂β

∂δ
+
∂θ̄1/2

∂α
·
∂α

∂δ
=
Cδcη(1− ν)2M̄

4Bµ

(
(1− η)(1− ν)2 + 1

)
< 0 (100)

∂θ̄1/2

∂δc
=
∂θ̄1/2

∂β
·
∂β

∂δc
+
∂θ̄1/2

∂α
·
∂α

∂δc
= −

Cη(1− ν)2M̄

4Bµ
(α+ β) > 0 (101)

Furthermore,

∂θ̄1/2

∂η
=
∂θ̄1/2

∂β
·
∂β

∂η
+
∂θ̄1/2

∂α
·
∂α

∂η
= −

C(1− ν)2M̄

4Bµ
((β − α) · δ + (β + α) · δc) > 0 (102)

∂θ̄1/2

∂ν
=
∂θ̄1/2

∂β
·
∂β

∂ν
+
∂θ̄1/2

∂α
·
∂α

∂ν
=
Cδ(1− ν)M̄(2δ + δcη)

2Bµ
< 0 (103)

where we used B < 0, C > 0, M̄ > 0 and the parametric assumptions.

Proof of Proposition 8
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Proof. Denote the strategy function of all other players as m̃(θ). Following the same steps as in the proof of Lemma 3 we arrive

at the FOC:

1− κ · θ + α ·
∫ 1

θ
m̃(θ̃)dθ̃ − β ·

∫ θ

0
m̃(θ̃)dθ̃ = µ ·

[
log

(
m(θ)

1−m(θ)

)
− log

(
p

1− p

)]
. (104)

Differentiating this we arrive at the differential equation:

(α+ β) · m̃(θ) + κ = −µ ·
m′(θ)

m(θ) · (1−m(θ))
. (105)

Imposing symmetry m̃(θ) = m(θ) results in Equation 26. The boundary condition is given by the original integral-differential

Equation 104 evaluated at any θ: in Equation 27 we set θ = 0. For the social planner’s problem again we follow the steps of Lemma

3 which we reiterate here. The social planner chooses the symmetric choice function ms(θ) to maximize

∫ 1

0
ms(θ) ·∆u(θ,ms)dθ − µ · I(ms) (106)

where it takes into account that ∆u depends not only on θ but on the information choice function of all other investors m. We use

a perturbation method similar to the proof in Yang (2015a). In the first order perturbation we set ms(θ) + χ · ε(θ) as ms(θ), take

derivative w.r.t. χ and then set χ = 0 in order to arrive at the following equation that has to hold for any function ε(θ):

∫ 1

0
ε(θ) ·

(
α ·
∫ 1

θ
ms(θ̃)dθ̃ − β ·

∫ θ

0
ms(θ̃)dθ̃ − κ− µ ·

[
log

(
ms(θ)

1−ms(θ)

)
− log

( ∫ 1
0 ms(θ̃)dθ̃

1−
∫ 1
0 ms(θ̃)dθ̃

)])
dθ+

+

∫ 1

0
ms(θ) ·

(
α ·
∫ 1

θ
ε(θ̃)dθ̃ − β ·

∫ θ

0
ε(θ̃)dθ̃

)
dθ = 0 (107)

We choose ε(θ) = δθ̂(θ) where δθ̂ is the Dirac-Delta function. Thus
∫ 1
θ ε(θ̃)dθ̃ = 1θ<θ̂ where 1 is the heaviside function. Substituting

θ̂ = θ, the equation becomes:

α ·
∫ 1

θ
ms(θ̃)dθ̃ − β ·

∫ θ

0
ms(θ̃)dθ̃ + 1− κ · θ − µ ·

[
log

(
ms(θ)

1−ms(θ)

)
− log

( ∫ 1
0 ms(θ̃)dθ̃

1−
∫ 1
0 ms(θ̃)dθ̃

)]
+

+ α ·
∫ θ

0
ms(θ̃)dθ̃ − β ·

∫ 1

θ
ms(θ̃)dθ̃ = 0 (108)

which simplifies to:

(α− β) · ps + 1− κ · θ − µ ·
[
log

(
m(θ)

1−m(θ)

)
− log

(
ps

1− ps

)]
= 0 (109)

The derivative of Equation 109 w.r.t. θ delivers Equation 28, while setting θ = 0 in Equation 109 gives the boundary condition

Equation 29.

Proof of Proposition 9
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Proof. First, note that the expected payoff is monotonously decreasing in either ζi or θi. Also, if si > sj then g
(
ζi|si;σζ , σεi

)
first

order stochastically dominates g
(
ζj |sj ;σζ , σεi

)
where g (·|·) is the distribution of ζi conditional on the signal si. Note that a lower

signal means a higher expected payoff. Thus the unique optimal strategy of investor i is to enter based on a cutoff s̄i, entering

whenever si < s̄i. Thus, conjecturing that the choice of σεi and s̄i are symmetric and dropping the subscripts, each agent solves

max
σε,s̄

∫ ∞
−∞

[
1 + αM

∫ ∞
ζ

f
(
s < ˜̄s|ζ′; σ̃ε, σζ)φ (ζ′;σζ) dζ′ − βM ∫ ζ

−∞
f
(
s < ˜̄s|ζ′; σ̃ε, σζ)φ (ζ′;σζ) dζ′] ·

f
(
s < s̄|ζ;σε, σζ

)
φ
(
ζ;σζ

)
dζ − C (σε) (110)

where the tilde denotes the choice of others, and f
(
s < s̄|ζ;σε, σζ

)
is the conditional probability of s < s̄ given ζ with choice σε.

Note that we can rewrite the expected revenue in (110) as follows

∫ ∞
−∞

(
1 + αM

∫ ∞
ζ

f
(
s < ˜̄s|ζ′; σ̃ε, σζ)φ (ζ′;σζ) dζ′ − βM ∫ ζ

−∞
f
(
s < ˜̄s|ζ′; σ̃ε, σζ)φ (ζ′;σζ) dζ′) ·

f
(
s < s̄|ζ;σε, σζ

)
φ
(
ζ;σζ

)
dζ =

=

∫ ∞
−∞

[
1 + αM

∫ ∞
ζ

Φ
(˜̄s− ζ′; σ̃ε)φ (ζ′;σζ) dζ′ − βM ∫ ζ

−∞
Φ
(˜̄s− ζ′; σ̃ε)φ (ζ′;σζ) dζ′] ·

Φ (s̄− ζ;σε)φ
(
ζ;σζ

)
dζ =

=

∫ 1

0

1 + αM

∫ 1

θ
Φ
(˜̄s− Φ−1

(
θ′;σζ

)
; σ̃ε
)
dθ′︸ ︷︷ ︸

a(θ)

−βM
∫ θ

0
Φ
(˜̄s− Φ−1

(
θ′;σζ

)
; σ̃ε
)
dθ′︸ ︷︷ ︸

b(θ)

 ·

Φ
(
s̄− Φ−1

(
θ;σζ

)
;σε
)
dθ. (111)

In the first equation we used that f
(
s < s̄|ζ;σε, σζ

)
= Φ (s̄− ζ;σε) based on our assumptions, while in the second equation we

used the rule of integration by substitution to replace ζ with θ. Note that the last equation has the same form as the expected

revenue in our baseline model with the restriction that in the Gaussian problem the entry function m (θ) is restricted to have the

form of

mG (θ) = Φ
(
s̄− Φ−1

(
θ;σζ

)
;σε
)
, (112)

The probability of unconditional entry is p = Φ
(
s̄;
√
σ2
ζ + σ2

ε

)
because the standard deviation of the signal is

√
σ2
ζ + σ2

ε due to the

independence of ζi and εi. The solution can be obtained by setting marginal cost and benefit of both parameters σε and s̄ equal

while keeping the others’ choice constant and then imposing symmetry, such that σ̃ε = σε and ˜̄s = s̄. For both cost functions, we

numerically search for the solution of the two first order conditions. First, consider the partial cost of learning, where the function
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Cp (σεi ) is defined by:

Cp(σεi ) =

µ ·
[(
p log

[
1

p

]
+ (1− p) log

[
1

1− p

])
−
∫ 1

0

(
mG(θ) log

[
1

mG(θ)

]
+ (1−mG(θ)) log

[
1

1−mG(θ))

])
dθ

]
(113)

This implies the two first order conditions:

∂Cp

∂s̄
= µ ·

log

(
1− p
p

)
e
− s̄2

2(σ2
ζ

+σ2
ε)

√
2π
√
σ2
ζ + σ2

ε

−
∫ 1

0
log

(
1−mG(θ)

mG(θ)

)
e
− (s̄−Φ−1(θ))2

2σ2
ε

√
2πσε

dθ

 =

∫ 1

0
(1 + α ·M · a (θ)− β ·M · b (θ))

e
− (s̄−Φ−1(θ))2

2σ2
ε

√
2πσε

dθ =
∂R

∂s̄
(114)

∂Cp

∂σε
= µ ·

− log

(
1− p
p

)
e
− s̄2

2(σ2
ζ

+σ2
ε) · σε

√
2π(σ2

ζ + σ2
ε)

3
2

+

∫ 1

0
log

(
1−mG(θ)

mG(θ)

)
e
− (s̄−Φ−1(θ))2

2σ2
ε ·

(
s̄− Φ−1 (θ)

)
√

2πσ2
ε

dθ

 =

−
∫ 1

0
(1 + α ·M · a (θ)− β ·M · b (θ))

e
− (s̄−Φ−1(θ))2

2σ2
ε ·

(
s̄− Φ−1 (θ)

)
√

2πσ2
ε

dθ =
∂R

∂σε
(115)

That is one has to find σε and s̄ that jointly solves:

µ ·

log

1− Φ
(
s̄;
√
σ2
ζ + σ2

ε

)
Φ
(
s̄;
√
σ2
ζ + σ2

ε

)
 e

− s̄2

2(σ2
ζ

+σ2
ε)

√
2π
√
σ2
ζ + σ2

ε

−
∫ 1

0
log

(
1− Φ

(
s̄− Φ−1

(
θ;σζ

)
;σε
)

Φ
(
s̄− Φ−1

(
θ;σζ

)
;σε
) )

e
− (s̄−Φ−1(θ))2

2σ2
ε

√
2πσε

dθ

 =

∫ 1

0

(
1 + α ·M ·

∫ 1

θ
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′ − β ·M ·

∫ θ

0
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′
)
e
− (s̄−Φ−1(θ))2

2σ2
ε

√
2πσε

dθ (116)

µ·

− log

1− Φ
(
s̄;
√
σ2
ζ + σ2

ε

)
Φ
(
s̄;
√
σ2
ζ + σ2

ε

)
 e
− s̄2

2(σ2
ζ

+σ2
ε) · σε

√
2π(σ2

ζ + σ2
ε)

3
2

+

∫ 1

0
log

(
1− Φ

(
s̄− Φ−1

(
θ;σζ

)
;σε
)

Φ
(
s̄− Φ−1

(
θ;σζ

)
;σε
) )

e
− (s̄−Φ−1(θ))2

2σ2
ε ·

(
s̄− Φ−1 (θ)

)
√

2πσ2
ε

dθ

 =

−
∫ 1

0

(
1 + α ·M ·

∫ 1

θ
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′ − β ·M ·

∫ θ

0
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′
)
e
− (s̄−Φ−1(θ))2

2σ2
ε ·

(
s̄− Φ−1 (θ)

)
√

2πσ2
ε

dθ

(117)
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Second, consider the full cost of learning, where the function Cf (σεi ) is defined by (30). This implies the two first order conditions:

∂Cf

∂s̄
= 0 =

∫ 1

0
(1 + α ·M · a (θ)− β ·M · b (θ))

e
− (s̄−Φ−1(θ))2

2σ2
ε

√
2πσε

dθ =
∂R

∂s̄
(118)

∂Cf

∂σε
= −µ

σ2
ζ

σ3
ε + σε · σ2

ζ

= −
∫ 1

0
(1 + α ·M · a (θ)− β ·M · b (θ))

e
− (s̄−Φ−1(θ))2

2σ2
ε ·

(
s̄− Φ−1 (θ)

)
√

2πσ2
ε

dθ =
∂R

∂σε
(119)

That is one has to find σε and s̄ that jointly solves:

0 =

∫ 1

0

(
1 + α ·M ·

∫ 1

θ
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′ − β ·M ·

∫ θ

0
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′
)
e
− (s̄−Φ−1(θ))2

2σ2
ε

√
2πσε

dθ (120)

− µ
σ2
ζ

σ3
ε + σε · σ2

ζ

=

−
∫ 1

0

(
1 + α ·M ·

∫ 1

θ
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′ − β ·M ·

∫ θ

0
Φ
(
s̄− Φ−1

(
θ′;σζ

)
;σε
)
dθ′
)
e
− (s̄−Φ−1(θ))2

2σ2
ε ·

(
s̄− Φ−1 (θ)

)
√

2πσ2
ε

dθ

(121)

Numerically one observes that if M is large enough, then in the symmetric equilibrium, welfare would go negative thus the payoff

of all investors would be negative. On Figure 4 this means that the smooth continuation of the welfare curve calculated for low M

would cross below zero for higher M . Clearly investors would prefer to stay out without learning and thus get zero if they would

get negative payoff when entering. Denote the crossing point M̂ at which W = 0 in the symmetric equilibrium. It is an equilibrium

for M > M̂ that M̂ investors enter and the rest (M−M̂) stay out. In this case the incentives and payoffs among entrants is exactly

the same as it would be if the mass of investors was M̂ , thus they follow the same strategies as in that case and get zero payoffs.

Since investors who stay out without learning also get zero payoff, they are ex ante indifferent between entering (with learning)

and staying out (without learning). Thus this is an equilibrium, though it might or might not be unique. Thus for all M > M̂ all

aggregate quantities are the same as when there are only M̂ investors.

Proof of Proposition 10

Proof. We first set up the problem for general µd before setting the special case of µd → ∞. In equilibrium, the mass of lower

types entering (“before” investor θ) becomes:

b(θ) = M ·
∫ θ

0
ω ·mc(θ̃) + (1− ω) ·md(θ̃)dθ̃ (122)
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the mass of higher types entering (“after” investor θ):

a(θ) = M ·
∫ 1

θ
ω ·mc(θ̃) + (1− ω) ·md(θ̃)dθ̃. (123)

Thus the problem the investors solve is the joint maximization of two equations i ∈ [d, c]:

max
mi(θ)

∫ 1

0
(mi(θ) ·∆u(θ)− µi · L(mi)) dθ. (124)

The optimal solution is characterized by the differential equation for mc

(α+ β) (ω m̃c(θ) + (1− ω) m̃d(θ)) = −
µcm′c(θ)

mc(θ) (1−mc(θ))
(125)

with the boundary condition:

M ·α·
∫ 1

θ

(
ω · m̃c(θ̃) + (1− ω) · m̃d(θ̃)

)
dθ̃−M ·β·

∫ θ

0

(
ω · m̃c(θ̃) + (1− ω) · m̃d(θ̃)

)
dθ̃+1 = µc·

[
log

(
mc(θ)

1−mc(θ)

)
− log

(
pc

1− pc

)]
.

(126)

Where ps =
∫ 1
0 mc(θ̃)dθ̃ is the average entry of the sophisticated. A symmetric set of equations hold for md which we omit for

brevity. In equilibrium m̃d = md and m̃c = mc. In general such systems of interlinked differential equations for md(θ) and mc(θ)

cannot be solved, thus we set µd → ∞. This means that md(θ) ≡ md is a constant chosen such that the revenue of the dumb is

exactly zero for interior solutions.

M · α ·
∫ 1

θ

(
ω · m̃c(θ̃) + (1− ω) · m̃d(θ̃)

)
dθ̃ −M · β ·

∫ θ

0

(
ω · m̃c(θ̃) + (1− ω) · m̃d(θ̃)

)
dθ̃ + 1 = 0 (127)

md = 0 is chosen if the left hand side of the above equation is negative in such an equilibrium and md = 1 is chosen if it is positive.

Equation 126 can be solved in implicit form and yields Equation 33 in the proposition (evaluated at θ = 0 to substitute out the

constant). Equation 126 evaluated at θ = 0 yields the equation for mc(0) given in Equation 35 in the Proposition. Equation 127

can be simplified to yield 34 in the Proposition.
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B Online Appendix: Farmers have bargaining power

Here we analyze the case in the microfoundation from Section 2.2 in which farmers have some bargaining power, i.e. ξ < 1. While

this leaves the payoff function of investors intact, it does influence the welfare calculations. In this case only ξ fraction of the surplus

from the capital reallocation is captured by the investors, 1− ξ is by the farmers. Note that the surplus captured by the investors

equals M ·R, thus the total surplus is M·R
ξ

. Thus instead of (8), the overall welfare in the whole economy can be computed as

W ≡M · V +
1− ξ
ξ
·M ·R.

Since for M > M̄ total entry and thus M ·R is constant, the welfare in equilibrium is the same as before with constant added.

Thus welfare still decreases with M but it does not converge to zero in the M →∞ limit as stated in Proposition 4 but instead to

1−ξ
ξ
·M ·R.
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