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Abstract
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concerns. The monitor faces a manager, who chooses how much to manipulate based

on the monitor’s reputation. Reputational incentives are strongest for intermediate

reputations. Instead of providing transparency, the regulator’s disclosure policy aims

to keep the monitor’ s reputation intermediate, even at the cost of diminished incen-

tives. Beneficial schemes feature random delay. Commonly used ones, which feature

immediate disclosure or fixed time delay, destroy reputational incentives. Surprisingly,

the regulator discloses more aggressively when she has better enforcement tools.
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1 Introduction

Monitoring is a crucial task performed by intermediaries such as banks and auditors.1 In

practice, monitoring effort is unobservable which undermines a monitor’s incentive to work

diligently. The literature has observed that reputation per se can provide the monitor a

strong incentive to work (Chemmanur and Fulghieri (1994a); Carter et al. (1998); Mathis

et al. (2009)). When a monitor shirks and, as a result, fails to detect problems—the ar-

gument goes—these problems eventually become apparent, thereby damaging the monitor’s

reputation and, in some cases, even driving the monitor out of the market (see, e.g., “From

Sunbeam to Enron, Andersen’s Reputation Suffers”, NYT, 2001).

Despite the compelling logic of this mechanism, recent events (notably, the financial

crisis of 2007-2008) have led the public to believe that reputational incentives are insufficient,

generating a demand for regulation and a call to “monitor the monitors.” As a consequence, in

many industries regulators collect information about monitor quality and eventually disclose

it to the public. When the information is negative, a regulator faces a dilemma: should she

disclose the information or conceal it from the public?

Scholars and market pundits often argue that regulators should disclose any information

they learn, including negative information, or else the monitor—anticipating the regulator’s

opacity—would shirk.2 On the other hand, disclosing negative information may damage the

monitor’s reputation potentially weakening his incentive to work. The regulator might thus

prefer to conceal negative information which would damage the monitor’s reputation.

For example, regulators like the SEC, FDIC, or OCC investigate banks and take en-

forcement actions. These actions, which range from cease and desist orders and written

agreements to suspensions and fines, are publicly available. The bank’s consumers and

counterparties may e.g. learn that the bank lacks “lending and collection policies to provide

effective guidance and control,” or that its management does not have “qualifications and

experience commensurate with the Bank’s size and complexity.”3 Clearly, disclosure of such

failings negatively affects the bank’s reputation.

As another example, consider the Public Company Accounting Oversight Board (PCAOB).

The PCAOB is a regulatory body, established by the Sarbannes Oxley act in 2002, to over-

see the audit industry. The PCAOB conducts regular inspections to assess the quality of

1See e.g. Chemmanur and Fulghieri (1994b) for banks and Hansen and Torregrosa (1992) for underwrit-
ers.

2Indeed, many government programs implement this transparency principle. For example, the Los An-
geles county restaurant hygiene program monitors restaurant hygiene randomly and requires the restaurants
to display the outcome of the inspection immediately on their windows. See Jin and Leslie (2003).

3See https://orders.fdic.gov/sfc/servlet.shepherd/document/download/069t0000002Z6IOAA0?

operationContext=S1.
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auditors’ control systems. The outcome of these inspections is not necessarily disclosed to

the market, but remains private for at least a year, but potentially forever.4 If disclosed,

these reports often have significant consequences on an auditor’s demand.

In this paper, we study why a regulator’s commitment to delay or even conceal infor-

mation about monitor quality can be desirable from an incentive purpose. We begin by

studying a reputation game that features three players: a monitor, a (client) firm, and the

client firm’s manager. The monitor is a long-run player with reputation concerns whose

quality is unknown. The manager of the client firm is a short-run player who may engage in

“manipulation” but is subject to the monitor’s oversight. Manipulation is unobservable, but

the monitor can detect it. If the monitor does not detect the manipulation, the manager ob-

tains a private benefit, but the firm may randomly suffer a negative shock (the shock could

represent, for instance, a restatement of financial statements, or the default of a bank’s

creditor). This shock arrives at a random time, and its intensity is proportional to the

magnitude of the manager’s manipulation: larger manipulations, are more likely to cause

negative shocks.

The monitor exerts hidden effort to detect manipulation and prevent the shock. There are

two types of monitor: good and strategic. A good monitor always detects the manipulation.

By contrast, the probability that a strategic monitor detects the manipulation depends on

the effort he exerts. At each time, the firm hires the monitor and pays him a competitive

fee based on the monitor’s perceived ability and incentives to detect the manipulation.

This game features a unique Markov perfect equilibrium in which the monitor’s reputation

and his behavior evolve over time based on the history of shocks. In equilibrium the monitor

shirks when his reputation is below a threshold—because prospects are low—but also shirks

when his reputation is above a threshold—because manipulation is less prevalent. Thus,

extreme reputations, whether high or low, weaken the monitor’s incentive to exert effort. The

equilibrium thus features a “Shirk-Work-Shirk” structure. If the manager’s manipulation

were independent of the monitor’s reputation, the equilibrium would feature the Shirk-Work

structure that is typical in reputation settings with bad news (see e.g. Board and Meyer-ter

Vehn (2013)). However, because manipulation decreases endogenously as monitor reputation

improves, the monitor’s incentive to exert effort also decreases, thus explaining why top

reputation monitors shirk.

As our main contribution, we study whether and how a regulator should disclose infor-

mation about monitor quality to maximize the monitor’s effort incentives, and thus mitigate

4Sarbanes-Oxley Act Section 104 prescribes “no portions of the inspection report that deal with defects
in the quality control systems of the firm under inspection shall be made public if those defects are addressed
by the firm not later than 12 months after the date of the inspection report.”
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the manager’s manipulation.

We show that disclosures can indeed strengthen reputational incentives and motivate the

monitor to work harder. Intuitively, by disclosing information, the regulator can keep the

monitor’s reputation in the intermediate region in which the monitor exerts effort. This,

however, comes at a cost. The strategic monitor anticipates future disclosures, and, knowing

his own type, expects that any future disclosure reduces the reputation on average.5 This

reduces the monitor’s value from building reputation, and he exerts less monitoring effort.

In this sense, the regulator’s ability to affect reputational incentives via disclosure is limited.

Specifically, the regulator commits to a disclosure policy ex-ante, which consists of ver-

ifiable signals about the monitor’s type with a Poisson delay chosen by the regulator. We

allow for both “good news” disclosure, in which the regulator reveals whether the monitor

is good with a delay, and “bad news” disclosure, in which the regulator reveals whether the

monitor is strategic. We find that revealing good news is optimal whenever reputation is

high (at the upper end of the work region), while revealing bad news is optimal whenever

reputation is low (at the lower end of the work region). Intuitively, revealing good news ends

the game in case the monitor is good, but lowers the monitor’s reputation if no news arrives.

This is beneficial at the upper end of the work region, since keeps the monitor’s reputation in

the work region longer. Thus, it leads the monitor to exert more effort. Bad news similarly

either ends the game by revealing that the monitor is bad or increases reputation if no news

arrives. This is beneficial for low reputations, since the absence of news drives reputation

towards the work region faster. In other words, bad news induces the reputation level to

leave the lower shirking region more quickly.

The optimal disclosure policy prescribes no disclosure for top reputations. Effectively,

this no-disclosure-at-the-top is a prize that rewards the monitor with opacity for his past

performance (i.e., a history free of negative shocks). This result illustrates, as a general

principle, that the regulator is more willing to interfere and disclose information for lower

reputations. Part of the incentives that a low reputation monitor derives, come from the

promised opacity (i.e., lack of scrutiny) that he will face when his reputation grows suffi-

ciently.

In sum, by strategically choosing which kind of information to reveal, the regulator can

strengthen reputational incentives provided by the market. Importantly, this sometimes

involves deliberately destroying or lowering the monitor’s reputation.

To be optimal, the arrival of information has to be uncertain. Indeed, no deterministic

disclosure policy, in which the regulator commits to reveal verifiable information at a fixed

5In technical terms, since the strategic monitor knows that he is strategic, any information disclosure
induces his reputation to follow a super-martingale.
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time, can be optimal. The logic is simple. When faced with such a policy, the strategic

monitor anticipates that his type will be revealed and that his reputation will be driven

down to zero. Thus, the strategic monitor’s reputation will be short-lived, which reduces his

willingness to build a reputation in the first place. As a result, the monitor exerts less effort

and the manager manipulates more. From an ex-ante perspective, deterministic disclosures

are dominated by not disclosing any information at all.

Our results have concrete implications for regulatory disclosure. First, commonly used

schemes which feature immediate disclosure or a fixed time delay are suboptimal.6 While

it is difficult for regulators to disclose information with a random time delay once it is

collected, they can choose how to investigate monitors and which evidence to collect. Thus,

our results imply that regulators should aim to uncover evidence that the monitor is “bad”

whenever reputation is low and evidence that the monitor is “good” whenever it is high.

In Section 6, we provide comparative statics about the range of beliefs for which regulators

should collect evidence of the monitor being bad. Perhaps counterintuitively, we show that

regulators should be less aggressive when the manager’s manipulation, which the monitor is

supposed to prevent, has more severe consequences, and that they should be more aggressive

when they have more effective enforcement tools which directly punish the manager. These

results arise because reputational incentives and regulatory intervention are substitutes in

our model.

Literature Our paper contributes to the literature on monitoring and reputational in-

centives for banks (e.g. Diamond (1991), Hansen and Torregrosa (1992), Chemmanur and

Fulghieri (1994a), Carter et al. (1998)), auditors (e.g. Beatty (1989), Firth (1990), Dye

(1991), and Dye (1993)), and other intermediaries (e.g. Biglaiser (1993), Bar-Isaac (2003),

and Mathis et al. (2009)). We expand on this literature by introducing a regulator who has

learned the monitor’s type and chooses whether to disclose it. Generally, while the litera-

ture focuses on the role of reputation, it does not consider how regulatory disclosure affects

reputational incentives. However, how to disclose information is a key concern for regulators

across many contexts (e.g. Jovanovic (1982), Alvarez and Barlevy (2014), Acito et al. (2017),

and Goldstein and Leitner (2018)).

6For example, the Dodd-Frank Act requires banks to publish company-run stress test results within
a certain time window. See https://www.fdic.gov/regulations/reform/dfast/index.html, esp. “all
covered institutions [...] are required to submit the results of their company-run stress tests to the FDIC by
July 31 and publish those results between October 15 and October 31.” The PCAOB withholds inspection
reports of non-compliant firms for one year. Specifically, Section 104(g)(2) of the SOX states that “no
portions of the inspection report that deal with [...] defects in the quality control systems of the firm under
inspection shall be made public if those [...] defects are addressed by the firm, to the satisfaction of the
Board, not later than 12 months after the date of the inspection report.”
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Our model builds on the reputation literature and the literature on exponential bandits

(e.g. Keller et al. (2005)). Our model features perfect bad news as in Board and Meyer-

ter Vehn (2013), which leads to a shirk-work equilibrium in their paper.7 Our equilibrium

differs because we explicitly model the manager’s behavior, which changes the dynamics of

reputation.8 By contrast, in Board and Meyer-ter Vehn (2013), there is only a single decision

maker and an anonymous market. We also consider disclosures about the monitor, which

are absent in Board and Meyer-ter Vehn (2013).

Varas et al. (2020) study the optimal monitoring mechanism when the agent has reputa-

tion concerns and the principal derives utility from learning the agent’s type, but inspections

are costly. Monitoring plays a dual role: learning and incentive provision. In our setting,

disclosure provides incentives to two agents at the same time: the monitor and the moni-

tored. Also, there is no role for information acquisition: the principal learns the monitor’s

type at the outset and can implement disclosure policies that depend on the monitor’s type.

Disclosure in reputation games has been studied by Ekmekci (2011), Horner and Lambert

(2016), and Di Pei (2016). These papers focus on disclosure about actions rather than

disclosure about the type. Thus, our setting better fits a regulator who e.g. during the

course of investigation has learned information about the monitor’s type as opposed to the

monitor’s past behavior.

Finally, our paper is related to the recent literature on disclosure and monitoring in

finance. Frenkel et al. (2020) study voluntary disclosure and its effect on analyst coverage

and Banerjee et al. (2018) consider the effect of transparency on market prices. Gryglewicz

and Mayer (2019) study monitoring in a dynamic contracting environment. Recent papers

using Poisson learning include Martel et al. (2018), Hu and Varas (2019), and Geelen (2019).

2 Model

In this section, we study a continuous-time game between a long-run monitor and a sequence

of firm managers who may opportunistically engage in manipulation. The analysis of the

regulator’s disclosure policy is deferred until Section 5.

7Also, Dilmé and Garrett (2015) features an inspector with switching costs and the reputation is about
the inspector’s state.

8Shirk-work-shirk equilibria have been obtained in other works in reputation, which do not feature perfect
bad news, e.g. Board and Meyer-ter Vehn (2014) and Bonatti and Hörner (2017a). Both use perfect good
news and the role of effort in these papers is different. In Board and Meyer-ter Vehn (2013), effort means
investment in an imperfectly persistent type. In Bonatti and Hörner (2017a), effort increases the arrival rate
of a breakthrough, but not affect an agent’s incentives as it does in our paper. None of these papers feature
disclosure.
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Players and Actions There is a single monitor and a competitive market of identical

firms. In each firm, there is a single manager. At any time t ≥ 0, the monitor is matched

randomly with a firm. The monitor and the firm’s manager simultaneously choose monitoring

effort at ∈ [0, 1] and manipulation mt ∈ [0, 1]. Following Holmström (1999), we assume that

the firm pays a fee pt for the monitor equal to its expected value from hiring the monitor

(see Equation (4)). The monitor is either good (θ = G) or strategic (θ = S). The good

monitor exerts maximal effort at all times, i.e. at = 1 for all t, while the strategic monitor

chooses effort optimally given a flow cost cat.
9 We henceforth refer to the strategic monitor

simply as “monitor.” Whenever no confusion can arise, we do not distinguish between the

firms and managers that the monitor is matched with at each time and instead call them

the “firm” and the “manager.”

Information The monitor’s type and effort and the manager’s manipulation are all private.

A public signal arrives with a Poisson rate λmt(1 − at), which we interpret as a “loss” to

the firm. This can represent e.g. loan defaults or an accounting scandal. Intuitively, a loss

occurs with Poisson rate λmt without the monitor and more manipulation leads to a higher

arrival rate. By exerting effort, the monitor can “detect” manipulation and prevent the loss

from occurring, so that the overall arrival rate is λmt(1−at). Since the good monitor always

chooses at = 1, a loss can only arrive when monitor is strategic.

Let ht be the public history of loss arrivals up to (and including) time t. The monitor’s

strategy {at}t≥0 is predictable with respect to the filtration generated by ht and θ. Let

{mt}t≥0 denote the process induced by each time-t manager’s manipulation. Let {ât}t≥0,
with ât ∈ [0, 1], denote the conjecture about the monitor’s effort by the firm and manager.

Let {m̂t}t≥0, with m̂t ∈ [0, 1] denote the conjectures about the manager’s manipulation by

the firm and monitor. The processes {ât}t≥0, {mt}t≥0, and {m̂t}t≥0 are predictable with

respect to the filtration generated by ht. Intuitively, the monitor conditions his effort on his

type and on the public history ht− up to (but not including) time t, while the manager and

the firm condition only on the public history.

The initial belief that the entrepreneur is good is x0 ∈ (0, 1). Given conjectures {ât}t≥0
and {m̂t}t≥0, we denote the public belief at history ht as xt = Pr(θ = G|ht). We define

xt− = lims↑t xs.
10 This is the monitor’s reputation. Since losses never occur for the good

monitor, the firm must take the reputation into account when forming beliefs about loss

arrival. From the firm’s perspective, the arrival rate is λ(1 − xt−)m̂t(1 − ât). Since the

strategic monitor knows his own type, the arrival rate is λm̂t(1− at) from his perspective.

9Thus, the good monitor is either a behavioral type or his cost of monitoring is zero.
10Thus, we have xt− = Pr(θ = G|ht−).
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Payoffs At each time t, the (strategic) monitor receives fees from the firm he is matched

with and his payoff is given by

V0 = EM

[∫ ∞
0

e−rt(pt − cat)dt
]
, (1)

where EM [·] denotes the expectation given the monitor’s information and his conjecture

about manipulation.

The (flow) payoff of the time-t manager given manipulation mt and conjectured moni-

toring ât is

(1− xt−)(1− ât)mt −
m2
t

2
. (2)

This captures the following (heuristic) intuition. Manipulation yields a private benefit mt

whenever it is not detected by the monitor, but to manipulate, the manager faces a quadratic

effort cost, e.g. because of existing control mechanisms within the firm. Manipulation goes

undetected if he faces the strategic monitor (with probability 1 − xt−) and if the strategic

monitor fails to detect manipulation (with probability 1 − ât). Conversely, if the monitor

detects manipulation, the manager receives no private benefit.11

Similarly, the time-t firm’s flow loss from manipulation when hiring the monitor, given

conjectures ât and m̂t, is

α(1− xt−)(1− ât)m̂t. (3)

Here, α parameterizes the severity of losses for the firm.12 Following Holmström (1999), we

assume that the firm at time t pays a fee

pt = α(1− (1− xt−)(1− ât)m̂t) (4)

to the monitor. Intuitively, if the firm does not hire a monitor, the manager optimally

chooses mt = 1, and the firm’s flow loss is α. Thus, the fee pt equals the benefit of hiring the

monitor relative to not hiring one. Equivalently, the monitor is a monopolist who captures

all rents from his monitoring ability.

We assume that

α > c,

otherwise, we have pt < c for all t and exerting effort is never optimal for the monitor.

11Including explicit penalties for manipulation being detected does not qualitatively change our results.
12We use a slight abuse of notation here. From the firm’s perspective, losses arrive at rate λ(1−xt−)(1−

ât)m̂t, so the expected loss is λα̂(1− xt−)(1− ât)m̂t, where α̂ is the severity. To save notation, we combine
the two parameters, i.e. α = λα̂.
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Admissibility We restrict attention to Markovian strategiesmt = m(xt−) and at = a(xt−),

and Markovian conjectures ât = â(xt−) and m̂t = m̂(xt−). As is standard in models with

Poisson learning, we require that the functions a(x), m(x), â(x), and m̂(x) are piecewise

Lipschitz continuous in x.13 Additionally, we require that m̂(x),m(x) > 0 and â(x) < 1 for

all x ∈ (0, 1). We call such strategies admissible.

Reputation Dynamics Given admissibility, standard results guarantee that the law of

motion for reputation is well-defined. Specifically, Bayes’ rule implies that reputation follows

dxt = λxt−(1− xt−)(1− â(xt−))m̂(xt−)dt− xt−dNt, (5)

where Nt is the Poisson process marking the arrival of a loss. Intuitively, since the good

monitor always exerts effort, observing a loss reveals that the monitor is strategic. Con-

versely, the absence of a loss is “good news” about the monitor’s type and his reputation

drifts upwards.

Let τ be the arrival time of the first loss. For t < τ , reputation satisfies the ordinary

differential equation (ODE)

ẋ = λx(1− x)(1− â(x))m̂(x), (6)

with initial condition x0. We prove existence and uniqueness of a solution to this ODE under

our admissibility assumption in Appendix A.

Continuation Value Given admissible strategies and conjectures, the firm’s fee is Marko-

vian and given by pt = p(xt−), where

p(x) = α(1− (1− x)(1− â(x))m̂(x)), (7)

and the monitor’s continuation value at time t depends only on his current reputation, i.e.

V (xt) = sup
{as}s≥t

EM
t

[∫ ∞
t

e−r(s−t)(p(xs)− cas)ds
]
. (8)

Markov Perfect Equilibrium A Markov Perfect Equilibrium (MPE) is a collection of

admissible strategies (a(x),m(x)) and conjectures (â(x), m̂(x)), and a price p(x) such that

(i) monitoring effort a(x) maximizes the monitor’s continuation value (8) at each x, (ii)

13That is, there exists a finite partition x1, ..., xN of [0, 1], such that m and a are Lipschitz continuous on
any [xn, xn+1] for n = 1, .., N − 1. See e.g. Board and Meyer-ter Vehn (2013).
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manipulation m(x) maximizes the manager’s payoff (2), (iii) the price is given by (7), (iv)

reputation follows (5), and (v) all conjectures are correct, i.e. m(x) = m̂(x) and a(x) = â(x)

for all x. We provide a formal definition in Appendix A. We focus on MPE throughout the

paper.

3 Applications and Assumptions

In this section we discuss applications of our model, and explain our modeling choices.

Bank Regulation When banks screen borrowers or monitor their loans, they are driven by

reputation concerns.14 In our model, reputation is about the quality of the bank’s internal

control mechanisms, which affect its cost of monitoring. Specifically, banks with strong

control mechanisms have a lower cost of monitoring loans, for example because moral hazard

problems of loan officers are reduced. We can interpret the Poisson shock as the arrival of

a loan default. The borrower can choose whether to put in costly effort, which makes loan

default less likely. Thus, the borrower’s value is equivalent to Equation (2). In particular,

we can describe the borrower’s effort as 1−mt, where mt is defined in Equation (9). Thus,

exerting more effort is equivalent to “manipulating less” in our main model. The fee in

Equation (4) is the price at which the bank can sell off its loans, e.g. to be securitized,

which depends on its reputation. It represents the premium the bank can charge for having

a reputation.

Regulators routinely investigate banks and publicize failures of banks’ quality control

systems, which we interpret as the bank’s type. For example, the SEC publishes the out-

comes of its administrative proceedings online15 and frequently finds that banks’ “supervisory

policies and procedures were not reasonably designed and implemented to provide sufficient

oversight,” that banks “did not have adequate processes to verify that the information it

was reporting was accurate,” or that banks “failed to reasonably design and implement [...]

policies.”16 Similarly, the FDIC publishes correction notices17, where it routinely finds short-

comings in banks’ internal controls. Thus, we can interpret such disclosures as being about

the bank’s type. How these disclosures affect the bank’s reputational incentives is our key

object of interest.

14See e.g. Chemmanur and Fulghieri (1994b).
15See https://www.sec.gov/litigation/admin.shtml. Often, these are cease and desist orders which

are accompanied by either no fines or very small ones.
16See https://www.sec.gov/litigation/admin/2019/34-85395.pdf, https://www.sec.gov/

litigation/admin/2018/34-84759.pdf, and https://www.sec.gov/litigation/admin/2018/ia-5061.

pdf, respectively.
17See https://orders.fdic.gov/s/.
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Auditors The audit industry is a good application of our model. First, auditors’ incentives

are strongly driven by reputation concerns18 and auditors’ demands are sensitive to their

reputation.19 Second, the regulator (PCAOB) collects information and discloses auditor

quality to the market to strengthen auditors’ reputational incentives. Third, the regulator

commits to a disclosure policy, as described by the law (See SOX, section 404).

Specifically, we can think of the monitor as the auditor hired by a firm to prevent its

manager’s accounting manipulation. The firm’s manager may engage in manipulation for a

private gain, which he realizes only if the auditor does not prevent it. Whether he is caught

depends on the auditor’s effort and his type —which represents the quality of the auditor’s

control system. Auditors with weak quality controls have a higher cost for exerting auditing

effort. They hence correspond to the strategic type in our model. Finally, we can interpret

the Poisson shock as the discovery of discrepancies by investors or by the firm itself, in which

case the firm is forced to issue a restatement.

Auditors are regulated and the regulator discloses auditor quality, as a means to provide

incentives. Indeed, the Public Company Accounting Oversight Board (PCAOB) oversees

audit companies, by conducting inspections and uncovering audit discrepancies.20 Impor-

tantly, the PCAOB’s inspections are designed to assess the effectiveness of the auditor’s

quality control policies,21 which corresponds to the monitor’s type in our model.22 Releasing

this information to the public, which is one of the PCAOB’s main enforcement tools, may

serve as a deterrent.23 Indeed, when the inspection finds deficiencies, auditors are more

likely to lose clients, have lower growth in audit fees, and lose market share.24 However, the

release of information also affects the auditor’s incentive to build a reputation in the first

place. This channel has, to our knowledge, been absent in the debate about the PCAOB’s

effectiveness.

18For example, the Economist points asserts “KPMG’s troubles tarnish its main asset -its reputation. A
big enough blow could knock it over, disrupting capital markets in turn. According to Audit Analytics, a
research firm, KPMG audited 19% of the S&P 500 in 2017 and a quarter of companies in the FTSE 350. If
clients fled, other firms would have to absorb that work.”

19For example Skinner and Srinivasan 2012 document the Japanese affiliate of PwC lost one quarter of
its clients after it failed to detect a clients’ large accounting fraud.

20 See e.g. PCAOB (2010) for a description of the PCAOB’s activities.
21See PCAOB (2010), p. 6.
22The PCAOB inspections have two parts. Part I evaluates the auditor’s past performance, by examining

a sample of the auditor’s past audit engagements. Part II evaluates the quality of the auditor’s control
system, which conceptually is closer to our notion of auditor’s type. The Part II findings are disclosed online
(see https://pcaobus.org/Inspections/Reports/Pages/FirmsFailedToAddressQCSatisfactorily.aspx), when a
firm fails to address the PCAOB criticism within a year. The actual delay with which these findings are
disclosed varies, since there is a negotiation process after the twelve months deadline.

23See PCAOB (2016) for a breakdown of enforcement actions.
24See Acito et al. (2017), Boone et al. (2014), and Aobdia and Shroff (2017), respectively. See also Firth

(1990) for an early study.

11



Brokers and Financial Advisers Financial advisers have an incentive to recommend

unsuitable products to investors, thus effectively manipulating investors’ perceptions.25 Fi-

nancial advisory (or brokerage) firms, however, are supposed to have supervisory systems

in place to prevent individual advisers from recommending unsuitable investments. In the

context of our model, the brokerage firm is the monitor and an individual adviser is the

manager. By recommending unsuitable products, the adviser increases his payoff, via com-

missions or kickbacks, but is punished by the firm if his behavior is discovered. The arrival

of public news can be interpreted as lawsuits by customers, after their investments realize

losses. The monitor’s type is again the quality of the firm’s internal control systems. A high

reputation is valuable because it allows the firm to attract more customers26 or to charge

higher fees.

FINRA oversees brokerage firms and publishes enforcement notices online, which fre-

quently cite failures of firms’ quality control systems.27 These disclosures, in turn, affect the

broker’s reputation among customers.

Modeling Assumptions To make our model tractable, we use perfect bad news, i.e. a

realization of the Poisson shock reveals the strategic type perfectly. This is a common tool

to ensure tractability in many different settings involving dynamic learning.28 In our model,

perfect bad news requires that the good monitor always detects manipulation. While this

assumption is stylized, it allows us to avoid significant technical difficulties.29

Because the monitor’s type is fixed, his reputation is transitory and, eventually, his type

will be revealed. This outcome is expected in models of imperfect monitoring with fixed

types.30 A model with changing types, as in Board and Meyer-ter Vehn (2013), would

prevent reputations from becoming degenerate in the long run, at the cost of significantly

increased complexity. This generalization would weaken the negative effect of a loss arrival,

but we don’t have a reason to think this would qualitatively change our results.

To abstract from repeated-games like interactions between the monitor and manager, we

assume that the manager is a short-term player, or, equivalently, the monitor is matched

with a sequence of firms. This assumption is reasonable in the context of our applications.

25See e.g. the 2015 White House report: https://obamawhitehouse.archives.gov/sites/default/

files/docs/cea_coi_report_final.pdf.
26Who, in equilibrium, know that they are less likely to be defrauded.
27See http://www.finra.org/industry/enforcement.
28See Keller and Rady (2015), Bonatti and Hörner (2017b), and Halac and Kremer (2018) for experimen-

tation models, Board and Meyer-ter Vehn (2013) and Dilmé (2014) for reputation models, and Marinovic
and Varas (2016) for a model of dynamic disclosure.

29Specifically, our equilibrium can be characterized by a nonlinear ODE, in Equation (13). With imperfect
news, this would become a nonlinear delay-differential equation.

30See Cripps et al. (2004).
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First, a long literature argues that managers behave myopically,31. Second, in our banking

application, banks often sell loans to a third party, so there is little room for long-term

interactions between the borrower and the bank.

4 Analysis

In any MPE, the manager’s optimal manipulation is given by

m(x, â(x)) = (1− x) (1− â(x)) , (9)

which follows from plugging the conjecture â(x) into Equation (2) and maximizing. This

result is intuitive: if the manager expects the monitor to exert more effort, he manipulates

less; if he believes that the monitor is good, he manipulates less as well.

Given the monitor’s optimal strategy, the ODE for reputation (Equation 6) becomes

ẋ = λxm(x, â(x))2. (10)

In equilibrium, the monitor’s value function solves the following HJB equation:

rV (x) = max
a∈[0,1]

p(x)− ca+ ẋV ′ (x) + λm (x, â (x)) (1− a) (V (0)− V (x)) , (11)

subject to the ODE for reputation (10), the price (7), and an appropriate conjecture â(x).

We prove this formally as part of establishing Propositions 1 and 2 below.

The right-hand side of the above equation captures the return to the monitor. The

monitor’s flow benefit consists of the fee p net of monitoring cost ca. He also receives the

capital gains associated with changes in his reputation. The latter come in “two flavors”:

the positive drift in reputation arising when there is no loss, and the decrease in reputation

caused by a loss, which is equal to V (x)− V (0).

The relevant boundary conditions are V (0) = 0 and V (1) = α
r
. That is, when the

strategic monitor is discovered (x = 0), he has no incentive to exert effort and the fee is 0,

leading to a continuation value of zero. When the firm and manager believe that the monitor

is good (x = 1), the manager does not manipulate for fear of being detected, i.e. m(1) = 0,

and the fee becomes p(1) = α. The monitor’s continuation value is then α/r.

Since the HJB Equation (11) is linear in monitoring effort, the monitor exerts effort at

x ∈ (0, 1) whenever

λm(x, â(x))V (x) ≥ c.

31See e.g. Stein (1988).
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Intuitively, higher effort reduces the expected loss of reputation by λm (x)V (x), but it costs

the monitor c. Thus, the monitor’s incentive to work comes from the threat of losing his

reputation. The monitor prefers to shirk whenever his continuation value V (x) is low. In

this case, losing his reputation when the loss arrives is not very costly and hence he faces

little incentive to exert effort. The monitor also prefers to shirk whenever the manager

manipulates little. In this case, a loss is unlikely to arrive even if the monitor shirks, and

the monitor is unlikely to lose his reputation.

The last point implies that monitoring can never be perfect in equilibrium. Intuitively,

if the monitor exerts full effort at any interior reputation level, then the manager does not

manipulate since he expects to be detected (see Equation (9)). But then, if the monitor

deviates to shirking, no loss can arrive, so exerting effort is not optimal. In equilibrium, the

monitor never chooses full effort and there is always a positive likelihood of observing a loss

ex-post. Thus, reputational incentives are never strong enough to prevent manipulation in

our model.

More starkly, whenever the monitoring cost c is sufficiently high, the monitor always

shirks, regardless of his reputation level. In that case, reputational incentives are too weak

at any level of reputation.

Proposition 1. If c
λ
> maxx (1− x)Vs (x), there is a unique equilibrium, in which the

monitor always shirks.32 The monitor value Vs is the unique solution to the HJB equation

rVs (x) = α
(
1− (1− x)2

)
+ V ′s (x)λ (1− x)2 x− λ (1− x)Vs (x) , (12)

with boundary condition

Vs (1) =
α

r
.

The manager’s manipulation is

m(x) = 1− x,

and the fee is

p (x) = α
(
1− (1− x)2

)
.

In the shirking equilibrium, the firm does not expect the (strategic) monitor to exert effort

and thus the equilibrium fees and the monitor’s continuation value are both low. Since the

monitor’s value is low, his incentives to exert effort are low as well and the monitor always

shirks. Despite this apparent circularity, the shirking equilibrium is unique. Intuitively,

since the monitor is forward-looking and the arrival rate of losses is strictly positive, the

monitor’s value function is continuous in reputation. Any equilibrium in which the monitor

32See Proposition 10 for sharp sufficient conditions not involving the function Vs(x).
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works, however, requires that V (x) ≥ c/λ(1 − x), which under the parametric assumption

of Proposition 1 implies a jump in the monitor’s value, which is impossible.

We next characterize the unique equilibrium for moderate effort costs. This equilibrium

has a shirk-work-shirk structure, i.e. the monitor shirks for both high and lower reputations,

and exerts effort at intermediate ones. Thus, in our monitoring game, both high and low

reputations are detrimental to monitor incentives.

Proposition 2. If c
λ
< maxx (1− x)Vs (x) and λ(α−c)

3
2√

α
2

3
√
3
< rc, there is a unique equilib-

rium which takes the form of a shirk-work-shirk equilibrium. There are thresholds 0 < xl <

xh < 1 such that a(x) ∈ (0, 1) for x ∈ (xl, xh) and a(x) = 0 for x ≤ xl and x ≥ xh.

Manipulation m(x) is strictly decreasing in reputation. On (xl, xh), m(x) solves the ODE

rc = λ (α− c)m (x)− αλm (x)3 − λcxm′ (x)m (x) (13)

with boundary conditions m (xh) = 1 − xh and m (xl) = 1 − xl. For x ≤ xl and x ≥ xh we

have m(x) = 1− x.

The monitor value V (x) is strictly increasing and satisfies the shirking ODE (12) on

[xh, 1], with boundary condition V (1) = α
r
, and on [0, xl], with boundary condition V (xl) =

c
λ(1−xl)

. On (xl, xh), the monitor’s value satisfies the indifference condition V (x) = c
λm(x)

.

In equilibrium, a monitor with low reputation shirks because of low fees and poor

prospects, and therefore low continuation values. Intuitively, once the monitor’s reputa-

tion is low, losing it is not particularly costly, and the monitor shirks. When the monitor’s

reputation is high, the manager manipulates little, since he believes that he faces the good

monitor with high probability. Then, the monitor also shirks, because he is unlikely to

lose his reputation due to a loss arrival. For intermediate reputations, incentives are strong

enough to induce the monitor to exert effort. As we outlined above, the monitor never ex-

erts full effort, so that his effort on the work region is interior. Then, monitor is indifferent

between working and shirking, which yields the indifference condition λm(x)V (x) = c. The

monitor anticipates future effort, fees, and manipulation and, given these expectations, forms

a value. On any interval where the monitor works, the anticipated manipulation must be

such that the monitor remains indifferent. This determines the evolution of manipulation in

the work region, via the ODE (13).

Figure 1 illustrates the equilibrium levels of monitor effort and manipulation. Whenever

the monitor shirks, manipulation decreases linearly with reputation, because the manager is

more likely to face the good monitor. However, in the work region, manipulation is lower

because the manager expects the strategic monitor to exert effort.
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Figure 1: Parameters: λ = 1, r = 0.5, α = 1.75, c = 0.75. The blue line represents the manager’s
manipulation strategy. Intuitively, manipulation decreases in monitor reputation, x. The red line
represents the monitor effort strategy. The monitor shirks in both tails of the support of reputations
and exerts effort over an intermediate range.

Overall, our analysis suggests that reputational incentives for monitors are strongest

for intermediate reputations. Both high and low reputations are detrimental to monitor

incentives, which encourages manipulation.33

5 Disclosing Monitor Quality

In the shirk-work-shirk equilibrium, the monitor only exerts effort for moderate reputations.

In this section, we show that this has an important implication: uncertainty about the mon-

itor’s type is valuable, because then reputational incentives are the strongest. A regulator,

who has collected information about the monitor’s type and chooses how to disclose it, may

prefer to induce this uncertainty. Such disclosures frequently occur in reality, in the context

of banking or brokerage regulation, as well as auditing.

Specifically, we consider a regulator who learns the monitor’s type at time 0 and can

commit to verifiable disclosures. For tractability, we restrict attention to two classes of

disclosure policies: (1) deterministic disclosures, i.e. the regulator reveals the monitor’s type

at some fixed time T ≥ 0, and (2) Poisson disclosures, which either take the form of good

news or bad news. Under a good news policy, the regulator discloses that the monitor is

33For completeness, we consider the case when effort cost is sufficiently low, so that the equilibrium is
work-shirk, in Appendix B.3.
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good with Poisson rate γGt, while under a bad news policy, the regulator discloses that the

monitor is strategic with Poisson rate γBt.

The regulator’s goal is to minimize the expected manipulation, for example because it

carries an unmodeled social cost. Her value is given by

W0 = ER

[∫ ∞
0

e−rtα (1−m (xt)) dt

]
. (14)

Here, ER[·] denotes the expectation given the regulator’s information, which includes the

monitor’s type and any public information.34

To focus on the regulator’s disclosure, we do not consider other tools such as fines,

lawsuits, bans, or other enforcement actions. Disclosure remains important, and frequently

used, in practice, even though regulators have access to other enforcement tools.

Remark 3. In our model, the value of disclosure is purely driven by its impact on the mon-

itor’s incentives. If we are in the shirking equilibrium (see Proposition 1), these reputational

incentives are absent and disclosing information cannot be beneficial. In that case, we have

m(x) = 1− x, so that the regulator’s value is linear in reputation, i.e.,

Ws (x0) = ER

[∫ ∞
0

e−rsαxtdt

]
=
αx0
r
.

The regulator is indifferent about disclosing information, since under any disclosure policy,

reputation must follow a martingale (see e.g. Kamenica and Gentzkow (2011)). In partic-

ular, the regulator’s value is the same under any disclosure policy, including a policy of no

disclosure.

5.1 Deterministic Disclosure

Regulators often adopt disclosure policies which are deterministic in time. For example, the

Dodd-Frank Act requires banks to publish company-run stress test results within a certain

time window35 and the PCAOB withholds inspection reports of non-compliant firms for one

year.36 Such policies cannot be optimal in our model, because they diminish the monitor’s

34In particular, the regulator does not observe monitoring effort or manipulation.
35See https://www.fdic.gov/regulations/reform/dfast/index.html, esp. “all covered institutions

[...] are required to submit the results of their company-run stress tests to the FDIC by July 31 and publish
those results between October 15 and October 31.”

36Section 104(g)(2) of the SOX states that “no portions of the inspection report that deal with [...]
defects in the quality control systems of the firm under inspection shall be made public if those [...] defects
are addressed by the firm, to the satisfaction of the Board, not later than 12 months after the date of the
inspection report.” The PCAOB thus withholds this information for one year (see also PCAOB (2006)).
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reputational incentives.

Proposition 4. Consider two policies: (1) disclose the monitor’s type after a fixed time

delay T ≥ 0 and (2) disclose the monitor’s type when the reputation reaches a certain level

x1. Both policies yield a lower value to the regulator than not disclosing any information.

Intuitively, the regulator’s value in a shirking equilibrium is a lower bound for her payoff.

Disclosing the monitor’s type, at any reputation level x1, leads to shirking by the strategic

monitor thereafter, generating an expected value of x1W (1) + (1 − x1)W (0) = x1
α
r
, which

is exactly the regulator’s value in a shirking equilibrium. Such a deterministic disclosure

policy also leads to zero continuation value for the strategic monitor at x = x1. Relative

to no disclosure, revealing the monitor type at x1 thus weakens the monitor’s incentives to

exert effort before x1, which in turn increases the manager’s manipulation. Therefore, it is

never optimal to deterministically disclose the monitor’s type.37

5.2 Random Delay

Since deterministic disclosure policies cannot be optimal in our model, how should regulators

disclose information? We now show that disclosure policies with random delay are valuable.

Specifically, the regulator may choose to reveal information if the monitor is strategic with

a random time delay, but reveal nothing if the regulator is good, and vice versa. We refer

to these policies as bad and good news respectively.

5.2.1 Disclosure of Bad News

Suppose that, at each point in time, the regulator discloses the monitor type with intensity

γt ∈ [0, γ̄] when the monitor is strategic, but never discloses information when the monitor

is good. Formally, the arrival rate of the Poisson process Nt is now given by λmt(1−at) +γt

if the monitor is strategic, and, as before, by zero if the monitor is good. The regulator

chooses the process {γt}t≥0 ex-ante, before she learns the monitor’s type. Here, we focus on

Markovian disclosure policies, i.e. γt = γ(xt−) under the same admissibility requirements as

in Section 2.38 We consider more general policies in Section 5.3.

To understand the value of bad news disclosure, we first consider how it affects the

manager’s beliefs and the monitor’s incentives. We rewrite the evolution of beliefs for t < τ

After that, the reports of non-compliant firms are released publicly on the PCAOB website, at https:

//pcaobus.org/Inspections/Reports/Pages/FirmsFailedToAddressQCSatisfactorily.aspx.
37An analog argument holds for the case with fixed time delay. The proof of Proposition 4 is exactly the

argument we have just outlined. We hence skip the formal proof for the sake of brevity.
38Note that, whenever γ̄ is sufficiently small, the equilibrium remains a shirk-work-shirk equilibrium for

any disclosure policy. This, in particular, guarantees existence of an equilibrium for any disclosure policy.
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as

ẋ = λxm̂ (x)2 + γ(x)x (1− x) . (15)

Equation (15) follows from Bayes’ rule and shows that when the rate of bad news is

positive, the reputation drift is steeper: in the absence of arrivals the monitor reputation

increases faster (relative to the case without bad news, γ = 0) because no news becomes a

more favorable signal of monitor quality.

However, this is not true from the strategic monitor’s perspective. The strategic monitor

knows his own type and therefore anticipates that the information the regulator reveals will,

on average, lower his reputation. Formally, if the regulator reveals bad news at rate γ(x),

she expects the impact on the reputation to be zero, i.e.

γ(xt−)xt−(1−xt−)dt−xt−ER(dNt) = γ(xt−)xt−(1−xt−)dt−γ(xt−)xt−(1−xt−)dt = 0, (16)

where ER[·] denotes the expectation with respect to the regulator’s ex-ante information. The

strategic monitor instead expects the impact to be negative, i.e.

γ(xt−)xt−(1− xt−)dt− xt−EM(dNt) = γ(xt−)xt−(1− xt−)dt− γ(xt−)xt−dt < 0, (17)

where EM [·] denotes the expectation from the strategic monitor’s perspective.

Thus, disclosing bad news diminishes the reputational incentives of the strategic monitor,

because it makes his reputation accumulate more slowly. As a result, the monitor exerts less

effort and the manager manipulates more. We study this effect formally in the proposition

below.

Proposition 5. Disclosure of bad news reduces the strategic monitor’s incentive to exert

effort for reputation sufficiently close to xh and on [xh, 1].

Even though disclosure may reduce the monitor’s incentives, it can be valuable for the

regulator. Suppose the regulator provides delayed bad news when the reputation is just below

the work region, i.e. when x is just below xl. In that case, the monitor shirks anyway,39 so

there are no adverse incentive effects. If the bad news does not realize, the reputation will

increase faster (see Equation (15)), so the monitor will reach the work region sooner. This

is valuable for the regulator, because manipulation is lower in the work region.

As the proposition below shows, disclosing bad news remains valuable even inside the

work region, where it has a direct impact on the monitor’s effort.

39Recall from Proposition 2 that without disclosure the monitor shirks for all x < xl.
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Proposition 6. For γ̄ sufficiently small, disclosure of bad news is valuable to the regulator

when x ≤ xd, where xl ≤ xd < xh. It is not valuable for x close to (or above) xh.

Intuitively, the regulator uses disclosure to gamble on reaching the work region faster (if

Nt does not realize) or destroying the strategic monitor’s reputation (if Nt realizes). This

gamble is valuable, precisely because reaching the work region is valuable.

We can see the impact on the regulator’s value given her HJB equation:

rW (x) = α (1−m (x)) +
(
λxm(x)2 + γx(1− x)

)
W ′ (x) (18)

−λm2 (x)W (x)− γ (1− x)W (x)

for some given γ. Now, the effect of bad news on the regulator’s value is captured by

γx (1− x)W ′ (x)− γ (1− x)W (x) . (19)

The first term captures the positive effect of bad news on the reputation drift; the second

term is the loss caused by the expected realization of bad news. Below xl, W
′(x) is relatively

high because the regulator anticipates reaching the work region. Hence, for low reputations,

disclosure of bad news has a favorable effect: the benefit of increasing the reputation drift

outweighs the risk of a negative disclosure.

Consistent with this intuition, disclosing bad news is not valuable for sufficiently high

reputations. Increasing the drift of reputation only makes the monitor leave the work region

more quickly, so the value of having higher reputation is relatively low for the regulator.

Then, the increase in reputation is not enough to compensate for the potential loss when

bad news is revealed or for the effects on the monitor’s incentives.40

Finally, for reputations above xh the monitor shirks, but disclosing bad news cannot be

valuable. It does not induce the monitor to work on that region, but instead lowers his value

from reaching a high reputation. This leads him to exert less effort at lower reputation levels.

5.2.2 Disclosure of Good News

We now show that delayed good news are valuable when the reputation is sufficiently large.

Suppose that the regulator can disclose good news at rate γt ∈ [0, γ̄]. That is, when the

monitor is good, his type is revealed at rate γt, but the regulator discloses nothing if the

monitor is strategic. Formally, we introduce a second publicly observable Poisson process

NG
t , which has arrival rate {γt}t≥0 if the monitor is good and zero arrival rate if he is

40Formally, W ′(x) in Equation 19 is relatively small, so the expression is negative for x close to xh.
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strategic. As in the previous section, we only consider admissible Markovian disclosure

policies γt = γ(xt−).41

When only good news are expected to arrive, then the absence of arrivals reduces the

monitor’s reputation. The change in reputation for t < τ is now given by

ẋ = λxm̂ (x)2 − γ(x)x (1− x) . (20)

Disclosure of good news hence reduces the drift from the regulator’s perspective.

Just as in the bad news case, disclosing good news does not change the average reputation

growth from the regulator’s perspective, i.e.

−γ(xt−)xt−(1− xt−)dt+ (1− xt−)ER(dNt) = 0,

since ER(dNt) = γ(xt−)xt−. For the strategic monitor however, the good news never realize.

For him, disclosure reduces reputation growth on average and the impact on the drift is

given by

−γ(xt−)xt−(1− xt−)dt.

This reduces the monitor’s value from building reputation and leads him to exert less effort.

We show this result formally in the proposition below.

Proposition 7. Disclosure of good news increases manipulation and decreases the value of

the strategic monitor on the work region [xl, xh].

Thus, good news decreases the speed at which the monitor reputation improves in the

absence of arrivals. This deteriorates the monitor’s incentives and, consequently, exacerbates

the manager’s manipulation. Yet, such a policy may still benefit the regulator. If the

reputation is close to the upper bound of the work region, the monitor stays in the work

region longer, because the drift of reputation is lower. Effectively, the regulator can use good

news to delay reaching a high reputation at which the monitor shirks.

Proposition 8. For γ sufficiently small and x < xh sufficiently close to xh, the regulator

benefits from disclosing good news. Disclosing good news is not valuable for x ≥ xh.

Formally, when the good news disclosure rate is γ the regulator’s value follows the HJB

41Note that with good news, our definition with admissibility may not be sufficient to ensure that the
ODE for reputation, in Equation (20), has a unique solution for all x and all policies, because the ODE may
become degenerate. However, for γ̄ sufficiently small, this is not an issue, since the optimal policy involves
no disclosure for x > xh. Then, Equation (20) admits a unique solution on the relevant path of play.
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equation:

rW (x) = α (1−m (x)) +
(
λxm (x)2 − γx (1− x)

)
W ′ (x) (21)

−λm2 (x)W (x) + γx (W (1)−W (x))

with boundary condition W (1) = α
r
. The value of disclosing good news is given by

−γx (1− x)W ′ (x) + γx
(α
r
−W (x)

)
.

The first term is the negative effect of disclosure on reputation: the presence of disclosure

reduces the drift, absent arrivals. The second term captures the effect of an arrival, which

naturally benefits the regulator because it eliminates manager’s manipulation going forward.

The good news policy is valuable when the slope of the regulator value W ′(x) is small,

given that the effect of disclosure on the drift is negative. On the upper part of the work

region (toward xh) the slope of the regulator value W ′(x) is relatively low because a higher

reputation means exiting the work region. This is why good news is valuable toward xh: if

no good news arrive, then the monitor reputation deteriorates, thereby delaying the process

by which the reputation exits the work region. By contrast, if good news arrive, then the

regulator obtains a large gain.

Good and Bad News Combined To summarize our results: i) disclosing bad news is

valuable for low reputations, ii) Good news is valuable toward xh and iii) No disclosure is

valuable for top reputations, in the upper shirking region.

The intuition is as follows. The value of disclosure is to bring reputations into the region

where reputational incentives “do their job”: for low values, this means disclosing bad news.

This does not hurt the good type monitor, and allows the regulator to induce more effort

from the strategic type if there is no disclosure realization. For relatively high values, this

means disclosing good news, which lowers the reputation for the strategic type because for

him the good news never materializes. This result is beneficial for the regulator, since it

keeps the reputation inside the work region for a longer time. Of course, this is anticipated

and may destroy some incentives for monitors with lower reputations. However, close to

xh, disclosing good news is beneficial overall. Finally, the optimal policy requires that the

regulator stays silent for top reputations, above xh. This feature is key for incentives: the

regulator commits to opacity once the monitor has achieved a relatively high reputation, as a

reward for good past performance. Disclosure above xh does not have the ability to improve

incentives locally, but it weakens the incentives at lower reputation levels.

Because the ODE for the dynamics of manipulation is nonlinear (Equation (13)), we
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cannot qualitatively characterize the regulator’s optimal disclosure on the interior of the work

region. The full problem of the regulator is therefore not analytically tractable. However,

we can solve the regulator’s problem numerically, which we do in the following section.

5.3 Full Problem

We now consider the full problem of the regulator, who maximizes her value by choosing a

disclosure policy {γBt, γGt}t≥0, which is predictable with respect to the filtration generated

by the public history ht, but which is not necessarily Markovian in reputation.42 We maintain

the assumptions of Section 5. That is, the regulator has commitment, she chooses the policy

ex-ante, disclosure is verifiable, and the rates of good news and bad news disclosure are

bounded, i.e., γBt, γGt ≤ γ̄ for some γ̄ sufficiently small. We show numerically that the

results match the ones we described qualitatively in Section 5.2. Specifically, on the lower

shirking region, disclosure of bad news is optimal, but disclosure of good news is not. By

contrast, disclosure of good news is optimal on the working region, while disclosure of bad

news is not optimal whenever the monitor’s value is sufficiently high.

When choosing the rates γBt and γGt, the regulator must take the effect on the monitor’s

value into account, which affects the monitor’s incentive to exert effort. As we have seen,

the monitor and the regulator evaluate disclosure policies using different information sets,

because the monitor’s type is private information. Denote with NB
t the Poisson process for

bad news, which includes a loss arriving and the regulator disclosing that the monitor is

strategic, and with NG
t the process for good news. We have

ER
(
dNB

t

)
= λ (1− xt−) m̂t (1− ât) + γB (1− xt−)

ER
(
dNG

t

)
= γGtxt−

and

EM
(
dNB

t

)
= λm̂t (1− at) + γBt

EM
(
dNG

t

)
= 0.

That is, the regulator believes that bad news arrives with rate λm̂t (1− ât) + γBt if the

monitor is strategic, which is true with probability 1 − xt−. The monitor, by contrast,

knows that he is strategic, and that the arrival rate is λm̂t (1− at) + γBt. Similarly, the

regulator believes that bad news arrives at rate γGt if the monitor is good, which is true with

42Similarly to the baseline model, we restrict attention to policies such that the laws for reputation and
the monitor’s continuation value, Equations (22) and (23) admit unique solutions.
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probability xt−, but the strategic monitor knows that good news will never arrive.

From the regulator and the firm’s perspective, the belief xt follows the law of motion

dxt =
(
λxt−m̂

2
t + xt− (1− xt−) (γBt − γGt)

)
dt− xt− (1− xt−) dNt + (1− xt−)xt−dN

G
t (22)

with initial condition x0.

We now derive the regulator’s optimal control problem, which uses the belief xt and the

monitor’s continuation value Vt as state variables. We first reformulate the monitor’s value

function using a martingale representation result. The proof is in Appendix C.3.

Lemma 1. For any admissible disclosure policy (γBt, γGt)t≥0 , the monitor’s continuation

value follows

dVt =
(
(r + γBt + λmt (1− at))Vt − α

(
1−m2

t

)
+ cat

)
dt− VtdNB

t

in equilibrium, with initial value V0.

On path, i.e. for 0 ≤ t < τ , this law of motion reduces to the ODE

dVt =
(
(r + γBt + λmt (1− at))Vt − α

(
1−m2

t

)
+ cat

)
dt. (23)

Using the martingale representation, we next reformulate the necessary conditions for a

Markov Perfect Equilibrium, which are analogous to the ones in Section 4, and which we

write as

mt = (1− xt) (1− at)

for the manager and

at = 0 if λmtV < c

at ∈ [0, 1] if λmtV = c

at = 1 if λmtV > c

for the monitor. These conditions are analogous to the ones in the main model. Combining

the conditions of the monitor and regulator implies that at any time 0 ≤ t < τ , there exists

a unique pair (at,mt), which satisfies

mt = 1− xt and at = 0
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if λ (1− xt)Vt ≤ c and

mt =
c

λVt
and at > 0

if λ (1− xt)Vt > c. Importantly, effort at and manipulation mt are Markovian in the pair

(xt, Vt). That is, mt = m (xt, Vt) and at = a (xt, Vt) , where

m (xt, Vt) =

{
1− xt if λ (1− xt)Vt ≤ c

c
λVt

if λ (1− xt)Vt > c
(24)

and

a (xt, Vt) =

{
0 if λ (1− xt)Vt ≤ c

1− c
λVt(1−xt) if λ (1− xt)Vt > c.

(25)

Intuitively, we can take xt and Vt as state variables in the regulator’s problem and treat

m(x, V ) and a(x, V ) as given functions affecting the laws of motion in Equations (22) and

(23).43

We can now state the regulator’s problem, conditional on an initial belief x0 and an initial

value for the monitor V0. In this problem, the regulator chooses arrival rates γBt and γGt,

and additionally recommends an effort choice at and a manipulation choice mt, subject to

the incentive compatibility conditions we just outlined:

W0 = max
{at,mt,γBt,γGt}0≤t<τ

ER

[∫ τ

0

e−rtα (1−mt) dt

]
s.t. (22) , (23) , (24) , (25)

This problem admits the following HJB equation, which is now a nonlinear PDE in two

43Indeed, see Equation (26) below. Note that the baseline model, in an MPE the strategies are functions
of x only, while here, we have defined them as functions of x and V . This is not an inconsistency. For γ̄
sufficiently small, the drifts of xt and Vt in Equations (22) and (23) are strictly positive on path for any given
policy (γBt, γGt)0≤t<τ . Thus, there exists a one-to-one correspondence between Vt and xt and, therefore,
there exists functions m̃(x) and ã(x) so that m̃(xt) = m(xt, Vt) and ã(xt) = a(xt, Vt) for all t < τ .
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dimensions,44

W (x, V ) = max
γB ,γG

α (1−m (x, V )) (26)

+
(
(r + γB + λm (x, V ))V − α

(
1−m (x, V )2

))
WV (x, V )

+
(
λxm (x, V )2 + x (1− x) (γB − γG)

)
Wx (x, V )

−
(
λm (x, V )2 + γB (1− x)

)
W (x, V )

+γGx
(α
r
−W (x, V )

)
.

To derive the correct boundary conditions for Equation (26), first notice that not all pairs

(x, V ) are implementable by a disclosure policy. For example, when xt = 0, we know that

Vt = 0 for any disclosure policy. Hence, any pair (0, V ) with V > 0 cannot be implementable.

To characterize the regulator’s HJB equation, we must first identify the set of implementable

pairs (x, V ).

To this end, consider V̄ (x), the highest possible monitor value which is implementable

given initial belief x. This value is derived as follows

V̄ (x0) = max
{at,γBt,γGt}0≤t<τ

EM

[∫ τ

0

e−rt
(
α
(
1−m2

t

)
− cat

)
dt

]
s.t. (22) , (24) , (25) .

In this problem, we choose the disclosure policy {γBt, γGt}0≤t<τ to maximize the monitor’s

value starting from x0. This problem admits the HJB equation

rV̄ (x) = max
a,γB ,γG

α
(

1−m
(
x, V̄ (x)

)2)− ca (27)

+
(
λxm

(
x, V̄ (x)

)2
+ x (1− x) (γB − γG)

)
V̄ ′ (x)

−
(
λm

(
x, V̄ (x)

)
(1− a) + γB

)
V̄ (x)

with boundary condition V̄ (1) = α/r, where m
(
x, V̄ (x)

)
is given by Equation (24).45 We

denote the resulting optimal policy with {γ̄Bt, γ̄Gt}0≤t<τ . This policy is Markovian in x, i.e.

44Here, we have simplified the martingale representation in Equation (23), since the incentive compatibility
conditions imply that

(λmtVt − c) at = 0.

We discuss existence and uniqueness of solutions to this equation below, once we have formulated the
boundary conditions.

45Existence and uniqueness to this equation can be derived using similar arguments as for the main model
(see Appendix B). That the solution to the Hamilton-Jacobi equation and the original problem coincide
follows from standard verification arguments (see e.g. Davis (1993)).
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there exist functions γ̄B (x) and γ̄G (x), such that γ̄Bt = γ̄B (xt−) and γ̄Gt = γ̄G (xt−).

Similarly, consider the min-max value V (x) , which is the lowest implementable monitor

value given initial belief x, i.e.,

V (x0) = min
{γBt,γGt}0≤t<τ

max
{at}0≤t<τ

EM

[∫ τ

0

e−rt
(
α
(
1−m2

t

)
− cat

)
dt

]
s.t. (22) , (24) , (25) .

This problem admits the HJB-Isaacs equation46

rV (x) = min
γB ,γG

max
a
α
(
1−m (x, V (x))2

)
− ca (28)

+
(
λxm (x, V (x))2 + x (1− x) (γB − γG)

)
V ′ (x)

− (λm (x, V (x)) (1− a) + γB)V (x) ,

with boundary condition V (1) = α/ (r + γ̄) .47 We denote the resulting optimal policy with

{γ
Bt
, γ

Gt
}0≤t<τ or equivalently with (γ

B
(x) , γ

G
(x)), since the optimal policy is again Marko-

vian in x.

Thus, the set of implementable pairs (x, V ) is given by{
(x, V ) ∈ [0, 1]×

[
0,
α

r

]
|∀x : V ∈

[
V (x) , V̄ (x)

]}
.

We can now formulate the regulator’s boundary conditions. At a pair
(
x, V̄ (x)

)
, the

regulator has a unique feasible continuation policy, which is consistent with the policy

(γ̄B(x), γ̄G(x)) defined above. We denote the regulator’s value under this policy as W̄ (x).

This value satisfies the HJB equation

rW̄ (x) = α (1− m̄ (x)) +
(
λxm̄ (x)2 + x (1− x) (γ̄B (x)− γ̄G (x))

)
W̄ ′ (x) (29)

−
(
λm̄ (x)2 − γ̄B (x) (1− x)

)
W̄ (x) + γ̄G (x)x

(α
r
− W̄ (x)

)
with boundary condition W̄ (1) = α/r, where we have used the abbreviation m̄ (x) =

m
(
x, V̄ (x)

)
. Similarly, at a pair (x, V (x)), the regulator’s continuation policy must be con-

sistent with (γ
B

(x) , γ
G

(x)). We denote the regulator’s value under that policy as W (x),

46The same comments regarding existence, uniqueness, and verification as for V̄ (x) apply.
47Here is why the boundary conditions for V̄ and V differ. In calculating V̄ , we choose the disclosure

policy optimal for the monitor and hence disclosing that he is the strategic type for x close to 1 cannot be
optimal, since the monitor shirks for such beliefs anyway. By contrast, in calculating V , we minimize the
monitor’s value. Disclosing bad news when beliefs are close to 1 achieves this purpose.
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which satisfies the HJB Equation

rW (x) = α (1−m (x)) +
(
λxm (x)2 + x (1− x)

(
γ
B

(x)− γ
G

(x)
))

W ′ (x) (30)

−
(
λm (x)2 − γ

B
(x) (1− x)

)
W (x) + γ

G
(x)x

(α
r
−W (x)

)
with boundary condition W (1) = α/r and using m(x) = m (x, V (x)) .

Since the regulator’s continuation policy is uniquely pinned down at any pair (x, V (x))

and
(
x, V̄ (x)

)
, the graphs of the functions V (x) and V̄ (x) are absorbing boundaries in

(x, V )-space. We can thus assign Dirichlet boundary conditions W (x) and W̄ (x), respec-

tively.

We now turn to boundary conditions at x = 0 and x = 1. At x = 0, we have W (0, V ) = 0

for any feasible V , since the monitor continues to shirk forever independently of any disclosure

policy by the regulator.48 Finally, at x = 1, the set of implementable V is [α/ (r + γ̄) , α/r].

For any V in the set, there exists a γB(1) ∈ [0, γ̄] which implements that V . The monitor

value at any such γB(1) is constant and given by W (1, V ) = α/r. This follows from two

facts. First, the agent never manipulates at x = 1 (i.e. m (1, V ) = 0 for any implementable

V ), so a different value γB(1) does not change manipulation at x = 1. Second, the likelihood

of bad news arriving is zero from the monitor’s perspective (since x = 1).

We summarize our results in the following Lemma, the proof of which we just gave.

Lemma 2. The regulator’s HJB equation (26) is defined on the domain{
(x, V ) ∈ [0, 1]×

[
0,
α

r

]
|∀x : V ∈

[
V (x) , V̄ (x)

]}
and admits the following boundary conditions:

W (0, V ) = 0 for V ∈
[
V (0) , V̄ (0)

]
,

W (1, V ) = α
r

for V ∈
[
V (1) , V̄ (1)

]
,

W (x, V (x)) = W (x) for x ∈ (0, 1) ,

W
(
x, V̄ (x)

)
= W̄ (x) for x ∈ (0, 1) .

Figure 2 illustrates the set of implementable (x, V )-pairs and the boundary values for

the regulator’s problem, for given parameter values. The boundaries of the implementable

set are highly nonlinear, become very steep at x = 0, and at x = 0, the implementable set

reduces to a singleton. These features pose significant problems for any numerical procedure.

Nonetheless, we are able to compute a solution to the PDE (26) using a finite difference

48In our numerical analysis, it turns out that V (0) = V̄ (0) = 0, so the only feasible V is zero.
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Figure 2: On the left is the set of implementable (x, V ) pairs for parameters α = 3.5, λ = 2.1, r = 1.4,
c = 1.2, and γ̄ = 0.1. The solid line is V̄ (x) and the dashed line is V (x). On the right are the
corresponding boundary values W̄ (x) (solid) and W (x) (dashed).

scheme. We provide a complete description of the scheme, and the adjustments we made to

overcome the apparent numerical difficulties, in Appendix E. The regulator’s optimal policies

are shown in Figure 3 and the regulator’s optimal value is shown in Figure 4.

(a) γB (b) γG

Figure 3: The regulator’s optimal disclosure policy on the work region and lower shirking region, under
the same parameters as in Figure 2. The yellow regions indicate when γB = γ̄ (left) and γG = γ̄ (right).
The blue regions indicate when γB = 0 and γG = 0.

The results match our qualitative characterization in Section 5.2. For low beliefs, when

the monitor shirks, revealing bad news is optimal for the regulator. For high beliefs, when

the monitor works, revealing bad news is optimal only when the monitor’s continuation

value is relatively low. For high continuation values, not disclosing bad news is optimal. By

contrast, revealing good news is not optimal for low beliefs, but optimal for high beliefs.

To close, we consider the case when the regulator can pick V0 optimally, i.e. there is
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Figure 4: The regulator’s optimal value function under the same parameters as in Figure 2.

no constraint on the initial value of the monitor, except being implementable. Then, for

any given V0, there exists a unique trajectory (γBt, γGt, xt, Vt)0≤t<τ . We can thus construct

a mapping from (on-path) beliefs x to optimal values γB(x) and γG(x), which facilitates

comparison to our qualitative results in Section 5.2.1.

The results, which are in Figure 5, closely match our qualitative results. At the optimal

V0, the regulator discloses bad news for beliefs below the work region, but discloses no

news once the work region is reached. By contrast, Figure 6 shows the optimal disclosure

policies at each belief for an arbitrarily chosen V0. The results are again consistent with

our qualitative characterization. The regulator discloses bad news for beliefs below the work

region and also on the lower of the work region. She discloses good news on the upper part

of the work region.
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(a) γB
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(b) γG

Figure 5: The regulator’s optimal disclosure policy as a function of x, choosing V0 optimally at initial
belief x0 = 0.05 and under the same parameters as in Figure 2. The yellow regions indicate when γB = γ̄
(left) and γG = γ̄ (right).
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(a) γB (b) γG

Figure 6: The regulator’s optimal disclosure policy as a function of x, choosing V0 = (V̄ (x0)+V (x0))/2
at initial belief x0 = 0.05 and under the same parameters as in Figure 2. The yellow regions indicate
when γB = γ̄ (left) and γG = γ̄ (right).

6 Regulatory Implications

We have shown that a regulator optimally induces uncertainty about the monitor’s type, even

when this entails the risk of destroying the monitor’s reputation altogether. One important

question is how aggressive regulators should be in disclosing information. Specifically, when

should the regulator disclose bad news and potentially destroy the monitor’s reputation?

We investigate this next, by providing comparative statics on the threshold xd, below

which the regulator uses delayed bad news. We compute these results numerically, by solving

the regulator’s problem for given parameter values and then comparing the thresholds.

Enforcement Tools Suppose the regulator has access to better enforcement tools, which

make it more costly for the manager to manipulate. Then, counterintuitively, the regulator

becomes more aggressive. The threshold xd is higher.

We model better enforcement as increasing the agent’s cost of manipulation, which now

becomes cm
1
2
m2.49 On the surface, one would think that stronger enforcement would crowd-

out disclosure, given the potentially adverse incentive effect of disclosure. However, the

49Previously, the cost was 1
2m

2. For example, the regulator may be able to impose fines or other penalties
on the manager, which increase cm. From the monitor’s perspective, changing cm is equivalent to changing
λ since only the manipulation in response to monitor reputation matters for the monitor’s incentives. For
the monitor, an increase in cm is then equivalent to a decrease in λ.
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opposite holds. Stronger enforcement leads to less manipulation by the manager, so that

the monitor has stronger incentives to shirk. Hence, the work region shrinks and the lower

shirking region expands. As a result, the regulator discloses bad news for higher reputation

levels.

Severity of Losses Consider the effect of the loss α on the regulator’s aggressiveness.

When α is higher, a manipulation shock causes larger losses to the firm. Reputation becomes

more valuable, because the monitor’s fee p(xt) increases. This triggers more monitoring effort

and the work region expands. This, in turn, crowds-out regulatory disclosure: the bad news

region shrinks.

Empirically, this suggests that when firms are willing to pay more to the monitor, either

because manipulation shocks are more costly to the firm, or because the monitor enjoys

stronger monopoly power, the regulator should interfere less.

Monitoring Costs When the cost of monitoring c increases, shirking becomes more at-

tractive to the monitor. Accordingly, the working region shrinks and the bad news region

expands. The regulator thus discloses more bad news.

Overall, our results suggest that regulatory disclosure and reputational incentives are

substitutes. Whenever reputational incentives are stronger, the regulator should disclose

less bad news.

7 Conclusion

In long-run relationships the desire to build a reputation can act as an incentive device

when explicit penalties or contracting arrangements are not available. This is especially

relevant for intermediaries such as banks, underwriters, rating agencies, or auditors. These

intermediaries fulfill the role of monitors in the economy. Banks screen loans before they sell

them off in a structured product, underwriters and venture capital firms monitor the quality

of startups before their initial public offering, rating agencies monitor firms for behavior that

may make default more likely, and auditors detect accounting fraud that may otherwise go

unnoticed. If monitors neglect their duty, enforcement is often impractical. In the recent

financial crisis, for example, mortgage underwriters have failed to properly screen applicants.

Yet, it took many years before the problem became apparent, and few individual underwriters

have been punished. In these situations, reputation may be the main incentive device.

In this paper, we characterize reputational incentives for monitors. In our model, the

agent who is monitored is a rational player. He optimally chooses how much to misbehave in
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response to the monitor’s reputation and the anticipated monitoring effort. This leads to a

shirk-work-shirk equilibrium. When reputation is low, there is little value for the monitor to

exert effort, so the monitor shirks. Likewise, when reputation is very high, the monitor shirks

because the agent does not misbehave when he is faced with a high reputation monitor; in this

situation, if the monitor shirks, the public is not likely to detect it. Instead, the monitor only

exerts effort when reputation is in an intermediate interval. This finding has an important

implication—uncertainty about the monitor is valuable.

In response to the financial crisis, regulators have started to rethink the transparency

of financial intermediaries. The Sarbanes-Oxley Act (SOX) has brought with it a slew of

disclosure requirements, a new regulatory authority has been formed to oversee auditors

(the PCAOB), and many governments have designed stress tests for banks. If intermediaries

anticipate that information about them will be revealed, how does this influence their desire

to build a reputation in the first place? And how can regulators harness mandatory disclosure

requirements to improve the functioning of markets for loans, equity, or auditing services?

We show that seemingly reasonable disclosures can have a detrimental effect. If the

regulator provides verifiable disclosure about the monitor, any deterministic disclosure policy

(i.e., a policy that reveals information with certainty at any given time) will at least partially

destroy the incentive to acquire a reputation and lead the monitor to exert less effort. To

improve the functioning of the underlying markets, regulators should therefore not aim to

provide transparency about the monitor. Instead, they should aim to induce uncertainty

about the monitor’s type, since reputational incentives are strongest when reputation is in

an intermediate region. This provides a rationale for disclosure policies that use delay.
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A Preliminaries

We first provide a formal definition of Markov Perfect Equilibria.

Definition 9. A Markov Perfect Equilibrium (MPE) consists of admissible50 strategies m(x) ∈
[0, 1] and a(x) ∈ [0, 1], admissible conjectures â(x) ∈ [0, 1], and m̂(x) ∈ [0, 1], a price p(x), and a
reputation process {xt}t≥0, such that

(1) a(xt−) is optimal for the monitor, i.e. it maximizes for all 0 ≤ t <∞

V (xt−) = EM
[∫ ∞

t
e−r(s−t)p(xs)− ca(xs)ds

]
,

(2) m(xt−) is optimal for the manager all 0 ≤ t <∞, i.e.

m(xt−) = arg max
m

(1− xt−)(1− â(xt−))m− 1

2
m2,

(3) the conjectures â(x) and m̂(x) are correct, i.e., â(xt−) = a(xt−) and m̂(xt−) = m(xt−) for
all 0 ≤ t <∞,

(4) the reputation process follows Bayes’ rule, i.e xt is given by Equation (10) for all 0 ≤ t < τ
and we have xt = 0 for all t ≥ τ , where τ is the first arrival time of the loss, and

(5) the price p(xt−) satisfies Equation (7) given xt−, m̂(xt−), and â(xt−) for all 0 ≤ t <∞.

Second, we provide a brief proof showing that the ODE for reputation in Equation (10) has
a unique solution for any initial value x0 ∈ (0, 1). Here, recall that in defining admissibility
we have fixed a partition {x1, ..., xN}, such that strategies are Lipschitz continuous in x for any
x ∈ (xn, xn+1) for n = 1, ..., N − 1.

Lemma 3. For any admissible m̂(x) and â(x) and for any initial value x0 ∈ (0, 1), the ODE (10)
has a unique solution.

Proof. First, pick some x0 ∈ (xn, xn+1) for any n ∈ {1, ..., N − 2}. Since the RHS of Equation
(10) is Lipschitz continuous on (xn, xn+1), there exists a unique solution at least up until the time
T = inf{t : xt = xn+1}. This follows from the Picard-Lindelöf theorem. Now, let xT− = limt↑T xt
be the left limit of that solution at time T . We construct a solution x̂t to Equation (10) on
the interval [xn+1, xn+2) as follows. We pick x̂0 = xT− as its initial value. Then, we define
m̂−(xn+1) limx↑xn+1

m̂(x) and m̂+(xn+1) = limx↓xn+1
m̂(x) and we define â+(xn+1) and â−(xn+1)

analogously. Since m̂−(xn+1) > 0 and m̂+(xn+1) > 0, and â−(xn+1) < 1 and â+(xn+1) < 1, we can
without loss of generality pick

dxn+1

dt
= λm̂+(xn+1)(1− xn+1)(1− â+(xn+1)),

which, again by the Picard-Lindelöf theorem, yields a unique solution on the interval [xn+1, xn+2).
Pasting the solution x̂t to the solution xt starting at time T , i.e. xt = x̂t−T for t ≥ T yields
a unique function of time which satisfies the ODE (10) on the interval [x0, xn+2). We can then
proceed iteratively to cover the entire interval (x0, 1). It only remains to prove that there exists a
unique solution when x0 = xn for some n ∈ {1, ...N}. The proof argument is the same as the one
we showed above, when x0 = xT−.

50See Section 2 for our definition of admissibility.
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Finally, we note that the admissibility requirements do not put a binding constraint on the
equilibrium. Specifically, instead of restricting attention to admissible strategies, we could merely
require that the strategies are such that the ODE (10) has a unique solution, without putting
any explicit restrictions. Then, we would have to verify that the equilibrium strategies, i.e. in
Propositions 1 and 2, are such that Equation (10) admits a unique solution.51 As can be seen from
Propositions 1 and 2, this is indeed the case.

B Proofs

B.1 Shirking Equilibrium (Proposition 1)

We first show that the shirking ODE (12) with the boundary condition Vs (1) = α
r has a unique

continuously differentiable solution. This is technically involved, because the equation is singular
at both x = 0 and x = 1. We express the solution as an initial value problem (IVP) at some value
x0 ∈ (0, 1). Then, we characterize the solutions as x approaches one and show that there can be at
most one solution that satisfies the boundary condition. To prove existence, we use a rescaling of
Vs (x) together with the Arzelà-Ascoli Theorem (see e.g. Royden (1988), Ch. 7.10, p. 167ff) and
an argument similar to the shooting method (see e.g. Bailey et al. (1968)).52 That the solution to
the ODE equals the strategic type’s value then follows from a standard verification argument (see
Davis (1993), Ch. 4).

To prove that this is indeed an equilibrium, we then use the firm’s optimality condition for
each x and show that no deviation at that x is optimal. Since the equilibrium is assumed to be
Markovian, this is sufficient. We then establish uniqueness by showing that in any other potential
equilibrium must have a discontinuous value function, which is impossible.

We start with recording some useful properties of solutions to the shirking ODE (12). The
solutions can be indexed by an initial condition v0 at a (common) initial point x0 ∈ (0, 1). To
highlight this dependence, we denote them with Vs (x, v0) . We continue writing the shirking value
as Vs (x).

Lemma 4. Solutions to the initial value problem (IVP) in Equation (12) with initial condition
Vs (x0, v0) = v0 for some fixed x0 ∈ (0, 1) have the following properties:

1. For any interval [x, x̄] with 0 < x < x0 < x̄ < 1 and any v0, the solution to the IVP exists
and is unique.

2. Vs (0, v0) = 0 for all v0.

3. For any x ∈ (0, 1) , Vs (x, v0) is continuous and strictly increasing in v0. In particular, two
solutions Vs (x, v′0) and Vs (x, v0) cannot cross on (0, 1) .

4. Larger solutions, i.e. v′0 > v0, have larger slope: if v′0 > v0, then for all x ∈ (0, 1), V ′s (x, v′0) >
V ′s (x, v0) .

5. There exists at most one solution with Vs (1, v0) = α
r .

51This guess-and-verify technique is common in the stochastic control literature.
52We defer the detailed proof to Section D, since it is purely technical.
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Proof. 1. Existence and uniqueness for solutions to the IVP follows from the Picard-Lindelöf
Theorem, which requires that the right hand side of

V ′s (x, v0) =
(r + λ (1− x))Vs (x, v0)− α

(
1− (1− x)2

)
λx (1− x)2

(31)

is Lipschitz in both Vs and x. This is true as long as the interval [x, x̄] is bounded away from
0 or 1, which we have assumed.

2. To show that for every v0, we have Vs (0, v0) = 0, we use the method of integrating factors
(see Polyanin and Zaitsev (2002), p.4) to write

Vs (x, v0) = exp

(∫ x

x0

r + λ (1− s)
λs (1− s)2

ds

)
(32)

·

v0 − ∫ x

x0

α
(

1− (1− s)2
)

λs (1− s)2
exp

(
−
∫ s

x0

r + λ (1− u)

λu (1− u)2
du

)
ds

 .

This equation can be written more explicitly as

Vs (x, v0) =

(
x

1− x

) r+λ

λ

exp

(
r

λ

1

1− x

)
·

((
1− x0
x0

) r+λ

λ

exp

(
− r
λ

1

1− x0

)
v0

−α
λ

∫ x

x0

s−( rλ+2) (1− s)
r

λ
−1
(

1− (1− s)2
)

exp

(
− r
λ

1

1− s

))
ds.

We now show that this expression converges to zero as x → 0. We can bound the value of
the integral from above as follows:∫ x

x0

s−( rλ+2) (1− s)
r

λ
−1
(

1− (1− s)2
)

exp

(
− r
λ

1

1− s

)
ds

≤ M

∫ x

x0

s−( rλ+2)
(

1− (1− s)2
)
ds

for some M > 0, because all terms inside the integral except for s−( rλ+2) are bounded as x
converges to zero. Computing this new integral, and multiplying it by x

r+λ

λ , we can show
that Vs (x, v0) converges to zero if and only if

x
r+λ

λ

(
1

−
(
r
λ + 1

)x− r

λ +
λ

r
x−

r−λ
λ

)

converges to zero as x→ 0. Inspecting the exponents, we can confirm this is the case.
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3. This follows directly from Equation (32). Using that equation we can write

Vs
(
x, v′0

)
− Vs (x, v0) =

(
x

1− x

) r+λ

λ

exp

(
r

λ

1

1− x

)
·
(

1− x0
x0

) r+λ

λ

exp

(
− r
λ

1

1− x0

)
·
[
v′0 − v0

]
> 0

4. This follows from differentiating Equation (32) in x, which yields

V ′s
(
x, v′0

)
− V ′s (x, v0) =

d

dx

(
x

1− x

) r+λ

λ

exp

(
r

λ

1

1− x

)
·
[
v′0 − v0

]
.

The derivative on the RHS is strictly positive for x ∈ (0, 1) .

5. Suppose there exist two solutions Vs (x, v0) and Vs (x, v′0) with Vs (1, v0) = Vs (1, v′0) = α
r .

Without loss of generality, assume v′0 > v0. By Point 3, for any ε > 0, we have Vs (1− ε, v′0) >
Vs (1− ε, v0), so there must exist a δ < ε such that V ′s (1− δ, v′0) < V ′s (1− δ, v0) , otherwise,
the solutions cannot both hit α

r at x = 1. But by Point 4, such δ cannot exist.

The last point of the Lemma shows that there is at most one solution to the IVP that satisfies
Vs (x) = α

r . In Section D, we use the Properties established in the Lemma to prove existence.
To show that shirking is indeed an equilibrium, note that shirking is optimal at x whenever

λ (1− x)Vs (x) ≤ c.

This is satisfied because of our assumption on c in the statement of Proposition 1.
We now show that the shirking equilibrium is unique. To do this, we show that any equilibrium

with working must feature a discontinuity in the firm’s value function, which is not consistent with
the firm being forward-looking.

Lemma 5. In any equilibrium, the monitor must shirk whenever x ≥ αλ−rc
αλ .

Proof. Let V (x) denote the value in an arbitrary equilibrium. Shirking is optimal whenever

λ (1− x)V (x) ≤ c.

In any equilibrium, the value of the monitor is bounded, i.e. V (x) ≤ α
r . Combining these two

inequalities and rearranging yields the result.

If αλ ≤ rc, the Lemma implies that shirking is the unique equilibrium. We thus focus on the
case αλ > rc. In any equilibrium that features working, there must be an interval [xh, 1] when the
firm shirks. On that interval, the value of the firm is simply given by Vs (x). Importantly, this
value is independent of anything that happens for x′ < x. This is because we are in a ”perfect bad
news” case. In any equilibrium, the value of the firm is continuous at any x > 0, because the future
evolution of reputations and prices is anticipated.
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Now, assume that [xh, 1] is the largest interval where the firm shirks. If xh = 0 we are done.
Thus, assume by way of contradiction that xh > 0. For any sufficiently small ε > 0, there exists an
xε ∈ (xh − ε, xh) such that working is optimal at xε. If this were not the case, then [xh, 1] would
not be the largest interval where the firm shirks. Since working is optimal at xε, it must be the
case that

V (xε) ≥
c

λ (1− xε)
.

By the assumption in Proposition 1, we have

c

λ(1− x)
− Vs(x) ≥ K ∀x ∈ [0, 1]

for some fixed K > 0. Therefore,
V (xε) ≥ Vs(xε) +K.

At xh, V (x) must satisfy the value matching condition

V (xh) = Vs (xh) .

However, letting ε→ 0 implies that xε → xh, which in turn implies that V is discontinuous at xh,
which is impossible. Since this argument applies for any xh > 0, it must be the case that xh = 0.
That is, the firm shirks for all x.

Finally, we provide sharp condition in terms of the model parameters for when shirking is the
unique equilibrium. To facilitate the analysis, we introduce two new functions, g and l. g (x) is
defined as g (x) = (1− x)Vs (x) . Vs (x) crosses c

λ(1−x) whenever g (x) crosses c
λ and it is easier to

study the crossing points of g (x) . It satisfies the ODE(
r + λ (1− x)2

)
g (x) = α

(
(1− x)− (1− x)3

)
+ λx (1− x)2 g′ (x) (33)

with boundary conditions g (0) = g (1) = 0. It is continuously differentiable, because Vs (x) is
continuously differentiable.

The slope of g (x) is determined by the function l (x, v) for x ∈ [0, 1] and v ≥ 0, which is given
by

l (x, v) = α
(

(1− x)− (1− x)3
)
−
(
r + λ (1− x)2

)
v. (34)

Specifically, we can write g (x) as

0 = l (x, g (x)) + λx (1− x)2 g′ (x) ,

so g′ (x) is positive whenever l (x, g (x)) is negative. The function l (x, v) satisfies the following
properties for all v > 0 and x ∈ [0, 1]: l (0, v) < l (1, v) < 0, lxx (x, v) < 0, lx (0, v) > 0 and
lx (1, v) < 0.53 Thus, for any fixed v, l (x, v) is either always negative or hits zero exactly twice. It
is also strictly decreasing in v for all x and has a unique interior maximum for all v.

Proposition 10. Shirking is the unique equilibrium if and only if maxx l
(
x, cλ

)
≤ 0. The value c̄

53Here, lx (x, v) is the partial derivative with respect to x, etc.
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above which shirking is the unique equilibrium satisfies

max
x

l
(
x,
c̄

λ

)
= 0.

Equivalently, the equilibrium features working if and only if maxx l
(
x, cλ

)
> 0.

Proof. Suppose that maxx l
(
x, cλ

)
> 0. We show that in this case, g (x) defined in Equation (33)

must cross c
λ , which implies that the shirking equilibrium cannot exist. To show this, we denote

with ḡ the maximum of g on [0, 1], which is attained at x̄, and we assume that ḡ < c
λ . The function

g is continuously differentiable, so we have g′ (x̄) = 0,54 and therefore l (x̄, ḡ) = 0. Since l (x, ḡ) has
a unique interior maximum, we have

l (x, ḡ) ≤ l (x̄, ḡ) = 0

for all x. Because l (x, v) is decreasing in v, we also have

l
(
x,
c

λ

)
< l (x, ḡ)

for all x. Let x̄l be the maximizer of l
(
x, cλ

)
. We then have

max
x

l
(
x,
c

λ

)
= l
(
x̄l,

c

λ

)
< l (x̄l, ḡ) ≤ l (x̄, ḡ) = 0,

which is a contradiction. This establishes that whenever l
(
x, cλ

)
exceeds zero, g (x) crosses c

λ so
shirking cannot be an equilibrium.

We now show that whenever maxx l
(
x, cλ

)
≤ 0, the shirking equilibrium exists. Our previous

arguments will then imply uniqueness and we do not repeat them here. If maxx l
(
x, cλ

)
< 0, then

g (x) = c
λ implies that g′ (x) > 0. Thus, once g (x) crosses c

λ from below, it must always stay above
it. But this is incompatible with the boundary condition g (1) = 0. Thus, we must have g (x) < c

λ
for all x. Shirking is then an equilibrium.

Finally, we study the remaining case maxx l
(
x, cλ

)
= 0. Suppose in that case g (x) exceeds c

λ .
If this is true, then g (x) crosses c

λ at at least two values x1 < x2. At both values we must have
g′ (x1) = g′ (x2) = 0. But since at most a single value of x attains l

(
x, cλ

)
= 0, this is impossible.

Thus, in that case, g (x) is at most tangent to c
λ at one point, but never crosses it. This means

shirking is still an equilibrium.

We have now concluded our characterization. Using the functions g and l, we record some
additional properties of Vs (x) and g (x) below. These will be useful when analyzing the shirk-
work-shirk and work-shirk cases.

Lemma 6. Either Vs (x) ≤ c
λ(1−x) for all x, or Vs (x) crosses c

λ(1−x) exactly twice.

Proof. To prove the result, suppose by way of contradiction that g (x) crosses c
λ more than twice.

Since g (0) = g (1) = 0 < c
λ , g must cross c

λ an even number of times. Thus, there must exist three
values x1 < x2 < x3 at which g (x) equals c

λ for which g′ (x1) ≤ 0, g′ (x2) ≥ 0,and g′ (x3) ≤ 0. This

54g (x) is positive and cannot be identically zero on (0, 1). Since g (0) = g (1) = 0 this implies that g (x)
indeed has an interior maximum.
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implies that l
(
x1,

c
λ

)
≥ 0, l

(
x2,

c
λ

)
≤ 0, and l

(
x3,

c
λ

)
≥ 0. But this is impossible because l

(
x, cλ

)
is

strictly concave in x. If l
(
x2,

c
λ

)
is non-positive, then l

(
x3,

c
λ

)
must be strictly negative. Thus we

have our contradiction, which establishes the result.

The result in the Lemma above extends to all solutions of the shirking ODE (12), for which
g (1) < c

λ , not just the one that satisfies Vs (1) = α
r . Intuitively, l is independent of the particular

solution we have used, all solutions satisfy g (0) = 0 (because Vs (0) = 0) and we only need g (1) < c
λ

to ensure that g crosses c
λ an even number of times.

As we have seen in Equation (32), all solutions to the shirking ODE (12) can be indexed by an
initial value v0 at some common initial point x0 ∈ (0, 1). We write them as Vs (x, v0) again and we
denote with vs0 the initial value that yields the shirking value. That is, Vs (x, vs0) = Vs (x) is the
solution that satisfies Vs (1) = α

r .

Lemma 7. All solutions Vs (x, v0) to Equation (12) satisfy the following properties:

1. The functions g never cross: Let g (x, v0) = (1− x)Vs (x, v0) . For v′0 > v0, we have g (x, v′0) >
g (x, v0) for all x ∈ (0, 1) . Moreover, g′ (x, v′0) > g′ (x, v0) .

2. Any solution that satisfies g (1, vs) = 0 has a single interior maximum. It is weakly increasing
to the left and decreasing at the right of the maximum.

3. Any solution that is larger than the shirking value, i.e. v0 > vs0, crosses c
λ(1−x) exactly once

below xh. The crossing point is left of xl.

4. Any solution that is smaller than the shirking value, i.e. v0 < vs0, crosses c
λ(1−x) at most

twice.

Proof. 1. We can rewrite Equation (12) as(
r + λ (1− x)2

)
Vs (x) = α

(
1− (1− x)2

)
+λx (1− x)

(
(1− x)V ′s (x)− Vs (x)

)
.

We have g′ (x) = (1− x)V ′s (x)−Vs (x) . Thus, Vs (x, v′0) > Vs (x, v0) if and only if g′ (x, v′0) >
g′ (x, v0) . But since g (0, v0) = g (0, v′0) , this means that g (x, v′0) > g (x, v0) for all x ∈ (0, 1).

2. Suppose that there is a local maximum g̃ at point x̃ and a global one at ḡ. Then, l (x̃, g̃) = 0.
Since g̃ < ḡ, g (x) must cross g̃ for at least two values x1 < x2 right of x̃. Without loss of
generality, we can choose them so that g′ (x1) ≥ 0 and g′ (x2) ≤ 0. But this implies that
l (x1, g̃) ≤ 0 and l (x2, g̃) ≥ 0. Inspecting the shape of l (x, v) , we see this is impossible. Even
if x̃ is the first point where l (x, g̃) intersects zero, l (x1g̃) ≤ 0 must imply l (x2, g̃) < 0.

3. From Lemma 4, Point 3, we know that g (x, v0) > g (x) . Therefore, it must cross c
λ . Also,

any points where g (x, v0) crosses c
λ must lie left of xl. For x < xl, we have g′ (x) > 0, which

follows from the previous point. But if g (x, v0) crosses c
λ multiple times on that region

there must exist a value of x where g′
(
x, cλ

)
< 0. However, Lemma 4, Point 4 implies that

g′ (x, v0) > g′ (x), so this is impossible.

4. Any solution with v0 < vs0 must have g
(
x, v0

)
≤ g (x) for x ∈ [0, 1] . Thus, g (1, v0) ≤ 0. We

can now use exactly the argument we used to prove Lemma 6.
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The following result, which characterizes the derivative of Vs (x) when the work region is
nonempty, will be useful in further developments. We record it here to avoid repeating similar
arguments later.

Corollary 11. Whenever Vs (x) crosses c
λ(1−x) , at two points x1 < x2, we must have

V ′s (x2) <
d

dx2

c

λ (1− x2)
.

Proof. From Proposition 10 we know that Vs (x) crosses c
λ(1−x) whenever maxx l

(
x, cλ

)
> 0. Its

derivative is strictly below the derivative of c
λ(1−x) whenever g′ (x) is negative. Since g (x) is

continuously differentiable, we have g′ (x2) ≤ 0, so we only have to show that the inequality is
strict. Suppose that g′ (x2) = 0.

To show the result, we study g′′ (x) , which we can express as

λx (1− x)2 g′′ (x) = 2λ (1− x) g (x) + 3α (1− x)3 − α− g′ (x) (r + 2λx (1− x))

by differentiating Equation (33). We know that g (x) attains its maximum ḡ at some x̄ between x1
and x2. At that value, we must have

g′′ (x̄) ≤ 0.

This implies that
2λ (1− x̄) ḡ + 3α (1− x̄)3 − α ≤ 0,

because g′ (x̄) = 0. Now, the expression above is strictly decreasing in x and strictly increasing
in g. Therefore, it must be negative at x2 > x̄ and g (x2) = c

λ < ḡ. Thus, if g′ (x2) = 0, then
g′′ (x2) < 0. But this is impossible. If these two conditions hold then x2 is a local maximum,
whereas we constructed x2 so that g crosses c

λ from above.

The proof above does not rely on any particular boundary conditions for g. We can thus extend
it to any arbitrary solution to the shirking ODE (12). That is, when a solution crosses c

λ(1−x) , its

slope at the larger crossing point xh must be strictly below the slope of c
λ(1−x) . This observation

will be useful in the shirk-work-shirk case.

B.2 Shirk-Work-Shirk Equilibrium (Proposition 2)

We construct the equilibrium using a method similar to backward induction. For sufficiently high
reputation, the firm will shirk because there is no manipulation and hence no news.55 We construct
this upper shirking interval by finding the point where Vs (x) hits the function c

λ(1−x) . This point
exists because of the parametric assumptions in Proposition 2. We call it xh. The shirking value on
[xh, 1] does not depend on the equilibrium played at x < xh, so we can compute it independently.

When the strategic type’s effort is interior, he must be indifferent between working and shirking.
We combine this indifference condition with the ODE that describes the value function for arbitrary
effort (Equation (11)) and use them to derive an ODE for the effort itself. In equilibrium, effort
and manipulation are equivalent56 and we express the ODE in terms of manipulation since it is
easier to study. This is Equation (13).

55See Lemma 5.
56This is because we have m (x) = (1− x) (1− a (x)) in any equilibrium.
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We then solve the initial value problem (IVP) for this ODE with the initial condition m (xh) =
1− xh.57 This condition is equivalent to a (xh) = 0, which is consistent with the firm shirking for
x ≥ xh. The solution to the IVP must cross the function 1 − x exactly once below xh, which we
show. We label this crossing point xl. The interval [xl, xh] is then our working interval.

Finally, we construct the lower shirking interval [0, xl]. To do this, we solve the shirking ODE
(12) on [0, xl] with the value matching condition Vs (xl) = c

λ(1−xl) . At xl, the firm must be indifferent
between working and shirking, which motivates this condition. Then, it only remains to verify that
shirking is indeed optimal on [0, xl]. That is, Vs (x) cannot cross c

λ(1−x) on the interior of that
interval.

The resulting function V (x) is continuous at all x ∈ [0, 1] and continuously differentiable at all
x, except possibly xl and xh. Thus, it solves the monitor’s HJB Equation (11) almost everywhere.
A standard verification argument (Davis (1993), Ch. 4) then implies that V (x) is indeed the
monitor’s value.

We start with a the point xh ∈ (0, 1) at which the shirking value satisfies

Vs (xh) =
c

λ (1− xn)
.

As we have just argued, such xh exists. We conjecture that on an interval left of xh, the firm exerts
effort a (x) ∈ (0, 1).58 The strategic type’s value (11) is linear in effort. Whenever a (x) ∈ (0, 1), he
must therefore be indifferent between working and shirking. Equivalently, if m (x) is the equilibrium
manipulation, we must have

λm (x)V (x) = c. (35)

Differentiating this expression yields

m′ (x)V (x) + V ′ (x)m (x) = 0.

In equilibrium, m (x) must be such that the strategic type’s value solves Equation (11) and the
indifference condition, since he anticipates future effort and manipulation. Plugging in the two
conditions above in the Equation (11), we can derive an expression for the equilibrium level of
manipulation that satisfies this. After some algebra, we then arrive at Equation (13).

We pin down the working interval by showing that there exists a unique point xl ∈ (0, xh) for
which m (xl) = 1−xl. To do this, we first characterize the solution to the ODE (13) with boundary
condition m (xh) = 1− xh in the Lemmma below.

Lemma 8. m (x) has the following properties:

1. m′ (x) < 0 and m (x) > 0 for x ∈ [0, xh] .

2. limx→0m (x) =∞.
57To be precise, we are solving Equation (13) backwards in x. In this sense we can still understand

m (xh) = 1− xh as an initial condition. Equivalently, we can think of it as a boundary condition which has
to be satisfied by the right solution to the ODE, with the initial condition being taken at some x0 ∈ (0, xh) .

58Recall that there can never be an equilibrium where the firm exerts an effort of one. This is because
exerting effort is only optimal when

λ (1− x) (1− â (x))V (x) ≥ c.

But if equilibrium effort is one, i.e. â (x) = 1, this condition cannot hold.
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3. m′ (xh) > −1.

4. m (x) crosses 1− x once for x < xh.

Proof. 1. To prove the first point, note that whenever m′ (x) ≥ 0, Equation (13) implies that

rc < λ (α− c)m (x)− αλm (x)3 .

Suppose that m (x) ≥ 0. The right hand side of this inequality is strictly concave and it

reaches its unique maximum at the point m∗ =
√

α−c
3α . Its maximum value is

λ

(
(α− c)

√
α− c

3α
− α

(
α− c

3α

) 3

2

)
=
λ (α− c)

3

2

√
α

2

3
√

3
.

By our assumption in Proposition 2, this value is below rc. Therefore, m′ (x) cannot be
positive whenever m (x) is positive. Since we have started with the condition m (xh) =
1 − xh ∈ (0, 1), this implies that at xh, m (x) is decreasing. But then m (x) must remain
positive for all x ≤ xh and therefore its derivative must remain negative.

2. To show that m (x) must go to infinity as x approaches zero, we rewrite Equation (13) as

∫ m(x)

m(xh)

λcm

λα (m−m3)− λcm− rc
dm = log (x)− log (xh) .

We obtain this expression by exploiting the fact that Equation (13) is a separable first-order
ODE.59 As x→ 0 the RHS diverges to minus infinity. The derivative of the LHS is

λcm

λα (m−m3)− λcm− rc
,

which is negative for all m ≥ 0. Thus, we must have m (x)→∞. Otherwise, the RHS cannot
match the LHS.

3. We compare the ODE characterizing V with the one characterizing Vs. The first equation is

(r + λm (x))V (x) = α
(

1−m (x)2
)

+ λxm (x)2 V ′ (x)

while the second is the shirking ODE (12). At xh, we have m (xh) = 1 − xh. Thus, the
coefficients of both equations are the same at xh. Since we also have V (xh) = Vs (xh), it
must be that V ′ (xh) = V ′s (xh) . From Corollary 11, we know that V ′s (xh) < c

λ(1−xh)2
. On the

work region, we have V ′ (x) = −m′ (x) c
λm(x)2

. Combining these expressions and plugging in

m (xh) = 1− xh then yields m′ (xh) > 1.

59See e.g. Polyanin and Zaitsev (2002), p. 3.
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4. The proof proceeds similarly to the proof of Lemma 6. Whenever m (x) = 1 − x, Equation
(13), which is the ODE characterizing m (x) , becomes

0 = λ (α− c) (1− x)− λα (1− x)3 − λcx (1− x)m′ (x)− rc.

We can rewrite it as
0 = λl

(
x,
c

λ

)
− λcx (1− x)

(
m′ (x) + 1

)
,

where l (x, v) is the function we have defined previously in Equation (34). Note that m′ (x) >
−1 if and only if l

(
x, cλ

)
> 0. Likewise, m′ (x) < −1 if and only if l

(
x, cλ

)
< 0. Since we

are in the case with a nonempty working region, we have maxx l
(
x, cλ

)
> 0, according to

Proposition 10. Recall that l
(
x, cλ

)
is hump-shaped. That is, it is negative for x small,

positive for intermediate x, and negative again for large x.Also, by Point 3 we know that
m′ (xh) > −1 and that l

(
xh,

c
λ

)
> 0. Since m (x) diverges to infinity as x becomes small, we

already know that it must cross 1−x at least once below xh. It must also cross 1−x an odd
number of times left of xh.

60 We thus only have to prove that it does not cross more than
once. By way of contradiction, suppose there are three points x1 < x2 < x3 < xh at which
m (x) crosses 1 − x. We must have m′ (x1) ≤ −1, m′ (x2) ≥ −1, and m′ (x3) ≤ −1 and thus
l
(
x1,

c
λ

)
≤ 0, l

(
x2,

c
λ

)
≥ 0 and l

(
x3,

c
λ

)
≤ 0. Since l is hump-shaped and strictly concave,

the last condition is incompatible with l
(
xh,

c
λ

)
> 0. Once l becomes negative after being

positive, it must stay negative. This is our contradiction.

The first point of the Lemma guarantees that the IVP for m (x) with initial condition m (xh) =
1− xh has a unique solution on any interval [ε, xh] for some small ε > 0. This is because m (x) ≥
1− xh > 0, so we can apply the Picard-Lindelöf Theorem to Equation (13). The last point of the
Lemma characterizes the working region.

We now conclude the proof by showing that shirking is indeed optimal on [0, xl] . For any point
(v, x) such that x ∈ (0, xh) and v = c

λ(1−x) , there exists a solution to the shirking ODE (12) that

hits that point. This is because any solution to Equation (12) is strictly increasing and continuous

in its initial condition.61 Take a solution which hits
(
xl,

c
λ(1−xl)

)
, which we denote with Ṽs (x) .62

For the shirking equilibrium to exist on [0, xl] , we need that Ṽs (x) stays below c
λ(1−x) on that

interval. Otherwise, the firm would strictly prefer to exert effort. At xl, we have m (xl) = 1 − xl
and V (xl) = Ṽs (xl) . Comparing the ODEs for V and the ODEs for Ṽs, just as we did in the proof
of Lemma 8 above, we see that V ′ (xl) = Ṽ ′s (xl). That is, V and Ṽs satisfy smooth pasting. Since
at xl, we have m′ (xl) ≤ −1, we know that Ṽ ′s (xl) ≥ c

λ(1−xl)2
.

Recall that solutions to the shirking ODE are ordered, so that one solution is always larger
than the other on (0, 1) .63 If Ṽs (x) < Vs (x) , then Corollary 11 applies. Ṽs (x) crosses c

λ(1−x) at
two points x̃l and x̃h, first from below and then from above. Thus either xl = x̃l or xl = x̃h. At x̃h,

60If m (x) would cross 1−x an even number of times for x < xh, then after it crosses the last time (at the
lowest x), it must stay below 1 − x. This can be seen graphically. But this is impossible, because we have
shown that m (x) goes to infinity as x goes to zero.

61This can be seen by inspecting Equation (32) in the proof of Lemma 4.
62We label this equation differently from Vs to avoid confusion. Both equations satisfy the Equation (12),

but they are different solutions. In particular, Ṽs cannot satisfy the boundary condition Ṽs (1) = α
r unless it

is identical to Vs.
63We have shown this in Lemma 4, Point 3.
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we have Ṽ ′s (x̃h) < c
λ(1−x̃h)2

, which is incompatible with the smooth pasting condition. Therefore,

xl = x̃l, i.e. xl is the first time Ṽs (x) crosses c
λ(1−x) and it cannot cross left of xl. Shirking on the

region [0, xl] is thus optimal. If Ṽs (x) > Vs (x) ,by Lemma 7, Point 2, it crosses c
λ(1−x) at exactly

one point left of xh. By construction, that point is xl. Therefore, Ṽs (x) for x < xl.
We have established that a shirk-work-shirk equilibrium exists. We now show that it is unique.

First, any equilibrium with working must have an upper shirking region. This region must equal
[xh, 1] . We have shown this when we proved uniqueness for the shirking equilibrium in Proposition
1 and the same argument applies here. Thus, if there exists a working region, there must be one
that has xh as its upper bound. On any nonempty working region, m (x) must satisfy Equation
(13), otherwise, it is not consistent with the indifference condition of the strategic type (35) or
the value function. Lemma 8 guarantees that Equation (13) has a unique solution that satisfies
m (xh) = 1−xh. Thus, in any equilibrium with a working region bordering xh, that working region
must be [xl, xh] . We now show that there cannot be any other working region left of xl. Let x̂h < xl
be the right boundary of such a region. We must have m (x̂h) = 1− x̂h and V (x̂h) = c

λ(1−x̂h) . For

x ∈ (x̂h, xl), we must have V (x) = Ṽs (x) . Here, Ṽs (x) is the solution to the shirking ODE with
boundary condition Ṽs (xl) = c

λ(1−xl) which we have defined above.64 But since Ṽs (x) < c
λ(1−x)

for x < xl, we must have a discontinuity at x̂h. This is a contradiction, since the value V in any
equilibrium must be continuous for x > 0. Therefore, there can be no equilibrium with a working
region left of xl. This proves that our equilibrium is unique.

B.3 Work-Shirk Equilibrium

We now consider the case when the effort cost is sufficiently low, so that the equilibrium is work-
shirk.

Proposition 12. If c
λ < maxx (1− x)Vs (x) and λ(α−c)

3
2√

α
2

3
√
3
≥ rc, there is a unique equilibrium,

which is a work-shirk equilibrium. That is, there is a xh such that a(x) ∈ (0, 1) for x < xh and
a(x) = 0 for x ≥ xh and at x = 0. On the work region (0, xh), the manager’s manipulation satisfies
ODE (13) with boundary condition m (xh) = 1− xh.

This proposition shows that for a low cost of effort, the monitor works even if his reputation
is close to zero, but as long as it is positive. Monitor value and monitor effort are discontinuous
in reputation, being zero at x = 0 but strictly positive for positive reputations. Intuitively, when
the cost c is sufficiently low, the monitor has a high continuation value even when the reputation
is very low, and therefore slow to increase. This high continuation value is sufficient to motivate
strictly positive effort.

The proof proceeds similarly to the proof of Proposition 2. We define xh as the right-most point
where Vs (x) hits c

λ(1−x) , which given our assumptions is guaranteed to exist. Then, we solve for

the ODE for m (x). Unlike in Proposition 2, the solution does not necessarily hit 1 − x. Instead,
it can converge to a finite value between zero and one as x approaches zero. This will constitute a
work-shirk equilibrium. The strategic type’s value is discontinuous at x = 0. 65

64Again, it is important to note here that any solution to the shirking ODE is ”forward-looking”. It only
depends on higher values of x and is independent of the equilibrium played for lower values.

65That is, V (0) = 0 but V (x) ≥ ε > 0 for all x > 0 and some ε > 0. Previously, we have argued that in
any equilibrium, V (x) needs to be continuous for x > 0. We have not argued that it needs to be continuous
at x = 0. A possible discontinuity at zero is not surprising. The state x = 0 is absorbing, while for any x > 0
all other states x′ > x can be reached with positive probability.
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We start with recording some properties of m (x) . This Lemma is analogous to Lemma 8.66

Lemma 9. m (x) has the following properties.

1. There exist two values 0 < m ≤ m̄ < 1 such that m′ (x) > 0 if m (x) ∈ (m, m̄), m′ (x) < 0 if
m (x) > m̄ or m (x) < m, and m′ (x) = 0 if x ∈ {m, m̄}.

2. m (x) never crosses m or m̄.

3. m (x) > 0.

4. If 1− xh < m̄, then limx→0m (x) = m.

Proof. 1. We can write Equation (13) as

0 = λ (α− c)m (x)− λαm (x)3 − rc− λcxm′ (x)m (x) . (36)

We are interested in the properties of the function

h (m) = λ (α− c)m− λαm3 − rc.

This function determines whether m′ (x) is positive or negative, because

0 = h (m (x))− λcxm′ (x)m (x) .

Under the condition λ(α−c)
3
2√

α
2

3
√
3
≥ rc, h (m) has two roots 0 < m ≤ m̄ < 1. Inspecting

its shape, we have h (m) < 0 for m < m and for m > m̄ and h (m) > 0 for m ∈ (m, m̄) .
If m (x) < m or m (x) > m̄, we must have m′ (x) < 0. If m (x) ∈ (m, m̄) we must have
m′ (x) > 0.

2. Whenever m (x) equals m or m̄, m′ (x) and all higher derivatives are zero. We can show
this by differentiating Equation (13) and plugging in values. Specifically, if m = m̄ we have
m′ (x) = 0. The second derivative satisfies

λxm (x)m′′ (x) = m′ (x)
(
λ (α− c)− 3λαm (x)2 − λcm (x)− λcx

∣∣m′ (x)
∣∣) ,

which is zero. Successively differentiating this equation and plugging in lower order terms
yields the result.

3. If 1− xh < m, then m (x) is decreasing, which implies that m (x) is bounded above zero on
[0, xh] . If 1− xh ≥ m then m (x) can never cross m, so it must be positive.

4. We use the integral representation for Equation (13),

∫ m(x)

m(xh)

λcm

h (m)
dm = log (x)− log (xh) ,

66The behavior of m (x) is now different because of the changed parameter assumptions, even though
m (x) still satisfies Equation (13) and the same boundary condition as before, albeit at a different xh.
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which we have used previously in the proof of Lemma 8. If 1− xh < m, we have m (x) ≤ m,
so the derivative of the LHS must be negative at the solution m (x) . If m (0) < m, then as
x→ 0, the LHS is bounded whereas the RHS diverges to −∞. Thus, we must have m (0) = m.
If 1 − xh ∈ (m, m̄) , m (x) is increasing and h (m (x)) is positive. Then, we can rewrite the
equation as

−
∫ m(xh)

m(x)

λcm

h (m)
dm = log (x)− log (xh) .

The LHS goes to zero as x→ 0 whenever m (0) = m.

A work-shirk equilibrium exists whenever 1− xh < m̄. In that case, m (x) remains below 1− x
for all 0 < x < xh and it converges to m as x → 0. We now show this is the case given our
assumptions in Proposition 12. To prove this result, we exploit the functions l

(
x, cλ

)
in Equation

(34) and h (m) in Equation (36). We construct a sequence of inequalities which will imply that
1− xh < m̄. We are interested in h (m) only when m = 1− x, so with slight abuse of notation we
write it as

h (x) = λ (α− c) (1− x)− λα (1− x)3 − rc.

m̄ is the largest root of h (m), so 1 − m̄ is the smallest root of h (x) . We are trying to prove that
1 − m̄ < xh, i.e. that xh lies above the smallest root of h (x) .67 The condition c < α will imply
that the maximum of h (x) must be left of the maximum of l

(
x, cλ

)
and we will argue that xh must

lie to the right. Since h is hump-shaped its maximum is right of its smallest root, so this implies
1− xh < m̄.

Consider the value c0 at which the shirking value Vs (x) is tangent to c0
λ(1−x) at a single point,

x0. At that point, we must have l
(
x0,

c0
λ

)
= 0 and x0 must achieve the maximum of l

(
x, c0λ

)
For

any c < c0, we have xl < x0 < xh.
68 Inspecting l

(
x, cλ

)
, we can see that

∂2l(x, cλ)
∂x∂c > 0, i.e. the

value at which l attains its maximum is increasing in c. We denote this value with x∗l and omit the
dependence on c. For c < c0, we have x∗l < x0. We can rewrite h (x) as

h (x) = λl
(
x,
c

λ

)
− λcx (1− x) .

This implies
h′ (x∗l ) = λc (2x∗l − 1) .

If x∗l <
1
2 , then h is decreasing at x∗l . But then x∗h, the value at which h attains its maximum, must

lie left of x∗l . 1−m̄ is the first root of h (x) and it must lie left of x∗h. Taken together, our arguments
yield the following chain of inequalities:

if x∗l <
1

2
, then 1− m̄ ≤ x∗h < x∗l < x0 < xh.

We now only have to show that x∗l <
1
2 We can compute ∂

∂x l
(
x, cλ

)
= 0 and find the maximizer

67Recall that whenever h (x) exceeds zero on [0, 1] it has exactly two roots on that interval.
68Note that the shirking value Vs (x) is independent of c, so changing c does not affect it. For lower c,
c

λ(1−x) is lower while Vs (x) is the same, so the intersection points must move to the left and right of x0,

respectively.
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that lies in [0, 1] . It is given by

x∗l = 1 +
1

3

c

α
−
√

1

9

( c
α

)2
+

1

3
.

Then, the result follows from the fact that we assumed c < α and simple algebra.
Whenever the work-shirk equilibrium exists, it is unique. The argument for this is analogous

to the one in our proof of Proposition 2. As we have already seen, the shirking region [xh, 1] must
be the same for any potential equilibrium. Suppose that there exists another equilibrium where on
some region [x̂l, x̂h] ⊂ [0, xh], the agent shirks. Then, we need that m (x̂h) = 1 − x̂h, otherwise,
the value function would not be continuous.69 However, the ODE (13) with boundary condition
m (xh) = 1 − xh has a unique solution and in a work-shirk equilibrium, that solution never hits
1− x for x < xh. Thus, we cannot have such a region. This establishes uniqueness.

C Disclosure

C.1 Delayed Bad News

The value function of the regulator in Equation (14) is constructed similarly to the function of the
firm. On the upper shirking region [xs, 1] , the regulator’s value is her shirking value. It solves
Equation (14) with m (x) = 1− x, i.e.(

r + λ (1− x)2
)
Ws (x) = αx+ λx (1− x)2W ′s (x) , (37)

with boundary condition W (1) = α
r . The shirking value has the closed form solution Ws (x) =

α
r x. On the working region [xl, xh], the regulator’s value solves Equation (14) and m (x) is the
manipulation obtanined in Equation (13) of Proposition 2. Since the regualtor’s value is continuous,
it satisfies the boundary conditionW (xh) = α

r xh.On the lower shirking region [0, xl], the regulator’s
value is again the shirking value in Equation (37), but it has boundary condition Ws (xl) = W (xl) ,
where W is the solution obtained on the working region.70

Lemma 10. On the working region, we have W (x) > Ws (x).

Proof. On the working region, the regulator’s value satisfies Equation (14) with boundary condition
W (xh) = Ws (xh) = α

r xh. If W (x) ≤ α
r x for some x ∈ (xl, xh) ,

λxm (x)2
(
W ′ (x)− α

r

)
≤ α (x− (1−m (x))) .

The last term is negative, because m (x) < 1 − x. Thus, W ′ (x) < α
r whenever W (x) ≤ α

r x.
Once W (x) touches α

r x on the working region, it must stay strictly below to the right. But this
is incompatible with the boundary condition at xh. Thus, the solution to W (x) must satisfy
W (x) > α

r x on (xl, xh) .

69Specifically, if m (x̂h) < 1− x̂h, then V (x̂h) = c
λm(x̂h)

> c
λ(1−x̂h) . But since the firm is supposed to shirk

left of x̂h, we must also have V (x) ≤ c
λ(1−x) for all x ∈ (x̃n − ε, x̂h) for some small ε > 0. This means the

value is discontinuous, which cannot be true.
70Because of this boundary condition, Ws (x) does not equal αr x on [0, xl] .
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We are now ready to prove Proposition 6, which we restate below for convenience.

Proposition 6. For γ̄ sufficiently small, disclosure of bad news is valuable to the regulator when
x ≤ xd, where xl ≤ xd < xh. It is not valuable for x close to (or above) xh.

Proof. Delayed disclosure is valuable to the regulator whenever W ′ (x)x−W (x) is strictly positive.
This is equivalent to

φ (x) := rW (x)− α (1−m (x)) > 0,

which follows from rearranging Equation 14. From Lemma 10, we know that W (xl) >
α
r xl =

α
r (1−m (xl)) . Thus, φ (xl) > 0. By continuity φ (x) remains positive on a neighborhood to the
right of xl. On [0, xl] , the value of information is positive whenever71

φ (x) = rWs (x)− αx > 0,

where Ws (x) is the shirking value in Equation (37) with boundary condition Ws (xl) = W (xl) >
α
r xl. Thus, we have to show that the shirking value exceeds α

r x. This is true because two solutions
to Equation (37) cannot cross. This follows from an argument analogous to the one in Lemma 4.
We can express Ws (x) using the method of integrating factors and then show that each solution
can be indexed by the initial value at a (wlog) common initial point. A solution with a larger initial
value must then always lie above a solution with a lower one. The function α

r x, which is the solution
that satisfies Ws (xl) = α

r xl must therefore lie below the solution that satisfies Ws (xl) = W (xl) .
This implies the value of disclosure is positive on (0, xl) .

To show that disclosure is detrimental when reputation becomes sufficiently large, we plug in
φ (x) and φ′ (x) = rW ′ (x) + αm′ (x) into Equation (14), to obtain an ODE for φ (x) , which is(

r + λm (x)2
)
φ (x) = λm (x)2

(
xφ′ (x)− αxm′ (x)− α (1−m (x))

)
.

φ (x) satisfies the boundary condition φ (xh) = 0, because W (xh) = α
r xh = α

r (1−m (xh)) . As x
approaches xh, we have

φ′ (x)→ α
(
m′ (xh) + 1

)
,

which is strictly positive because m′ (xh) < −1. But if φ′ (x) > 0 for x close to xh and φ (xh) = 0,
then φ (x) must be negative close to xh.

Finally, we prove Proposition 5, which is restated below.

Proposition 5. Disclosure of bad news reduces the strategic monitor’s incentive to exert effort for
reputation sufficiently close to xh and on [xh, 1].

Proof. To show the result for x left of xh, note that since V (x) = c
λm(x) , it is enough to show

that delayed disclosure reduces the value V (x) . This is true whenever x (1− x)V ′ (x) − V (x) is
negative. The value of delayed disclosure is strictly negative at xh. The result then follows from
continuity of V (x), V ′ (x) , and m (x) and the fact that m (xh) = 1 − xh. On [xh, 1], the result is
immediate. Disclosure does not affect effort on that region, since the monitor shirks anyway, but it
lowers the value, because is changes his HJB equation by a factor of −γVs(x). This in turn lowers
the monitor’s value for all lower reputations and since on the work region V (x) = c

λm(x) it implies
more manipulation in equilibrium.

71Here we have just substituted m (x) = 1− x and the shirking value Ws (x) .
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C.2 Delayed Good News

We first prove Proposition 7.

Proposition 7. Disclosure of good news increases manipulation and decreases the value of the
strategic monitor on the work region [xl, xh].

Proof. The strategic type’s value for any positive γ is

(r + λm (x))V (x) = α
(

1−m (x)2
)

+ λxm (x)2 V ′ (x)− γx (1− x)V ′ (x) .

Using the indifference condition in Equation (35) yields the analog of Equation (13), which describes
m (x) for any given γ.

rc = λα
(
m (x)−m (x)3

)
− λcm (x)− λcxm (x)m′ (x) + γcm′ (x)

x (1− x)

m (x)
.

The result follows from applying Grönwall’s Lemma to this equation. We have to take additional
care because the initial condition for that equation is at the right boundary of the work region,
so the eqation is effectively solved backwards. We use the identity m (x) = m (xh − y) where
y = xh − x to define ẽ (y) = m (xh − y) . Substituting this and the derivative ẽ′ (y) into Equation
(13) yields

ẽ′ (y) =
−h (ẽ (y))

λc (xh − y) ẽ (y)− γc (xh−y)(1−xh+y)ẽ(y)

,

which for all y and ẽ (y) is increasing in γ, because h (ẽ (y)), which is the function we have defined
in Equation (36), is negative. Grönwall’s Lemma then implies that ẽ (y, γ′) ≥ ẽ′ (y, γ) for all y and
γ′ ≥ γ, or, equivalently, m (x, γ′) ≥ m (x, γ) . Higher γ decreases the value because V (x) = c

λm(x)
and m increases with γ.

Finally, we prove Proposition 8.

Proposition 8. For γ sufficiently small and x < xh sufficiently close to xh, the regulator benefits
from disclosing good news. Disclosing good news is not valuable for x ≥ xh.

Proof. The regulator’s value for a given γ is(
r + λm (x)2

)
W (x) = α (1−m (x)) +

(
λxm (x)2 − γx (1− x)

)
W ′ (x) + γx

(α
r
−W (x)

)
.

Taking derivatives, we can derive the following representation describing the sensitivity or the
regulator’s value with respect to γ

∂W (x)

∂γ
= Ex

[∫ τ0∧τh

0
m−rt

(
dm (xt)

dγ

(
−α− λW (xt) + λxtm (xt)W

′ (xt)
)

+
α

r
−W (xt)− (1− xt)W ′ (xt)

)
dt
]
.

Delayed good news is beneficial at x if the term in the inner brackets is positive for all
x′ ∈ [x, xh] . For x sufficiently close to xh, the term in the second line is positive, because W (x)
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approaches α
r x and W ′ (xh) is below α

r . m (x) is decreasing in γ, by Proposition 7. The term
multiplying it is negative sufficiently close to xh. Thus, the integral is positive.

C.3 Proof of Lemma 1

Following a similar argument as Sannikov (2008), we define

V̂t =

∫ t

0
e−rs

(
α
(
1−m2

s

)
− cas

)
ds+ e−rtVt

for any t < τ . Under the monitor’s information set (i.e. knowing his own type), bad news follows a
Poisson process with arrival rate λm̂t (1− at)+γBt, while good news follows a Poisson process with
zero arrival rate. Using the martingale representation theorem for Poisson processes (e.g. Davis
(1993)), it follows that there exists an adapted process (ϕt)0≤t≤τ , such that

V̂t = V̂0 +

∫ t

0
e−rsϕs(dN

B
s − (λm̂t (1− at) + γBt)dt).

Since the monitor’s continuation value is zero after bad news arrives, we have ϕt = −Vt for all
0 ≤ t ≤ τ . Equating the two expressions and differentiating then yields

dVt =
(
(r + γBt + λm̂t (1− at))Vt − α

(
1− m̂2

t

)
+ cat

)
dt− VtdNB

t .

Since in equilibrium, the monitor’s conjecture about manipulation is correct, i.e. m̂t = mt for all
t < τ , this expression simplifies to

dVt =
(
(r + γBt + λmt (1− at))Vt − α

(
1−m2

t

)
+ cat

)
dt− VtdNB

t ,

which is the expression in the statement of the lemma.

D Existence of Shirking Equilibrium

We now show that a solution to ODE (12) with boundary condition Vs (1) = α
r exists, using an

approximation argument. The proof uses a ”bounding box” which has finite upper and lower
boundaries and whose right boundary is fixed below one. For any point on the boundary of this
box, we can find an initial value so that the unique solution to the IVP hits this point. We then
construct a sequence of boxes so that the right boundary approaches 1 and a corresponding sequence
of solutions so that the value at the right boundary of the box converges to α

r . To show that the limit
actually satisfies Vs (1) = α

r , we need to show that the sequence of solutions converges uniformly.
For this we use the Arzelà-Ascoli Theorem, which we apply to a rescaled version of Vs (x) that has
a finite derivative.

The bounding box is for all n ∈ N given by

Bn =
{

(x, v) ∈ R2|x ∈ [x0, xn] , v ∈ {−M,M} if x ∈ (x0, xn)

and v ∈ [−M,M ] if x ∈ {x0, xn}}
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for some finite M > α
r . Here, xn is the right boundary of the box. We assume {xn}∞n=1 is an

increasing sequence with xn ∈ (x0, 1) for all n which converges to one as n→∞. Point 3 of Lemma
4 then implies that each point on Bn can be reached by some solution to the IVP, which we show
below.

Corollary 13. For each (x̂, v̂) ∈ Bn, there exists a v0n such that the solution to the IVP with
initial condition v0n satisfies Vs (x̂, v0n) = v̂.

Proof. Picking v0n = −M ensures that Vs (x0) = −M and picking v0n = M ensures that Vs (x0) =
M. For any v0n ∈ (−M,M), either hits the upper or lower bounds or it hits the right boundary
at xn. Since Vs (x) is continuous and monotone in v0n by Point 3 of Lemma 4, the continuous
mapping theorem implies that for any point (x̂, v̂) ∈ Bn, there exists an initial condition v0n such
that Vs (x̂) = v̂.

We use this result to construct a sequence of solutions which satisfy a boundary condition at xn.
That condition will converge to α

r . Since we are only interested in the properties of these solutions
as x becomes large, we omit any dependence on the initial condition v0n to save notation. We
denote with Vsn (x) the solution to Equation (12) which satisfies the boundary condition

Vsn (xn) =
α

r
− κ (1− xn) (38)

for some fixed κ > 0. As n→∞, the derivative V ′sn (xn) becomes potentially unbounded, because
xn approaches one and the shirking ODE (12) has a singularity at x = 1. Therefore, we cannot use
the Arzelà-Ascoli Theorem on Vsn directly. Instead, we study the transformation

gn (x) = Vsn (x) (1− x) ,

which we extend to the entire interval [x0, 1] as follows:

ḡn (x) =

{
Vsn (x) (1− x) if x0 ≤ x ≤ xn

α
r (1− xn)− κ (1− xn)2 if xn < x ≤ 1.

Lemma 11. For all n ∈ N, ḡn (x) is uniformly bounded. It is also differentiable at all x ∈ [x0, 1]
except at xn and has a uniformly bounded derivative.

Proof. ḡn (x) is uniformly bounded because we have constructed the sequence Vsn (x) so that for
all x ∈ [x0, xn], Vsn (x) is inside the ”bounding box”, i.e. Vsn (x) ∈ [−M,M ]. Since gn (x) =
Vsn (x) (1− x) , we must also have gn (x) ∈ [−M,M ] . From the definition of ḡn (x) we can also see
that it is uniformly bounded on [xn, 1] for all n.

To show the derivative is uniformly bounded whenever it exists, we only have to consider the
derivatives on the intervals [x0, xn] .72 We can substitute gn (x) = Vsn (x) (1− x) and g′n (x) =
V ′sn (x) (1− x)− Vsn (x) into Equation (12) to obtain an ODE for gn (x) . This ODE is(

r + λ (1− x)2
)
gn (x) = α

(
(1− x)− (1− x)3

)
+ λx (1− x)2 g′n (x) . (39)

72On [xn, 1], the result follows from inspecting the definition of ḡn (x) above.
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For any n, the derivative at xn is bounded. To see this, we first solve for V ′sn (xn), using Equation
(31) and the condition in Equation (38). This yields

V ′sn (xn) =
1

xn

(
α

λ
− κ+

(α
r
− rκ

λ

) 1

1− xn

)
.

Therefore we have

g′n (xn) =
1− xn
xn

(
α

λ
− κ+

(α
r
− rκ

λ

) 1

1− xn

)
− α

r
− κ (1− xn) . (40)

As n→∞, this expression converges to − r
λκ. This means that there exists a K̄ > 0 so that for all n,

|g′n (xn)| ≤ K̄. To see that g′n (x) must be bounded uniformly for all n and x ≤ xn, we differentiate
Equation (39) to obtain

0 = 2λ (1− x) gn (x) + α
(

3 (1− x)2 − 1
)

+λx (1− x)2 g′′n (x)− (r + λ (1− x)x) g′n (x) .

Suppose there exists an n and an x0 ≤ x < xn so that |g′n (x)| > K. We choose K sufficiently
large and larger than K̄. Then, if g′n (x) > K, the equation above immediately implies that
g′′n (x) > 0, since gn (x) is uniformly bounded. But this means that g′n (x′) > K for all x′ ≥ x. This
is a contradiction, since we have just shown that g′n (xn) is bounded by K̄ for all n. Similarly, if
g′n (x) < −K, then g′′n (x) < 0, which again implies that g′n (xn) < −K̄.

We can now apply the Arzelà-Ascoli Theorem to the sequence of functions ḡn (x) . It establishes
that there is a subsequence that converges to a continuous function g∗ (x) . As we show below, we
can take g∗ (x) to be continuously differentiable on [x0, 1] and to satisfy the ODE (39) on that
interval without loss of generality.

Lemma 12. There exists a subsequence of ḡn (x) which converges uniformly to a function g∗ (x)
which is continuously differentiable and satisfies Equation (39) on [x0, 1] .

Proof. From the previous Lemma and the Arzelà-Ascoli Theorem we know there exists a subse-
quence which converges to a continuous function g∗ (x) . We now use a diagonalization procedure
to show that there exists a subsequence such that g∗ (x) is continuously differentiable on [x0, 1).
For a given n, the derivative g′n (x) satisfies

g′n (x) =

(
r + λ (1− x)2

)
gn (x)− α

(
(1− x)− (1− x)3

)
λx (1− x)2

on some interval [x0, x̄1] for x̄1 < xn < 1. Since the sequence gn is equicontinuous on that interval
and the right hand side of the above equation is continuous in both x and gn (x), g′n (x) is equicon-
tinuous on that interval as well.73 Thus, there exists a subsequence of gn which converges to a
limit that is continuously differentiable on [x0, x̄1] . Proceeding iteratively, we then take a sequence
of boundaries x̄k which converges to one as k →∞. For each such k we can find a subsequence of

73Note we are holding x̄1 fixed here.
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gn that converges to a continuously differentiable function. Thus, we can take the limit g∗ to be
continuously differentiable on [x0, 1) without loss of generality. Because of this, it also satisfies the
ODE (39) on [x0, 1).

It remains to establish that g∗ is continuously differentiable at x = 1. This follows from Equation
(40) in the proof of the previous Lemma. We have

lim
n→∞

g∗′ (xn) = lim
n→∞

g′n (xn)

and Equation (40) shows that limn→∞ g
′
n (xn) = − rκ

λ . Thus, g∗′ (1) is finite.

We now use the function g∗ to show that our initial sequence of solutions Vsn (x) converges
to a limit that is continuous, solves the shirking ODE (12), and satisfies the boundary condition
Vs (1) = α

r . To do this, we define the following function on the interval [x0, 1]

V ∗ (x) =
g∗ (x)

1− x
.

This function is continuously differentiable except perhaps at x = 1 and it satisfies the ODE (12),
which can be seen by substituting it into Equation (39). We thus only have to show it satisfies the
boundary condition at x = 1. If we let nk denote the subsequence of n for which gn converges to
g∗, we have

V ∗ (x) = lim
k→∞

gnk (x)

(1− x)
= lim

k→∞
Vnk (x) .

Since for any n, Vn (1) = α
r , we have

lim
x→1

V ∗ (x) = lim
x→1

lim
k→∞

Vnk (x)

= lim
k→∞

Vnk (1)

=
α

r
.

This concludes our proof. We have shown that there exists a solution to the shirking ODE (12)
on the interval [x0, 1] which satisfies the boundary condition Vs (1) = α

r . Since any solution to the
equation must satisfy V (0) = 0 (by Lemma 4, Point 1), we can extend this solution to the entire
interval [0, 1] .

E Numerical Appendix

We use a finite difference approximation of the regulator value W (x, V ).74 To improve speed and
accuracy given the highly nonlinear domain, we use an unevenly spaced grid. Specifically, we start
with evenly spaced grid in the x dimension with I elements, X = (x1, ..., xI) and we denote a
generic element xi. Then, we compute a solution to the Hamilton-Jacobi equations defining the
boundaries V̄ (x) and V (x) (Equations (27) and (28)), using MATLAB’s built in bvp4c function.
Since using bvp4c does not guarantee that the grid is the same as the one we have defined, we

74See Crandall and Lions (1984) for a characterization of convergence properties.
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linearly interpolate the solutions on the grid X. We denote the resulting values with ̂̄V i and V̂ i,
which are defined at each grid point xi ∈ X.

Similarly, we use bvp4c to compute the ODEs defining the monitor’s boundary conditions W̄ (x)

and W (x) (Equations (29) and (30)) and we denote with ̂̄W i and Ŵ i the linear interpolation on
X. We also obtain the derivatives W̄ ′ (x) and W ′ (x) from bvp4c, which will be useful later, and

we denote the linear interpolations on X as ̂̄W ′i and Ŵ
′
i.

Next, we construct the grid in the V dimension. We fix a number J , and for each i, we define an

evenly spaced grid with J elements, Vi = (vi1, ..., viJ), with vi1 = V̂ i and viJ = ̂̄V i. This grid choice
has the following desirable property. As can be seen in Figure 2, the boundaries V̄ (x) and V (x)
become simultaneously very steep and very close together as x becomes small. Our grid features
a smaller distance between elements in the V -dimension on that region, which improves accuracy
where it is most needed.

To facilitate indexing, we define the I × J matrix of x-elements as

X =


x1 x1 ... x1
x2 x2 ... x2
...

...
. . .

...
xI xI ... xI


and the I × J matrix of V -elements as

V =


v11 v12 ... v1J
v21 v22 ... v2J
...

. . .
...

vI1 vI2 ... vIJ

 .
Thus, a generic element vi,j of V corresponds to the j’th element of the vector Vi. From here on,
we use the short-hand notation Wi,j = W (xi, vi,j), mi,j = m (xi, vi,j) , etc.

We approximate the partial derivatives Wx (xi, vi,j) and WV (xi, vi,j) using forward differences.
The derivative in the V dimension is standard and given by

WV (xi, vi,j) ≈
Wi,j+1−Wi,j

vi,j+1 − vi,j
≡WV,i,j . (41)

Approximating the derivative in the x dimension faces two challenges. (1) For a given (xi, vi,j),
the pair (xi+1, vi,j) may lie outside the domain. For example, we may have vi,j >V (xi), but
vi,j <V (xi+1) . (2) For a given (xi, vi,j), vi,j may not be an element of Vi+1, i.e. the node (xi+1, vi,j)
does not exist. Thus, we generally cannot compute the “naive” forward difference

Wx (xi, vi,j) ≈
W (xi+1, vi,j)−W (xi, vi,j)

xi+1 − xi
.

To solve the issue of derivatives at the boundaries, we replace the forward difference with the
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interpolated derivatives ̂̄W ′i and Ŵ
′
i, respectively. That is,

Wx,i,j ≡ Ŵ
′
i (42)

whenever vi,j < V̂ i+1 and

Wx,i,j ≡ ̂̄W ′i (43)

whenever vi,j >
̂̄V i+1.

To approximate derivatives inside the feasible domain, we compute the nearest neighbor to vi,j
in the vector Vi+1. We denote with n+ (i, j) its index, i.e. vn+(i,j) is the nearest neighbor to vi,j in
Vi+1. Then, we approximate the derivative as

Wx (xi, vi,j) ≈
Wi,n+(i,j) −Wi,j

xi+1 − xi
≡Wx,i,j . (44)

The finite difference approximation to the regulator’s Hamilton-Jacobi equation (26) is now
defined as

rWi,j = α (1−mi,j) +
((
r + γB,i,j + λmi,j

)
vi,j − α

(
1−m2

i,j

))
WV,i,j

+
(
λxim

2
i,j + xi (1− xi)

(
γB,i,j − γG,i,j

))
Wx,i,j

−
(
λm2

i,j + γBi,j (1− xi)
)
Wi,j + γG,i,jxi

(α
r
−Wi,j

)
.

Here, γB,i,j and γG,i,j are the approximate optimal controls, which are given by

γB,i,j =

{
γ̄ if vi,jWV,i,j + xi (1− xi)Wx,i,j − (1− xi)Wi,j ≥ 0
0 if vi,jWV,i,j + xi (1− xi)Wx,i,j − (1− xi)Wi,j < 0

and

γG,i,j =

{
γ̄ if −xi (1− xi)Wx,i,j + xi

(
α
r −Wi,j

)
≥ 0

0 if −xi (1− xi)Wx,i,j + xi
(
α
r −Wi,j

)
< 0.

We use an explicit method to calculate a solution to the above equation. We start with an

initial guess W 0
i,j , which is given by a linear interpolation between ̂̄W i and Ŵ i at each i and vi,j .

75

Then, we update Wn
i,j , as

Wn+1
i,j −Wn

i,j

∆
+ rWi,j = α (1−mi,j) (45)

+
((
r + γnB,i,j + λmi,j

)
vi,j − α

(
1−m2

i,j

))
Wn
V,i,j

+
(
λxim

2
i,j + xi (1− xi)

(
γnB,i,j − γnG,i,j

))
Wn
x,i,j

−
(
λm2

i,j + γnBi,j (1− xi)
)
Wn
i,j + γnG,i,jxi

(α
r
−Wn

i,j

)
.

75That is,

W 0
i,j = Ŵ i + (vi,j − vi,1)

̂̄W i − Ŵ i

vi,J − vi,1
.
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Here, ∆ is the step size of the iteration and γnB,i,j and γnG,i,j are defined analogously as

γnB,i,j =

{
γ̄ if vi,jW

n
V,i,j + xi (1− xi)Wn

x,i,j − (1− xi)Wn
i,j ≥ 0

0 if vi,jW
n
V,i,j + xi (1− xi)Wn

x,i,j − (1− xi)Wn
i,j < 0

(46)

and

γnG,i,j =

 γ̄ if −xi (1− xi)Wn
x,i,j + xi

(
α
r −W

n
i,j

)
≥ 0

0 if −xi (1− xi)Wn
x,i,j + xi

(
α
r −W

n
i,j

)
< 0.

(47)

The algorithm can be summarized as follows.

1. Start with guess W 0
i,j .

2. Compute Wx,i,j and WV,i,j using Equations (41), (43), (42), and (44).

3. Compute γnB,i,j and γnG,i,j using Equations (46) and (47).

4. Compute Wn+1
i,j using Equation (45).

5. Stop if the maximum distance

max
i,j

∣∣∣Wn+1
i,j −Wn

i,j

∣∣∣
is below a specified tolerance, otherwise go to step 2.

Running this scheme on the entire x-domain [0, 1] results in a number of problems. (1) As can be
seen from Figure 2, the regulator is indifferent between any disclosure policy for any x ≥ xh.76 This
may lead the policies γnB,i,j and γnG,i,j to oscillate on the region [xh, 1], which may lead to convergence
failures. (2) The law of motion for beliefs may have an endogenous interior singularity at high x
values. To see this, consider again the shirking region [xh, 1]. On this region, m (x, V ) = 1 − x,
independently of V or the regulator’s disclosure policy. Then, we can calculate the law of xt as

dxt
dt

= λxt (1− xt)2 + (γBt − γGt)xt (1− xt)

= xt (1− xt) (λ (1− xt) + γBt − γGt) .

When xt is sufficiently large and γBt = 0, the dxt/dt may change sign depending on whether
γGt = 0 and γGt > 0. (3) The law for Vt may change sign depending on whether γBt > 0 or γBt = 0
for high values of x.

To avoid these issues, we use our theoretical characterization to restrict the problem as follows.
For x > xh, we know that the monitor shirks irrespective of the disclosure policy and that the
regulator’s value is linear (see also Figure 2). Thus, without loss of generality, the optimal disclosure
policy at any xt > xh is given by γBt = γGt = 0. The regulator’s boundary values coincide at xh, i.e.
W̄ (xh) =W (xh). We can now restrict the grid of x-values to [0, xh] and use the boundary condition
W (xh, V ) = W̄ (xh) for any V ∈

[
V (xh) , V̄ (xh)

]
. With this modification, and sufficiently small

step size ∆, and a sufficiently fine grid X, the explicit scheme converges monotonically.

76Note that this is consistent with our previous qualitative results in Section 4.
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