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Abstract

Why do individuals interpret the same information differently? We propose that
individuals follow Bayes’ Rule when forming posteriors with one exception: when as-
sessing the credibility of signal sources, they “double-dip” the data and use already-
updated beliefs instead of their priors. Individuals who make this mistake either over-
or underreact to new information depending on the order in which they received pre-
vious signals. Traders engage in excessive speculation associated with price bubbles
and crashes. Our model provides a theory of the origins of disagreement: individuals
disagree about both unknown states and credibility despite sharing common priors and
information.
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“We all have the same information, and we’re just making different conclusions
about what the future will hold.” - Henry Blodget, Former analyst (Lewis, 2002)

Why do investors interpret the same information differently? From a practical standpoint,

this question is more relevant than ever: Despite widely shared information, investors today

disagree over the value of everything from Bitcoin to technology stocks. Several theories show

that disagreement about the informativeness of signals helps explain disagreement about an

unknown state of the world, leading to speculative trading, price volatility, and bubbles

(Harrison and Kreps, 1978; Harris and Raviv, 1993; Kandel and Pearson, 1995; Scheinkman

and Xiong, 2003; Kyle et al., 2017). However, these theories often do not model why agents

disagree over interpretations, leaving several fundamental questions open. For example, why

might some agents trust some signals more, while other agents trust the same signals less?

This paper develops a model of why identical economic agents with common priors en-

dogenously interpret the same information differently. We start with the premise that agents

are not only uncertain of the state of the world (e.g., of an investment’s future payoffs), but

also of the data-generating process that produces signals and hence the informativeness of

signals for the state. For example, investors may be uncertain whether a given valuation

metric, or an analyst’s recommendations, has any value in forecasting a firm’s future per-

formance. To set terminology, we refer to signals as coming from sources (financial metrics,

analysts, advisors) who have uncertain credibility (informativeness for the true state).

With uncertain credibility, an agent faces a key inference problem in determining how

much weight to apply to a source’s signals. Bayesian agents use only their priors to determine

this weight. They treat uncertainty about source credibility no differently from how they

treat uncertainty about the state. Thus, endowing Bayesians with exogenous heterogeneous

beliefs or priors about credibility generates disagreement about the state. With common

priors and common information, however, Bayesian agents would agree.

Our theory proposes that, when faced with this key inference problem, agents make

a mistake we call pre-screening. Pre-screeners mistakenly use updated beliefs about the

credibility of signal sources when weighting signals instead of priors. Intuitively, if new signals

suggest low credibility, pre-screeners think: “I now think the source is not credible, and my

beliefs should reflect that I saw non-credible signals. After all, if the source is probably

not credible, then all of its signals are more questionable than I originally thought.” They
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update in two steps. In the first step, they form a first-stage belief about credibility based

on newly-observed signals. In the second step, they use this first-stage belief instead of their

prior to weight all signals they have ever seen from the source. Pre-screening’s departure

from Bayes’ Rule is this substitution of updated beliefs about source credibility for priors.

This two-step procedure leads pre-screeners to “double-dip” the data. Consider the

following example. An individual who is reasonably sure that he weighs 200 pounds steps

on a scale that he also believes is likely reliable, and the scale reads 300 pounds. Surprised

by the reading, a Bayesian’s posterior is that the scale is likely unreliable but that there is

some chance he weighs 300 pounds, as he carefully combines the likelihood of the data with

his prior belief that the scale was reliable. A pre-screener, in contrast, first infers that the

scale is unreliable upon seeing the reading, and then combines the likelihood of the data

with this updated belief as though he knew the scale was unreliable all along. This leads

the pre-screener to discount the possibility that he might be 300 pounds too much, on the

premise that the scale is unreliable.

Pre-screening draws on two insights. First, because agents must weight the data when

updating beliefs, they may naturally (but erroneously) think credibility is a fundamental

parameter that they: 1) seek to learn first, and 2) then apply to all the data due to its essential

importance. Mistakenly double-dipping the data to infer essential parameters analogously

occurs in criticized forms of Empirical Bayes inference methods (Lindley, 1969; Carlin and

Louis, 2000). Second, using updated beliefs to judge past data is consistent with evidence

from cognitive psychology that individuals who have seen information often fail to ignore it

when the context requires using only prior beliefs. Prominent examples include hindsight

bias (e.g., Fischhoff, 1975; Hawkins and Hastie, 1990), where individuals who have seen data

are prone to think they have “known it all along,’’ and the curse of knowledge (Camerer et

al., 1989), the difficulty of conceptualizing what it was like to be uninformed in the past. We

link these two insights and suggest that agents may be prone to use updated beliefs about

credibility instead of their priors, as if they had updated beliefs about credibility all along.

We introduce pre-screening in Section 1. To isolate the effects of biased learning, we

assume that signal sources are data-generating processes that produce signals about an
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uncertain state and abstract from strategic motives (e.g., Morgan and Stocken, 2003; Hong,

Scheinkman and Xiong, 2008). We model a source’s credibility as its underlying ability to

discern the true state of the world, which is either A or B.

We characterize three predictions of pre-screening in Section 2. First, pre-screeners who

share common priors and who have seen the same objective information disagree if they

received the signals in different order, even though Bayesians would agree. This is because

the information in early signals about source credibility, or “first impressions of credibility,”

have an outsized influence on subsequent beliefs. Second, pre-screeners with differing first

impressions of credibility have correlated disagreements about the unknown state of the world

and source credibility. A pre-screener who thinks the state is more likely than objectively

warranted also thinks the source is more credible than objectively warranted.

Third, pre-screeners endogenously over-react or underreact to new information, behavior

akin to overconfidence (Scheinkman and Xiong, 2003), confirmation bias (Rabin and Schrag,

1999), and their opposites. However, in contrast to these theories, agents can endogenously

over- and underreact to signals that either confirm or contradict beliefs about the state,

depending on how these signals interact with first impressions about credibility.

More broadly, pre-screening provides a theory of the origins of disagreement, since pre-

screeners disagree despite sharing common priors and information. In Section 3, we show that

endogenizing these origins helps explain speculative trading and bubbles. We ask: How do

pre-screeners with differing first impressions about credibility trade, compared to Bayesians

with heterogeneous priors? We build on the trading game of Harris and Raviv (1993) where

agents observe common signals about an asset’s unknown payoff and “agree to disagree”

about source credibility, but we allow agents to learn about credibility rather than know it

for certain. We compare a game where all traders are pre-screeners with a game where all

traders are Bayesians. At the opening of trade, disagreement about credibility is the same

across the two games. However, in the game with pre-screeners, this initial disagreement

originates from differing first impressions of credibility from signals prior to trade, whereas

we endow Bayesians with heterogeneous beliefs.

We first show that pre-screeners trade more than Bayesians trade. Pre-screeners engage
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Figure 1: Trading game. This figure plots outcomes from a trading game between two groups of traders,
X and Y , described in Section 3, when they are either both pre-screeners or both endowed Bayesians. Prices
are in Panel (a) and the asset holdings of group Y are in Panel (b). Realized signals in periods 1-10 are
good cash flow news (‘a’), while periods 11-20 have bad cash flow news (‘b’). Trader beliefs at period 0 are
equal to the beliefs that pre-screeners would have after observing ‘aabb’ for X and ‘abab’ for Y , starting from
common priors. Parameters are {qH , qL, ω

A
−τ , ω

H
−τ , T, τ} = {0.8, 0.5, 0.5, 0.3, 20, 4}.

in “speculative trading” as defined by Harrison and Kreps (1978): “an investor may buy the

stock now so as to sell it later for more than he thinks it is actually worth, thereby reaping

capital gains.” In our model, this occurs if some traders believe that other pre-screeners

will over-react to positive news about fundamental value, even if they are relatively skeptical

about fundamental value themselves. This type of speculative trade is not a necessary feature

of disagreement models and is notably absent in the model of Harris and Raviv (1993) upon

which we build, and is difficult to generate in rational expectations models (Tirole, 1982).

We then show that pre-screening generates bubbles, crashes, and speculation in ways that

correspond to several empirical features described by Barberis (2018). Figure 1 illustrates

one example: In response to a string of good cash flow news, agents develop too much trust

in the source and become over-optimistic about cash flows, leading asset prices to rise sharply

above the Bayesian benchmark and become a bubble. If bad cash flow news then follows,

prices are initially resistant and do not appreciably fall, because traders view the previous

good news as very credible. However, after enough bad cash flow news arrives, agents begin

to doubt whether they believe anything the source reported before, due to the contradiction
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with previously-reported good cash flow news. Beliefs about credibility collapse, and prices

fall quickly. There is excess volume both during the bubble and crash. During the price rise,

traders who are relatively skeptical about fundamental value speculatively buy the asset to

“ride the bubble” (Abreu and Brunnermeier, 2003; Brunnermeier and Nagel, 2005). We show

more generally that endogenous over- and under-reaction to cash flow news and differing first

impressions of credibility are key mechanisms that explain these behaviors.

Our theory has broad implications. In Section 4, we introduce two further applications

of pre-screening and ask: 1) When can new information resolve disagreement? and 2) How

do sources systematically “slanted” towards one state affect disagreement? We also discuss

how our framework differs from other biases such as gradual information flow (Hong and

Stein, 1999), inattention or selective attention (Hirshleifer and Teoh, 2003; Peng and Xiong,

2006; Schwartzstein, 2014; Suen, 2004), bounded rationality, and others.

Our key contribution is to offer a new micro-foundation for the origins of why individ-

uals disagree about the interpretation of the same data. Research ranging from Kandel

and Pearson (1995) and Cookson and Niessner (2016) document that differences in signal

interpretation are an important component of overall disagreement about stock prices. Our

approach complements the heterogeneous priors approach (Acemoglu et al., 2016; Morris,

1995) by providing a theory for the origins of such priors. Our model speaks to fundamental

questions about why disagreement about states and source credibility are correlated, how

disagreement originates and is resolved, and the origins of speculation and bubbles.

Our theory also connects to the broader literature on polarized disagreement in eco-

nomics (Gentzkow and Shapiro, 2006; Mullainathan and Shleifer, 2005). A core feature of

many disagreements is that individuals disagree not just about their positions (“Do humans

affect climate change?”), but also about the credibility of information sources that inform

those positions (“How reliable are scientists and their data?”). In debates over questions

of economics (“What is the value of stimulus spending?”), medicine (“Are vaccinations safe

for children?”), and politics (“Why is it hard to debunk fake news?”), one side typically ex-

presses supreme confidence in their preferred experts while dismissing the other side’s trusted

sources. We speculate on how our theory helps explain this disagreement in the conclusion.
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1 Model

1.1 Information environment

An agent learns about an unknown state θ ∈ {A,B} by observing binary signals st ∈ {a, b}

in each period t from a signal source. Sources are data-generating processes (e.g., financial

metrics, analysts, advisors) and are not strategic. A source’s credibility is a type c that

describes the informativeness of its signals. Nature draws true source credibility indepen-

dently from the true state. Conditional on state and credibility, signals are independently

and identically distributed. We first assume the agent observes one signal per period from a

single source, and later generalize to multiple sources and multiple signals per period.

We focus on the case where credibility summarizes the reliability, or underlying skill, of

the source in determining the state. Specifically, a source has credibility c ∈ {L(ow), H(igh)}.

A high-quality source has a higher probability of correctly reporting the state than a low-

quality source and is more informative: P (st = a|c, A) = P (st = b|c, B) = qc. We require

qc ∈ [1/2, 1): the least reliable signal is noise, while even the most reliable signal is not

perfectly correlated with the true state. We assume qL < qH . In Section 4.2, we generalize

credibility to include the possibility that the source is biased towards one state.

The agent does not know credibility c, but does know that it is either high or low. We take

this as given, but highlight three (among possibly more) informational frictions that make

this assumption realistic. First, agents often have insufficient data to establish a source’s

credibility about a given state for certain. Second, agents often rely on opinions from experts

with uncertain credibility, and third-party information often cannot resolve this uncertainty.

Finally, the ability to learn about credibility by comparing predictions to outcomes through

repeated controlled experiments is often limited.

Consider, for example, disagreement over valuations during the dot-com boom. High

price/dividend ratios led Campbell and Shiller (1998, 2001) to warn of future price declines.

However, other observers doubted whether these ratios were a reliable guide to future returns.

As Campbell and Shiller discuss, this uncertainty arose because agents had insufficient his-

tory to truly know the P/D ratio’s reliability in forecasting returns, especially in the context
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of the technology boom.

In practice, investors often rely not on data directly, but on recommendations and opin-

ions from financial advisors, fund managers, and analysts, who have uncertain credibility

themselves. An extensive literature examines both the underlying skill among these pro-

fessionals (Clement, 1999; Fama and French, 2010; Kacperczyk et al., 2014) as well as the

possibility that they are biased (Lin and McNichols, 1998; Hong and Kubik, 2003; Mal-

mendier and Shanthikumar, 2014; McNichols and O’Brien, 1997). Agents face significant

inference problems in these settings, which may make mistakes more likely (Malmendier and

Shanthikumar, 2007; Hong, Scheinkman and Xiong, 2008).

Why don’t independent signals about credibility, such as an expert’s “credentials” (CFA

charters, PhDs, and so on), resolve this gap? General credentials such as degrees and certifi-

cations may not be very informative about the credibility of a source’s opinions for a specific

state. Consistent with this, DellaVigna and Pope (forthcoming) run a large experiment

where they ask economists to forecast the effectiveness of different incentive treatments on

subjects, and find that objective measures of expertise are unrelated to forecast accuracy.

Furthermore, credibility may be uncertain to non-experts even if it is more certain to

other experts. For example, a financial expert may be able to ascertain whether another

expert is high or low quality based on their résumé, but this is of no help to non-experts

because that expert’s quality is also unknown. Uncertain credibility may thus remain even

if one expands the set of signal sources an agent observes, because each source carries its

own uncertainty about credibility.

Finally, perhaps the most useful tool for evaluating credibility—the ability to compare

predictions to outcomes through repeated controlled experiments—is limited in many set-

tings. An expert or source may predict that the dot-com bubble will burst, but they may

have lucked out, or were vague in their timing. Given that outcomes must be compared to

predictions outside of a laboratory setting, it seems reasonable to assume that credibility

has residual uncertainty and that agents are learning about it.

In summary, we view the assumption of uncertain credibility as more plausible than

that of known credibility, particularly given information frictions. Because credentials are of
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uncertain informativeness themselves, we focus on a stark environment with no signals that

explicitly convey source credibility.

1.2 Learning

Suppose the agent has the prior that the state and credibility are independent with marginal

probabilities ωθ
0 for the state and ωc

0 for each credibility type c. Let the agent observe a

sequence of n signals, denoted sn = (s1, s2, . . . sn), where one signal is observed each period.

A Bayesian’s posterior belief P u(c, θ|sn) equals:

P u(c, θ|sn) =
(
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0∑

c

∑
θ (
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0

. (1)

The Bayesian uses her prior belief ωc
0 about source credibility to weight the likelihood of

signals (
∏n

t=1 P (st|c, θ)), and infers her posterior belief P u(c, θ|sn) in one step based on the

information content of signals, defined as follows:

Definition 1 (Information content) The information content of any sequence of sig-

nals sn is given by the number of “a” signals na and the number of “b” signals nb.

We propose that individuals make a mistake that we call pre-screening when faced with

the problem of determining how much weight to apply to a source’s signals. A pre-screener

mistakenly uses updated beliefs about credibility when weighting signals instead of priors.

She updates in two steps. First, she forms an updated first-stage belief about credibility,

denoted κc(sn), using Bayes’ Rule.1 Second, she uses this updated belief κc(sn) to weight

the signals sn in forming her joint posterior of state and credibility, denoted P b(c, θ|sn). The

key mistake is in using κc(sn) to evaluate all signals, whereas a Bayesian uses her prior ωc
0.

To illustrate, suppose a pre-screener observes two signals, one in each period. After
1More generally, all signals observed in a given time period are used to form the first-stage belief about

credibility. In Cheng and Hsiaw (2017) we extend the model to allow multiple signals per period and further
explore the implications of signal timing. Here, we confine the signals to one per period for simplicity.
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observing the first signal (s1), the first-stage updated belief about credibility, κc(s1), is:

κc(s1) =
ωc
0

∑
θ P (s1|c, θ)ωθ

0∑
c

∑
θ P (s1|c, θ)ωθ

0ω
c
0

.

Using κc(s1) to form the joint posterior belief on the state and credibility, P b(c, θ|s1), yields

the pre-screener’s posterior beliefs after the first signal:

P b(c, θ|s1) =
P (s1|c, θ)κc(s1)ω

θ
0∑

c

∑
θ P (s1|c, θ)κc(s1)ωθ

0

.

After observing the second signal (s2), the pre-screener’s first-stage updated belief about

credibility, κc(s1, s2), is:

κc(s1, s2) =

∑
θ P (s2|c, θ)P b(c, θ|s1)∑

c

∑
θ P (s2|c, θ)P b(c, θ|s1)

.

The pre-screener then uses κc(s1, s2) to form her joint posterior belief on the state and

credibility by re-weighting all the information from the source. The posterior, P b(c, θ|s1, s2),

equals:

P b(c, θ|s1, s2) =
P (s2|c, θ)P (s1|c, θ)κc(s1, s2)w

θ
0∑

c

∑
θ P (s2|c, θ)P (s1|c, θ)κc(s1, s2)ωθ

0

.

Iterating on the pre-screener’s process of repeatedly substituting newly-updated beliefs about

credibility for priors allows us to characterize her posterior beliefs.

Definition 2 (Pre-screener’s beliefs) After observing a sequence of n signals sn from a

source, the pre-screener’s first-stage updated belief about source credibility, κc(sn), is

given by:

κc(sn) =
κc(s

n−1)
∑

θ

(∏n
t=1 P (st|c, θ)ωθ

0

)∑
c κc(sn−1)

∑
θ

(∏n
t=1 P (st|c, θ)ωθ

0

) , (2)

where κc(∅) = ωc
0. The pre-screener’s joint posterior on credibility and the state,
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P b(c, θ|sn), is given by:

P b(c, θ|sn) =
(
∏n

t=1 P (st|c, θ))κc(sn)ω
θ
0∑

c

∑
θ (
∏n

t=1 P (st|c, θ))κc(sn)ωθ
0

. (3)

Comparing Equations 1 and 3, the pre-screener’s key mistake is to use the first-stage updated

belief κc(sn) to evaluate the signals in Equation 3, whereas a Bayesian uses her prior ωc
0 in

Equation 1. Note that if there is no uncertainty about source credibility, the first step

becomes innocuous, so the pre-screener’s posterior beliefs are identical to the Bayesian’s.

The above definition of a pre-screener’s beliefs assumes ex-ante independence of states

and credibility. We maintain this assumption both for simplicity and because it isolates the

effect of pre-screening on joint beliefs about the state and credibility without assuming any

correlation ex-ante. We provide a generalized definition in the Internet Appendix.

Pre-screening draws on two insights. First, because agents must weight the data when

forming updated beliefs, agents may naturally (but erroneously) treat credibility as a fun-

damental parameter that they seek to learn first and then mistakenly apply to all the data

due to its essential importance. “Double-dipping” the data this way leads to problematic

inference. For example, in criticized forms of Empirical Bayes research methods (Carlin and

Louis, 2000), researchers sometimes first calibrate model hyperparameters governing their

priors using the data before performing a full analysis on the same data. Lindley (1969)

famously noted that “there is no one less Bayesian than an empirical Bayesian.”

In our context, a pre-screener uses signals to calibrate the weight in a first step, κc(sn).

In the second step, they apply the weight to all signals they have seen from the source by

substituting κc(sn) for their prior, ωc
0. Intuitively, if new signals suggest low credibility and

κc(sn) is low, pre-screeners think: “I now think the source is not credible, and my beliefs

should reflect that I saw non-credible signals. After all, if the source is not credible, then

all of its signals are more questionable than I originally thought.” This reasoning mistakenly

double-dips the data and uses updated beliefs to judge current and past signals.2

2As another example of why using updated beliefs might seem plausible, Subramanyam (1996) notes that,
when the error precision of a normally-distributed signal about a normally-distributed unobserved random
variable is unknown, a Bayesian can calculate the posterior mean by applying the updated signal-gain in
the linear updating equation for the mean, due to the Law of Iterated Expectations. This is due to the
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Second, the idea of erroneously using updated beliefs to judge past data is consistent with

longstanding findings in cognitive psychology that individuals who have seen information

often fail to ignore it when the context requires using only prior beliefs. Intuitively, once

an individual has seen the data, she thinks she knew it all along. One prominently related

phenomenon is hindsight bias, or the tendency for individuals with “outcome knowledge to

overestimate what they would have known without outcome knowledge” (Fischhoff, 1975;

Fischhoff and Beyth, 1975; Hawkins and Hastie, 1990). A core tenet of leading cognitive

models for hindsight bias (Hoffrage et al., 2000; Hertwig et al., 2003) is that “If knowledge is

constantly updated”—as it is in our setting—then “inferences based on updated knowledge

may be different from those based on past knowledge” (Hoffrage and Hertwig, 1999, p.196).

For example, according to the RAFT cognitive process model (Hoffrage et al., 2000),

hindsight bias is generated “if individuals are unable to directly retrieve their initial judgment

but try to reconstruct it by repeating the original judgment process, this time, however, on

the basis of the updated knowledge base” (Blank and Nestler, 2007). An implication of an

individual’s belief that she “knew it all along” in the past is that she also currently thinks

that she “knew it all along” and behaves accordingly. For example, Biais and Weber (2009)

show that individuals exhibit more hindsight bias when not explicitly reminded of their prior

beliefs, and that hindsight bias is correlated with lower performance among bankers.

The curse of knowledge is the failure of well-informed individuals to accurately anticipate

the judgments of less-informed agents (Camerer et al., 1989), as they are unable to ignore

their own additional information and imagine what it was like to be uninformed in the past.

Relatedly, Madarász (2012) suggests that people overestimate the extent to which others

know what they know.

In our context, individuals face the key inference problem of assessing how much weight

to apply to a source’s signals. A pre-screener infers source credibility first by forming first-

stage belief κc(sn) and then erroneously thinks she “knew it all along”: Having observed the

linear relationship between the posterior mean and the realized signal in a Gaussian environment, and the
procedure does not recover the joint posterior of the mean and error precision. The non-monotone reaction
to surprises in that paper occurs due to how the likelihood combines with a Bayesian’s prior beliefs when
signal precision is uncertain.
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data, she believes she had a prior belief of κc(sn) about credibility all along, and forms her

posterior beliefs using Bayes’ Rule over past and current signals. This creates behavior akin

to hindsight bias and the curse of knowledge, as a pre-screener fails to appropriately use her

prior about credibility.

The information processing mechanism of erroneously using updated beliefs to form pos-

terior beliefs was also conjectured by Lord, Ross and Lepper (1979, p.2106–2107). In an

experimental setting examining how subjects update beliefs in response to information about

capital punishment, they write that “Our subjects’ main inferential shortcoming, in other

words, did not lie in their inclination to process evidence in a biased manner...Rather, their

sin lay in their readiness to use evidence already processed in a biased manner to bolster the

very theory or belief that initially ‘justified’ the processing bias.”

As Rabin and Schrag (1999, p.46–47) discuss, the “sin” is analogous to a teacher who

first assigns a student a low grade because she unfavorably interprets an unclear answer from

the student as consistent with priors about low ability, but then goes on to erroneously use

the low grade as further or additional evidence of low ability. In our context, a pre-screener

errs in using the data to formulate a first stage belief about credibility before using that

belief as further evidence about the informativeness of signals when forming her posterior.

Pre-screening does assume agents have memory over previous signals, as pre-screeners

substitute first-stage updated beliefs κc(sn) for time-0 priors ωc
0. One can incorporate limited

memory by assuming that agents substitute κc(sn) for priors K-periods in the past, where

K > 0 represents some fixed window or time period (pre-screening corresponds to K = n).

Under this alternative, agents still believe credibility is a fundamental parameter they need

to know and double-dip the data. They mistakenly update on credibility in a first stage and

then act as if they had updated beliefs “all along” (for the past K signals). This leads to

qualitatively similar effects we describe later, such as belief path-dependence and endogenous

over- and under-reaction to signals.3

3One difference is with the extreme case of K = 0. This case preserves the first-stage update but makes
beliefs path-independent (though a form of over- and under-reaction continue to occur). However, we view
this as less consistent with our motivation for why agents would perform the first-stage update in the first
place: they think credibility is a fundamental parameter that they seek to learn first and then mistakenly
apply to all the data due to its essential importance.
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1.3 An example

An individual who is reasonably sure that he weighs 200 pounds steps on a scale with

unknown credibility, and the scale reads 300 pounds. A second reading also shows 300

pounds. What would a Bayesian and pre-screener infer after each signal?

In the following example, the Bayesian’s belief about weight moves progressively towards

300 pounds after each signal, even though he also believes the scale might not be reliable.

In contrast, a pre-screener’s belief about his weight moves very little towards 300 pounds,

and will move back towards 200 pounds after the second signal, as he concludes the scale

is almost certainly unreliable. The stark difference in this illustration occurs because the

pre-screener erroneously acts as if he had updated beliefs about credibility all along.

Let the individual’s weight θ ∈ {200, 300} pounds be the unknown state of the world,

and suppose the scale can read either 200 or 300. Both the Bayesian and pre-screener are

uncertain about the scale’s reliability (probability of reporting the truth), which can be high

(qH = 0.9, reliable) or low (qL = 0.5, noise). They share the same priors that their weight is

probably 200 pounds (ω200
0 = 0.98) and that the scale is probably reliable (ωH

0 = 0.80).

Given these beliefs, the first reading of {s1} = {300} is quite a surprise. The Bayesian’s

marginal posterior beliefs equal P u(θ = 200|{300}) = 0.91 and P u(c = H|{300}) = 0.48.

Even though the Bayesian’s posterior belief is that the scale is likely unreliable, he is careful

to reach his joint posterior beliefs by combining the likelihood of the data with his prior

belief that the scale is reliable, ωH
0 = 0.80, following Equation 1.

A pre-screener’s marginal posteriors equal P b(200|{300}) = 0.96 and P b(H|{300}) =

0.18. He reaches his joint posterior beliefs by erroneously combining the likelihood of the

data with an updated belief that the scale is likely unreliable, κH({300}) = 0.48 (Equations

2 and 3). This “double-dipping” leads him to update insufficiently towards the belief that

he weighs 200 pounds and too much in the direction that the scale is unreliable.

After a second reading, the Bayesian’s marginal posterior beliefs equal P u(200|{300, 300}) =

0.80 and P u(H|{300, 300}) = 0.29. Notice that the Bayesian’s belief about his weight pro-

gressively moves away from 200 pounds after each signal (from 0.98 to 0.91 to 0.80), even
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though his trust in the scale progressively drops.

In contrast, the pre-screener’s beliefs equal P b(200|{300, 300}) = 0.97 and P b(H|{300, 300}) =

0.01. His posterior probability that he weighs 200 pounds increases (from 0.96 to 0.97), which

is the wrong way relative to the Bayesian. This is because he erroneously thinks that his

updated belief that the scale is unreliable, κH({300, 300}) = 0.09, should apply to all of the

scale’s readings, leaving him fairly confident that he is 200 pounds, close to what he initially

believed. After all, if the scale is probably unreliable, then he thinks that all of its readings

are more questionable than he originally thought. Put yet another way, the pre-screener

thinks: I now think the scale is not credible, and my beliefs should reflect that any concern

I had about being overweight stemmed from not-credible readings. Therefore, he is now

(erroneously) less concerned about being overweight.

With more readings of 300 pounds, it takes the Bayesian only three signals to begin

inferring that the scale is likely reliable. His belief about weight progressively moves away

from 200 pounds with each signal. It takes the pre-screener six readings to begin believing

that the scale might be reliable, and during this time, his belief about weight is moving

towards 200 pounds—the wrong way—before reversing afterwards.

In Section 4.2, we generalize credibility to include the possibility that a signal is “slanted”

or “tilted” towards one state. Changing the above example so that the Bayesian and pre-

screener are uncertain about whether the scale is slanted towards reporting 300 pounds

yields qualitatively similar insights under several scenarios. Both examples illustrate that

the pre-screener’s error is to use the signals to infer source credibility first, and then use this

updated credibility belief to weight current and past signals when forming her posterior.

2 Pre-screening generates disagreement

In this section, we develop three key predictions about the effect of pre-screening on dis-

agreement. We maintain the common priors assumption throughout.

To fix ideas, consider the case where the prior on the state is neutral (ωθ
0 = 1/2) and the

agent observes only one signal (n = 1). No disagreement occurs, either between a Bayesian

14



and a pre-screener (P b(c, θ|sn) = P u(c, θ|sn)), or between two pre-screeners, because κc(sn) =

wc
0. This simple example shows that disagreement is not exogenously built into pre-screening.

With more signals, disagreement can occur. Consider disagreement between a Bayesian

and a pre-screener. The average disagreement about the state is zero as long as both agents

begin with the prior that both states are equally likely. This is because beliefs about states

are ex-ante symmetric around A and B and are ex-ante independent of reliability. However,

there is ex-post disagreement along realized sequences: the average squared difference in

marginal posteriors about θ is strictly positive. Similarly, average disagreement between

two pre-screeners about the state is zero even though pre-screeners disagree along realized

sequences. Furthermore, pre-screeners disagree even if they see signal sequences that share

the same information content, so long as they see signals in different order.

Proposition 1 (Ex-ante disagreement about θ) Let all agents share a common prior

of (ωA
0 , ω

H
0 ) = (1/2, ω̂) for any ω̂ ∈ (0, 1), and suppose this represents the true distribution

from which nature draws (θ, ω̂).

1. Average disagreement is zero

E0[P
b(θ = A|sn) − P u(θ = A|sn)] = 0, where the expectation E0 is taken over this

distribution and all signal sequences sn.

2. Average squared disagreement is positive

(a) E0

[(
P b(θ = A|sn)− P u(θ = A|sn)

)2]
> 0, where the expectation E0 is taken over

this distribution and all signal sequences sn.

(b) E0

[(
P b(θ = A|sJn)− P b(θ = A|sMn )

)2]
> 0, where the expectation E0 is taken

over the distribution of all pairs of signal sequences {sJn, sMn } that have identical

information content but where signals occur in different order.

2.1 First impressions about credibility generate disagreement

The key reason disagreement occurs is that a pre-screener’s final posteriors depend on signal

order. “First impressions about credibility” matter: early signals color the interpretation of
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later signals through their effect on beliefs about credibility.

For example, suppose ωθ
0 = 1/2 and consider the signal sequences {a, a, b} and {b, a, a},

which have identical information content. A Bayesian’s posterior beliefs are the same irre-

spective of order: P u(c, θ|{a, a, b}) = P u(c, θ|{b, a, a}). But for a pre-screener, P b(c, θ|{a, a, b}) ̸=

P b(c, θ|{b, a, a}), since κc({a, a, b}) ̸= κc({b, a, a}). The reason the κc values differ is as fol-

lows. After each new signal, the pre-screener substitutes first-stage updated beliefs about

credibility κc for prior ωc
0. This repeated process means that each new first-stage updated

belief includes previous substitutions for ωc
0. Thus, early signals accumulate in κc and dis-

proportionately influence beliefs. Since signal order affects κc, it also affects posteriors and

generates disagreement among pre-screeners who see the same set of signals in different order.

To characterize first impressions about credibility, we first define the following terms:4

Definition 3 (Optimism and trust) Fix the information content with na > nb without

loss of generality. Given a signal sequence sn,

1. A pre-screener is optimistic if Prb(θ = A|sn) > Pru(θ = A|sn), and pessimistic if

strictly less than (<).

2. A pre-screener overtrusts if Prb(c = H|sn) > Pru(c = H|sn), and under-trusts if

strictly less than (<).

We show that there is a unique sequence of signals that generates the maximal over- and

under-trust for any fixed information content:

Proposition 2 (First impressions about credibility) Let (ωA
0 , ω

H
0 ) = (1/2, ω̂) for any

ω̂ ∈ (0, 1). Consider a given combination of na a signals and nb b signals, where na > nb ≥ 1.

The sequence in which na consecutive a signals is followed by nb consecutive b signals generates

the maximal degree of trust in the source. The sequence in which nb pairs of (a, b) signals is

followed by na − nb “a” signals generates the minimal degree of trust in the source.
4Because there is no sense in which A is a better outcome than B until Section 3, a more precise definition

would replace optimism with “overestimates the likelihood of A” and pessimism with “underestimates the
likelihood of A.” We choose “optimistic” and “pessimistic” purely for brevity.
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Proposition 2 shows that, holding information content fixed, pre-screeners erroneously

believe that the timing of signal reversals is itself informative, in that a pattern of few (more)

initial reversals inflates (deflates) their beliefs about source reliability. Holding information

content fixed, re-ordering the signals so that the longest consistent streak appears first gen-

erates the most trust in the source, while alternating the signals first generates the least

trust. In contrast, a Bayesian’s final beliefs are independent of signal order.

There is an asymmetry between mixed versus identical signals: mixed signals are worse

news for credibility than identical signals are good news. For example, in the extreme case

of qL = 1/2 and qH ≈ 1, an (a, b) pair almost immediately rules out the possibility of a

high type, while (a, a) is less indicative of high reliability since the low type also could have

produced it by chance. Early mixed signals lead agents to overweight this more-informative

negative news for credibility whereas early identical signals lead agents to overweight less-

informative positive news, making negative first impressions more robust.

In Proposition 3, we show that this asymmetry affects the degree to which first impres-

sions persist in the limit. Enough mixed signals can always unravel a positive first impression.

In contrast, arbitrarily high levels of persistence can occur for negative first impressions.

Proposition 3 (Long-run persistence and asymmetry of first impressions) Let (ωA
0 , ω

H
0 ) =

(1/2, ω̂) for any ω̂ ∈ (0, 1). Positive first impressions can eventually be undone, but negative

first impressions may be arbitrarily persistent:

1. Positive first impressions: Suppose the agent observes na ≥ 1 consecutive a signals,

followed by m ≥ 1 pairs of (b, a) signals: sn = (a, a, a, . . . , b, a, b, a). For a given na,

there exists m̂ such that when m > m̂, the pre-screener under-trusts and is pessimistic

about the most likely state for any (qL, qH).

2. Negative first impressions: Suppose the agent observes nb ≥ 1 pairs of (a, b) signals,

followed by m ≥ 1 consecutive a signals: sn = (a, b, a, b, . . . , a, a, a). For a given nb ≥ 1

and m ≥ 1, there exists some q̌ > 1
2

and q̂ < 1 such that the pre-screener under-trusts

and is pessimistic about the most likely state if (qL, qH) satisfies one of the following

sufficient conditions: (a) q̂ ≤ qL < qH , or (b) qL ≤ q̌ and qH > q̂.
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2.2 Disagreements about states and credibility are correlated

Learning errors such as confirmation bias (Rabin and Schrag, 1999; Fryer et al., 2016) can

also generate path-dependent beliefs where first impressions matter. Proposition 2 shows

that, in our theory, first impressions about credibility drive disagreement. This leads to a

key implication, distinct from several other theories, that disagreement about states and

credibility are endogenously correlated.

Proposition 4 (Correlated disagreement) Suppose all agents share a common prior

(ωA
0 , ω

H
0 ) = (θ̂, ω̂) for any θ̂ ∈ (0, 1) and ω̂ ∈ (0, 1).

1. Suppose a pre-screener and a Bayesian observe a signal sequence sJn with na > nb. The

pre-screener under-trusts the source if and only if she is pessimistic about the more likely

state: P b(c = H|sJn) < P u(c = H|sJn) if and only if P b(θ = A|sJn) < P u(θ = A|sJn). The

pre-screener overtrusts the source if and only if she is optimistic in beliefs about the more

likely state: P b(c = H|sJn) > P u(c = H|sJn) if and only if P b(θ = A|sJn) > P u(θ = A|sJn).

2. Suppose two pre-screeners, J and M , observe signal sequences sJn and sMn that have

identical information content but different signal orders, where and na > nb.

Agent J trusts the source more than agent M does if and only if agent J believes

state A is more likely than agent M does: P b(c = H|sJn) > P b(c = H|sMn ) if and

only if P b(θ = A|sJn) > P b(θ = A|sMn ). Likewise, Agent J trusts the source less than

agent M if and only if agent J believes state A is less likely than agent M does:

P b(c = H|sJn) < P b(c = H|sMn ) if and only if P b(θ = A|sJn) < P b(θ = A|sMn ).

The intuition is as follows. Consider first disagreement between a Bayesian and a pre-

screener (Part 1), and suppose the signals objectively favor state A (na > nb). If a pre-

screener under-trusts a source, then she will be pessimistic about A, because she places too

little weight on the information content. Conversely, if the pre-screener is pessimistic about

A, she under-trusts the source.

Two pre-screeners also have correlated disagreement about the state and credibility (Part

2). Suppose again that the signals objectively favor state A. A pre-screener J who trusts
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the source more (less) than pre-screener M must also believe A is more (less) likely, and vice

versa. These effects occur even when the two pre-screeners share common priors (Proposition

4 holds for any ωθ
0 ∈ (0, 1)). Thus, our framework generates disagreement even when agents

share identical information content, learning errors, and priors.

2.3 Endogenous over- and underreaction

Pre-screeners endogenously over- and under-react to signals, depending on how signals in-

teract with their first-stage beliefs about credibility.

To build intuition, we contrast more closely with theories of confirmation bias and over-

confidence. Confirmation bias is the tendency for individuals to interpret new information

as confirming existing beliefs (Lord, Ross and Lepper, 1979; Griffin and Tversky, 1992;

Rabin and Schrag, 1999; Fryer, Harms and Jackson, 2016). In Rabin and Schrag (1999),

agents under-react to contradictory information because they probabilistically flip signals

that oppose current beliefs about the state. With pre-screening, the key error is in how

signals distort beliefs about credibility, irrespective of whether they confirm or contradict

beliefs about the state. This can generate both over- and under-reaction to contradictory

information, as we show below.

Overconfidence is the tendency for agents to over-react to signals that they believe are

more informative than objectively warranted (e.g., Hirshleifer, 2015; Scheinkman and Xiong,

2003). Pre-screening explains why agents are endogenously overconfident in some sources

while underconfident in others, based on first impressions of credibility (Proposition 2).

Gervais and Odean (2001) endogenize overconfidence through a form of self-attribution bias

so that successful financial traders become overconfident in their financial trading skills. In

our framework, no actions are required, and underconfidence can also occur.

Proposition 5 formalizes these distinctions by characterizing when pre-screeners over- and

under-react to new information. Consider the following thought experiment: Suppose a pre-

screener begins with prior ωA
0 = 1/2, observes signals sn from one source, and has posterior

ωb
n. To contrast with confirmation bias, assume that the existing evidence sn objectively

strictly suggests A, which implies that {sn, sn+1} weakly suggests A. Does the pre-screener’s
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beliefs about the state over- or under-react in response to sn+1, compared to a Bayesian

endowed with prior ωb
n?

If the next signal sn+1 is a (b) and thus confirms (contradicts) beliefs, we say the agent

has over-reacted (under-reacted) if P b[θ = A|{sn, sn+1}] > P u[θ = A|prior = ωb
n], and under-

reacted (over-reacted) if P b[θ = A|{sn, sn+1}] < P u[θ = A|prior = ωb
n]. As a benchmark, an

agent in Rabin and Schrag (1999) under-reacts to sn+1 if it contradicts current beliefs, and

correctly updates if it confirms current beliefs.

A pre-screener may over- or under-react to both confirmatory and contradictory news

relative to the endowed Bayesian, depending on how the signal affects the first-stage trust

(κH({sn, sn+1})) in the combined evidence from the signal source ({sn, sn+1}). We discuss

the intuition briefly here and save details for the Appendix and the proofs.

Proposition 5 (Over- and under-reaction to new information) Let (ωA
0 , ω

H
0 ) = (1/2, ω̂)

for any ω̂ ∈ (0, 1). Let sn be a sequence of n observed signals, let sn+1 be the (n+1)th observed

signal, and let ωb
n equal the pre-screener’s joint posterior after the sequence sn. WLOG, let

the number of a’s be greater than or equal to the number of b’s in {sn, sn+1}.

1. Relative to Endowed Bayesian:

(a) P b[θ = A|{sn, sn+1}] > P u[θ = A|prior = ωb
n, {sn+1}] if {sn, sn+1} has strictly

more a’s than b’s and κH({sn, sn+1}) > κH(sn),

(b) P b[θ = A|{sn, sn+1}] < P u[θ = A|prior = ωb
n, {sn+1}] if {sn, sn+1} has strictly

more a’s than b’s and κH({sn, sn+1}) < κH(sn),

(c) P b[θ = A|{sn, sn+1}] = P u[θ = A|prior = ωb
n, {sn+1}] if {sn, sn+1} has an equal

number of a’s and b’s or κH({sn, sn+1}) = κH(sn).

Furthermore, κH({sn, sn+1}) ≥ κH(sn) if and only if P u(c = H|{sn, sn+1}) ≥ ωH
0 , with

equality holding if and only if P u(c = H|{sn, sn+1}) = ωH
0 .

2. P b[c, θ|{sn, sn+1}] = P b[c, θ|prior = ωb
n, {sn+1}] if and only if P b[c|sn] = ωc

0.
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For signals that confirm beliefs (sn+1 = a), agents will over-react if first-stage trust is

high (Part 1a) and under-react if first-stage trust is low (Part 1b), relative to the endowed

Bayesian. The over-reaction is broadly consistent with confirmation bias and over-confidence,

while the under-reaction is the opposite. The intuition for the under-reaction is that, even

though the signal is confirmatory and the pre-screener and endowed Bayesian begin from the

same beliefs, κH({sn, sn+1}) may be too low relative to κH({sn}) (the effective prior over the

informativeness of {sn, sn+1} for the endowed Bayesian), weighing down the pre-screener’s

perceived informativeness of the total evidence {sn, sn+1}, which supports A.

For signals that contradict beliefs (sn+1 = b), pre-screeners will under-react when first-

stage trust is high (Part 1a), and over-react when first-stage trust is low (Part 1b). The

under-reaction here is consistent with how a Rabin and Schrag (1999) agent behaves, while

the over-reaction is the opposite. We label this over-reaction the undercutting effect. In this

case, contradictory information undercuts the first-stage belief κH({sn, sn+1}) and excessively

undermines the history of evidence {sn, sn+1} (which supports A) in the second step, relative

to the endowed Bayesian. Thus, contradictory signals can lead pre-screeners to wonder, “Can

I trust anything they said?”, and over-react. Experimentally, De Filippis et al. (2017) find

evidence that individuals over-react to contradictory signals, citing a similar mechanism.

Section 3 shows how prices of an asset can crash due to this effect if bad cash flow news

causes agents to doubt the credibility of a source who previously reported good news.

Part 2 of Proposition 5 shows that the effect of a new signal sn+1 on a pre-screener’s

beliefs cannot be summarized simply by its effect on ωb
n. This is because the pre-screener

re-evaluates all the evidence {sn, sn+1} in light of the new first-stage belief κ({sn, sn+1}). In

contrast, a Bayesian updates identically irrespective of whether she is endowed with a belief

or observes a history of signals consistent with that belief: P u[θ = A|{sn, sn+1}] = P u[θ =

A|prior = ωu
n, {sn+1}], where ωu

n equals the Bayesian posterior generated by sn.

In the Internet Appendix (Proposition 8) we characterize two sufficient conditions for

which pre-screeners exhibit over- or underreaction, regardless of signal order. Underreaction

can occur even when new information confirms beliefs if the proportion of a’s is similar to

that of b’s, irrespective of signal order, because pre-screeners distrust the source too much.
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3 Speculative trade, bubbles, and crashes

We characterize how pre-screening generates excessive speculative trade, price bubbles, and

crashes compared to Bayesians with heterogeneous priors about credibility.

3.1 Speculative trade

We adopt a trading environment analogous to Harris and Raviv (1993). There are two

groups of risk-neutral pre-screeners, X and Y , who trade, at dates t = 1, 2, . . . , T , shares of

a risky asset that make a single random payment of R immediately after the end of date

T . If the state is A, then the payoff is R = 1. If the state is B, then the payoff is R = 0.

There are a fixed number of shares available normalized to 1 with no short-sales. There

is a risk-free asset whose return is zero. As in Harris and Raviv (1993), we assume Y has

sufficient market power each period to make a take-it-or-leave-it offer to X, which focuses

the analysis to comparisons of the two groups’ beliefs. Traders “agree to disagree” about

their beliefs.

At each date t = 1, 2, . . . T , both groups X and Y first observe a common public signal

st ∈ {a, b}, after which they update their beliefs and can trade at price pt. Each signal st
is independent and identically distributed conditional on the true payoff, and comes from a

single source. Let the cumulative public signal path as of period t be denoted st = (s1, . . . , st)

where na,t and nb,t are the number of a’s and b’s in st, respectively.

Endowed Bayesians: heterogeneous priors

XEB, Y EB

Pre-trade Period:
X observes sXpre, Y observes sYpre

Trading Period:
public signals sT = {s1, s2, . . . , sT}

T0−τ

time (t)

R realizes

Pre-screeners: common prior beliefs
X,Y ω−τ ωX

pre, ω
Y
pre

ωXEB

0 ≡ ωX
pre, ω

Y EB

0 ≡ ωY
pre

Figure 2: Timeline of trading game.
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We ask: How much do X and Y trade, and how does this compare to trade between

Bayesians? As a starting point, note that if all traders had common priors just before trade

opens at t = 1, there would be trivially no trade for any st regardless of whether they are

Bayesians or pre-screeners, as all agents observe the same signals in the same order during

the trading period.

To make things interesting, we assume that pre-screeners observe signals during a set

of “burn-in” periods before trade opens. Assume that there is a set of τ pre-trade periods

starting in period (−τ +1) < 0 and ending at the end of period 0 during which pre-screeners

see signals before trade opens. X and Y share common priors ω−τ before they see any

signals. During the pre-trade periods, X and Y separately observe one signal per period

cumulating in signal path sXpre and sYpre, which generates beliefs ωX
pre and ωY

pre at the end of

period 0, before trade opens in period 1. We assume sXpre is a permutation of sYpre (same

information content but different orders). For example, X might observe sXpre = (a, a, b, b)

while Y observes sYpre = (a, b, a, b) in the pre-trade periods for τ = 4. Figure 2 illustrates.

The assumption that sXpre is a permutation of sYpre along with common priors ω−τ ensures

that any trade between pre-screeners is due to differently-experienced first impressions of

credibility early in their life prior to time 1, not differences in objective information or priors.

To simplify, we focus on the case where: 1) the common prior is that each state is equally

likely, and 2) pre-period signals do not change this belief but result in disagreement about

credibility. Formally, suppose: 1) the common prior is ω−τ = ωθ
−τω

c
−τ with ωθ

−τ = 1/2, and

2) that nj
a,pre = nj

b,pre for j ∈ {X,Y }, where nj
a,pre is the number of a signals observed in sjpre.

This makes beliefs just before trade start have the property that P b(H|sXpre) ̸= P b(H|sYpre),

but P b(A|sXpre) = P b(A|sYpre) = 1/2. Intuitively, the pre-screener understands that all signals

come from the same source, and realizes that na,pre = nb,pre is equivalent to having no new

information about the state, even if she has incorrect beliefs about credibility.5

To make apples-to-apples comparisons, we compare trade in two cases: 1) trade between

X and Y as pre-screeners, and 2) trade between XEB and Y EB, two “Endowed Bayesians”
5This intuition holds more generally: Given any prior on the state, observing na = nb = k signals in any

order will return the pre-screener back to this belief, just as it does with a Bayesian (see Lemma 2 in the
proof of Proposition 6).
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who start time 1 with heterogeneous priors equal to ωX
pre and ωY

pre, the beliefs of the pre-

screeners at the end of the pre-trade period. The key result is that there is more trade

between X and Y than XEB and Y EB, and that this extra trade is “speculative trade” as

defined by Harrison and Kreps (1978). We provide the formal statement and sketch the

reasoning below, saving full details for the Appendix proof.

Proposition 6 (Speculative trade) Suppose two groups of pre-screeners X and Y have

observed pre-period signal paths sXpre and sYpre, where nj
a,pre = nj

b,pre ≥ 2 for signal paths

j ∈ {X,Y }, and then observe public signal path st. Suppose two groups of Bayesians XEB

and Y EB are endowed with priors that coincide with the pre-screeners’ posterior beliefs after

the pre-period, ωXEB

0 = ωX
pre and ωY EB

0 = ωY
pre, and then observe st.

The price in the game with Endowed Bayesians is pt = EXEB

t (R), and the price in the

game with pre-screeners is pt = EX
t (R). Whenever groups XEB and Y EB trade, groups X

and Y trade. Moreover, there exist paths where X and Y trade when XEB and Y EB do not:

1. Trade cannot occur without disagreement: If sXpre = sYpre, then neither pre-screeners nor

endowed Bayesians trade.

2. If P b(H|sXpre) ̸= P b(H|sYpre), then the only threshold at which XEB and Y EB trade is

na,t = nb,t. Pre-screeners X and Y also trade at the threshold na,t = nb,t.

3. (Speculative trade, part a) If P b(H|sXpre) > P b(H|sYpre), then pre-screeners also trade

when the following necessary conditions are satisfied:

(a) State A is objectively more likely: na,t > nb,t.

(b) Given sXpre and st, group X over-reacts to confirming news: A necessary condition

is P u(H|{sXpre, st, st+1 = a}) > ωH
−τ . A sufficient condition is that group X

under-reacts to disconfirming news: P u(H|{sXpre, st, st+1 = b}) ≥ ωH
−τ .

When the necessary and sufficient conditions are satisfied given sXpre and st, then there

exists at least one signal path sYpre such that Y holds the asset instead of X.
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4. (Speculative trade, part b) If P b(H|sXpre) < P b(H|sYpre), then pre-screeners also trade

when the following necessary conditions are satisfied:

(a) State B is objectively more likely: na,t < nb,t.

(b) Given sXpre and st, group X over-reacts to disconfirming news: A necessary con-

dition is P u(H|{sXpre, st, st+1 = a}) < ωH
−τ . A sufficient condition is that group

X under-reacts to confirming news: P u(H|{sXpre, st, st+1 = b}) ≤ ωH
−τ .

When the necessary and sufficient conditions are satisfied given sXpre and st, then there

exists at least one signal path sYpre such that Y holds the asset instead of X.

3.1.1 Bayesian benchmark

Endowed Bayesians {XEB, Y EB} begin t = 1 with priors ωXEB

0 = ωX
pre and ωY EB

0 = ωY
pre,

respectively. If these priors were the same, they would not trade (Proposition 6 Part 1).

Since instead we have P b(H|sXpre) ̸= P b(H|sYpre) but P b(A|sXpre) = P b(A|sYpre) = 1/2, agents

have heterogeneous priors about the credibility of the signal source but otherwise agree about

the (marginal) probability of the state.

The environment is very close to that in Harris and Raviv (1993), where Bayesians have

common priors on the state but have fixed heterogeneous beliefs about the credibility of the

signal source. Traders learn about credibility in our setup, but as in Harris and Raviv (1993),

trade only occurs when beliefs about the fundamental value of R “cross”, which occurs at

any period t at the threshold na,t = nb,t (Proposition 6 Part 2). We now discuss why.

As in Harris and Raviv (1993, Lemma 2), the asset’s price is pt = EXEB

t (R|{sXpre, st}), or

group XEB’s reservation price, as Y EB makes a take-it-or-leave-it offer to XEB (Lemma 3 in

the Appendix). Group Y EB buys from XEB in period t if WTP Y EB

t ≥ pt, where WTP Y EB

t is

Y EB’s willingness to pay at time t (we assume Y EB holds the asset if equality holds, wlog).

This willingness to pay is WTP Y EB

t = max{EY EB

t (pt+1), E
Y EB

t (R)}, where EY EB

t (pt+1) is

Y EB’s belief about the next period’s price, and EY EB

t (R) is Y EB’s belief about fundamentals.

Consider EY EB

t (pt+1). Since pt+1 will be XEB’s reservation price after observing st+1,

Y EB needs to forecast what XEB will believe next period about R. To do this, Y EB needs
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to compute how she thinks XEB’s beliefs will evolve according to XEB’s learning rule, under

Y EB’s beliefs about the distribution of st+1: EY EB

t (pt+1) = EY EB

t (EXEB

t+1 (R)). Intuitively,

Y EB “agrees to disagree” with XEB about credibility, with Y EB believing she has the correct

model and that XEB has the wrong model, and forecasts XEB’s “wrong” belief (from the

standpoint of Y EB) based on Y EB’s “correct” belief about what signal will realize next.

If Y EB believes that fundamental value is lower than XEB does at time t, then: (1)

EY EB

t (R) < pt, and (2) EY EB

t (pt+1) < pt, as Y EB thinks the next signal is less likely to be

good news relative to XEB so that XEB’s beliefs will drift downward. Therefore, WTP Y EB

t <

pt and Y EB does not hold the asset. Once st+1 realizes, Y EB will buy from XEB if the signal

leads them to agree (na,t+1 = nb,t+1), as then EY EB

t+1 (R) ≥ pt+1 and EY EB

t+1 (pt+2) ≥ pt+1.

Analogous reasoning applies if Y EB thinks fundamental value is higher than XEB at t.

Overall, trade only occurs when beliefs about fundamental value cross.

3.1.2 Pre-screening

Given any pre-period signals (sXpre,sYpre) and public signal path st, pre-screeners {X,Y } trade

any time EB’s {XEB, Y EB} trade, but also trade when EB’s do not.

We continue to assume that agents “agree to disagree” about learning. In Harris and

Raviv (1993), it is common knowledge that each agent understands all other agents’ learning

models and can anticipate other agents’ beliefs, but views her own model as correct and

rational and others’ models as necessarily incorrect and irrational. The closest analog in

our setting is that X and Y view themselves individually as rational and Bayesian, but

understands and anticipates the other group’s pre-screened beliefs. As we discuss later,

this assumption is also internally consistent with hindsight bias and external experimental

evidence.

If X and Y observe the same pre-period signals in the same order, there is no trade since

all agents share exactly the same beliefs during the trading period (Proposition 6 Part 1).

To make things interesting, suppose pre-period signals are permutations of each other as

described above. Pre-screeners trade whenever their beliefs about fundamental value cross

(na,t = nb,t), which is also when EB’s trade (Part 2).
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However, pre-screeners engage in extra “speculative behavior” defined by Harrison and

Kreps (1978): “an investor may buy the stock now so as to sell it later for more than he

thinks it is actually worth, thereby reaping capital gains.”6 For example, Y might choose to

hold the asset even when she thinks the fundamental value is lower than X does. Even if

Y thinks the next signal is less likely to be good cash flow news than X, Y may also think

that X will over-react to such news, leading her to forecast an upward drift in the price.

Proposition 6 Parts 3 and 4 show that speculative trade can occur in two cases. In Part

3, Y believes the source is less credible than X does after the pre-trade signals, so Y ’s belief

about fundamental value will be lower than X’s if they observe the same good cash flow news

after trade opens. However, Y may still buy the asset speculatively: EY
t (pt+1) > EX

t (R) = pt

even though EY
t (R) < EX

t (R) = pt, so long as disagreement between X and Y is not too

large and there are enough a’s relative to b’s. The reason is that Y (correctly) believes X

will over-react to further good cash flow news (using Proposition 5 Part 1a), and Y is not

too skeptical about prospects of such further news, leading Y to expect an upward drift in

the price. However, X believes they are Bayesians in the future and fail to see this upward

drift. Part 4 is an analogous case, when Y believes the source is more credible than X does

after the pre-trade signals and bad cash flow news arrives after trade opens.

Overall, the implication of Proposition 6 is that the extent of speculative trade in the game

with pre-screeners, and therefore the amount of excess trading volume beyond what occurs in

the game with Endowed Bayesians, depends on the extent of disagreement about credibility

and how disagreement originates. In the game with pre-screeners, initial disagreement about

credibility originates from differing first impressions of credibility from signals prior to trade,

ωX
pre ̸= ωY

pre. Even though we endow identical disagreement in the game with Bayesians,

ωjEB

0 = ωj
pre for j ∈ {X,Y }, and even though all traders see a common signal path when

trade is open, outcomes differ across the two games because of how new signals interact with

pre-screeners’ first impressions of credibility.

The assumption that each group “agrees to disagree” by viewing themselves as individu-
6In contrast, Harris and Raviv (1993) use the term speculation to describe the fact that their agents trade

because they are betting against others’ different models.
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ally rational but understanding and anticipating other groups’ pre-screened beliefs is strong.

We make three observations. First, the idea that each agent understands all other agents’

models but views their own (objectively wrong) model as correct is intrinsic to the idea that

agents in fact disagree with other agents’ models.7 Second, the assumption that individuals

view themselves as rational is internally consistent with hindsight bias. Having observed any

signal path st, the pre-screener thinks she is a Bayesian whose prior was always κc(st), as in

Equation 3. Because she treats κc(st) as her prior, naturally she also thinks that κc(st) will

remain her prior in the future and thus fails to understand that she pre-screens. Third, this

assumption is also consistent with external experimental evidence in psychology (Pronin et

al., 2002; Ehrlinger et al., 2005) and economics (Danz et al., 2017; Fedyk, 2017) about the

“bias blind spot”, the idea that individuals recognize cognitive and motivational biases much

more in others than in themselves.8

3.2 Bubbles and crashes

Let pbt be the price when the pre-screeners trade with each other, and pEB
t be the price when

Endowed Bayesians trade with each other. Proposition 7 considers when over- and under-

valuation occur, and whether trading generates bubbles and crashes. Since the definition of

a bubble can be subjective, we tie our hands and ask whether our model produces the six

features of bubbles outlined by Barberis (2018, p.88): (i) existence of initial good news about

asset cash flows, (ii) a sharp rise in asset prices followed by a reversal, (iii) abnormal volume

as the price of the asset rises, (iv) highly extrapolative expectations about returns during

the episode, (v) some sophisticated investors increasing asset exposure during the price rise,

and (vi) media reports that the asset is overvalued during the price rise.

We take (i) as given and see to what extent trading between pre-screeners and trading
7To correctly calculate group X’s beliefs, agent Y must also be aware of the signal path sXpre that X

observed in the pre-period. This is also strong but in keeping with the common knowledge assumption.
8West et al. (2012) find that the degree of cognitive sophistication does not seem to attenuate the bias

blind spot. Danz et al. (2017) show that individuals exhibit the bias blind spot with respect to information
projection - while an agent naively believes that others are privy to her private information, she also correctly
anticipates that others misperceive that their private information is more widely known than it actually is.
Fedyk (2017) shows that individuals exhibit the bias blind spot with respect to self-control.
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between Endowed Bayesians can generate features (ii)-(vi). Figure 1 provides a specific

numerical example, which we discuss in narrative form to build intuition. We consider the

case where trading begins with X trusting the signal source more than Y does but where X

and Y agree about the state based on signals in the pre-trade period. During the trading

period, public signals arrive with a string of good cash flow news as required by feature (i)

(a string of 10 a’s), followed by bad cash flow news (a string of 10 b’s).

The game begins with Y holding the asset in period 0. In period 1, good cash flow news

arrives and X thinks R = 1 is more likely than Y does, leading Y to sell the asset to X, in

both the pre-screening and EB frameworks. Good cash flow news arrives through period 10,

and through this point, prices rise sharply and trade occurs in the pre-screening game, both

of which are abnormal relative to the EB game (features ii and iii). The trade in period 3

reflects group Y increasing asset exposure (feature v): Y speculatively “rides the bubble”

and buys the asset from X even though the price is higher than Y ’s belief about fundamental

value (Proposition 6 Part 3). As more good cash flow news arrives, prices rise substantially

beyond the price in the EB game. The reason is that agents develop too much trust in the

source and become too over-optimistic about cash flows.

Bad cash flow news begins to arrive after period 10. Prices in the pre-screening game

remain high and are resistant to falling relative to the EB game, analogous to feature (vi).

This is because X thinks the history of good cash flow news provided by the source is

extremely credible and under-reacts to the bad cash flow news, behavior that is akin to

confirmation bias (Proposition 5 Part 1a). As enough bad cash flow news comes in, X begins

to doubt whether they believe anything the source reported before, due to the contradiction

with the previously-reported good cash flow news (the “undercutting effect” of Proposition

5 Part 1b). Anticipating this possibility, Y sells the asset to X in period 13. Bad news

continues to arrive, and prices steeply decline in periods 16-18 as X’s belief about source

credibility collapses. In period 20, X and Y share the same beliefs about the state, and Y

buys the asset back from X.

In sum, the paths depicted in Figure 1 in the pre-screening game reasonably constitute

a bubble and crash. The narrative fits all but feature (iv) of the Barberis (2018) criteria for
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a bubble. Prices rise more steeply than in the EB game, and additional speculative trade

occurs. Furthermore, our model can produce steep price declines resembling a crash. By

way of comparison, the Internet Appendix shows that confirmation bias does not produce

such sudden price declines, because agents always under-react to contradictory information.

Proposition 7 generalizes these results beyond the specific signals and parameters con-

sidered in the Figure. Part 1 shows over-valuation (under-valuation) occurs when consistent

(inconsistent) good news about cash flows leads the pre-screener to trust (distrust) the source

so much that she over-reacts (under-reacts) to additional good news. Part 2 shows that this

can accelerate into bubbles and crashes: when overvaluation occurs, rises and subsequent

falls in prices are steeper when traders are pre-screeners rather than Bayesian. Over-reaction

to good cash flow news generates the bubble; as in Figure 1, prices initially under-react to

bad cash flow news before beliefs over-react and prices crash. Part 3 shows that when such

a pricing bubble occurs, there exists at least one pre-path sYpre such that speculative trade

occurs during the bubble (agents “ride the bubble”).

Proposition 7 (Bubbles and crashes) Suppose two pre-screeners X and Y have observed

pre-period signal paths sXpre and sYpre, where nj
a,pre = nj

b,pre ≥ 2 for signal paths j ∈ {X,Y },

and then public signal path st. Suppose two Bayesians XEB and Y EB are endowed with

priors that coincide with the pre-screeners’ posterior beliefs after the pre-period, ωXEB

0 = ωX
pre

and ωY EB

0 = ωY
pre, and then observe st.

Let pbt be the price when the pre-screeners trade with each other, and pEB
t be the price

when Endowed Bayesians trade with each other.

1. (Over- and under-valuation) Wlog, suppose na,t > nb,t. Under-valuation (pbt < pEB
t )

occurs if and only if P b(H|{sXpre, st}) < P u(H|prior = ωX
pre, st). Over-valuation (pbt >

pEB
t ) occurs if and only if P b(H|{sXpre, st}) > P u(H|prior = ωX

pre, st).

2. (Bubbles and crashes) Consider a path sT such that na,t > nb,t for t ∈ (0, T ) with

na,T = nb,T . If there exists t̂ ∈ (0, T ) such that pb
t̂
> pEB

t̂
> 1/2 where pk

t̂
≡ max pkt for

k ∈ {b, EB}, the average price change of pbt must be strictly greater than the average

price change of pEB
t for t ∈ [0, t̂] (bubbles) and t ∈ [t̂, T ] (crashes). Moreover, the
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pre-screener exhibits initial under-reaction relative to the endowed Bayesian after the

peak: |pb
t̂+1

− pb
t̂
| < |pEB

t̂+1
− pEB

t̂
|.

3. (“Riding the bubble”) Given any signal path sT such that pb
t̂
> pEB

t̂
> 1/2, there exists

at least one signal path sYpre such that speculative trade between pre-screeners occurs

(e.g., Y holds the asset at t = t̂, at least).

4 Extensions and discussion

4.1 Can new information sources resolve disagreement?

Our model makes contrasting predictions about how signals from existing versus new sources

resolve disagreements. Lemma 2 in the proof of Proposition 6 shows that, when signals

come from a single source, the pre-screener’s marginal beliefs about the state will equal the

Bayesian’s and disagreement will be “resolved” if the source reports the same number of a

and b signals, na = nb = k. This is because the pre-screener understands that all signals

originate from the same source just like a Bayesian.

Instead of receiving all signals from one source, suppose an agent receives signals from a

second source, so there are now three sources of uncertainty: the state, and the credibilities of

sources 1 and 2. Pre-screening extends naturally from one to multiple sources. First, a pre-

screener updates on the joint belief about source credibilities, using Bayes’ Rule. Second,

she uses this updated first-stage belief to form a joint posterior belief on the state and

credibilities. In the Internet Appendix, we ask: assuming source 1 and source 2 are ex-ante

identical, if source 1 first reports k > 1 signals of a, and then source 2 reports k signals of b,

does source 2 resolve disagreement between a pre-screener and a Bayesian?

Proposition 9 in the Internet Appendix shows that the answer is, surprisingly, no. A

Bayesian with ωA
0 = 1/2 infers that the sources cannot both be highly reliable. Despite both

sources delivering internally consistent messages, their signals contradict each other, and the

Bayesian understands that there is insufficient evidence to deduce which source is wrong. As

a result, she concludes that neither state is more likely than the other.
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However, the positive impression from the first source’s consistency inflates the pre-

screener’s trust in the early source and deflates trust in the later source relative to the

Bayesian inference. Like the Bayesian, the pre-screener concludes that the sources cannot

both be highly reliable, but incorrectly concludes that the first source is more credible than

the second and therefore differentially weights information in favor of the first. This asym-

metry means that the second source cannot completely unravel the first source’s signals.

Furthermore, this asymmetry persists in the limit: Information that should lead to more

uncertainty about credibilities and no change in beliefs about the state “backfires” and in-

stead leads the pre-screener to be more sure of and more wrong in her beliefs along both

dimensions when observing opposing information from different sources sequentially.

Proposition 9 suggests that signals that should objectively deflate price bubbles may fail

to do unless they come from a source whose previous signals supported prices. Empirical

evidence in other contexts, particularly political science, suggests that rumors are stubbornly

resistant to debunking by outsiders (Berinsky, 2012). Attempts at correcting false beliefs

can backfire and harden beliefs (Nyhan and Reifler, 2010), and are more successful when

they include retractions from the original source (Simonsohn, 2011; Levine and Valle, 1975).

4.2 What if sources are slanted?

So far, we have considered credibility to be the source’s underlying ability to determine the

state, which we also call reliability. However, there are several settings where signals from

a source may also contain a tilt, or slant, towards a given state. For example, analysts,

financial advisors, or other experts may be too sanguine about future cash flows. The agent

may not know the direction or magnitude of slant, and may try to infer it from the reports.

One can generalize credibility to be a triplet c = (qc, αc, γc) ∈ C ⊂ [1/2, 1)× [0, 1)× [0, 1)

that captures both reliability and slant. An expert who has a slant towards A has type

c = (qc, αc, 0) and reports a when the true state is A with probability P (st = a|c, A) =

qc + (1 − qc)αc. Either the private signal is a (with probability qc), or the private signal

is b and she flips it to a (with conditional probability αc and total probability (1 − qc)αc).

The probability that she reports b when the true state is B is P (st = b|c, B) = qc(1 − αc).
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Analogously, a B-slanted expert with type c = (qc, 0, γc) has P (st = a|c, A) = qc(1− γc) and

P (st = b|c, B) = qc + (1− qc)γc. Experts can only be slanted one way: αc × γc = 0.9

Proposition 10 in the Internet Appendix shows that, unlike in the case of unknown

reliability alone, the presence of slant can lead the pre-screener’s beliefs to be sufficiently

wrong that she becomes certain of the state after observing a set of signals from a single

expert, even when the evidence should not objectively change beliefs about the state from

priors. To illustrate, consider the particularly stark case in which a single expert sends k

identical a signals, followed by k identical b signals. Suppose that there are two possible

expert types (c ∈ {v, w}), where reliability is identical and the degree of slant is symmetric

(α = γ ≥ 0): v = (q, α, 0), w = (q, 0, γ). Assume that each state and each type is equally

likely ex-ante: ωA
0 = 1/2 and ωc

0 = 1/2.

The Bayesian realizes that there is no new information about either the state or the

expert’s slant. In contrast, the pre-screener can strongly believe that these signals reveal

the state. If a pre-screener becomes convinced too early that a source is A-slanted, she will

interpret subsequent b’s as more indicative of state B than warranted, and vice versa. This

implies that if pre-screener J first observes an a streak and then observes a b streak, while

a pre-screener M observes the b streak before the a streak, they will have opposing beliefs

about the state, even if both see the same number of a’s and b’s. Proposition 11 in the

Internet Appendix shows that insights from Section 4.1 also hold in the presence of slant.

4.3 Comparison with other frameworks

Hong and Stein (2007) organize explanations for disagreement into gradual information flow,

limited attention, and heterogeneous priors. Xiong (2013) adds overconfidence and distorted

information transmission. Our work emphasizes erronenous learning about the credibility of

sources, which we argue captures important features of real-world disagreement.10

Gradual information flow and inattention. A key feature of the gradual information
9In the scale example of Section 1.3, similar insights hold when the scale is possibly slanted; e.g., C =

{v = (0.9, 0, 0), w = (0.9, 0, 0.8)}.
10We refer the reader to Section 2.3 for a comparison of pre-screening with confirmation bias.
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flow model of Hong and Stein (1999) is that investors pay attention to only a subset of

signals, analogous to the broader literature on limited attention (Hirshleifer and Teoh, 2003;

Peng and Xiong, 2006; Hirshleifer, 2015). Recent work on inattention includes Schwartzstein

(2014), who considers a setting where agents learn to selectively pay attention to variables

after evaluating their predictive ability. Kominers et al. (2016) assume that agents trade off

attention costs and belief accuracy, and screen out signals with low decision value.

In contrast, a key feature of our model is that agents disagree about the credibility of

signals that they all see. Recent empirical evidence suggests that this is an important feature

of real-world disagreement. Cookson and Niessner (2016) provide evidence that differences

in signal interpretation is an important component of overall disagreement about firm stock

prices. Kandel and Zilberfarb (1999), Lahiri and Sheng (2008) and Patton and Timmermann

(2010) provide evidence that differences in information sets do not explain disagreement

among macroeconomic forecasters, and instead emphasize the importance of differences in

how forecasters interpret information. During the dot-com boom, internet stocks were a key

focus of media attention (Bhattacharya et al., 2009).

Heterogeneous priors, learning, and overconfidence. Harris and Raviv (1993),

Kandel and Pearson (1995) and Scheinkman and Xiong (2003) employ heterogeneous learning

to explain speculative trading and asset price bubbles. In these models, agents are Bayesian

but are certain in their exogenously-endowed belief of which likelihood function generated

the data. Acemoglu et al. (2016), along with Sethi and Yildiz (2016) and Suen (2004), study

Bayesian agents who learn about uncertain credibility with heterogeneous priors and find

that beliefs may not converge in the long-run.

Our framework does not rely on the exogenous endowment of heterogeneous priors or

fixed beliefs to generate disagreement. Section 3 outlines how this generates distinct predic-

tions in a trading game. More broadly, our model provides an explanation for why some

agents trust signals more than others even when they start with common priors and observe

common objective information. Even when agents begin with common priors, experimental

evidence suggests that individuals may disagree when Bayesians should agree (Andreoni and

Mylovanov, 2012). This approach complements the heterogeneous priors approach (Morris,
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1995) by providing a theory for the origins of such heterogeneous priors.

Strategic motives and persuasion. A large literature documents the importance

of strategic motives among financial analysts, advisors, and financial media (Lin and Mc-

Nichols, 1998; Hong and Kubik, 2003; Tetlock, 2014). Gentzkow and Shapiro (2006) and

Mullainathan and Shleifer (2005) emphasize that the media may slant news to build a rep-

utation or to cater to consumers’ preferences for beliefs. Several of these models assume

that Bayesian receivers begin with heterogeneous priors or preferences. Intuitively, without

such heterogeneity, media slant generates biased beliefs, but not disagreement. We raise

the possibility that erroneous learning about credibility leads to demand distortions that

complement the strategic motive of information suppliers in generating disagreement.

Bounded rationality. A distinguished set of models seeks to explain behavior using

bounded rationality, the idea that agents follow simple heuristics due to cognitive limitations

(Simon, 1957; Gigerenzer and Selten, 2002; Selten, 2002). In contrast, our approach is in the

spirit of work that seeks to model systematic conceptual errors that lead to deviations from

Bayes’ Rule, even though they may involve more literal computations in the model. Enke and

Zimmermann (forthcoming) and Enke (2017) emphasize the importance of conceptual errors

rather than computational mistakes. Examples of other work where non-Bayesian agents

employ large calculations include Brunnermeier and Parker (2005), where agents calculate

optimal beliefs, and Rabin (2002), where agents mis-perceive draws from an urn that occur

with replacement as occurring without replacement, requiring agents to keep track of what

has been drawn.11

Koçak (2017) also studies uncertainty about source reliability and the state, but assumes

that agents not only have a form of hindsight bias, but also do not understand correlations.

After seeing each signal, they form separate marginal posteriors on credibility and the state

sequentially, before combining them in a posterior that assumes the two are independent.

Economically, this is as if the agent forgets the source of information each period even
11As further examples, agents in Bénabou and Tirole (2002) forget bad news, but also think about whether

any information lost affects the value of new information. Agents in Kominers et al. (2016) process the
decision value of signals before updating. Fryer et al. (2016) consider a case where agents optimally consider
how to interpret ambiguous signals, trading off short-run and long-run informational value.
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though she is attempting to learn the source’s credibility. This assumption of “correlation

neglect” (Ortoleva and Snowberg, 2015; DeMarzo et al., 2003) drives several predictions. For

example, an agent in Koçak (2017) who observes na = nb signals thinks A is more likely if

the a signals come first, because the correlation between credibility and the state is reset

to zero each period. A pre-screener does not commit this error because she understands

correlations. Instead, our core focus is on the idea that agents double-dip the data when

credibility is uncertain, and we show that this idea generates disagreement, trading, and

price bubbles, without the additional assumption of correlation neglect.

5 Conclusion

The key predictions of pre-screening are that: 1) Differing first impressions about credibility

generate disagreement; 2) Disagreement about states of the world and credibility are endoge-

nously correlated, and 3) Pre-screeners can over- and under-react depending on how signals

interact with beliefs about credibility. In a trading game, pre-screening can generate price

bubbles and crashes along with speculative trades, with traders “riding the bubble” along

the way, even in an environment where Bayesians with heterogeneous priors would not do

so (Harris and Raviv, 1993). New information sources may not resolve disagreement when

they should, and agents can become certain of incorrect states if sources are slanted.

Our work opens a new perspective on the origins of disagreement that emphasizes how

erroneous learning about the credibility of information sources endogenously explains joint

disagreement about credibility and an unknown state of the world. This may play a role

in explaining why rational learning may not best describe several of today’s highest-pitched

disagreements where opposing sides vehemently disagree about both the subject and the

credibility of such sources. For example, in the debate about climate change, individu-

als compare each other’s beliefs to a “religious mantra” (Bell, 2011) and an “intellectual

stance…uncomfortably close to Hitler’s” (Snyder, 2015). Future research on how errors in

learning about the credibility of information sources may help explain polarizing disagree-

ments spanning topics in finance, climate change, economics, medicine, and politics.
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Appendix

Proof of Proposition 1
1. No average disagreement

Define D(sn) = P b(θ = A|sn)−P u(θ = A|sn) as the ex-post realized disagreement after
any signal path. The proposition is that E0[D(sn)] = 0, where the expectation E0 is
taken by the econometrician over the common prior of states and reliability, which we
assume reflects the true ex-ante distribution of (θ, c). Note that the common prior on
states and reliability generate a common distribution on the probability of any given
signal path.
Divide the set of all possible signal paths {sn} into two groups: one group {gn} where
the first signal is a and another group {hn} where the first signal is b. Because there
are two states, there are the same number of signal paths in each group, and the union
of these two groups equals {sn}.
It is clear that taking any signal path gn and flipping all the a’s to b and b’s to a

defines a one-to-one and onto mapping F of {gn} into {hn}. This mapping has two
properties:

(a) P (gn|q, θ) = P (F (gn)|q,−θ) ∀(c, θ), and
(b) P b(θ = A|F (gn))− P (θ = A|F (gn)) = −

(
P b(θ = A|gn)− P (θ = A|gn)

)
∀gn,

where −θ is the opposite state as θ. The first property says that the probability of
the flipped signal sequence is the same as the original signal sequence, once the true
state is flipped. The second property can be re-written as D(F (gn)) = −D(gn) and
says that disagreement under the flipped signal path equals the opposite disagreement
under the original signal path. Intuitively, these properties follow because, starting
from a neutral prior about the state which is independent from credibility, the model
is symmetric in A and B irrespective of the true source type.
More precisely, the first property follows because:

P (gn|c, A) = qn
g
a

c (1− qc)
ng
b = q

nh
b

c (1− qc)
nh
a = P (F (gn))|c, B),

where ng
θ, n

h
θ represent the number of times a signal indicating state θ appears in signal

sequence gn and F (gn), respectively, and ng
a = nh

b , n
g
b = nh

a by construction. Similarly,
P (gn|c, B) = P (F (gn)|c, A).
To prove the second property, note that, for the Bayesian, P (θ = A|gn) = P (θ =

B|F (gn)) = 1 − P (θ = A|F (gn)). The first equality follows from applying the first
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property and ωA
0 = ωB

0 = 0.5 to Equation 4, noting that a Bayesian has constant
βc(F (gn)).
Now consider the pre-screener. Given any sequence gn, let gi and hi be the i-th elements
of gn and F (gn), respectively. Clearly, hi is the flip of gi, and P (gi|c, θ) = P (hi|c,−θ),
as both equal qc if gi = θ and 1 − qc if gi = −θ. Therefore,

∑
θ (
∏m

i=1 P (gi|c, θ))ωθ
0 =∑

θ (
∏m

i=1 P (hi|c, θ))ωθ
0 for any m due to the summation over both values of θ. Apply-

ing this to Equation 5, βc(gn) = βc(F (gn)). From Equation 4, P b(θ = A|gn) = P b(θ =

B|F (gn)) = 1− P b(θ = A|F (gn)), and the second property follows.
We claim that E0[D(sn)|c = c] = 0 for any c ∈ {L,H}. To be clear, this conditional
expectation is taken over the econometrician’s information set, but the true c remains
unknown to the Bayesian and pre-screener. The proposition then follows due to the
tower property of conditional expectations.
Let c be given. Observe that:

E[D(sn)|c = c] = ωA
0

∑
{gn}

P (gn|c, A)D(gn) +
∑
{hn}

P (hn|c, A)D(hn)


+ ωB

0

∑
{gn}

P (gn|c, B)D(gn) +
∑
{hn}

P (hn|c, B)D(hn)

 .

The two properties, along the fact that F is one-to-one and onto, imply:∑
{hn}

P (hn|c, A)D(hn) = −
∑
{gn}

P (gn|c, B)D(gn)∑
{hn}

P (hn|c, B)D(hn) = −
∑
{gn}

P (gn|c, A)D(gn).

With ωA
0 = ωB

0 , the claim follows.

2. Expected squared disagreement

(a) The corollary V ar0[D(sn)] > 0 follows because D(F (gn))
2 = D(gn)

2.
(b) Let ns

a be the number of a signals and ns
b be the number of b signals in sequence s.

Consider any two sequences xn and yn with identical information content (nx
a = ny

a

and nx
b = ny

b). Let βs
c correspond to sequence s ∈ {xn,yn} and c ∈ {L,H}. Let

sJn = xn and sMn = yn. Without loss of generality, let na > nb.
It is sufficient to show that P b(θ = A|xn) ̸= P b(θ = A|yn) for at least two
sequences xn and yn with identical information content (nx

a = ny
a = na and
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nx
b = ny

b = nb). Consider two sequences such that na ≥ nb, where the first
j = na − nb signals are the same and n − 2 ≥ j ≥ 1, the two sequences differ in
the j+1 and j+2 signals, and then all subsequent signals are identical (i.e., terms
j + 3 through n). Let xj+1 = a, xj+2 = b, yj+1 = b, and yj+2 = a. Suppose the
first j terms contain k a’s and j − k b’s, where k ≥ j − k. As shown in the proof
of Proposition 2, P b(c = H|xn) > P b(c = H|yn) when k > j−k. As shown in the
preceding proof of correlated disagreement between two prescreeners, this implies
that P b(θ = A|xn) > P b(θ = A|yn). Thus, P b(θ = A|xn) ̸= P b(θ = A|yn) for at
least two sequences xn and yn with identical information content (nx

a = ny
a = na

and nx
b = ny

b = nb).

Proof of Proposition 2
Rearrange Equations 2 and 3 to obtain:

P b(c, θ|sn) =
βc(sn) (

∏n
t=1 P (st|c, θ))ωθ

0ω
c
0∑

c βc(sn)
∑

θ (
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0

, (4)

where βc(sn) is defined as:

βc(sn) ≡
(∑

θ P (s1|c, θ)ωθ
0

)
×
(∑

θ P (s1|c, θ)P (s2|c, θ)ωθ
0

)
× . . .×

(∑
θ P (s1|c, θ)P (s2|c, θ) . . . P (sn|c, θ)ωθ

0

)
=

n∏
m=1

(∑
θ

(
m∏
t=1

P (st|c, θ)

)
ωθ
0

)
, (5)

and where βc(∅) ≡ 1.
Let ns

a be the number of a signals and ns
b be the number of b signals in sequence s.

Consider any two sequences xn and yn with identical information content (nx
a = ny

a = na)

and nx
b = ny

b = nb). Let βs
c correspond to sequence s ∈ {xn,yn} and c ∈ {L,H}. Without

loss of generality, let na > nb.
By direct comparison of the posteriors on source reliability, a necessary and sufficient

condition for sequence x to generate more trust than sequence y (i.e., P b(c = H|xn) >

P b(c = H|yn)) is βx
Hβ

y
L − βx

Lβ
y
H > 0, where βs

c corresponds to sequence s ∈ {xn,yn} and
q ∈ {L,H}. Consider two sequences such that na ≥ nb, where the first j = na − nb signals
are the same and n− 2 ≥ j ≥ 1, the two sequences differ in the j + 1 and j + 2 signals, and
then all subsequent signals are identical (i.e., terms j+3 through n). Let xj+1 = a, xj+2 = b,
yj+1 = b, and yj+2 = a. (For example, sequence 1 could be aababaa and sequence 2 could
be aabbaaa - here j = 3, na = 2, nb = 1.) Then βx

Hβ
y
L − βx

Lβ
y
H > 0 whenever na > nb and

βx
Hβ

y
L − βx

Lβ
y
H = 0 whenever na = nb. To see this, note that, given the general expression

for βs
c , all of the terms are identical for βx

c and βy
c except term j + 1. Suppose the first j

terms contain k a’s and j − k b’s, where k ≥ j − k. This implies that when ωθ
0 = 1/2, then
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βx
Hβ

y
L − βx

Lβ
y
H ≥ 0 if

(
qk+1
H (1− qH)

j−k + (1− qH)
k+1qj−k

H

)(
qkL(1− qL)

j−k+1 + (1− qL)
kqj−k+1

L

)
−(

qk+1
L (1− qL)

j−k + (1− qL)
k+1qj−k

L

)(
qkH(1− qH)

j−k+1 + (1− qH)
kqj−k+1

H

)
≥ 0

(qH − qL)
(
(qHqL)

2k−j − ((1− qH)(1− qL))
2k−j

)
+ (qH + qL − 1)

(
(qH(1− qL))

2k−j − (qL(1− qH))
2k−j

)
≥ 0.

We can verify that both terms are positive when k > j − k and zero when k = j − k. Thus,
P b(c = H|xn) > P b(c = H|yn) when k > j − k. Using this result, we can iteratively apply
it to order sequences of fixed composition in decreasing trust by starting with the sequence
with the least reversals (all a’s followed by all b’s), and iteratively switching the first b and
last a to generate sequences where the first b moves forward. E.g., aaaabb generates more
trust than aaabab, which generates more trust than aabaab which generates more trust than
abaaab. Then, aaabba generates more trust than aababa than abaaba, where aaabab generates
more trust than aaabba and abaaab generates more trust than abaaba. We can keep doing
this (and applying the result that P b(c = H|xn) > P b(c = H|yn) when k > j − k) to
establish that aaaabb generates the most trust and ababaa generates the least trust.

Proof of Proposition 3
1. Positive first impressions

Suppose the agent observes na ≥ 1 consecutive a signals, followed by m pairs of (b, a)
signals: sn = (a, a, a, . . . , b, a, b, a). This sequence generates12:

βc(sn) =
(
1
2

)na+m
[qc(1− qc)]

m(m+1) ([qna−1
c + (1− qc)

na−1][qna
c + (1− qc)

na ])
m
(
∏na

i=1(q
i
c + (1− qc)

i))

(6)
∂βc(sn)

∂qc
=
(
1
2

)na+m
[qc(1− qc)]

m(m+1) ([qna−1
c + (1− qc)

na−1][qna
c + (1− qc)

na ])
m−1

(
∏na

i=1(q
i
c(1− qc)

i))

(mqc(1− qc) ((na − 1)(qna−2
c − (1− qc)

na−2)(qna
c + (1− qc)

na) + na(q
na−1
c + (1− qc)

na−1)(qna−1
c − (1− qc)

na−1))

+(qna−1
c + (1− qc)

na−1)(qna
c + (1− qc)

na)
(
m(m+ 1)(1− 2qc) + qc(1− qc)

∑na

i=1
i(qi−1

c −(1−qc)i−1)
qic+(1−qc)i

))
.

(7)

12We use the property that a product of multiple factors is given by d
dx

(∏k
i=1 fi(x)

)
=(∏k

i=1 fi(x)
)(∑k

i=1
f ′
i(x)

fi(x)

)
.
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Note that Equation (7) can be re-written as

∂βc(sn)

∂qc
=
(
1
2

)na+m
m[qc(1− qc)]

m(m+1) ([qna−1
c + (1− qc)

na−1][qna
c + (1− qc)

na ])
m−1

(
∏na

i=1(q
i
c(1− qc)

i)) (Z),

where ∂βc(sn)
∂qc

is negative whenever Z is negative and qc ∈ (1
2
, 1), and

Z = qc(1− qc)
(
(na − 1)(qna−2

c − (1− qc)
na−2)(qna

c + (1− qc)
na ) + na(q

na−1
c + (1− qc)

na−1)(qna−1
c − (1− qc)

na−1)
)

+ (qna−1
c + (1− qc)

na−1)(qna
c + (1− qc)

na )

(
(m+ 1)(1− 2qc) +

(
1

m

)
qc(1− qc)

na∑
i=1

i(qi−1
c − (1− qc)i−1)

qic + (1− qc)i

)
.

For given na, Z is more than linearly decreasing in m. Thus, there exists m̂, defined
by Z(m̂) = 0, such that ∂βc(sn)

∂qc
< 0 for all qc ∈ (1

2
, 1) when m > m̂. Thus for any

given na, there exists m̂ such that when m > m̂, the pre-screener under-trusts and is
pessimistic about the most likely state for any (qL, qH).

2. Negative first impressions
Suppose the agent observes nb ≥ 1 pairs of (a, b) signals, followed by m ≥ 1 consecutive
a signals, where m ≥ 1: sn = (a, b, a, b, . . . , a, a, a). This sequence generates:

βc(sn) =

(
1

2

)nb

(qc(1− qc))
n2
b

(
m∏
i=1

1

2

(
qi+nb
c (1− qc)

nb + qnb
c (1− qc)

i+nb
))

(8)

=

(
1

2

)nb+m

(qc(1− qc))
nb(nb+m)

(
m∏
i=1

(qic + (1− qc)
i)

)
. (9)

∂βc(sn)

∂qc
=

(
1

2

)nb+m

(qc(1− qc))
nb(nb+m)−1

(
m∏
i=1

(qic + (1− qc)
i)

)
(
nb(nb +m)(1− 2qc) + qc(1− qc)

m∑
i=1

(
i(qi−1

c − (1− qc)
i−1

qic + (1− qc)i

))
(10)

Evaluating Equation (10) when m = 1 (i.e., na = nb+1 where nb ≥ 1), ∂βc(sn)
∂qc

|m=1 < 0.
Thus, by Proposition 4, the pre-screener under-trusts and is pessimistic about the
mostly likely state, A, when she observes a sequence sn = (a, b, a, b, . . . , a, b, a) where
na = nb + 1. Further, evaluating Equation (10) when m = 2 (i.e., na = nb + 2 where
nb ≥ 1), ∂βc(sn)

∂qc
|m=1 < 0. Thus, the pre-screener still under-trusts and is pessimistic

about the most likely state, A, when sn = (a, b, a, b, . . . , a, a) where na = nb + 2 for all
nb ≥ 1. Further, evaluating Equation 10 when m = 3 (i.e., na = nb + 3 where nb ≥ 1),
∂βc(sn)

∂qc
|m=3 ≤ 0 with equality at qc = 1

2
only if nb = 1. Since the third term of Equation
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(10) is decreasing in nb for all qc ∈ (1
2
, 1], then ∂βc(sn)

∂qc
|m=3 < 0 for all nb > 1. Thus, the

pre-screener still under-trusts and is pessimistic about the most likely state, A, when
sn = (a, b, a, b, . . . , a, a) where na = nb + 3 for all nb ≥ 1. Therefore, there exists some
m∗ > 3 such that ∂βc(sn)

∂qc
< 0 for all m < m∗, which implies that the pre-screener will

under-trust for m < m∗. Moreover, since the third term of Equation (10) is decreasing
in nb for all qc ∈ (1

2
, 1], then m∗ is increasing in nb.

From Equations (9) and (10), we can see that ∂
∂qc

(βc(sn)) = 0 when qc ∈ {1
2
, 1},

βc(sn) > 0 when qc =
1
2
, and βc(sn) = 0 when qc = 1. Since βc(sn) = 0 when qc = 1,

∂βc(sn)
∂qc

|qc=1 = 0, and βc(sn) ≥ 0 for any qc ∈ [0, 1], then there exists some threshold
q̂ < 1 such that ∂βc(sn)

∂qc
< 0 and βc(sn) < βc(sn)

∣∣∣qc= 1
2

for all qc > q̂. Therefore,
βL(sn) > βH(sn) so the pre-screener under-trusts and is pessimistic about the most
likely state if q̂ ≤ qL < qH .
Moreover, using the fact that βc(sn) = 0 when qc = 1/2, then

∂2βc(sn)

∂q2c

∣∣∣qc= 1
2
= βc(sn)

(
−8nb(nb +m) +

m∑
i=1

4i(i− 1)

)

= βc(sn)

(
−8nb(nb +m) +

4

3
m(m− 1)(m+ 1)

)
. (11)

Thus there exists some threshold 1
2
< q̌ < 1 such that ∂βc(sn)

∂qc
> 0 for all qc < q̌ when

∂2βc(sn)
∂q2c

∣∣∣qc= 1
2

> 0. Note that q̌ > 1
2

for any given nb if m is sufficiently large that
∂2βc(sn)

∂q2c

∣∣∣qc= 1
2
> 0. Thus the pre-screener also under-trusts and is pessimistic about the

most likely state if qL ≤ q̌ and qH > q̂ where q̌ ≥ 1
2
. Note that we have already shown

directly that the pre-screener under-trusts and is pessimistic for m = 1, 2, 3 regardless
of qL, qH , and nb.

Proof of Proposition 4
1. Lemma 1 For all ωθ

0 ∈ (0, 1) and ωc
0 ∈ (0, 1), κH(sn) < wH

0 if and only if βH(sn) <

βL(sn). Likewise, κH(sn) > wH
0 if and only if βH(sn) > βL(sn). κH(sn) = wH

0 if and
only if βH(sn) = βL(sn).
Proof. For any given sequence of signals sn = (s1, s2, . . . , sn), κc(sn) can be re-written
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as

κc(sn) =
βc(s

n−1)ωc
0

∑
θ (
∏n

t=1 P (st|c, θ))ωθ
0∑

c βc(s
n−1)

∑
θ (
∏n

t=1 P (sn|c, θ))ωθ
0ω

c
0

=

(∏n−1
m=1

(∑
θ (
∏m

t=1 P (st|c, θ))ωθ
0

))
ωc
0

∑
θ (
∏n

t=1 P (st|c, θ))ωθ
0∑

c

(∏n−1
m=1

(∑
θ (
∏m

t=1 P (st|c, θ))ωθ
0

))∑
θ (
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0

=
βc(sn)ω

c
0∑

c βc(sn)ω
c
0

.

Thus, the statement is shown for sn = (s1, s2, . . . , sn).13

From Equation (4), the pre-screener’s posterior that the source is high reliability is
lower than the Bayesian’s if and only if κH(sn) < wH

0 . Lemma 1 shows that this is
only the case if and only if βH(sn) < βL(sn). Thus, βH(sn) < βL(sn) if and only if
P b(c = H|sn) < P u(c = H|sn).
Consider P b(θ = A|sn) < P u(θ = A|sn):

P b(θ = A|sn) < P u(θ = A|sn)
ωA
0

∑
c βc(sn) (

∏n
t=1 P (st|c, A))ωc

0∑
c βc(sn)

∑
θ (
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0

<
ωA
0

∑
c (
∏n

t=1 P (st|c, A))ωc
0∑

c

∑
θ (
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0

,

which is true if and only if

0 < ω
A
0 (1 − ω

A
0 )ω

H
0 (1 − ω

H
0 )(βL(sn) − βH (sn))

((
n∏

t=1

P (st|H,A)

)(
n∏

t=1

P (st|L,B)

)
−
(

n∏
t=1

P (st|H,B)

)(
n∏

t=1

P (st|L,A)

))

0 < ω
A
0 (1 − ω

A
0 )ω

H
0 (1 − ω

H
0 )(βL(sn) − βH (sn))

(
q
na
H

(1 − qH )
nbq

nb
L

(1 − qL)
na − q

nb
H

(1 − qH )
naq

na
L

(1 − qL)
n
b

)
0 < ω

A
0 (1 − ω

A
0 )ω

H
0 (1 − ω

H
0 )(βL(sn) − βH (sn)) (qH (1 − qH )qL(1 − qL))

nb
(
(qH (1 − qL))

na−nb − ((1 − qH )qL)
na−nb

)
,

which is true when na > nb since qH > qL. Clearly, P u(A|sn) > ωA
0 only if na > nb,

so A is (objectively) more likely state than originally believed. Note that if na = nb,
then P b(A|sn) = Pru(A|sn) regardless of the pre-screener’s beliefs on the source’s
reliability. Thus, for any na > nb set of signals and for all ωθ

0 ∈ (0, 1), under-trust in
source reliability implies pessimism in beliefs about the more likely state: If P b(H|sn) <
P u(H|sn), then P b(A|sn) < P u(A|sn). Likewise, P b(A|sn) < P u(A|sn) if and only if
βH(sn) < βL(sn) when na > nb, which implies that P b(H|sn) < P u(H|sn). Reversing
the inequalities yields that overtrust in source reliability implies optimism in beliefs
about the more likely state, and vice versa.

13If the signals are observed simultaneously (e.g., in period 1), then the above argument applies analogously,
where βc(s

t−1) = βc(∅) = 1 instead. Thus, κH(sn) < wH
0 implies βH(sn) < βL(sn) and vice versa. Likewise

when the unreliability reverses or when the reliability holds.

48



2. Let ns
a be the number of a signals and ns

b be the number of b signals in sequence s.
Consider any two sequences xn and yn with identical information content (nx

a = ny
a and

nx
b = ny

b). Let βs
c correspond to sequence s ∈ {xn,yn} and c ∈ {L,H}. Let sJn = xn

and sMn = yn. Without loss of generality, let na > nb.
By direct comparison of the posteriors on source credibility, a necessary and sufficient
condition for P b(H|xn) > P b(H|yn) is βx

Hβ
y
L − βx

Lβ
y
H > 0. By direct comparison of

the posteriors on the most likely state (which is A because na > nb), a necessary
and sufficient condition for P b(A|xn) > P b(A|yn) is βx

Hβ
y
L − βx

Lβ
y
H > 0. Since the

same condition βx
Hβ

y
L − βx

Lβ
y
H > 0 is required for both P b(H|xn) > P b(H|yn) and

P b(A|xn) > P b(A|yn), then disagreement between pre-screeners is correlated. That is,
P b(H|xn) > P b(H|yn) if and only if P b(A|xn) > P b(A|yn). Clearly reversing all the
inequalities applies as well.

Proof of Proposition 5
1. Let sn be a sequence of n observed signals with na a’s and nb b’s, let sn+1 be the

(n+ 1)th observed signal, and let ωb
n equal the pre-screener’s joint posterior after the

sequence sn.
First, note that each joint belief on the state and credibility for the prior ωb

n, denoted
ωcθ
n , is given by

ωcθ
n ≡ P b(c, θ|{sn}) =

(
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0βc(sn)∑

θ

∑
c (
∏n

t=1 P (st|c, θ))ωθ
0ω

c
0βc(sn)

, (12)

where

βc(sn) =
n∏

m=1

(∑
θ

(
m∏
t=1

P (st|c, θ)

)
ωθ
0

)
. (13)

Thus, the Bayesian’s posterior belief given the biased prior is

P u(θ = A|prior = ωb
n, {sn+1}) =

ωA
0

∑
c

(∏n+1
t=1 P (st|q, A)

)
ωc
0βc(sn)∑

θ ω
θ
0

∑
c P (sn+1|c, θ) (

∏n
t=1 P (st|c, θ))ωc

0βc(sn)
.

In contrast, the pre-screener’s posterior belief after observing {sn, sn+1} is

P b(θ = A|{sn, sn+1}) =
ωA
0

∑
c

(∏n+1
t=1 P (st|q, A)

)
ωc
0βc({sn, sn+1})∑

θ ω
θ
0

∑
c

(∏n+1
t=1 P (st|c, θ)

)
ωc
0βc({sn, sn+1})

,
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where

βc({sn, sn+1}) =
n+1∏
m=1

(∑
θ

(
m∏
t=1

P (st|c, θ)

)
ωθ
0

)
= βc(sn)

(∑
θ

(
n+1∏
t=1

P (st|c, θ)

)
ωθ
0

)
.

(14)
Substituting all of the preceding information into P b(ω = A|{sn, sn+1}) > P u(ω =
A|prior = ωb

n, {sn+1}), the inequality is only satisfied if

ωA
0 (1− ωA

0 )ωH
0 (1− ωH

0 )βL(sn)βH(sn)

((∑
θ

(
n+1∏
t=1

P (st|H, θ)

)
ωθ
0

)
−
(∑

θ

(
n+1∏
t=1

P (st|L, θ)
)

ωθ
0

))
︸ ︷︷ ︸

X((
n+1∏
t=1

P (st|H,A)

)(
n+1∏
t=1

P (st|L,B)

)
−
(

n+1∏
t=1

P (st|H,B)

)(
n+1∏
t=1

P (st|L,A)

))
︸ ︷︷ ︸

Y

> 0, (15)

Without loss of generality, suppose that na ≥ nb.
If sn+1 = a, then {sn, sn+1} has na + 1 a’s and nb b’s. Then the term Y is given by

qna+1
H (1− qH)

nb(1− qL)
na+1(qL)

nb − (1− qH)
na+1(qH)

nb(qL)
na+1(1− qL)

nb

= [qHqL(1− qH)(1− qL)]
nb [(qH(1− qL))

na−nb+1 − (qL(1− qH))
na−nb+1]

Thus if sn+1 = a, then

Y (sn+1 = a)


> 0 if na + 1 > nb

= 0 if na + 1 = nb

< 0 if na + 1 < nb.

.
If sn+1 = b, then {sn, sn+1} has na a’s and nb + 1 b’s. Then the term Y is given by

qna
H (1− qH)

nb+1(1− qL)
na(qL)

nb+1 − (1− qH)
na(qH)

nb+1(qL)
na(1− qL)

nb+1

= [qHqL(1− qH)(1− qL)]
nb [(qH(1− qL))

na−nbqL(1− qH)− ((1− qH)qL)
na−nbqH(1− qL)]

Thus if sn+1 = b, then

Y (sn+1 = b)


> 0 if na > nb + 1

= 0 if na = nb + 1

< 0 if na < nb + 1.

Thus, Y is positive if {sn, sn+1} has more a’s than b’s, Y is negative if {sn, sn+1} has
more b’s than a’s, and Y is zero if {sn, sn+1} has an equal number of a’s and b’s.

50



Moreover, note that κc(sn) ≡ βc(sn)ωc
0∑

c βc(sn)ωc
0
. Then Equation (14) implies that κH({sn, sn+1}) >

κH(sn) if and only if
ωH
0 (1−ωH

0 )βH(sn)βL(sn)
((∑

θ

(∏n+1
t=1 P (st|H, θ)

)
ωθ
0

)
−
(∑

θ

(∏n+1
t=1 P (st|L, θ)

)
ωθ
0

))
>

0, which is the requirement that X > 0.
In other words,

X


> 0 if and only if κH({sn, sn+1}) > κH(sn)

= 0 if and only if κH({sn, sn+1}) = κH(sn)

< 0 if and only if κH({sn, sn+1}) < κH(sn).

From above, we can see that the sign of Equation (15) depends on the sign of XY .
Putting everything together, then

P b(θ = A|{sn, sn+1}) = P u(θ = A|prior = ωb
n, {sn+1}) if either (1) {sn, sn+1} has an

equal number of a’s and b’s or (2) κH({sn, sn+1}) = κH(sn),
P b(θ = A|{sn, sn+1}) > P u(θ = A|prior = ωb

n, {sn+1}) if (3) {sn, sn+1} has more a’s
than b’s and κH({sn, sn+1}) > κH(sn) or (4) {sn, sn+1} has more b’s than a’s and
κH({sn, sn+1}) < κH(sn),

P b(θ = A|{sn, sn+1}) < P u(θ = A|prior = ωb
n, {sn+1}) if (5) {sn, sn+1} has more a’s

than b’s and κH({sn, sn+1}) < κH(sn) or (6) {sn, sn+1} has more b’s than a’s and
κH({sn, sn+1}) > κH(sn).

Note that the statement P b(θ = A|{sn, sn+1}) > P u(θ = A|prior = ωb
n, {sn+1}) if

{sn, sn+1} has more a’s than b’s and κH({sn, sn+1}) > κH(sn) is equivalent to the
statement P b(θ = A|{sn, sn+1}) < P u(θ = A|prior = ωb

n, {sn+1}) if {sn, sn+1} has
more b’s than a’s and κH({sn, sn+1}) > κH(sn). Likewise, the statement P b(θ =

A|{sn, sn+1}) > P u(θ = A|prior = ωb
n, {sn+1}) if {sn, sn+1} has more b’s than a’s and

κH({sn, sn+1}) < κH(sn) is equivalent to the statement P b(θ = A|{sn, sn+1}) < P u(θ =

A|prior = ωb
n, {sn+1}) if {sn, sn+1} has more a’s than b’s and κH({sn, sn+1}) < κH(sn).

Therefore, we can state the proposition assuming that the number of a’s be greater
than or equal to the number of b’s in {sn, sn+1} without loss of generality.

Moreover, note that Pru(H|{sn, sn+1}) =
ωH
0

∑
θ(
∏n+1

t=1 P (st|c,θ))ωθ
0∑

c ω
c
0

∑
θ(
∏n+1

t=1 P (st|c,θ))ωθ
0

. From this defini-
tion, we know that Pru(H|{sn, sn+1}) > ωH

0 if and only if((∑
θ

(∏n+1
t=1 P (st|H, θ)

)
ωθ
0

)
−
(∑

θ

(∏n+1
t=1 P (st|L, θ)

)
ωθ
0

))
> 0, which is the require-
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ment that X > 0. Thus,

κH({sn, sn+1}) > κH(sn) if and only if Pru(q = H|{sn, sn+1}) > ωH
0

κH({sn, sn+1}) = κH(sn) if and only if Pru(q = H|{sn, sn+1}) = ωH
0

κH({sn, sn+1}) < κH(sn) if and only if Pru(q = H|{sn, sn+1}) < ωH
0 .

For a more detailed explanation of the intuition for these results, please refer to the
Internet Appendix.

2. First, note that P b[c, θ|{sn, sn+1}] is equal to

P b[c, θ|{sn, sn+1}] =
βc({sn, sn+1})

(∏n+1
t=1 P (st|c, θ)

)
ωθ
0ω

c
0∑

c βc({sn, sn+1})
∑

θ

(∏n+1
t=1 P (st|c, θ)

)
ωθ
0ω

c
0

(16)

where βc({sn, sn+1}) is described by Equation (14). Second, applying the generalized
pre-screening described in the Internet Appendix, P b[c, θ|prior = ωb

n, {sn+1}] is equal
to

P b[c, θ|prior = ωb
n, {sn+1}] =

βcθ(sn+1)
(

1∑
θ ω

cθ
n

)
P (st+1|c, θ)ωcθ

n∑
c

∑
θ βcθ(sn+1)

(
1∑
θ ω

cθ
n

)
P (st+1|c, θ)ωcθ

n

, (17)

where βcθ(sn+1) =
∑

θ P (sn+1|c, θ)ωcθ
n and ωcθ

n is described by Equation (12) and βc(sn)

is described by Equation (13). Substituting this into P b[c, θ|prior = ωb
n, {sn+1}] yields:

P b[c, θ|prior = ωb
n, {sn+1}] =

βcθ(sn+1)

(
1∑

θ ωcθ
n

)
P (st+1|c,θ)βc(sn)(

∏n
t=1 P (st|c,θ))ωθ

0ω
c
0∑

c

∑
θ βcθ(sn+1)

(
1∑

θ ωcθ
n

)
P (st+1|c,θ)βc(sn)(

∏n
t=1 P (st|c,θ))ωθ

0ω
c
0

=
βcθ(sn+1)

(
1∑
θ ω

cθ
n

)
βc(sn)

(∏n+1
t=1 P (st|c, θ)

)
ωθ
0ω

c
0∑

c

∑
θ βcθ(sn+1)

(
1∑
θ ω

cθ
n

)
βc(sn)

(∏n+1
t=1 P (st|c, θ)

)
ωθ
0ω

c
0

,

(18)

where

βcθ(sn+1)

(
1∑
θ ω

cθ
n

)
= βc(sn)

(∑
θ

(
n+1∏
t=1

P (st|c, θ)

)
ωθ
0

)(
ωc
0∑

θ ω
cθ
n

)
.

Equation (14) implies that Equation (18) equals Equation (16) if and only if ωc
0 =∑

θ ω
cθ
n . Since ωcθ

n ≡ P b(c, θ|{sn}), then P b[c, θ|{sn, sn+1}] ̸= P b[c, θ|prior = ωb
n, {sn+1}]

if P b[c|sn] ̸= ωc
0 and P b[c, θ|{sn, sn+1}] = P b[c, θ|prior = ωb

n, {sn+1}] if P b[c|sn] = ωc
0.
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Proof of Proposition 6
Lemma 2 Let (ωA

−τ , ω
H
−τ ) = (θ̂, ω̂) for any θ̂ ∈ (0, 1) and ω̂ ∈ (0, 1). After observing

na,t = k > 1 and nb,t = k (in any order), the disagreement about the state is zero.

Proof. Follows directly from Proof of Proposition 4 by setting na,t = nb,t.

Lemma 3 If group Y offers the price and group X takes the price, then in any period t the
price of the asset is pt = EX

t (R). If group Y EB offers the price and group XEB takes the
price, then in any period t the price of the asset is pt = EXEB

t (R).

Proof. We can determine the price in any period t ∈ {1, 2, . . . T} by backwards induction,
as in the proof of Lemma 2 of Harris and Raviv (1993). In period T , Y buys from X if and
only if EY

T (R) ≥ pT where pT is the time-T price. Since Y has all the bargaining power,
she offers to buy at pT = EX

T (R), which X accepts (and receives zero expected utility).
Conversely, Y sells to X if and only if EY

T (R) < pT , and sells at pT = EX
T (R). In period

T − 1, consider what price Y would offer if she wants to trade (buy or sell). X is willing to
sell if pT−1 ≥ EX

T−1[pT ] or pT−1 ≥ EX
T−1(R). By LIE because X thinks she is Bayesian, these

two conditions are identical: EX
T−1[pT ] = EX

T−1[E
X
T (R)] = EX

T−1(R). If Y wants to buy, she
can force X down to their reservation price (lowest willingness to sell) since Y has all the
bargaining power: pT−1 = EX

T−1(R). Conversely, X is willing to buy if pT−1 ≤ EX
T−1(R). If

Y wants to sell, she sells at the highest willingness to pay, and pT−1 = EX
T−1(R) again. And

so on for all preceding periods. Thus, in any given period t, we have pt = EX
t (R).

Exactly the same argument applies for trade between XEB and Y EB. Thus, in any given
period t, we have pt = EXEB

t (R).

Lemma 4 Suppose that pre-screener 1 observes signal path sXpre in the pre-period. In con-
trast, suppose pre-screener 2 observes signal path sYpre in the pre-period. Then both pre-
screeners observes public signal path Z = st in the trading period. Let nX

a,pre = nY
a,pre and

nX
b,pre = nY

b,pre where nj
a,pre+nj

b,pre = nj
pre for j ∈ {X,Y }, so signal paths sXpre and sYpre contain

the same information content. Let c ∈ {v, w}.
If P b(v|sXpre) > P b(v|sYpre), then P b(v|{sXpre, st}) > P b(v|{sYpre, st}).

Proof. From the proof of Proposition 2, we already know that the necessary and sufficient
condition for P b(v|sXpre) > P b(v|sYpre) is that βX

v βY
w − βX

w βY
v > 0.14 Suppose that this holds.

Analogously, we can only have P b(v|{sXpre, st}) > P b(v|{sYpre, st}) if β{X,Z}
v β

{Y,Z}
w −β

{X,Z}
w β

{Y,Z}
v >

0. Note that

β{X,Z}
c = βX

c bc

β{Y,Z}
c = βY

c bc,

14Note that this property does not require any restrictions on the c type-space or on the number a’s and
b’s in the pre-period signals, only that X and Y have the same information content.
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where

bc =
t∏

m=1

(∑
θ

(
0∏

i=−τ+1

P (si|c, θ)

)(
m∏
i=1

P (si|c, θ)

)
ωθ
−τ

)

because
∏0

i=−τ+1 P (si|c, θ) is the same for signal paths sXpre and sYpre since they have the same
information content. Thus,

β{X,Z}
v β{Y,Z}

w − β{X,Z}
w β{Y,Z}

v = βX
v bvβ

Y
w bw − βX

w bwβ
Y
v bv

= bvbw(β
X
v βY

w − βX
w βY

v ) > 0,

since βX
v βY

w − βX
w βY

v > 0.

Lemma 5 Suppose a pre-screener or Bayesian with prior ω0 = ωθ
0ω

c
0 observes na,t = nb,t

signals. Then P b(θ, c|st) = P b(θ|st)P b(c|st) and P u(θ, c|st) = P u(θ|st)P b(c|st) ∀ θ, c.

Proof. This is easily verified by direct calculation.
First, suppose groups X and Y observe sXpre and sYpre such that P b(H|sXpre) > P b(H|sYpre).

Lemma 6 Suppose two Bayesians XEB and Y EB are endowed with priors that coincide with
the pre-screeners’ posterior beliefs after the pre-period: ωXEB

0 = ωX
pre and ωY EB

0 = ωY
pre. Then

the only threshold at which XEB and Y EB trade is na,t = nb,t: XEB holds the asset when
na,t > nb,t and Y EB holds the asset when na,t ≤ nb,t.

Proof. By Lemma 5, each Bayesian is endowed with independent priors on the state and
credibility, where ωjEB ,A

0 = 1/2 and ωjEB ,H
0 = P b(c|sjpre) where j ∈ {X,Y }. Clearly,

the analogous argument and conclusion of Lemma 4 apply to two endowed Bayesians: If
ωXEB ,H
0 > ωY EB ,H

0 , then P u(H|prior = ωXEB

0 , st}) > P u(H|prior = ωY EB

0 , st}). Thus,
XEB always trusts the source more than Y EB does. By Proposition 4, this means that
P u(H|prior = ωXEB

0 , st) > P u(H|prior = ωY EB

0 , st) if and only if P u(A|prior = ωXEB

0 , st) >

P u(A|prior = ωY EB

0 , st) when na,t > nb,t. Likewise, P u(H|prior = ωXEB
0 , st) > P u(H|prior =

ωY EB

0 , st) if and only if P u(A|prior = ωXEB

0 , st) < P u(A|prior = ωY EB

0 , st) when na,t < nb,t.
When na,t = nb,t, then by direct calculation P u(A|prior = ωXEB

0 , st) = P u(A|prior =

ωY EB

0 , st) = 1/2.
Thus, EXEB

t (R) > EY EB

t (R) when na,t > nb,t, EXEB

t (R) < EY EB

t (R) when na,t < nb,t, and
EXEB

t (R) = EY EB

t (R) when na,t = nb,t. Combining this with the law of iterated expectations
also implies that EXEB

t (R) > EY EB

t [EXEB

t+1 (R)] > EY EB

t (R) when na,t > nb,t, EXEB

t (R) <

EY EB

t [EXEB

t+1 (R)] < EY EB

t (R) when na,t < nb,t, and EXEB

t (R) = EY EB

t [EXEB

t+1 (R)] = EY EB

t (R)

when na,t = nb,t. Thus, the only threshold at which XEB and Y EB trade in the trading
period is na,t = nb,t (i.e., when the two sides “switch sides” at na,t = nb,t).
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Consider pre-screeners X and Y . By Lemma 4, since P b(H|sXpre) > P b(H|sYpre), then
P b(H|{sXpre, st}) > P b(H|{sYpre, st}). By Proposition 4, this means that P b(H|{sXpre, st}) >

P b(H|{sYpre, st}) if and only if P b(A|{sXpre, st}) > P b(A|{sYpre, st}) when na,t > nb,t. Likewise,
P b(H|{sXpre, st}) > P u(H|{sYpre, st}) if and only if P b(A|{sXpre, st}) < P b(A|{sYpre, st}) when
na,t < nb,t. When na,t = nb,t, then by direct calculation P b(A|{sXpre, st}) = P b(A|{sY , st}) =
1/2.

Thus, EX
t (R) > EY

t (R) when na,t > nb,t, EX
t (R) < EY

t (R) when na,t < nb,t, and EX
t (R) =

EY
t (R) when na,t = nb,t.

To determine trade between pre-screeners, we also need to compare EY
t (E

X
t+1(R)) to

EX
t (R).

First, we will show that pre-screeners always trade whenever their endowed Bayesian
counterparts do.

Lemma 7 Suppose two pre-screeners have independent priors ω−τ = ωθ
−τω

c
−τ where ωθ

−τ =

1/2, and they observe pre-period signal paths j ∈ {X,Y }, respectively, where nj
a,pre = nj

b,pre ≥
2. Then X and Y always trade at the threshold na,t = nb,t: X holds the asset when
na,t − nb,t = 1 and Y holds the asset when nb,t − na,t ∈ {0, 1}.

Proof. Note that:

EX
t (EX

t+1(R))− EX
t (R) = P b(st+1 = a|{sXpre, st})[P b(A|{sXpre, st+1 = a})− P u(A|prior = ωX

pre, st+1 = a)]

+[1− P b(st+1 = a|{sXpre, st})][P b(A|{sXpre, st+1 = b})− P u(A|prior = ωX
pre, st+1 = b)].

Recall that nj
a,pre = nj

b,pre for signal paths j ∈ {X,Y }. Let d = |nall
a − nall

b | = |na,t+1 −
nb,t+1|, where nall

a = na,pre + na,t+1 is the number of a’s in {sXpre, st, st+1} and nall
b = nb,pre +

nb,t+1 is the number of b’s in {sXpre, st, st+1}.
We can easily show that there exists a unique threshold d > 2 such that P u(H|{sXpre, st, st+1}) <

ωH
−τ when d < d. By direct calculation when ωA

−τ = 1/2:

P u(H|{sXpre, st, st+1}) = ωH
−τ (q

nall
a

H (1−qH)n
all
b +(1−qH)n

all
a q

nb
H )

ωH
−τ (q

nall
a

H (1−qH)
nall
b +(1−qH)n

all
a q

nall
b

H )+(1−ωH
−τ )(q

nall
a

L (1−qL)
nall
b +(1−qL)n

all
a q

nall
b

L )

WLOG suppose that nall
a ≥ nall

b ≥ 2 (if nb,t+1 ≥ na,t+1 ≥ 2, then we can perform the same
exercise by switching na,t+1 and nb,t+1).15 Then P u(H|{sXpre, st, st+1}) < ωH

−τ if and only if

(qH(1− qH))
nall
b (qdH + (1− qH)

d) < (qL(1− qL))
nall
b (qdL + (1− qL)

d)

1 <

(
qL(1− qL)

qH(1− qH)

)nall
b
(
qdL + (1− qL)

d

qdH + (1− qH)d

)
,

15Recall that we are restricting this proof to nall
b ≥ 2 because two pre-screeners will have exactly the same

beliefs, and therefore no trade ever occurs, if the pre-paths X and Y have nj
a,pre = nj

b,pre ≤ 1. Thus the
relevant case to consider trading is nb,pre ≥ 2.
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which we can verify is satisfied when d ∈ {0, 1, 2}. Moreover, the right-hand side is decreasing
in d. Thus there exists a unique threshold d > 2 such that P u(H|{sXpre, st, st+1}) < ωH

−τ when
d < d.

Suppose nall
b ≥ 2 and nall

a − nall
b ∈ {0, 1}. Then d ∈ {0, 1, 2}, so P u(H|{sXpre, st, st+1}) <

ωH
−τ . By Proposition 5, P b(A|{sXpre, st, st+1 = a}) − P u(A|prior = ωX

pre, st+1 = a) ≤ 0

and P b(A|{sXpre, st, st+1 = a}) − P u(A|prior = ωX
pre, st+1 = a) ≤ 0. This implies that

EX
t (EX

t+1(R)) − EX
t (R) ≤ 0, with strict equality only for nall

a = nall
b . Therefore, EX

t (R) ≥
EX

t (EX
t+1(R)) ≥ EY

t (E
X
t+1(R)) and EX

t (R) ≥ EY
t (R) with strict equality only for nall

a = nall
b .

Thus, EX
t (R) > max{EY

t (E
X
t+1(R)), EY

t (R)} when nall
a − nall

b = 1 and X holds the asset.
Applying the same argument symmetrically, EX

t (R) < max{EY
t (E

X
t+1(R)), EY

t (R)} when
nall
b − nall

a = 1 and Y holds the asset. Since na,pre = nb,pre, this implies that X and Y always
trade at the threshold na,t = nb,t: X holds the asset when na,t − nb,t = 1 and Y holds the
asset when nb,t − na,t ∈ {0, 1}.

To show that speculative trade can occur when agents are pre-screeners, suppose that a
signal path st with na,t > nb,t. We have shown in Lemma 6 that endowed Bayesians will never
trade in this case, and X will hold the asset. Moreover, we know that pt = EX

t (R) > EY
t (R)

when na,t > nb,t. Thus, the pre-screeners will only trade in period t if there exists some
point at which Y buys the asset from X because EY

t (E
X
t+1(R)) > EX

t (R). Note that we can
re-write this as:

EY
t (E

X
t+1(R))− EX

t (R) = P b(st+1 = a|{sYpre, st})EX
t+1(R|st+1 = a)

+ (1− P b(st+1 = a|{sYpre, st}))EX
t+1(R|st+1 = b)

− P b(st+1 = a|{sXpre, st})Et+1(R|prior = ωX
pre, st+1 = a)

− (1− P b(st+1 = a|{sXpre, st}))Et+1(R|prior = ωX
pre, st+1 = b)

= P b(st+1 = a|{sXpre, st})
(
EX

t+1(R|st+1 = a)− Et+1(R|prior = ωX
pre, st+1 = a)

)
+(1− P b(st+1 = a|{sXpre, st}))

(
EX

t+1(R|st+1 = b)− Et+1(R|prior = ωX
pre, st+1 = b)

)
+
(
P b(st+1 = a|{sXpre, st})− P b(st+1 = a|{sYpre, st})

) (
EX

t+1(R|st+1 = b)− EX
t+1(R|st+1 = a)

)
.

(19)

By Proposition 5, Equation (19) is negative if we have signals such that P u(H|{sXpre, st, st+1 =

a}) ≤ ωH
−τ . Thus, a necessary condition for Equation (19) to be positive is that we have

signals such that P u(H|{sXpre, st, st+1 = a}) > ωH
−τ .

To demonstrate existence of the speculative trade, fix the parameters qc ∈ [1/2, 1), prior
ω−τ , and signal paths sXpre and st such that P u(H|{sXpre, st, st+1 = b}) > ωH

−τ , so the first
two terms of Equation (19) are strictly positive. Since na > nb and EX

t (R) > EY
t (R),

then the third term of Equation (19) is strictly negative because P b(st+1 = a|{sXpre, st} >

P b(st+1 = a|{sYpre, st}) whenever EX
t (R) > EY

t (R). Note that the third term of Equation

56



(19) is strictly increasing in P b(st+1 = a|{sYpre, st}) and equals zero if sYpre = sXpre. We will
show that there exists some signal path sYpre such that Equation (19) is satisfied whenever
P u(H|{sXpre, st, st+1 = b}) > ωH

−τ , so P u(H|{sXpre, st, st+1 = b}) ≥ ωH
−τ is a sufficient condition

for extra trade.
To find the sequence(s) sYpre to satisfy Equation (19) when nY

a,pre = nX
a,pre and nY

b,pre =

nX
b,pre > 1: Let sYpre be identical to sXpre in all positions except for the last reversal pair (a, b),

if it exists, in the sequence sXpre. Call the positions of this pair j + 1 and j + 2 (so this
means that sXj+1 = a and sXj+2 = b). If nj

a,pre > nj
b,pre (i.e., more a’s have been observed than

b’s in the subsequence sXj , which is the first j signals of sXpre), then replace this (a, b) with
(b, a) so that sYj+1 = b and sYj+2 = a. If nj

a,pre ≤ nj
b,pre or the pair (a, b) does not exist in

sXpre, then instead find the last reversal pair (b, a) in the sequence sXpre. Call the positions
of this pair k + 1 and k + 2 (so this means that sXk+1 = b and sXk+2 = a).If nk

b,pre > nk
a,pre

(i.e., more b’s have been observed than a’s in the subsequence sXk , which is the first k signals
of sXpre), then replace this (b, a) with (a, b) so that sYk+1 = a and sXk+2 = b. If nk

b ≤ nk
a,

then continue by finding the second-to-last reversal pair (a, b) and applying this procedure,
and so on. By the argument made in the proof of Proposition 2, this constructed sequence
generates the greatest degree of trust such that we still have P b(H|sYpre) < P b(H|sXpre), and
therefore by Lemma 4 and Proposition 4 it generates the greatest belief in A such that we
still have EY

t (R|{sYpre, st})) < EX
t (R|{sX , st}). By Proposition 2, we can construct such a

sequence sYpre as long as sXpre is not the sequence that generates the minimal degree of trust.
This is already satisfied by assumption that P b(H|sXpre) > P b(H|sYpre). We can continue
constructing sequences that lead to decreasing degrees of trust by iterating in this procedure
for each constructed sYpre.

Then there exists some signal path sYpre such that EX
t (R|{sXpre, st}) > EY

t (R|{sYpre, st}))
and EY

t (E
X
t+1(R|{sXpre, st})|{sYpre, st})−EX

t (R) = 0. This implies that for any signal path sYpre
that results in beliefs such that P b(st+1 = a|{sXpre, st}) > P b(st+1 = a|{sYpre, st}) > P b(st+1 =

a|{sYpre, st}), we thus have EX
t (R|{sXpre, st}) > EY

t (R|{sYpre, st})) and EY
t (E

X
t+1(R|{sXpre, st})|{sYpre, st})−

EX
t (R) > 0. Thus, Y will buy the asset from X. Likewise, for any signal path sYpre that results

in beliefs such that P b(st+1 = a|{sXpre, st}) > P b(st+1 = a|{sYpre, st}) > P b(st+1 = a|{sYpre, st}),
we have EX

t (R|{sXpre, st}) > EY
t (R|{sYpre, st})) and EY

t (E
X
t+1(R|{sXpre, st})|{sYpre, st})−EX

t (R) <

0. Thus, Y will not buy the asset from X.
Suppose that na,t < nb,t. As we have already shown, pt = EX

t (R) < EY
t (R) when

na,t < nb,t. Thus, EX
t (R) < max{EY

t (E
X
t+1(R)), EY

t (R)} when na,t < nb,t and no trade
occurs because Y always holds the asset. Thus, na,t > nb,t is a necessary condition for
speculative trade between pre-screeners to occur.

Suppose that sXpre = sYpre. Since Y buys the asset whenever max{EY
t (R), EY

t (E
X
t+1(R))} ≥

EX
t (R), then Y always buys the asset if sXpre = sYpre. Therefore, when sXpre = sYpre, there is no

trade between X and Y , nor between XEB and Y EB.
Second, suppose groups X and Y observe sXpre and sYpre such that P b(H|sXpre) < P b(H|sYpre).
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We can apply the exact same analysis as in the preceding case of P b(H|sXpre) > P b(H|sYpre)
to show that the mirror image holds when P b(H|sXpre) < P b(H|sYpre). For brevity, we do
not repeat it in detail. In particular, it is easy to show that Y will always hold the asset
when na,t > nb,t, and X will buy it at na,t = nb,t. The key portion is that extra trade can
only occur if nb,t < na,t and EY

t (E
X
t+1(R)) − EX

t (R) > 0 as in Equation (19). Again by
Proposition 5, Equation (19) is negative if we have signals such that P u(H|{sXpre, st, st+1 =

a}) ≥ ωH
−τ . Thus, a necessary condition for Equation (19) to be positive is that we have

signals such that P u(H|{sXpre, st, st+1 = a}) < ωH
−τ . Likewise, the sufficient condition is that

P u(H|{sXpre, st, st+1 = b}) ≤ ωH
−τ . When the necessary and sufficient conditions are satisfied

given sXpre and st, then there exists at least one signal path sYpre such that Y holds the asset.

Proof of Proposition 7
Since the pre-screener and endowed Bayesian have the same beliefs at the start of the trading
period, pb0 = pEB

0 = 1/2. As can be seen from the proof of Proposition 4, pbT = pEB
T = 1/2

when na,T = nb,T . Also na,t > nb,t implies that pbt > 1/2 and pEB
t > 1/2.

1. First, we demonstrate existence of pbt > pEB
t > 1/2. Note that

pbt = P b(A|{sXpre, st})

=
ωA
−τ

∑
c

(∏0
i=−τ+1 P (si|q, A)

) (∏t
i=1 P (si|q, A)

)
ωc
−τβc({sXpre, st})∑

θ ω
θ
−τ

∑
c

(∏0
i=−τ+1 P (si|q, A)

) (∏t
i=1 P (si|c, θ)

)
ωc
−τβc({sXpre, st})

pEB
t = P u(A|prior = ωX

pre, st)

=
ωA
−τ

∑
c

(∏0
i=−τ+1 P (si|q, A)

) (∏t
i=1 P (si|q, A)

)
ωc
−τβc(s

X
pre)∑

θ ω
θ
−τ

∑
c

(∏0
i=−τ+1 P (si|q, A)

) (∏t
i=1 P (si|c, θ)

)
ωc
−τβc(sXpre)

where

βc(s
X
pre) =

0∏
m=−τ

(∑
θ

(
m∏
i

P (si|c, θ)

)
ωθ
−τ

)

βc({sXpre, st}) = βc(s
X
pre)

n∏
m=1

(∑
θ

(
0∏

i=−τ+1

P (si|c, θ)

)(
m∏
i=1

P (si|c, θ)

)
ωθ
−τ

)
.

By direct comparison, pbt > pEB
t if and only if ωH

−τ (1 − ωH
−τ )βH(s

X
pre)βL(s

X
pre)FG > 0,
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where

F =
(∏t

m=1

(∑
θ

(∏0
t=−τ P (si|H, θ)

)
(
∏m

i=1 P (si|H, θ))ωθ
−τ

))
−
(∏t

m=1

(∑
θ

(∏0
t=−τ P (si|L, θ)

)
(
∏m

i=1 P (si|L, θ))ωθ
−τ

))
G =

(
0∏

i=−τ+1

P (si|H,A)

)(
t∏

i=1

P (si|H,A)

)(
0∏

i=−τ+1

P (si|L,B)

)(
t∏

i=1

P (si|L,B)

)

−

(
0∏

i=−τ+1

P (si|H,B)

)(
t∏

i=1

P (si|H,B)

)(
0∏

i=−τ+1

P (si|L,A)

)(
n∏

i=1

P (si|L,A)

)
,

where we have already shown in the Proof of Proposition 5 that G > 0 when na,t > nb,t,
since nX

a,pre = nX
b,pre. Thus, pbt > pEB

t > 0 if and only if F > 0. Moreover, we can easily
show that P b(H|{sXpre, st}) > P u(H|prior = ωX

pre, st) if and only if F > 0. Thus, pbt >
pEB
t > 1/2 if and only if P b(H|{sXpre, st}) > P u(H|prior = ωX

pre, st). By the argument
in Proposition 2, there exists at least one path st that generates P b(H|{sXpre, st}) >

P u(H|prior = ωX
pre, st). For example, if st contains na,t > 1 signals, we can show that

there exists a unique threshold na,t(nb,t) such that F > 0 if na,t > na,t(nb,t) and F ≤ 0

if na,t ≤ na,t(nb,t). By direct computation, F < 0 when na,t = nb,t, ∂F
∂na,t

> 0, and
limna,t→∞ F = ∞. Thus, there exists a unique threshold na,t such that pbt > pEB

t for
all na,t < na,t ≤ na,T and pbt ≤ pEB

t for all 0 ≤ na ≤ na.
Clearly, we can reverse the inequalities to show pEB

t > pbt > 1/2 if and only if
P b(H|{sXpre, st}) < P u(H|prior = ωX

pre, st).

2. Suppose we have sT such that pb
t̂
> pEB

t̂
> 1/2. Since pb0 = pEB

0 = pbT = pEB
T = 1/2

and pb
t̂
> pEB

t̂
, then the average price change of pbt must be strictly greater than the

average price change of pEB
t for t ∈ [0, t̂] and t ∈ [t̂, T ].

By Proposition 5, pb1 < pEB
1 because P u(H|{sXpre, s1 = a}) < ωH

−τ for nX
a,pre = nX

b,pre ≥ 1.
This implies that we can only have pb

t̂
> pEB

t̂
≥ 0 if there are sufficiently many a’s that

the pre-screener over-reacts (under-reacts) to confirming (disconfirming) signals (i.e.,
more a signals). By Proposition 5, if at least one such pbt′ > pEB

t′ exists, then it must
be that P u(H|sXpre, st′) > ωH

−τ for at least one of these t′ dates. Suppose there exists
some t′′ such that pbt′′ > pEB

t′′ but P u(H|sXpre, st′) ≤ ωH
−τ . Since P u(H|sXpre, st′) ≤ ωH

−τ ,
then there must necessarily be a lower proportion of a’s than b’s observed at t′′ than
at t′. Thus it cannot be that pbt′′ = max pbt and we must have that P u(H|sXpre, st̂) > ωH

−τ

whenever pb
t̂
> pEB

t̂
.

Suppose pb
t̂
= pEB

t̂
and P u(H|sXpre, st̂) > ωH

−τ but P u(H|sXpre, st̂, st̂+1 = b) < ωH
−τ . Since

pb
t̂
≡ max pbt , this implies P u(H|sXpre, st̂, st) < ωH

0 for all signal paths st with t ∈ (t̂, T ]

because they are below the peak. By Proposition 7, this implies that the pre-screener
under-reacts to each a and over-reacts to each b in t ∈ (t̂, T ]. But this means that for
any t such that na,t = nb,t, pbt < pEB

t , which cannot be true. Thus, P u(H|sXpre, st̂, st̂+1 =
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b) ≥ ωH
−τ when pb

t̂
= pEB

t̂
. If pb

t̂
> pEB

t̂
, then the Bayesian posterior belief in reliability

must be even higher than when pb
t̂
= pEB

t̂
. Thus P u(H|sX , st̂, st̂+1 = b) ≥ ωH

−τ when
pb
t̂
≥ pEB

t̂
.

Since pt̂ ≡ max pt, then st̂+1 = b and pEB
t̂+1

− pEB
t̂

< 0 and pb
t̂+1

− pb
t̂
< 0. Moreover, be-

cause have we have shown that P u(H|sXpre, st̂, st̂+1 = b) ≥ ωH
−τ , then P b(A|{sXpre, st̂, st̂+1 =

b}) > P u(A|prior = ωb
t̂
, st̂+1 = b) by Proposition 7, where each joint belief for the prior

ωb
t̂
, denoted by ωcθ

t̂
, is the pre-screener’s belief after observing signal path sXpre and the

public path st̂:

ωcθ
t̂ ≡ P b(c, θ|{sXpre, st̂}) =

ωA
−τ

∑
c

(∏0
i=−τ+1 P (si|q, A)

) (∏t̂
i=1 P (si|q, A)

)
ωc
−τβc({sXpre, st̂})∑

θ ω
θ
−τ

∑
c

(∏0
i=−τ+1 P (si|q, A)

) (∏t̂
i=1 P (si|c, θ)

)
ωc
−τβc({sXpre, st̂})

(20)
Since pb

t̂
= P b(A|{sXpre, st̂}) = P u(A|prior = ωb

t̂
) and pEB

t̂
= P u(A|prior = ωX

pre, st̂) by
definition, then pb

t̂
> pEB

t̂
implies P u(A|prior = ωb

t̂
) > P u(A|prior = ωX

pre, st̂). Thus
0 > P u(A|prior = ωb

t̂
, st̂+1 = b) − P u(A|prior = ωb

t̂
) > P u(A|prior = ωX

pre, {st̂, st̂+1 =

b}) − P u(A|prior = ωX
pre, st̂). Combining this with the fact that P b(A|{sXpre, st̂, st̂+1 =

b}) > P u(A|prior = ωb
t̂
, st̂+1 = b) by Proposition 7, then 0 > P b(A|{sXpre, st̂, st̂+1 =

b}) − P b(A|{sXpre, st̂}) > P u(A|prior = ωX
pre, {st̂, st̂+1 = b}) − P u(A|prior = ωX

pre, st̂).
Thus, |pb

t̂+1
− pb

t̂
| < |pEB

t̂+1
− pEB

t̂
|.

3. If pb
t̂
> pEB

t̂
> 1/2, then we have already shown in the proof of Proposition 7 that

the necessary and sufficient conditions given in Proposition 6 must hold. Thus, there
exists at least one signal path sYpre such that extra trade between pre-screeners occurs
(e.g., Y holds the asset at t = t̂, at least).
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Internet Appendix
Trust in Signals and the Origins of Disagreement

A Generalized Pre-Screening
Let ωcθ

0 be the prior belief on credibility c and state θ, where
∑

c

∑
θ ω

cθ
0 = 1.

When the prior beliefs about the credibility and state can potentially be correlated, we
cannot apply the first-stage updated belief κc(sn), which is a marginal belief on reliability,
directly to the second stage in place of a prior belief on credibility because the joint priors
on reliability and state are not independent. Therefore, the generalized pre-screening algo-
rithm requires the second stage to apply Bayes’ Rule to a belief whose marginal prior about
credibility sums to κc(sn). Thus, in the second stage, we assume that the agent applies the
weighted first-stage updated belief κc(sn)

(
ωcθ
0∑

θ ω
cθ
0

)
in place of the existing joint prior. If the

prior beliefs about credibility and state are independent (ωcθ
0 = ωc

0ω
θ
0 for all c and θ), then

Equations (21) and (22) reduce to Equations (2) and (3) respectively.
To illustrate the pre-screener’s updating algorithm, suppose she observes two signals, one

in each period. After observing the first signal (s1), the pre-screener’s updated belief about
the source’s credibility, κc(s1), is:

κc(s1) =

∑
θ P (s1|c, θ)ωcθ

0∑
c

∑
θ P (s1|c, θ)ωcθ

0

.

Using the weighted first-stage updated belief κc(s1)
(

ωcθ
0∑

θ ω
cθ
0

)
to form her joint posterior belief

on the state and credibility, P b(c, θ|s1), yields her posterior beliefs after the first signal:

P b(c, θ|s1) =
P (s1|c, θ)κc(s1)

(
ωcθ
0∑

θ ω
cθ
0

)
∑

c

∑
θ P (s1|c, θ)κc(s1)

(
ωcθ
0∑

θ ω
cθ
0

) .
After observing the second signal (s2), the pre-screener’s updated belief about the source’s
credibility, κc(s1, s2) is

κc(s1, s2) =

∑
θ P (s2|c, θ)P b(c, θ|s1)∑

c

∑
θ P (s2|c, θ)P b(c, θ|s1)

.

Using the weighted first-stage updated belief κc(s1, s2)
(

ωcθ
0∑

θ ω
cθ
0

)
to form her joint posterior
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belief on the state and credibility, P b(c, θ|s1, s2), yields:

P b(c, θ|s1, s2) =
P (s2|c, θ)P (s1|c, θ)κc(s1, s2)

(
ωcθ
0∑

θ ω
cθ
0

)
∑

c

∑
θ P (s2|c, θ)P (s1|c, θ)κc(s1, s2)

(
ωcθ
0∑

θ ω
cθ
0

) .
Iterating on the pre-screener’s updating process allows us to characterize her posterior beliefs:

Applying the generalized pre-screening procedure described above to prior beliefs ωcθ
0

yields:

κc(sn) =

(
κc(sn−1)∑

θ ω
cθ
0

)∑
θ

(∏n
t=1 P (st|c, θ)ωcθ

0

)
∑

c

(
κc(sn−1)∑

θ ω
cθ
0

)∑
θ

(∏n
t=1 P (st|c, θ)ωcθ

0

) , (21)

where κc(∅) =
∑

θ ω
cθ
0 .

P b(c, θ|sn) =
(
∏n

t=1 P (st|c, θ))
(

κc(sn)∑
θ ω

cθ
0

)
ωcθ
0∑

c

∑
θ (
∏n

t=1 P (st|c, θ))
(

κc(sn)∑
θ ω

cθ
0

)
ωcθ
0

(22)

=
βcθ(sn)

(
1∑
θ ω

cθ
0

)n
(
∏n

t=1 P (st|c, θ))ωcθ
0∑

c

(
1∑
θ ω

cθ
0

)n∑
θ βcθ(sn) (

∏n
t=1 P (st|c, θ))ωcθ

0

. (23)

where βcθ(sn) is given by:

βcθ(sn) =
(∑

θ P (s1|c, θ)ωcθ
0

)
×
(∑

θ P (s1|c, θ)P (s2|c, θ)ωcθ
0

)
× . . .×

(∑
θ P (s1|c, θ)P (s2|c, θ) . . . P (sn|c, θ)ωcθ

0

)
=

n∏
m=1

(∑
θ

(
m∏
t=1

P (st|c, θ)

)
ωcθ
0

)
, (24)

B Detailed Intuition for Proposition 5, Part 1
In more detail, consider first the endowed Bayesian’s (EB’s) beliefs. EB begins with ωn

b and
applies it to evaluate sn+1. But because ωn

b is generated by applying a prior of κc(sn) to
signals sn, and a Bayesian’s beliefs are invariant to signal order, this is equivalent to applying
a prior of κc(sn) to {sn, sn+1}. EB’s resulting marginal posterior belief about reliability then
equals κc({sn, sn+1}), the pre-screener’s first-stage updated belief of credibility. However, in
applying the second step, the pre-screener makes the mistake of using κc({sn, sn+1}) as a
prior to to evaluate {sn, sn+1}, whereas EB used κc({sn}).

As a result, the pre-screener will think A is more likely than the endowed Bayesian

2



if and only if the new signal sn+1 makes her strictly more confident that the source is
high reliability relative to EB’s prior over all signals {sn, sn+1} and the combined evidence
{sn, sn+1} objectively strictly favors A. This is the condition that κH({sn, sn+1}) > κH({sn})
in Part 1(a). Similarly, Part 1(b) describes how the pre-screener will think A is less likely
than the endowed Bayesian if and only if the new signal makes her strictly less confident
that the source is high reliability relative to EB’s prior over all signals {sn, sn+1}, which is
the condition that κH({sn, sn+1}) < κH({sn}). Part 1(c) reflects the edge case.

Importantly, Parts 1(a) and 1(b) can arise when new signals sn+1 are either confirmatory
or contradictory. In Part 1(b), the opposite of confirmation bias arises: there is under-
reaction to a confirmatory signal and over-reaction to a contradictory signal. Under-reaction
arises because we can have κH({sn, sn+1}) < κH({sn}) even though the signal is confirma-
tory and thus κH({sn, sn+1}) > ωn,H

b —that is, even though the first-stage belief that the
source is high reliability increases over the time-n posterior. Intuitively, ωn,H

b arises from
applying κH({sn}) to sn, while κH({sn, sn+1}) arises from applying κH({sn}) to {sn, sn+1}.
With confirmatory news, κH({sn, sn+1}) > ωn,H

b but may fall below κH({sn}) if the history
of evidence contains some bad news about reliability. To be precise, the pre-screener’s over-
inference at each step implies κH({sn, sn+1}) contains κH({sn}) (see Equation 2). Factoring
out κH({sn}) followed by algebraic manipulation shows that the effective difference between
the two equals the difference between an objective Bayesian’s belief that the source is high
reliability, P u(H|{sn, sn+1}) and the time-0 prior common to the pre-screener and objec-
tive Bayesian, ωH

0 . Thus, even if sn+1 is confirmatory, the pre-screener under-reacts if the
combined evidence {sn, sn+1} is objectively bad news for credibility.

Over-reaction to the contradictory signal is similar. The intuition is more straightforward
in this case because κH({sn, sn+1}) < κH({sn}) and κH({sn, sn+1}) < ωn,H

b —the new signal
sn+1 is deleterious for both. Re-arranging the discussion above yields similar intuitions for
why Part 1(a) and κH({sn, sn+1}) > κH({sn}) can arise when new signals are either confirma-
tory or contradictory. Even though the resulting observed behavior is akin to confirmation
bias, the mechanism is fundamentally different and arises due to the over-interpretation of
signals embedded in κH({sn, sn+1}).

C Trading with Confirmation Bias
Agents in Rabin and Schrag (1999) have fixed beliefs about credibility but probabilistically
flip signals that contradict their beliefs about the state. Figure 3 illustrates why this frame-
work has difficulty generating a crash even when confirmation bias agents (“CB agents”) are
certain that the source is credible. We endow two CB agents with common neutral priors
about the state, ωXCB

0 = ωY CB

0 = 0.5. These equal the pre-screeners’ beliefs about the state
at time 0, P (A|sXpre) = P (A|sYpre) = 0.5. The CB agents are certain that the source is credible
(i.e., both XCB and Y CB believe c = H with probability 1) but flip signals that oppose their
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Figure 3: Trading game with confirmation bias. This figure plots outcomes from a trading game
between two groups of traders, X and Y , described in Internet Appendix Section C, when they are either
both pre-screeners or both have confirmation bias (CB). Prices are in Panel (a) and the asset holdings of
group Y are in Panel (b). Realized signals in periods 1-10 are good cash flow news (‘a’), while periods 11-20
have bad cash flow news (‘b’). Trader beliefs at period 0 are equal to the beliefs that pre-screeners would
have after observing ‘aabb’ for X and ‘abab’ for Y , starting from common priors. Parameters (defined in
Section C) are {qH , qL, ω

A
−τ , ω

H
−τ , T, τ} = {0.8, 0.5, 0.5, 0.3, 20, 4}. Confirmation bias traders begin period 0

with ωXCB

0 = ωY CB

0 = 0.5, which equal the pre-screeners’ beliefs about the state at time 0, and are certain
that the source is type H. CB traders independently flip signals that oppose their beliefs about the state
with probability 0.2.

current beliefs about the state with probability 0.2, as in Rabin and Schrag (1999). We then
expose all agents to the same signals during the public trading period.

Prices rise more quickly in periods 1-10 between two confirmation bias agents relative to
the game between two pre-screeners. This quick rise is by construction as the CB agents are
certain the source is high quality, while pre-screeners are learning about credibility. However,
there is no crash in periods 11-20 in the game between CB agents, even though they are
certain the source is credible. This is because the CB agents are resistant too all of the
bad cash flow news during those periods: State A is subjectively more likely, and so they
flip each bad cash flow signal with a fixed probability. The only way for a crash to occur is
for the cash flow R to realize after the end of period 20. In contrast, the pre-screeners are
initially resistant to bad cash flow news (confirmation bias, Proposition 5 Part 1a), but after
enough bad cash flow news, there is a subsequent, endogenous, sudden collapse in agents’
beliefs about source credibility (the “opposite” of confirmation bias, Proposition 5 Part 1b),
leading prices to fall quickly. Furthermore, because the CB agents begin the trading period
with common priors about the state and see common public signals, they do not trade unless
they randomly and exogenously flip different signals.

These insights are analogous to Rabin and Schrag (1999) Proposition 1: agents with
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confirmation bias can have beliefs that are so sticky that beliefs cannot change suddenly. In
our example, even if more bad cash flow news arrived before cash flows realize (e.g., if we
extended the game through period 21), the price would continue to exceed 0.5.

D Supplemental Propositions
Proposition 8 characterizes sufficient conditions under which pre-screeners exhibit confirma-
tion bias or its opposite, regardless of the order in which they observed signals. Without
loss of generality, assume that the source has sent more a signals than b signals (na > nb).

Proposition 8 (Over- and under-trust without knowing signal order) Let (ωA
0 , ω

H
0 ) =

(1/2, ω̂) for any ω̂ ∈ (0, 1), and let na > nb. Whether pre-screeners exhibit confirmation bias
or the opposite depends on the relative proportion of a’s and b’s and the distribution of beliefs
about reliability:

1. There exists some n∗
a and q̌ > 1

2
such that the agent overtrusts the source and is

optimistic that the state is A for any sequence with fixed na, nb when nb < n∗
a < na and

qL < qH ≤ q̌.

2. There exists some n̂b, q > 1
2

and q < 1 such that the agent under-trusts the source and is
pessimistic that the state is A for any sequence with fixed na, nb when 0 ≤ n̂b < nb < na

and one of the following sufficient conditions is met: (a) q ≤ qL < qH , or (b) qL ≤ q

and qH > q.

When the proportion of a’s is much greater than the proportion of b’s (Part 1), a pre-
screener exhibits confirmation bias in that she may always be optimistic about A relative to
the Bayesian. This is true even for the sequence that generates the lowest possible trust in the
source (fixing information content), so long as mixed signals do not sufficiently distinguish
between high and low reliability (qL and qH sufficiently low). Here, the initial negative
impression from mixed signals is relatively weak, so the ensuing consistency of many a’s
countervails the initial under-trust, creating optimism and overtrust.

When the proportion of a’s is sufficiently similar to the proportion of b’s (Part 2), this
information content strongly suggests that the source is unreliable, as long as qH is sufficiently
high. In this case, the pre-screener may be under-trusting and pessimistic given any observed
order, including the sequence that generates the highest degree of trust. This is because
ensuing contrary signals are extremely informative of low reliability and therefore overcome
even the most positive first impression, resulting in under-trust and pessimism. In contrast,
on average an agent in Rabin and Schrag (1999) would exhibit optimism toward state A in
both of the cases described in Proposition 8.

What resolves the persistent disagreement created by first impressions? Suppose the
pre-screener begins with a neutral prior on the state, and observes k identical a signals,
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resulting in a positive first impression. After an additional k identical b signals from the
same source, she will have the correct posterior on the state, though not necessarily on the
source’s reliability. This is shown in Lemma 2. Intuitively, the pre-screener understands that
all signals originate from the same source, so she realizes that na = nb = k is equivalent to
having no new information about the state, even if she is incorrect about the reliability.

A more realistic situation is one in which an agent receives additional signals from an-
other source, or a “second opinion.” Suppose the pre-screener now receives signals from two
independently drawn sources, j = 1, 2, with credibilities cj, where she encounters source 1
before source 2. Let stj be the signal sent in period t by source j ∈ {1, 2}, who sends a
sequence of nj signals, snj . Let sn1,n2 be the sequence of observed signals from both sources,
where sn1,n2 = {sn1 , sn2}. Let sn1,0 denote the sequence of signals from source 1 when agent
has not yet seen signals from source 2.

The pre-screener now faces three uncertainties—the credibility of each of the two sources
and the state of the world. Since source credibility is independent and identically distributed,
ω
cj
0 = ωc

0 for all j. Since source j’s signal is independent of source k’s signal, P (stj|cj, ck, θ) =
P (stj|cj, θ) for all t where j ̸= k.

The pre-screening procedure extends naturally from one to multiple sources. First, a pre-
screener updates on the joint belief about source credibilities, denoted κc1c2(sn1,n2), using
Bayes’ Rule. Second, she uses this updated first-stage belief κc1c2(sn1,n2) to form a joint
posterior beliefs on the state and credibilities. A Bayesian’s final posterior beliefs depend
purely on the information content of signals from each source, and depend neither on the
order in which signals are received from a given source, nor on the order in which she
encounters sources.

Iterating on the pre-screener’s updating process allows us to characterize posterior beliefs
when she receives any set of signals from both sources, sn1,n2 . The pre-screener’s beliefs after
observing only source 1 are:

κc1c2(sn1,0) =
κc1c2(sn1−1,0)

(∑
θ (
∏n1

t=1 P (st1|c1, θ))ωθ
0

)∑
c1

∑
c2
κc1c2(sn1−1,0)

(∑
θ (
∏n1

t=1 P (st1|c1, θ))ωθ
0

) , (25)

where κc1c2(∅) = ωc1
0 ωc2

0 , and:

P b(c1, θ|sn1,0) =
(
∏n1

t=1 P (st1|c1, θ))κc1c2(sn1,0)ω
θ
0∑

c

∑
θ (
∏n1

t=1 P (st1|c1, θ))κc1c2(sn1,0)ω
θ
0

. (26)

After observing source 2, her beliefs are:

κc1c2(sn1,n2) =

(∑
θ

(∏n1+n2

t=n1+1 P (st2|c2, θ)
)
(
∏n1

t=1 P (st1|c1, θ))ωθ
0

)
κc1c2(sn1,n2−1)∑

c2

∑
c1

(∑
θ

(∏n1+n2

t=n1+1 P (st2|c2, θ)
)
(
∏n1

t=1 P (st1|c1, θ))ωθ
0

)
κc1c2(sn1,n2−1)

,

(27)
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and:

P b(c1, c2, θ|sn1,n2) =

(∏n1+n2

t=n1+1 P (st2|c2, θ)
)
(
∏n1

t=1 P (st1|c1, θ))κc1c2(sn1,n2)ω
θ
0∑

c2

∑
c1

∑
θ

(∏n1+n2

t=n1+1 P (st2|c2, θ)
)
(
∏n1

t=1 P (st1|c1, θ))κc1c2(sn1,n2)ω
θ
0

.

(28)

Suppose a pre-screener has a positive first impression about source 1 because source 1
reported k > 1 identical signals of a. Suppose source 2 reports k identical signals of b.
Ex-ante in priors, source 1 and source 2 have the same credibility. Proposition 9 shows
that source 2 does not resolve disagreement between a pre-screener and a Bayesian who
observes the same signals. Proposition 9 in the Internet Appendix shows that the answer is,
surprisingly, no.

The positive impression from the first source’s consistency inflates the pre-screener’s trust
in the early source and deflates trust in the later source relative to the Bayesian inference.
Like the Bayesian, the pre-screener concludes that the sources cannot both be highly reliable,
but incorrectly concludes that the first source is more credible than the second and therefore
differentially weights information in favor of the first. The reason for this backfire effect is
that her interpretation of the second source’s consistent signals are biased by the fact that
the signals contradict the overtrusted first source. This asymmetry means that the second
source cannot completely unravel the first source’s signals.

Furthermore, this asymmetry persists in the limit: Information that should lead to more
uncertainty about credibilities and no change in beliefs about the state instead leads the
pre-screener to be more sure of and more wrong in her beliefs along both dimensions when
observing opposing information from different sources sequentially.

Proposition 9 (Backfire effect) Let (ωA
0 , ω

H1
0 , ωH2

0 ) = (1/2, ω̂, ω̂) for any ω̂ ∈ (0, 1) where
sources 1 and 2 are independent. Let the agent observe k a signals from source 1, followed
by k b signals from source 2: sn1 = (a, . . . , a) and sn2 = (b, . . . , b) where n1 = n2 = k and
k > 1.

1. The pre-screener believes that state A is more likely than B, and that the first source
is more likely to be high-reliability than the second source: P b(θ = A|sn1,n2) > 1/2 and
P b(H1|sn1,n2) > P b(H2|sn1,n2).

2. Persistence in the limit: lim
k→∞

P b(θ = A|sn1,n2) = 1 and lim
k→∞

P b(H1, L2|sn1,n2) = 1.

Proposition 10 shows that unlike in the case of unknown reliability alone, the presence
of slant can lead the pre-screener’s beliefs to be sufficiently wrong that she becomes certain
of the state after observing a set of signals from a single expert, even though the evidence
should not objectively change beliefs about the state from priors. To illustrate, consider the
particularly stark case in which a single expert sends k identical a signals, followed by k
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identical b signals. Suppose that there are two possible expert types (c ∈ {v, w}), where
reliability is identical and the degree of slant is symmetric (α = γ ≥ 0): v = (q, α, 0),
w = (q, 0, γ). Assume that each state and each type is equally likely ex-ante: ωA

0 = 1/2

and ωc
0 = 1/2. Clearly, the Bayesian realizes that there is no new information about either

the state or the expert’s slant. In contrast, the pre-screener can strongly believe that these
signals reveal the state:

Proposition 10 (Disagreement when slant is uncertain) Let the agent observe path
s2k, which is k a signals followed by k b signals from a single expert. Let (ωA

0 , ω
c
0) = (1/2, 1/2)

and ωc
0 = 1/2, where c ∈ {v, w}. Let v = (q, α, 0), w = (q, 0, γ) where q ∈ (1/2, 1) and

α = γ ∈ (0, 1). Then P u(A,w|s2k) = P u(B, v|s2k) = 1/2 ∀k, but

1. If q ≤ 3/4, limk→∞ P b(B, v|s2k) = 1;

2. If q > 3/4, ∃ a unique ᾱ(q) ∈ (0, 1) such that:

(a) ∀ α > ᾱ(q), limk→∞ P b(B, v|s2k) = 1,
(b) ∀ α < ᾱ(q), limk→∞ P b(A,w|s2k) = 1,
(c) If α = ᾱ(q), then limk→∞[P b(A,w|s2k)+P b(B, v|s2k)] = 1 and P b(B, v|s2k) > 1/2.

Key insights from Section 4.1 qualitatively hold even in the presence of expert slant in the
relevant cases. For example, in reality, an agent who encounters experts with contrary reports
to one another may be especially concerned about potential slant in addition to reliability.
In Proposition 11, we show that uncertainty about reliability generates disagreement when
contrary experts are encountered in different order, irrespective of uncertainty about slant.

Proposition 11 (Backfire effect when reliability and slant are uncertain) Let the agent
observe k a signals from expert 1, followed by k b signals from expert 2: sn1 = (a, . . . , a)

and sn2 = (b, . . . , b) where n1 = n2 = k and k > 1. Suppose there are four expert types
(c ∈ {v, w, x, z}), where α = γ ≥ 0 and qH ≥ qL ≥ 1/2: v = (qH , α, 0), w = (qL, α, 0),
x = (qH , 0, γ), w = (qL, 0, γ). Let ωA

0 = 1/2 and ωc
0 = 1/4.

Then P u(A|sn1,n2) = 1/2 ∀k, but

1. limk→∞ P b(A|sn1,n2) = 1/2 if qH = qL and α = γ ≥ 0,

2. limk→∞ P b(A|sn1,n2) = 1 if qH > qL and α = γ ≥ 0,

Intuitively, if reliability is fixed and known (qH = qL), a pre-screener thinks that an initial
expert who reports all a’s is slanted towards A, and that a second expert who reports all
b’s is slanted towards B. Even though the pre-screener overweights the belief that the two
experts are slanted, they are symmetric and cancel, so that the pre-screener has the correct
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neutral posterior on the state.16 However, if reliability is also unknown (qH ̸= qL), the pre-
screener deduces that the first expert is correct and that the true state is A. The reason is
that the initial streak of a’s from the first expert indicates both A-slant and high reliability.
The pre-screener overweights this, leading her to deduce from the second expert’s streak of
b’s that the second expert is both B-slanted and low reliability using similar reasoning to
Proposition 9. Thus, even with uncertainty about expert slant, opposing information from
sequential experts leads the pre-screener to be more sure of and more wrong in her beliefs.

Proof of Proposition 8
1. Lemma 8 Suppose the agent observes na = nb signals of a’s and b’s in alternating

order: sn = (a, b, . . . a, b) where na = nb = k. Then the pre-screener always undertrusts
the signal source.
Proof. An alternating sequence of na = nb = k signals of a’s and b’s generates:

βc(sn) =

(
1

2

)k
(

k−1∏
i=1

(qc(1− qc))
2i

)
(qc(1− qc))

k =

(
1

2

)k

(qc(1− qc))
k2 .

This implies that ∂
∂qc

(βc(sn)) < 0 for all qc:

∂

∂qc
(βc(sn)) =

(
1

2

)k

k2 (qc(1− qc))
k2−1 (1− 2qc),

Since (qH(1 − qH))
k2 < (qL(1 − qL))

k2 whenever qH > qL ≥ 1
2

or 1
2
≥ qL > 1 − qH ,

then βH(sn) < βL(sn) for all qH > qL ≥ 1
2
, which implies that the pre-screener’s

belief that the source is high reliability is underconfident relative to the Bayesian:
P b(H|sn) < P u(H|sn).
Suppose the agent observes na > nb signals, where nb a’s and nb b’s alternate followed
by the remaining m ≡ na − nb a’s where m ≥ 1: sn = (a, b, a, b, . . . , a, a, a). From
Equations (9) and (10), we can see that ∂

∂qc
(βc(sn)) = 0 when qc ∈ {1

2
, 1}, βc(sn) > 0

when qc =
1
2
, and βc(sn) = 0 when qc = 1. Moreover, using the fact that βc(sn) = 0

when qc = 1/2, then

∂2βc(sn)
∂q2c

∣∣∣qc= 1
2
= βc(sn) (−8nb(nb +m) +

∑m
i=1 4i(i− 1)) = βc(sn)

(
−8nb(nb +m) + 4

3
m(m− 1)(m+ 1)

)
.

Thus for any given nb, there exists some threshold 1
2
< q̌ < 1 whenever m > m∗,

where −8nb(nb +m∗) + 4
3
m∗(m∗ − 1)(m∗ + 1) = 0. Let n∗

a = nb +m∗. Then for na, nb

16This differs from the single expert case discussed in Proposition 10. There, the pre-screener had to
determine the slant of a single expert who contradicted herself with a streak of a’s and a streak of b’s. Here,
each expert is reporting an internally consistent streak.
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where 0 ≥ nb < n∗
a < na and qL < qH ≤ q̌, the agent overtrusts and is optimistic that

the state is A. Since this is the sequence that generates the least trust by Proposition
2, then if it results in overtrust then all other sequences of such a combination must
generate overtrust and optimism as well.

2. Lemma 9 After observing na > 1 and nb = 0 signals in sequence or simultaneously,
the pre-screener overtrusts and is overoptimistic about the reported state.
Proof. Without loss of generality, suppose the sequence is na a’s: sn = (a, a, . . . , a)

where na = n and nb = 0. Then βc(sn) =
∏na

i=1(
1
2
)(qic + (1 − qc)

i). Considering
each ith component of βc(sn), qiH + (1 − qH)

i > qiL + (1 − qL)
i is positive for i > 0

when qH > qL ≥ 1
2

or when 1
2
≥ qL > 1 − qH , which implies that βH(s11 = a, s22 =

a, . . . sna,na = a) > βL(s11 = a, s22 = a, . . . sna,na = a). Thus, applying Proposition
4, the pre-screener overtrusts and is overoptimistic about the reported state when she
observes na > 1 and nb = 0 signals in sequence. Since the simultaneous case implies
βc(sn) = qna

c +(1−qc)
na , then this argument also shows the result when the pre-screener

observes na > 1 signals simultaneously.

Lemma 10 Consider a sequence of signals such that the first k observed signals are a,
followed by k b signals: sn = (a, a, . . . , a, b, b, . . . , b) where na = nb = k. There exists
some q > 1

2
and q < 1 such that the pre-screener under-trusts if (1) k ∈ {1, 2, 3}, (2)

if q ≤ qL < qH , or (3) if qL ≤ q and qH ≥ q.

Proof. WLOG, suppose the sequence is na a’s, then nb b’s. Then

βc(sn) =

(
na∏
i=1

(
1

2
)(qic + (1− qc)

i)

)(
nb∏
i=1

(
1

2
)(qna

c (1− qc)
i + qic(1− qc)

na)

)

In particular, if the sequence is na = nb = k, then:

βc(sn) = (
1

2
)2k

k∏
i=1

(
qic + (1− qc)

i
) (

qkc (1− qc)
i + qic(1− qc)

k
)

(29)

Characterizing ∂
∂qc

(βc(sn)) when na = nb = k yields

∂

∂qc
(βc(sn)) = (

1

2
)2k

(
k∏

i=1

(
qic + (1− qc)

i
) (

qkc (1− qc)
i + qic(1− qc)

k
))

(∑k
i=1

i(qi−1
c −(1−qc)i−1)(qkc (1−qc)i+qic(1−qc)k)+(qic+(1−qc)i)(k(qk−1

c (1−qc)i−qic(1−qc)k−1)+i(qi−1
c (1−qc)k−qkc (1−qc)i−1))

(qic+(1−qc)i)(qkc (1−qc)i+qic(1−qc)k)

)
(30)
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From Equation (29) we can see that ∂
∂qc

(βc(sn)) = 0 when qc ∈ {1
2
, 1}, βc(sn) > 0 when

qc =
1
2
, and βc(sn) = 0 when qc = 1. Moreover, using the fact that βc(sn) = 0 when

qc = 1/2, then

∂2βc(sn)

∂q2c

∣∣∣qc= 1
2
= βc(sn)

(
k∑

i=1

4(2i(i− 1) + k(k − 1)− 2ki)

)
= βc(sn)

(
8

3
k(−3k + k2 − 1)

)
,

so ∂2βc(sn)
∂q2c

∣∣∣qc= 1
2

is negative when k < 3+
√
13

2
≈ 3.3028 and positive when k > 3+

√
13

2
.

Since βc(sn) = 0 when qc = 1, ∂βc(sn)
∂qc

|qc=1 = 0, and βc(sn) ≥ 0 for any qc ∈ [0, 1], then
there exists some threshold q < 1 such that ∂βc(sn)

∂qc
< 0 and βc(sn) < βc(sn)

∣∣∣qc= 1
2

for
all qc > q.

Since βc(sn) > 0 when qc =
1
2
, ∂βc(sn)

∂qc

∣∣∣qc= 1
2
= 0, and ∂2βc(sn)

∂q2c

∣∣∣qc= 1
2
> 0 when k > 3+

√
13

2
,

then there exists some threshold q > 1
2

such that ∂βc(sn)
∂qc

> 0 and βc(sn) > βc(sn)
∣∣∣qc= 1

2

for all qc < q when k > 3+
√
13

2
. When k ≤ 3+

√
13

2
, we can show by direct computation of

βc(sn) that ∂βc(sn)
∂qc

< 0 for all qc ∈ (1
2
, 1) when k ∈ {1, 2, 3}. This implies that the pre-

screener under-trusts for all values of qL < qH whenever k ≤ 3, since βH(sn) < βL(sn).
When k > 3, there are two other sufficient conditions for the pre-screener to under-
trust: (1) if q ≤ qL < qH , or (2) if qL ≤ q and qH > q where q > 1

2
and q < 1. If either

of these sufficient conditions is met, then βH(sn) < βL(sn) for k > 3.
Lemma 9 shows that the agent overtrusts and is overoptimistic about the reported
state for a given na > 1 and nb = 0. Clearly, the agent’s degree of overtrust is
monotonically decreasing as nb increases. Lemma 10 shows that there exists some
q > 1

2
and q < 1 such that the pre-screener under-trusts if (1) k ∈ {1, 2, 3}, (2) if

q ≤ qL < qH , or (3) if qL ≤ q and qH ≥ q. By the intermediate value theorem,
there exists some n̂b such that the agent under-trusts when sn = (a, a, . . . , a, b, b, . . . , b)

where 0 ≤ n̂b ≤ nb < na. By Proposition 2, this is the sequence most likely to generate
overtrust, so all other sequences of such a fixed combination (na, nb) will also result in
under-trust and pessimism about the mostly likely state. Thus, if one of the last two
sufficient conditions for Lemma 10 is satisfied, then there exists some n̂b such that the
agent under-trusts when sn = (a, a, . . . , a, b, b, . . . , b) where 0 ≤ n̂b ≤ nb < na.
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Proof of Proposition 9
1. To show the results when agents receive signals from multiple sources, note that Equa-

tion (28) can also be re-written as

P b(c1, c2, θ|sn1,n2) =
(
∏n1+n2

t=n1+1 P (st2|c2,θ))(
∏n1

t=1 P (st1|c1,θ))ωc1
0 ω

c2
0 ωθ

0βc1 (sn1 )βc2c1 (sn1,n2 )∑
c2

∑
c1

∑
θ(
∏n1+n2

t=n1+1 P (st2|c2,θ))(
∏n1

t=1 P (st1|c1,θ))ωc1
0 ω

c2
0 ωθ

0βc1 (sn1 )βc2c1 (sn1,n2 )
,

(31)

where the functions βc1(sn1) and βc2c1(sn1,n2) reflect the path dependency of the pre-
screener’s beliefs and βc1(∅) = 1:

βc1(sn1) =

n1∏
m=1

(∑
θ

(
m∏
t=1

P (st1|c1, θ)

)
ωθ
0

)

βc2c1(sn1,n2) =

n1+n2∏
m=n1+1

(∑
θ

(
m∏

t=n1+1

P (st2|c2, θ)

)(
n1∏
t=1

P (st1|c1, θ)

)
ωθ
0

)
.

Consider a sequence of signals such that the agent observes k a signals from source
1, followed by k b signals from source 2: sn1 = (a, . . . , a) and sn2 = (b, . . . , b) where
n1 = n2 = k.
To show this, note that the following properties hold when ωθ

0 = 1/2 and the two sources
send either (1) an equal number k of opposing signals, or (2) an equal number of com-
pletely mixed signals:

∏2k
i=k+1 P (si2|H2, A) =

∏k
i=1 P (si1|H1, B),

∏2k
i=k+1 P (si2|L2, A) =∏k

i=1 P (si1|L1, B),
∏2k

i=k+1 P (si2|H2, B) =
∏k

i=1 P (si1|H1, A), and
∏2k

i=k+1 P (si2|L2, B) =∏k
i=1 P (si1|L1, A).

For all ωθ
0 ∈ (0, 1), then P b(θ|sn1,n2) > 1/2 only if

ωH
0 (1− ωH

0 )
((∏2k

i=k+1 P (si2|H2, A)
)(∏2k

i=k+1 P (si2|L2, B)
)
−
(∏2k

i=k+1 P (si2|L2, A)
)(∏2k

i=k+1 P (si2|H2, B)
))

(βL1(sn)βH2L1(sn)− βH1(sn)βL2H1(sn)) > 0. (32)

When the two sources send an equal number of opposing signals in sequence (and
suppressing the arguments of βc1(sn) and βc1c2(sn) for brevity of exposition), we also
know∏2k

i=k+1 P (si2|H2, A) =
∏k

i=1 P (si1|H1, B) = (1− qH)
k∏2k

i=k+1 P (si2|L2, A) =
∏k

i=1 P (si1|L1, B) = (1− qL)
k∏2k

i=k+1 P (si2|H2, B) =
∏k

i=1 P (si1|H1, A) = qkH∏2k
i=k+1 P (si2|L2, B) =

∏k
i=1 P (si1|L1, A) = qkL
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βc1 =
∏k

i=1(
1
2
)(qic1 + (1− qc1)

i), where we have previously shown that βH1 > βL1

βc2c1 =
∏k

i=1(
1
2
)
(
(1− qc2)

iqkc1 + qic2(1− qc1)
k
)

Substituting all of these into the pre-screener’s posterior on the state, P b(θ|sn1,n2) >

1/2 only if

ωH
0 (1− ωH

0 )
(
(1− qH)

kqkL − (1− qL)
kqkH
)
(βL1βH2L1 − βH1βL2H1) > 0. (33)

The first term of Equation (33) is positive and the second term is clearly negative,
since qH > qL. Note that βL < βH for na > 1 and βL = βH for na = 1. Comparing a
given mth term of βL2H1 − βH2L1 yields

(
1

2
)
(
(1− qL)

mqkH + qmL (1− qH)k − (1− qH)mqkL − qmH (1− qL)
k
)

= (
1

2
)
(
qmH (1− qL)

m(qk−m
H − (1− qL)

k−m) + qmL (1− qH)m((1− qH)k−m − qk−m
L )

)
,

which is zero if k = m and positive if m < k. Thus, each mth term of βL2H1 is strictly
greater than the mth term of βH2L1 for m < k and is equal when m = k, implying that
βL2H1 > βH2L1 if k > 1 (and βL2H1 = βH2L1 if k = 1) . This implies that the third term
of Equation (33) is strictly negative when k > 1, so Equation (33) is satisfied. Thus,
P b(θ = A|sn1,n2) > 1/2 when ωA

0 = 1/2 and k > 1, and P b(θ = A|sn1,n2) = 1/2 when
ωA
0 = 1/2 and k = 1.

Substituting all of these into the pre-screener’s posteriors on source credibilities, we
have that P b(c1|sn1,n2) > P b(c2|sn1,n2) only if
ωH
0 (1 − ωH

0 )
(
(1− qH)

kqkL − (1− qL)
kqkH
)
(βL1βH2L1 − βH1βL2H1) > 0, which is exactly

Equation (33) again. Thus, the pre-screener believes that the first source is more likely
to be high reliability than the second source: P b(c1|sn1,n2) > P b(c2|sn1,n2).

2. The pre-screener’s joint posteriors on sources’ credibilities are of the form P b(H1, H2|s1j, s2j) =
w

w+x+y+z
, P b(L1, H2|s1j, s2j) = x

w+x+y+z
, P b(H1, L2|s1j, s2j) = y

w+x+y+z
, and P b(H1, H2|s1j, s2j) =

z
w+x+y+z

, where

w = 2(ωH
0 )2(1− qH)

kq
2k(k+1)
H

(
k∏

m=1

(1 + (
1− qH
qH

)m)((
1− qH
qH

)m + (
1− qH
qH

)k)

)
x = ωH

0 (1− ωH
0 )
(
(1− qH)

kqkL + qkH(1− qL)
k
)
q

k(k+1)
2

L q
k(k+1)

2
H qk

2

L

(∏k
m=1(1 + (1−qL

qL
)m)((1−qH

qH
)m + (1−qL

qL
)k)
)

y = ωH
0 (1− ωH

0 )
(
(1− qL)

kqkH + qkL(1− qH)
k
)
q

k(k+1)
2

H q
k(k+1)

2
L qk

2

H

(∏k
m=1(1 + (1−qH

qH
)m)((1−qL

qL
)m + (1−qH

qH
)k)
)

z = 2(1− ωH
0 )2(1− qL)

kq
2k(k+1)
L

(
k∏

m=1

(1 + (
1− qL
qL

)m)((
1− qL
qL

)m + (
1− qL
qL

)k)

)
.

13



Letting k → ∞ and factoring, we can re-write the terms w, x, y, and z as

w = 2(ωH
0 )2(1− qH)kq

2k(k+1)
H (

1− qH
qH

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

)

= q
3k(k+1)

2

H (1− qL)
k+

k(k+1)
2

(
2(ωH

0 )2(
1− qH
1− qL

)k+
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

))

x = ωH
0 (1− ωH

0 )
(
(1− qH)kqkL + qkH(1− qL)

k
)
q

k(k+1)
2

L q
k(k+1)

2

H qk
2

L (
1− qH
qH

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qL
qL

)m)

)

= q
3k(k+1)

2

H (1− qL)
k+

k(k+1)
2

(
ωH
0 (1− ωH

0 )
(
1 + ( qL(1−qH)

qH(1−qL) )
k
)(

1−qH
1−qL

) k(k+1)
2

( qL
qH

)k
2+

k(k+1)
2

(∏∞
m=1(1 + ( 1−qL

qL
)m)
))

y = ωH
0 (1− ωH

0 )
(
(1− qL)

kqkH + qkL(1− qH)k
)
q

k(k+1)
2

H q
k(k+1)

2

L qk
2

H (
1− qL
qL

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

)

= q
3k(k+1)

2

H (1− qL)
k+

k(k+1)
2

(
ωH
0 (1− ωH

0 )

(
1 +

(
qL(1− qH)

qH(1− qL)

)k
)( ∞∏

m=1

(1 + (
1− qH
qH

)m)

))

z = 2(1− ωH
0 )2(1− qL)

kq
2k(k+1)
L (

1− qL
qL

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qL
qL

)m)

)

= q
3k(k+1)

2

H (1− qL)
k+

k(k+1)
2

2(1− ωH
0 )2

(
qL
qH

) 3k(k+1)
2

( ∞∏
m=1

(1 + (
1− qL
qL

)m)

)

Note that the term q
3k(k+1)

2
H (1 − qL)

k+
k(k+1)

2 drops out since it is in every term when
calculating the joint posteriors. Also, note that a necessary and sufficient condition for∏∞

m=1(1+(1−pq
pq

)m) to converge is that
∑∞

m=1(
1−pq
pq

)m is absolutely convergent, which is
clearly satisfied when pq >

1
2
. Thus, when 1 > qH > qL > 1

2
, limk→∞w = 0, limk→∞ x =

0, limk→∞ y = ωH
0 (1 − ωH

0 )
(∏∞

m=1(1 + (1−qH
qH

)m)
)
, limk→∞ z = 0. This implies that

when 1 > qH > qL > 1
2
, limk→∞ P b(H1, H2|sn1,n2) = 0, limk→∞ P b(L1, H2|sn1,n2) = 0,

limk→∞ P b(H1, L2|sn1,n2) = 1, limk→∞ P b(L1, L2|sn1,n2) = 0.
The result also holds when qL = 1

2
. Letting k → ∞ and qL = 1

2
and factoring, we can
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re-write the terms w, x, y, and z as

w = 2(ωH
0 )2(1− qH)kq

2k(k+1)
H (

1− qH
qH

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

)

= 2(ωH
0 )2(1− qH)k+

k(k+1)
2 q

3k(k+1)
2

H

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

)

= q
3k(k+1)

2
H (1− qL)

k+
k(k+1)

2

(
2(ωH

0 )2(
1− qH
1− qL

)k+
k(k+1)

2

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

))

x = ωH
0 (1− ωH

0 )(
1

2
)k
(
(1− qH)k + qkH

)
(
1

2
)k

2+
k(k+1)

2 q
k(k+1)

2
H (2)k

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

)

= ωH
0 (1− ωH

0 )(
1

2
)k

2+
k(k+1)

2

(
(1− qH)k + qkH

)
q

k(k+1)
2

H

( ∞∏
m=1

(1 + (
1− qH
qH

)m)

)
= q

3k(k+1)
2

H (1− qL)
k+

k(k+1)
2

(
ωH
0 (1− ωH

0 )
(

2
(2qH)k

)k
(1 + (1−qH

qH
)k)
(∏∞

m=1(1 + (1−qH
qH

)m)
))

y = ωH
0 (1− ωH

0 )(12)
k+

k(k+1)
2 q

k2+
k(k+1)

2
H (qkH + (1− qH)k)

(
1 + (1−qH

qH
)k
)k (∏∞

m=1(1 + (1−qH
qH

)m)
)

= q
3k(k+1)

2
H (1− qL)

k+
k(k+1)

2

(
ωH
0 (1− ωH

0 )(1 + (1−qH
qH

)k)(1 + (1−qH
qH

)k)k
(∏∞

m=1(1 + (1−qH
qH

)m)
))

z = 2(1− ωH
0 )2(

1

2
)2k

2+3k(2)2k = 2(1− ωH
0 )2(

1

2
)2k

2+k

= q
3k(k+1)

2
H (1− qL)

k+
k(k+1)

2

(
2(1− ωH

0 )2(
1

2qH
)
3k(k+1)

2 (
1

2
)
k(k−1)

2

)

The term q
3k(k+1)

2
H (1 − qL)

k+
k(k+1)

2 drops out since it is in every term when calculating
the joint posteriors. A necessary and sufficient condition for

∏∞
m=1(1 + (1−qH

qH
)m) to

converge is that
∑∞

m=1(
1−qH
qH

)m is absolutely convergent, which is clearly satisfied when
qH > 1

2
.

Terms w, x, and z converge to 0. Term y converges to ωH
0 (1−ωH

0 )
(∏∞

m=1(1 + (1−qH
qH

)m)
)

,
which is a finite number, because limk→∞(1 + (1−qH

qH
)k)k = 1 (re-arranging and using

15



L’Hopital’s rule several times):

lim
k→∞

(1 + (
1− qH
qH

)k)k = lim
k→∞

(
exp

(
ln(1 + (

1− qH
qH

)k)

)k
)

= exp lim
k→∞

(
k ln(1 + (

1− qH
qH

)k)

)

= exp lim
k→∞

ln(1 + ( 1−qH
qH

)k)
1
k

= exp lim
k→∞

(
1−qH
qH

)k ln(
1−qH
qH

)

1+(
1−qH
qH

)k

−( 1k )
2

= exp lim
k→∞

(ln(
1− qH
qH

))

 −k2

1+(
1−qH
qH

)k

(
1−qH
qH

)k

 = exp lim
k→∞

(ln(
1− qH
qH

))

 −2k

−
ln(

1−qH
qH

)

(
1−qH
qH

)k



= exp lim
k→∞

2

 k
1

(
1−qH
qH

)k

 = exp lim
k→∞

2

 1

−
ln(

1−qH
qH

)

(
1−qH
qH

)k

 = exp lim
k→∞

2

(
( 1−qH

qH
)k

− ln( 1−qH
qH

)

)

= exp(0) = 1.

This implies that when 1 > qH > qL = 1
2
, limk→∞ P b(H1, H2|sn1,n2) = 0, limk→∞ P b(L1, H2|sn1,n2) =

0, limk→∞ P b(H1, L2|sn1,n2) = 1, and limk→∞ P b(L1, L2|sn1,n2) = 0. An extremely sim-
ilar proof applies to show that limk→∞ P b(θ = A|sn1,n2) = 1 where n1 = n2 = k when
1 > qH > qL = 1

2
.

Proof of Proposition 10
Any combination of reliability and slant is summarized by the formulation that a source
type c reports state A with probability pac ≡ P (st = a|c, A) and she reports state B with
probability pbc = P (st = b|c, B). A source type c is (pac, pbc), which is fully defined by
(qc, αc, γc) given our mapping.

The pre-screener’s joint posterior beliefs on source types are given by P b(v, A|s2k =

{a, a, . . . , b, b . . .}) = a
a+b+c+d

, P b(w,A|s2k = {a, a, . . . , b, b . . .}) = b
a+b+c+d

, P b(v,B|s2k =

{a, a, . . . , b, b . . .}) = c
a+b+c+d

, P b(w,B|s2k = {a, a, . . . , b, b . . .}) = d
a+b+c+d

, where, using the
fact that pav = pbw > 1/2 > paw = pbv, we have

a = βv[(pav(1− pav))
k]

=

(
k∏

i=1

(piav + (1− pbv)
i)(pkav(1− pav)

i + (1− pbv)
kpibv)

)
[(pav(1− pav))

k]

= (pav(1− pav))
k(k+1)

2 (pav)
k2(pav(1− pav))

k

(
k∏

i=1

(
(1 + (

1− pbv
pav

)i)(1 + (
1− pbv
pav

)k(
pbv

1− pav
)i)

))
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b = βw[(pbv(1− pbv))
k]

=

(
k∏

i=1

(
(piav + (1− pbv)

i)(pkav(1− pbv)
i + (1− pbv)

kpiav)
))

[(1− pbv)pbv]
k

= (pbv(1− pbv))
k(k+1)

2 (pbv)
k2(pbv(1− pbv))

k

(
k∏

i=1

(
(1 + (

1− pav
pbv

)i)(1 + (
1− pav
pbv

)k−i)

))
c = βv[(pbv(1− pbv))

k]

=

(
k∏

i=1

(piav + (1− pbv)
i)(pkav(1− pav)

i + (1− pbv)
kpibv)

)
[(pbv(1− pbv))

k]

= (pav(1− pav))
k(k+1)

2 (pav)
k2(pbv(1− pbv))

k

(
k∏

i=1

(
(1 + (

1− pbv
pav

)i)(1 + (
1− pbv
pav

)k(
pbv

1− pav
)i)

))
d = βw[(pav(1− pav))

k]

=

(
k∏

i=1

(
(piav + (1− pbv)

i)(pkav(1− pbv)
i + (1− pbv)

kpiav)
))

[(pav(1− pav))
k]

= (pbv(1− pbv))
k(k+1)

2 (pbv)
k2(pav(1− pav))

k

(
k∏

i=1

(
(1 + (

1− pav
pbv

)i)(1 + (
1− pav
pbv

)k−i)

))
.

Moreover, we know that pav > 1 − pbv > 1/2 > pbv, pbv > 1 − pav), and pbv(1 − pbv) >

pav(1− pav). Using this fact to factor out the terms [pbv(1− pbv)]
k(k+1)

2 [pbv(1− pbv)]
kpk

2

av and
take the limit, we have

lim
k→∞

a =

(
pav(1− pav)

pbv(1− pbv)

) k(k+1)
2
(
pav(1− pav)

pbv(1− pbv)

)k
(

k∏
i=1

(
1 + (

1− pbv
pav

)i
))

lim
k→∞

b =

(
pbv
pav

)k2
(

k∏
i=1

(
1 + (

1− pav
pbv

)i
))

lim
k→∞

c =

(
pav(1− pav)

pbv(1− pbv)

) k(k+1)
2

(
k∏

i=1

(
1 + (

1− pbv
pav

)i
))

lim
k→∞

d =

(
pav(1− pav)

pbv(1− pbv)

)k (
pbv
pav

)k2
(

k∏
i=1

(
1 + (

1− pav
pbv

)i
))

.

To find the limit of this, we need to compare limk→∞

(
pbv
pav

)k2
and limk→∞

(
pav(1−pav)
pbv(1−pbv)

) k(k+1)
2

17



to determine what else to factor out. We can re-write the ratio of these two terms as

lim
k→∞

(
pbv
pav

)k2
(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2

= lim
k→∞

exp(k2 ln
(

pbv
pav

)
)

exp(k(k+1)
2

ln
(

pav(1−pav)
pbv(1−pbv)

)
)

= lim
k→∞

exp(k2 ln

(
pbv
pav

)
)− exp(

k(k + 1)

2
ln

(
pav(1− pav)

pbv(1− pbv)

)
)

= lim
k→∞

exp

(
k

[
k

(
ln

(
pbv
pav

)
− 1

2
ln

(
pav(1− pav)

pbv(1− pbv)

))
− 1

2
ln

(
pav(1− pav)

pbv(1− pbv)

)])
.

Note that limk→∞
( pbv
pav

)
k2

(
pav(1−pav)
pbv(1−pbv)

) k(k+1)
2

= 0 if ln
(

pbv
pav

)
−1

2
ln
(

pav(1−pav)
pbv(1−pbv)

)
< 0, and limk→∞

( pbv
pav

)
k2

(
pav(1−pav)
pbv(1−pbv)

) k(k+1)
2

=

∞ if ln
(

pbv
pav

)
− 1

2
ln
(

pav(1−pav)
pbv(1−pbv)

)
≥ 0. We have

ln

(
pbv
pav

)
− 1

2
ln

(
pav(1− pav)

pbv(1− pbv)

)
= ln

 pbv
pav(

pav(1−pav)
pbv(1−pbv)

) 1
2

 ,

which is negative if
(

pbv
pav

)2
< pav(1−pav)

pbv(1−pbv)
, which is equivalent to the condition that p3bv(1−pbv) <

p3av(1− pav).

Suppose that p3bv(1 − pbv) < p3av(1 − pav). Then we can also factor out
(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2

from each of our terms, which yields:

lim
k→∞

a =

(
pav(1− pav)

pbv(1− pbv)

)k
(

∞∏
i=1

(
1 + (

1− pbv
pav

)i
))

= 0

lim
k→∞

b =


(

pbv
pav

)k2
(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2


(

∞∏
i=1

(
1 + (

1− pav
pbv

)i
))

= 0

lim
k→∞

c =

(
∞∏
i=1

(
1 + (

1− pbv
pav

)i
))

lim
k→∞

d =

(
pav(1− pav)

pbv(1− pbv)

)∞


(

pbv
pav

)k2
(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2


(

k∏
i=1

(
1 + (

1− pav
pbv

)i
))

= 0.

Thus, if p3bv(1 − pbv) < p3av(1 − pav), then limk→∞ P b(B, v|s2k = {a, a, a, . . . b, b, b, . . .}) = 1.
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Since pbv(1− pbv) > pav(1− pav), then p3bv(1− pbv) < p3av(1− pav) only if type v is sufficiently
A-slanted (i.e., α is sufficiently high) relative to reliability q.

A very similar exercise applies to the subcases of p3bv(1− pbv) > p3av(1− pav) and p3bv(1−
pbv) = p3av(1− pav).

Suppose that p3bv(1 − pbv) > p3av(1 − pav). Then we can instead factor out
(

pbv
pav

)k2
from

each of our terms, which yields

lim
k→∞

a =


(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2(

pbv
pav

)k2
(pav(1− pav)

pbv(1− pbv)

)k
(

∞∏
i=1

(
1 + (

1− pbv
pav

)i
))

= 0

lim
k→∞

b =

(
∞∏
i=1

(
1 + (

1− pav
pbv

)i
))

lim
k→∞

c =


(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2(

pbv
pav

)k2

(

∞∏
i=1

(
1 + (

1− pbv
pav

)i
))

= 0

lim
k→∞

d =

(
pav(1− pav)

pbv(1− pbv)

)∞
(

k∏
i=1

(
1 + (

1− pav
pbv

)i
))

= 0.

Thus, if p3bv(1 − pbv) > p3av(1 − pav), then limk→∞ P b(A,w|s2k = {a, a, a, . . . b, b, b, . . .}) = 1.
Since pbv(1 − pbv) > pav(1 − pav), then p3bv(1 − pbv) > p3av(1 − pav) only if type v is not too
A-slanted (i.e., α is sufficiently low) relative to reliability q.

If p3bv(1 − pbv) = p3av(1 − pav), then we can factor out
(

pbv
pav

)k2
=
(

pav(1−pav)
pbv(1−pbv)

) k(k+1)
2 from

each of our terms, which yields,

lim
k→∞

a =

(
pav(1− pav)

pbv(1− pbv)

)k
(

∞∏
i=1

(
1 + (

1− pbv
pav

)i
))

= 0

lim
k→∞

b =

(
∞∏
i=1

(
1 + (

1− pav
pbv

)i
))

lim
k→∞

c =

(
∞∏
i=1

(
1 + (

1− pbv
pav

)i
))

lim
k→∞

d =

(
pav(1− pav)

pbv(1− pbv)

)k
(

∞∏
i=1

(
1 + (

1− pav
pbv

)i
))

= 0.

Since pbv(1−pbv) > pav(1−pav), then we know that 1−pav
pbv

< 1−pbv
pav

. This means that when k →
∞, then 0 < P b(B, v|s2k = {a, a, a, . . . b, b, b, . . .}) < P b(A,w|s2k = {a, a, a, . . . b, b, b, . . .}) <
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1 where P b(A,w|s2k = {a, a, a, . . . b, b, b, . . .}) + P b(B, v|s2k = {a, a, a, . . . b, b, b, . . .}) = 1.
To interpret the three conditions for Proposition 10 in terms of reliability and slant,

define G(q, α) ≡ p3bv(1− pbv)− p3av(1− pav) where pbv = q(1−α) and pav = q+ (1− q)α. We
can re-write G(q, α) to obtain:

G(q, α) = (1− α)
(
q3(1− α)2(1− q(1− α))− (1− q)(q + (1− q)α)3

)
(34)

We will consider how G varies with α for fixed q, where we only consider the relevant range
of q ∈ (1

2
, 1). First, note that G(q, 0) = G(q, 1) = 0 for all q ∈ (1

2
, 1). Second, we can have

∂G

∂α
= q3(1− α) (−2(1− q(1− α)) + (1− α)q)− 3(1− q)2(q + (1− q)α)2.

Evaluating ∂G
∂α

for α = 0 and α = 1 yields ∂G
∂α

|α=0 = q2(4q − 3) and ∂G
∂α

|α=1 = 1 − q. Thus,
∂G
∂α

|α=0 > 0 for q ∈ [3/4, 1], ∂G
∂α

|α=0 ≤ 0 for q ∈ (1
2
, 3
4
] and ∂G

∂α
|α=1 > 0 for q ∈ (1

2
, 1).

Suppose there exists some interior ᾱ(q) ∈ (0, 1) such that G(q, ᾱ) = 0. Evaluating ∂G
∂α

at
an ᾱ(q) ∈ (0, 1) such that G(q, ᾱ) = 0 yields

∂G

∂α
|α=ᾱ = (1− q)(q + (1− q)ᾱ)2

(
−3(1− q) + (q + (1− q)ᾱ)

(
−2

1− ᾱ
+

q

1− q(1− α)

))
=

(1− q)(q + (1− q)ᾱ)2

(1− ᾱ)(1− q(1− ᾱ))
(4q − 3− ᾱ(4q − 1)) .

This implies that if there exists an ᾱ(q) ∈ (0, 1) such that G(q, ᾱ) = 0, then ∂G
∂α

|α=ᾱ < 0

when ᾱ > 4q−3
4q−1

, where we know that 4q − 1 > 0. Moreover, 4q−3
4q−1

≤ 0 when q ∈ (1
2
, 3
4
]. This

implies that any such ᾱ(q) ∈ (0, 1) must satisfy ∂G
∂α

|α=ᾱ < 0 when q ∈ (1
2
, 3
4
].

Since G(q, 0) = G(q, 1) = 0 for all q ∈ (1
2
, 1), ∂G

∂α
|α=0 ≤ 0 for q ∈ (1

2
, 3
4
], ∂G

∂α
|α=1 > 1

for q ∈ (1
2
, 1), and any such ᾱ(q) ∈ (0, 1) must satisfy ∂G

∂α
|α=ᾱ < 0 when q ∈ (1

2
, 3
4
], then

there exists no ᾱ(q) ∈ (0, 1) such that G(q, ᾱ) = 0 when q ∈ (1
2
, 3
4
]. That is, for any given

q ∈ (1
2
, 3
4
], p3bv(1− pbv) < p3av(1− pav) for all α ∈ (0, 1).

Consider q ∈ (3
4
, 1). Since G(q, 0) = G(q, 1) = 0 for all q ∈ (1

2
, 1), ∂G

∂α
|α=0 > 0 for

q ∈ [3/4, 1), and ∂G
∂α

|α=1 > 0 for q ∈ (1
2
, 1), then we know that there exists an ᾱ(q) ∈ (0, 1)

such that G(q, ᾱ) = 0 for a given q ∈ (3
4
, 1]). Moreover, we know from Equation 34 that

G(q, α) is a 4th order polynomial in α. Thus for a fixed q, G(q, α) = 0 for at most four
values of α ∈ R. Given the fact that G(q, 0) = G(q, 1) = 0 for all q ∈ (1

2
, 1), ∂G

∂α
|α=0 > 0 for

q ∈ [3/4, 1), and ∂G
∂α

|α=1 > 0 for q ∈ (1
2
, 1), then G(q, α) = 0 for at least five values of α ∈ R

if ᾱ(q) is not unique. Thus it is not possible that ᾱ(q) is not unique. Therefore, for a given
q ∈ (3

4
, 1), there exists a unique ᾱ(q) ∈ (0, 1) such that G(q, ᾱ) = 0. This implies that for

any given q ∈ (3
4
, 1), there exists a unique ᾱ(q) ∈ (0, 1) such that p3bv(1− pbv) > p3av(1− pav)

for α < ᾱ(q), p3bv(1 − pbv) = p3av(1 − pav) for α = ᾱ(q), and p3bv(1 − pbv) < p3av(1 − pav) for
α > ᾱ(q).
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To summarize:

1. If q ≤ 3/4, limk→∞ P b(B, v|s2k) = 1;

2. If q > 3/4, ∃ a unique ᾱ(q) ∈ (0, 1) such that:

(a) ∀ α > ᾱ(q), limk→∞ P b(B, v|s2k) = 1,
(b) ∀ α < ᾱ(q), limk→∞ P b(A,w|s2k) = 1,
(c) If α = ᾱ(q), then limk→∞[P b(A,w|s2k)+P b(B, v|s2k)] = 1 and P b(B, v|s2k) > 1/2.

Proof of Proposition 11
To show the results when agents receive signals from multiple sources, note that Equation
(28) can also be re-written as

P b(c1, c2, θ|sn1,n2) =
(
∏n1+n2

t=n1+1 P (st2|c2,θ))(
∏n1

t=1 P (st1|c1,θ))ωc1
0 ω

c2
0 ωθ

0βc1 (sn1 )βc2c1 (sn1,n2 )∑
c2

∑
c1

∑
θ(
∏n1+n2

t=n1+1 P (st2|c2,θ))(
∏n1

t=1 P (st1|c1,θ))ωc1
0 ω

c2
0 ωθ

0βc1 (sn1 )βc2c1 (sn1,n2 )
, (35)

where βc1(∅) = 1 and:

βc1(sn1) =

n1∏
m=1

(∑
θ

(
m∏
t=1

P (st1|c1, θ)

)
ωθ
0

)

βc2c1(sn1,n2) =

n1+n2∏
m=n1+1

(∑
θ

(
m∏

t=n1+1

P (st2|c2, θ)

)(
n1∏
t=1

P (st1|c1, θ)

)
ωθ
0

)
.

Given sn1 = (a, . . . , a) and sn2 = (b, . . . , b) where n1 = n2 = k and k > 1, we can write the
pre-screener’s beliefs using:

βc1(sn1) =
k∏

m=1

(
pmac1 + (1− pbc1)

m
)
=

k∏
m=1

pmac1

(
1 +

(
1− pbc1
pac1

)m)
βc2c1(sn1,n2) =

∏k
m=1

(
pkac1(1− pac2)

m + (1− pbc1)
kpmbc2

)
=
∏k

m=1 p
k
ac1

(1− pac2)
m

(
1 +

(
1−pbc1
pac1

)k ( pbc2
1−pac1

)m)
Therefore we can write

βc1(sn1)βc2c1(sn1,n2) =
(∏k

m=1 p
m
ac1

(
1 +

(
1−pbc1
pac1

)m))(∏k
m=1 p

k
ac1

(1− pac2)
m

(
1 +

(
1−pbc1
pac1

)k ( pbc2
1−pac1

)m))

= (pac1(1− pac2))
k(k+1)

2 pk
2

ac1

k∏
m=1

(
1 +

(
1− pbc1
pac1

)m)(
1 +

(
1− pbc1
pac1

)k (
pbc2

1− pac1

)m
)
.

(36)
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We also have that(
n1+n2∏
t=n1+1

P (st2|c2, A)

)(
n1∏
t=1

P (st1|c1, A)

)
= (pac1(1− pac2))

k (37)(
n1+n2∏
t=n1+1

P (st2|c2, B)

)(
n1∏
t=1

P (st1|c1, B)

)
= ((1− pbc1)pbc2))

k (38)

Assume that each state and each type is equally likely ex ante: ωA
0 = 1/2 and ωc

0 =

1/4 ∀c ∈ {v, w, x, z}. Suppose that there are four possible source types (c ∈ {v, w, x, z}),
where reliability and slant are uncorrelated and slant is symmetric (α = γ ≥ 0 and qH ≥
qL ≥ 1/2): v = (qH , α, 0), w = (qL, α, 0), x = (qH , 0, γ), w = (qL, 0, γ).

Substituting Equations (36), (37), and (38) into Equation (35), we can then take the
limit as k → ∞. The relevant cases are:

1. Uncertainty about reliability only: qH > qL, α = γ = 0

This implies that v = x and w = z, so we can write everything just in terms of x

and z. This implies pax = pbx, paz = pbz. We can also show that paz > 1 − pax,
which implies that pax(1 − pax) > paz(1 − paz). This yields limk→∞ P (x1, z2, A) =

limk→∞ P (z1, x2, B) = 1
2

and limk→∞ P b(x1, z2, A) = 1.

2. Uncertainty about reliability and slant: qH > qL and α = γ > 0

This implies the following properties: pav = pbx, pbv = pax, paw = pbz, pbw = paz. Given
this symmetry we can write everything just in terms of x and z. We can also show
that pbx > pbz > paz, pbx > pax > paz, pax > 1 − pbx, paz > 1 − pbz. Therefore,
pbx(1 − paz) = max {pbc1(1 − pac2), pbc2(1 − pac1), pac1(1 − pbc2), pac2(1 − pbc1)}. This
yields limk→∞ P (v1, z2, A) = limk→∞ P (w1, x2, B) = 1

2
and limk→∞ P b(v1, z2, A) = 1.

3. Uncertainty about slant only: qH = qL, α = γ > 0

This implies that v = w and x = z. Also, pav = pbx > 1/2 > pax = pbv so we
can write everything just in terms of x. We can also show that pbx > 1 − pax.
This yields limk→∞ P (v1, x2, A) = limk→∞ P (v1, x2, B) = 1

2
and limk→∞ P (v1, x2, A) =

limk→∞ P (v1, x2, B) = 1
2
.
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