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Abstract

Why do individuals interpret the same information differently? We propose that individuals form beliefs 
following Bayes’ Rule with one exception: when assessing the credibility of experts, they double-dip the 
data and use already-updated beliefs instead of their priors. This “pre-screening” mechanism explains why 
individuals jointly disagree about states of the world and the credibility of experts, why the ordering of 
signals and experts affects final beliefs, and when individuals over- or underreact to new information. In a 
trading game, pre-screening generates excessive speculation, bubbles, and crashes. Our theory provides a 
micro-foundation for why individuals disagree about how to interpret the same data.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Disagreement is everywhere, over topics ranging from the causes of climate change to the 
consequences of stimulus spending. A core feature of many disagreements is that individuals 
disagree not just about the substance of their positions (“Do humans affect climate change?”) 
but also about the credibility of information sources such as experts that inform those positions 
(“How credible are scientists and their data?”). In debates about economics (“What is the value of 
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stimulus spending?”), medicine (“Are vaccinations safe for children?”), and politics (“Was there 
interference in elections?”), one side typically expresses supreme confidence in their preferred 
sources while dismissing the other side’s sources. Bayesian learning about an unknown state of 
the world using signals from an information source with uncertain credibility struggles to explain 
this type of disagreement when all agents observe the same signals and have common priors.

This paper proposes a departure from Bayesian learning called “pre-screening.” The central 
idea of pre-screening is that an agent recognizes that credibility is uncertain but mistakenly treats 
credibility as an “ancillary parameter,” or a parameter necessary to learn with some precision 
before applying Bayes’ Rule to form final beliefs. A pre-screener first forms an updated first-
stage belief about credibility. She then forms posterior beliefs by weighing the data using the 
updated belief about credibility instead of her prior and overlooks that this step “double-dips” 
the data. In contrast, a Bayesian weighs the data using only her prior beliefs because she carefully 
separates her priors from the likelihood of the data.

Consider the following example. An individual who is reasonably sure that he weighs 200 
pounds steps on a scale that he believes is likely accurate, and the scale reads 300 pounds. Sur-
prised by the reading, a Bayesian’s posterior is that the scale is likely inaccurate but that there 
is some chance he weighs 300 pounds, as he carefully combines the likelihood of the data with 
his prior belief that the scale was accurate. In contrast, a pre-screener first infers that the scale is 
inaccurate upon seeing the reading and then combines the likelihood of the data with this updated 
belief as though he knew the scale was inaccurate all along. This process leads the pre-screener 
to discount the possibility that he might be 300 pounds too much, on the premise that the scale 
is inaccurate. Intuitively, the pre-screener thinks: “I now think the scale is not credible, and my 
beliefs should reflect that I saw non-credible signals.”

We motivate pre-screening by observing that “using the data twice” is an error that recurs 
in practice, particularly when the initial use is for a seemingly legitimate reason—in this case, 
reducing uncertainty about credibility when the principal object of interest is the state. For exam-
ple, criticisms of statistical methods such as empirical Bayes and posterior Bayes Factor methods 
often center around the potential for double-dipping the data (Lindley, 1991; Aitkin, 1991). Sim-
ilar criticisms exist of applied work in fields as varied as finance and neuroscience (Lo and 
MacKinlay, 1990; Vul et al., 2009).

Overlooking the use of updated data is plausible as evidence of hindsight bias suggests that 
individuals who have seen data tend to behave as if they “knew it all along” (Fischhoff, 1975; 
Hawkins and Hastie, 1990). A pre-screener overlooks her erroneous substitution of updated first-
stage beliefs for priors, while a Bayesian carefully distinguishes her prior from subsequent data. 
Relatedly, evidence on the curse of knowledge (Camerer et al., 1989) suggests that individuals 
have difficulty conceptualizing what it was like to be uninformed in the past.

Section 2 introduces pre-screening. We assume that signal sources are data-generating pro-
cesses that produce signals about an uncertain state and abstract from strategic motives to isolate 
the effects of biased learning. In the base model, we model a source’s credibility as its accuracy 
in discerning the true state of the world (e.g., do economists accurately understand the economy).

Section 3 characterizes three implications of pre-screening for disagreement. First, pre-
screening endogenously generates correlated disagreement. Suppose two agents with common 
priors observe signals with the same objective information content. If the agents are Bayesian, 
they never disagree. If the agents are pre-screeners, they disagree about the state if and only if 
they disagree about credibility and credibility objectively matters. Specifically, pre-screener X
thinks the objectively-favored state is more likely than pre-screener Y does if and only if X also 
thinks the source is more credible than Y does.
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Second, disagreement about credibility between two pre-screeners occurs if they see signals 
in different orders, even if they share common priors and see the same objective information con-
tent. The reason is that pre-screening, through the repeated substitution of updated beliefs about 
credibility for priors, leads to path-dependent beliefs whereby early signals have an outsized in-
fluence on the interpretation of later signals and thus final posterior beliefs. Bayesian beliefs, in 
contrast, do not depend on the order of signals.

Third, the model provides conditions for when pre-screeners endogenously over- and under-
react to new signals that depend on how the signals affect first-stage beliefs about source cred-
ibility. Pre-screening thus provides a unified explanation for seemingly contradictory deviations 
from Bayes’ Rule. For example, the literature suggests that agents exhibit confirmation bias and 
under-react to disconfirming news that contradicts their beliefs about the state (Rabin and Schrag, 
1999). On the other hand, agents also over-react to news that is so disconfirming that it causes 
agents to re-evaluate their worldview or paradigm (Ortoleva, 2012; Galperti, 2019). Distinct from 
confirmation bias, pre-screeners can over-react or under-react to confirming and disconfirming 
news.

Section 4 characterizes pre-screeners’ beliefs when there are multiple sources. Pre-screeners 
can disagree about sources’ credibilities and the state even when they observe all sources’ signals, 
as long as they encounter sources in different orders. The reason is that beliefs about an early 
source’s credibility color the interpretation of later sources’ signals. Thus, our theory explains 
why individuals disagree about states of the world and the credibilities of multiple sources of 
information.

Section 5 considers three extensions. First, we show that the possibility that sources may 
“slant” signals toward a given state can create further scope for error by pre-screeners. While the 
base model considers the case where agents do not know a source’s accuracy, in reality agents 
may also be uncertain of whether sources have slant (e.g., whether scientists have an agenda). 
Second, we extend pre-screening to the case where a source may send multiple signals in one 
period and show how signal order can be important for persuasion. Third, we show that key 
results hold when we allow for fading memory.

Section 6 illustrates the implications of pre-screening for prices and trade. In a trading game 
similar to Harris and Raviv (1993), we compare outcomes when all traders are pre-screeners 
with outcomes when all traders are Bayesians. The game with pre-screeners features weakly 
more trade than the game with Bayesians since agents speculate against each other’s beliefs in 
the sense of Harrison and Kreps (1978). Specifically, a pre-screener may buy an asset even if the 
price is greater than what she thinks it is worth to resell it later to other agents. This speculation 
is akin to traders “riding the bubble” (Abreu and Brunnermeier, 2003; Brunnermeier and Nagel, 
2005). Sharp swings in prices akin to bubbles and crashes, as defined by Barberis (2018), can 
occur beyond what can be easily explained by a model with Bayesian agents with heterogeneous 
priors. The application to the trading game illustrates how pre-screening can generate several 
empirically-relevant dynamics within a unified framework.

Our main contribution is to offer a parsimonious micro-foundation for why individuals dis-
agree about the interpretation of the same data. Our approach suggests that erroneous learning 
about credibility may play a central role in explaining the joint disagreement over substance and 
credibility in a wide range of settings. Section 7 summarizes pre-screening’s key implications 
and how they differ from other approaches in the literature, including heterogeneous priors, inat-
tention, correlation neglect, and confirmation bias. Concerning heterogeneous priors (Morris, 
1995), our model provides a theory for such priors’ origins. We conclude with a discussion of 
avenues for future research.
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2. Model

2.1. Information environment

An agent learns about an unknown state θ ∈ {A, B} by observing binary signals st ∈ {a, b}
in each period t from an expert. Experts in our model are data-generating processes (e.g., ana-
lysts, advisors, scientists) and are not strategic, and we refer to experts as information sources 
from now on. A source’s credibility is a type c that describes the informativeness of its signals. 
Nature draws true source credibility independently from the true state. Conditional on state and 
credibility, signals are independently and identically distributed.

In the main model, we focus on the case where credibility summarizes the accuracy of the 
source in determining the state. Specifically, a source has credibility c ∈ {L(ow), H(igh)}. 
A high-credibility source has a higher probability of correctly reporting the state than a low-
credibility source and is more informative: P(st = a|c, A) = P(st = b|c, B) = qc where qL <

qH . We assume qc ∈ [1/2, 1): the least accurate possible signal is noise, while even the most 
accurate possible signal is not perfectly correlated with the true state.

The agent is uncertain whether a source’s credibility c is high or low. Uncertain credibility is 
realistic in many real-world areas of disagreement, such as economics, climate science, medicine, 
and politics. In economics, few lay individuals have the expertise or training to evaluate primary 
evidence on these issues. Yet, from the individual’s perspective, the economist’s ability is uncer-
tain. Sapienza and Zingales (2013) show that American households have sharply different views 
than economists on questions ranging from the stock market to free trade.

Similarly, few individuals have the expertise to evaluate the extent to which humans affect cli-
mate change, yet many people have very strong opinions about the topic. Disagreement between 
climate “deniers” and supporters of the proposition is largely about the credibility of the majority 
of the scientific community (Druckman and McGrath, 2019). In medicine, despite consensus on 
the safety of childhood vaccinations, the anti-vaccine movement has gained traction by casting 
doubt on the evidence and motives of research. In politics, the proliferation of “fake news” over 
social media during the recent U.S. presidential election highlights the importance of uncertain 
expert credibility (The Economist Magazine, 2016).

We focus on a stark environment with no direct signals of source credibility. This is a simpli-
fication but reflects the reality that evaluating credibility by comparing predictions to outcomes 
in a controlled environment is difficult in the real world. Furthermore, credentials (PhDs, Nobel 
Prizes, and so on) are often of uncertain informativeness themselves and may not be very in-
formative about the credibility of a source’s opinions for a specific state. DellaVigna and Pope 
(2018) run a large experiment in which economists forecast the effectiveness of different incen-
tive treatments on subjects, and find that objective measures of expertise are unrelated to forecast 
accuracy.

2.2. Learning

Suppose the agent has the prior that the state and credibility are independent with marginal 
probabilities ωθ

0 for the state and ωc
0 for each credibility type c. Let the agent observe a sequence 

of n signals, denoted sn = (s1, s2, . . . sn), where one signal is observed each period.
A Bayesian’s posterior belief P(c, θ |sn) equals:

P(c, θ |sn) =
(∏n

t=1 P(st |c, θ)
)
ωθ

0ωc
0∑

c

∑
θ

(∏n
t=1 P(st |c, θ)

)
ωθ

0ωc
0

. (1)
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When forming her posterior, the Bayesian uses her prior belief ωc
0 about source credibility to 

weight the likelihood of signals 
(∏n

t=1 P(st |c, θ)
)

in a single step. Her posterior beliefs depend 
only on her prior and the information content of signals, defined as:

Definition 1 (Information content). The information content of any signal path sn is given by 
the number of “a” signals na and the number of “b” signals nb.

We propose that individuals make a mistake that we call pre-screening when faced with the 
problem of determining how much weight to apply to a source’s signals. A pre-screener mis-
takenly uses updated beliefs about credibility when weighting signals instead of using priors. 
She updates in two steps. First, she forms an updated first-stage belief about credibility, denoted 
κc(sn), using Bayes’ Rule. Second, she uses this updated belief κc(sn) to weight the signals sn in 
forming her joint posterior of state and credibility, denoted P s(c, θ |sn). The key mistake is that 
she uses κc(sn) to evaluate all signals, whereas a Bayesian uses her prior ωc

0.
To illustrate, suppose a pre-screener observes two signals, one in each period. After observing 

the first signal (s1), the first-stage updated belief about credibility, κc({s1}), is:

κc({s1}) = ωc
0

∑
θ P (s1|c, θ)ωθ

0∑
c

∑
θ P (s1|c, θ)ωθ

0ωc
0

.

Using κc({s1}) to form the joint posterior belief on the state and credibility, P s(c, θ |{s1}), yields 
the pre-screener’s posterior beliefs after the first signal:

P s(c, θ |{s1}) = P(s1|c, θ)κc({s1})ωθ
0∑

c

∑
θ P (s1|c, θ)κc({s1})ωθ

0

.

After observing the second signal (s2), the pre-screener’s first-stage updated belief about credi-
bility, κc({s1, s2}), is:

κc({s1, s2}) =
∑

θ P (s2|c, θ)P s(c, θ |{s1})∑
c

∑
θ P (s2|c, θ)P s(c, θ |{s1}) .

The pre-screener then uses κc({s1, s2}) to form her joint posterior belief on the state and credibil-
ity by re-weighting all the information from the source. The posterior, P s(c, θ |{s1, s2}), equals:

P s(c, θ |{s1, s2}) = P(s2|c, θ)P (s1|c, θ)κc({s1, s2})ωθ
0∑

c

∑
θ P (s2|c, θ)P (s1|c, θ)κc({s1, s2})ωθ

0

.

Iterating on the pre-screener’s process of repeatedly substituting newly-updated beliefs about 
credibility for priors allows us to characterize her posterior beliefs.

Definition 2 (Pre-screener’s beliefs). After observing a signal path sn from a source, the pre-
screener’s first-stage updated belief about source credibility, κc(sn), is given by:

κc(sn) = κc(sn−1)
∑

θ

(∏n
t=1 P(st |c, θ)ωθ

0

)∑
c κc(sn−1)

∑
θ

(∏n
t=1 P(st |c, θ)ωθ

0

) , (2)

where κc(∅) = ωc
0. The pre-screener’s joint posterior on credibility and the state, P s(c, θ |sn), 

is given by:

P s(c, θ |sn) =
(∏n

t=1 P(st |c, θ)
)
κc(sn)ω

θ
0∑

c

∑
θ

(∏n
t=1 P(st |c, θ)

)
κc(sn)ω

θ
0

. (3)
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2.3. Motivation and conceptual foundations

The central idea of pre-screening is that an agent may recognize that credibility is uncertain 
but mistakenly treats credibility as an “ancillary parameter” when forming her final beliefs, or a 
parameter that is beneficial or necessary to learn with some precision before weighing the data 
using Bayes’ Rule.1 Intuitively, a pre-screener forms data-dependent priors for the seemingly-
legitimate purpose of estimating an ancillary parameter (the first step) but overlooks double-
dipping the data in the final analysis when she uses her data-dependent prior (the second step).

Specifically, the first step of pre-screening, the first-stage update, occurs because the agent 
faces a complicated problem with uncertainty over two parameters, one of which (credibility) is 
essential to support the learning process but is not the agent’s principal object of study (hence 
the term “ancillary”). The agent approaches the problem by first reducing uncertainty over the 
ancillary parameter, a seemingly legitimate reason to use the data. She thus forms updated belief 
κc(sn) about credibility.2

In the second step of pre-screening, the agent feeds the updated belief about credibility as a 
“data-dependent prior” into her analysis to form her final posterior. For example, if the agent 
thinks the source is not credible based on the data, she then thinks to herself, “I now think 
the source is likely not credible, and my beliefs should reflect that I likely saw non-credible 
signals.” She thus replaces ωc

0 with κc(sn).3 However, she crucially overlooks that using her 
data-dependent prior in this way “uses the data twice” and double-dips the data. A Bayesian 
always carefully separates her priors from the likelihood of the data.

We motivate pre-screening in two ways: First, from the observation that “using the data twice” 
is an error that recurs in practice, and second, from psychological reasons underlying why indi-
viduals may double-dip the data.

Two statistical techniques illustrate the possibility of error in practice. Empirical Bayes (EB) 
methods often initially use the data to reduce parameter uncertainty by calibrating data-dependent 
priors over nuisance parameters, a seemingly-legitimate reason to use the data (Maritz and Lwin, 
1989). For example, one common application first estimates nuisance parameters and plugs them 
into a second analysis about the primary parameter of interest. However, a researcher may inad-
vertently double-dip the data if she is not careful. Carlin and Louis (2000) write that early EB 
authors’ consistent “use of Bayesian tools . . . while using the data twice (first to help determine 
the prior, then again in the usual Bayesian way when computing the posterior) was not highly 
regarded in the Bayesian community at the time.”

Posterior Bayes Factor (PBF) methods (Aitkin, 1991) are a variation of Bayes Factor meth-
ods that conduct model comparison. The method seeks to reduce uncertainty by first calculating 
posterior parameter distributions before feeding these posteriors into the second step calculation 
of Bayes Factors. However, the method plainly uses the data twice by using posterior instead of 

1 We choose the word “ancillary” in line with its dictionary definition: “ancillary (adj.): A.1. Subservient, subordinate, 
ministering (to). . . . 3. Designating activities and services that provide essential support to the functioning of a central 
service . . . ” (Oxford English Dictionary, 1989).

2 We view credibility as the ancillary parameter and the state as the principal object of study rather than the other 
way around. A model where the agent updates on the state first makes predictions that are qualitatively very similar to 
confirmation bias - for example, there would be no significant distinction between observing conflicting signals from 
different sources versus a single source.

3 Definition 3 assumes ex-ante independence of states and credibility. We maintain this assumption both for simplicity 
and because it isolates the effect of pre-screening on joint beliefs about the state and credibility without assuming any 
correlation ex-ante. We provide a generalized definition in the Internet Appendix.

6



I.-H. Cheng and A. Hsiaw Journal of Economic Theory 200 (2022) 105401

prior parameter distributions in the second step, and this double-dip has drawn intense criticism. 
For example, O’Hagan (1991) writes that the method “suggests that we obtain the posterior dis-
tribution using the whole data vector, and then reuse all these data to effect model comparisons. 
Such a procedure is quite evidently non-coherent.”

Pre-screeners make errors analogous to those in these two statistical methods. A pre-screener’s 
first step of narrowing uncertainty over an ancillary parameter is analogous to estimating a nui-
sance parameter in EB methods and calculating posterior parameter distributions in the PBF 
method. The second step of overlooking the re-use of data in pre-screening is analogous to plug-
ging estimated nuisance parameters into Bayes’ Rule in EB methods and the substitution of the 
posterior for the prior in PBF methods. These analogies are imperfect since, for example, pre-
screeners specifically update about credibility first, and also form a joint distribution over both 
credibility and the state in the second step. However, they illustrate that mistakenly using the data 
twice recurs particularly when the first use is to narrow uncertainty about objects that are not the 
primary object of study.

Individuals have also made the error of first using the data for some purpose before over-
looking a second use of the data in several applied settings. Lo and MacKinlay (1990) criticize 
empirical tests in finance by noting that several statistical tests are invalid where “the construc-
tion of test statistics is influenced by empirical relations derived from the very same data used in 
the test.” In neuroscience, Vul et al. (2009) show that published correlations between measures 
of brain activation and personality are biased because studies use the same data to both calcu-
late the correlations and select which data points to correlate.4 In both examples, the use of data 
for a seemingly legitimate purpose (test construction and sample selection) led researchers to 
double-dip the data when conducting their primary analyses.5

Several related psychological reasons underlie why individuals may erroneously double-dip 
data. Lord et al. (1979) conjectured that individuals make this mistake when noting that their 
experimental subjects tended to use “evidence already processed . . . to bolster the very theory 
that initially ‘justified’ the processing bias.” As Rabin and Schrag (1999) discuss, the mistake is 
analogous to a teacher who first assigns a student a low grade because she unfavorably interprets 
an unclear answer from the student as consistent with priors about low ability, but then goes on 
to erroneously use the low grade as further or additional evidence of low ability.

Evidence from cognitive psychology about hindsight bias and the curse of knowledge sug-
gest that individuals who have seen data tend to behave as if they “knew it all along” and thus 
have trouble ignoring information when the context requires using only prior beliefs. Whereas a 
Bayesian carefully distinguishes her priors from subsequent data, there is a tendency for individ-
uals with “outcome knowledge to overestimate what they would have known without outcome 
knowledge” (Fischhoff, 1975; Fischhoff and Beyth, 1975; Hawkins and Hastie, 1990). A core 
tenet of leading cognitive models for hindsight bias (Hoffrage et al., 2000; Hertwig et al., 2003) 
is that “If knowledge is constantly updated” then “inferences based on updated knowledge may 

4 Kriegeskorte et al. (2009, 2010) dub this “circular analysis” and point out the problem in several fMRI studies.
5 As another example of why using updated beliefs might seem plausible, Subramanyam (1996) notes that, when the 

error precision of a normally-distributed signal about a normally-distributed unobserved random variable is unknown, 
a Bayesian can calculate the posterior mean by applying the updated signal-gain in the linear updating equation for the 
mean, due to the Law of Iterated Expectations. This is due to the linear relationship between the posterior mean and 
the realized signal in a Gaussian environment, and the procedure does not recover the joint posterior of the mean and 
error precision. The non-monotone reaction to surprises in that paper occurs due to how the likelihood combines with a 
Bayesian’s prior beliefs when signal precision is uncertain.
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be different from those based on past knowledge” (Hoffrage and Hertwig, 1999).6 Relatedly, 
individuals also suffer from the curse of knowledge, or the failure to accurately anticipate the 
judgments of less-informed individuals (Camerer et al., 1989), as they are unable to ignore their 
own additional information and imagine what it was like to be uninformed in the past. Madarász 
(2012) suggests that people overestimate how much others know what they know.

Relatedly, the literature has documented that individuals double-count data due to correla-
tion neglect (DeMarzo et al., 2003; Eyster and Rabin, 2010, 2014; Ortoleva and Snowberg, 
2015; Eyster et al., 2018; Enke and Zimmermann, 2019). Individuals who exhibit correlation 
neglect have difficulty recognizing the double-counting problem inherent in correlated signals 
and thus tend to double-count data that contains information redundancies. Pre-screeners under-
stand correlation but engage in a different form of double-counting originating from their attempt 
to resolve uncertainty about credibility more than they objectively should. The specific form of 
double-counting in pre-screening distinguishes its predictions from those of correlation neglect.

Though the two steps of pre-screening—forming a first-stage belief and then feeding it into 
final beliefs through a data-dependent prior—each deviate from Bayes Rule, one can consider 
alternative models that adopt each step individually. We consider such models in Section 7 and 
highlight how they differ from pre-screening in their mechanisms and predictions.

2.4. An example

An individual who is reasonably sure that he weighs 200 pounds steps on a scale with un-
known credibility, and the scale reads 300 pounds. A second reading also shows 300 pounds. 
What would a Bayesian and pre-screener infer after each signal?

In the following example, the Bayesian’s belief about weight moves progressively towards 
300 pounds after each signal of 300 pounds, even though he also believes the scale might not 
be accurate. In contrast, a pre-screener’s belief about his weight moves very little towards 300 
pounds, and will move back towards 200 pounds after the second signal, as he concludes the 
scale is almost certainly inaccurate. The stark difference in this illustration occurs because the 
pre-screener erroneously acts as if he had updated beliefs about credibility all along.7

Let the individual’s weight θ ∈ {200, 300} pounds be the unknown state of the world, and 
suppose the scale can read either 200 or 300 pounds. Both the Bayesian and pre-screener are 
uncertain about the scale’s accuracy, which can be accurate (qH = 0.9) or inaccurate (qL = 0.5). 
They share the same priors that their weight is probably 200 pounds (ω200

0 = 0.98) and that the 
scale is probably accurate (ωH

0 = 0.80). Fig. 1 reports posterior beliefs.
Given prior beliefs, the first reading of {s1} = {300} is quite a surprise. The Bayesian’s 

marginal posterior beliefs equal P(θ = 200|{300}) = 0.91 and P(c = H |{300}) = 0.48. Even 
though the Bayesian’s posterior belief is that the scale is likely inaccurate, he is careful to reach 
his joint posterior beliefs by combining the likelihood of the data with his prior belief that the 
scale is accurate, ωH

0 = 0.80, following Equation (1).

6 For example, according to the RAFT cognitive process model (Hoffrage et al., 2000), hindsight bias is generated “if 
individuals are unable to directly retrieve their initial judgment but try to reconstruct it by repeating the original judgment 
process, this time, however, on the basis of the updated knowledge base” (Blank and Nestler, 2007). An implication of an 
individual’s belief that she “knew it all along” in the past is that she also currently thinks that she “knew it all along” and 
behaves accordingly. For example, Biais and Weber (2009) show that individuals exhibit more hindsight bias when not 
explicitly reminded of their prior beliefs, and that hindsight bias is correlated with lower performance among bankers.

7 The Appendix provides the detailed equations for the pre-screener’s and Bayesian’s beliefs each period.
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Fig. 1. The scale example. Parameter values equal (qH , qL, ω200
0 , ωH

0 ) = (0.9, 0.5, 0.98, 0.8). Signals are st = 300 each 
period.

A pre-screener’s marginal posteriors equal P s(θ = 200|{300}) = 0.96 and P s(c = H |{300})
= 0.18. He reaches his joint posterior beliefs by erroneously combining the likelihood of the data 
with an updated belief that the scale is likely inaccurate, κH ({300}) = 0.48 (Equations (2) and 
(3), not shown in the figure). This “double-dipping” leads him to update insufficiently towards 
the belief that he weighs 200 pounds and too much in the direction that the scale is inaccurate.

After a second reading, the Bayesian’s marginal posterior beliefs equal P(θ = 200|{300, 300})
= 0.80 and P(c = H |{300, 300}) = 0.29. Notice that the Bayesian’s belief about his weight pro-
gressively moves away from 200 pounds after each signal (from 0.98 to 0.91 to 0.80), even 
though his trust in the scale progressively drops.

In contrast, the pre-screener’s beliefs equal P s(θ = 200|{300, 300}) = 0.97 and P s(c =
H |{300, 300}) = 0.01. His posterior probability that he weighs 200 pounds increases (from 0.96 
to 0.97), which is the wrong way relative to the Bayesian. This is because he erroneously thinks 
that his updated belief that the scale is likely inaccurate, κH({300, 300}) = 0.09, should apply 
to all of the scale’s readings, leaving him fairly confident that he is 200 pounds, close to what 
he initially believed. After all, if the scale is probably inaccurate, then he thinks that all of its 
readings are more questionable than he originally thought. Put yet another way, the pre-screener 
thinks: I now think the scale is not credible, and my beliefs should reflect that any concern I had 
about being overweight stemmed from not-credible readings. Therefore, he is now (erroneously) 
less concerned about being overweight.

It takes the Bayesian only three signals to begin inferring that the scale is likely accurate. 
His belief about weight progressively moves away from 200 pounds with each signal. It takes 
the pre-screener six readings to begin believing that the scale might be accurate, and during this 
time, his belief about weight is moving towards 200 pounds—the wrong way—before reversing 
afterwards. Upon the seventh reading, he begins to recognize that the scale may be credible and 
re-evaluates the evidence he has received in light of more favorable updated first-stage beliefs. 
He thinks: Perhaps the scale is credible and the readings of 300 pounds that I saw were accurate. 

9
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Upon the eleventh reading, the pre-screener thinks he is probably 300 pounds and that the scale 
is very credible, so he revises his beliefs sharply toward 300 pounds.8

3. Pre-screening and disagreement

3.1. Disagreement about the state θ

Our first result, provided in Proposition 1, shows that any disagreement about θ between a 
Bayesian and pre-screener or two pre-screeners is fully characterized by disagreement about 
credibility c. We first establish Lemma 1 which provides the key intuition and relates the pre-
screener’s belief about θ to a Bayesian’s belief. We assume all agents share common priors (
ωA

0 ,ωH
0

) ∈ (0, 1) × (0, 1).

Lemma 1 (Beliefs about θ ). Suppose a pre-screener and Bayesian observe signal path sn. Pre-
screeners and Bayesians share the same posterior conditional probability of the state:

P s (θ | c; sn) = P (θ | c; sn) , (4)

and therefore the pre-screener’s marginal posterior belief about θ equals:

P s (θ | sn) = P (θ | c = L; sn) + [P (θ | c = H ; sn) − P (θ | c = L; sn)] × P s (c = H | sn) .

(5)

Lemma 1 establishes that, after observing sn, any posterior disagreement about the state be-
tween a pre-screener and Bayesian is fundamentally about the credibility of the source’s signals. 
Given a source type c, the two agree about the posterior conditional probability of the θ (Equa-
tion (4)). Thus the pre-screener’s belief about θ can only differ from a Bayesian’s belief if her 
belief about c differs (Equation (5)). The Lemma leads to Proposition 1.

Proposition 1 (Disagreement about θ ). Let signal path sn be given.

1. If a pre-screener and Bayesian both observe sn, the difference between their marginal poste-
rior probabilities over θ equals:

P s (θ | sn) − P (θ | sn) = [P (θ | c = H ; sn) − P (θ | c = L; sn)] (6)

× [
P s (c = H | sn) − P (c = H | sn)

]
.

This difference equals zero if and only if na = nb or 
∏n

m=1
P(c=H |sm)(1−ωH

0 )

P (c=L|sm)(ωH
0 )

= 1, where sm is 

the sequence of the first m signals of sn.

2. Let �(sn) be the set of permutations of sn. Let pre-screeners X and Y observe sX
n and sY

n , 
respectively, where sX

n , sY
n ∈ �(sn). The difference between the two pre-screeners’ marginal 

posterior probabilities over θ equals:

8 If individuals are uncertain of whether the scale is biased towards one state instead of its accuracy, qualitative insights 
are similar. Section 5 discusses such “slant” further.
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P s
(
θ | sX

n

)
− P s

(
θ | sY

n

)
= [P (θ | c = H ; sn) − P (θ | c = L; sn)] (7)

×
[
P s

(
c = H | sX

n

)
− P s

(
c = H | sY

n

)]
.

This difference equals zero if na = nb or 
∏n

m=1
P

(
c=H |sXm

)
P

(
c=L|sXm

) = ∏n
m=1

P
(
c=H |sYm

)
P

(
c=L|sYm

) .

Proposition 1 says that disagreement about the state occurs (the left-hand side of Equations (6)
and (7) is not zero) if and only if credibility objectively matters (the first term on the right-hand 
side is not zero) and there is disagreement about credibility (the second term is not zero). There 
is no disagreement about the state if credibility objectively does not matter (na = nb) or there is 
no disagreement about credibility. We discuss the condition for when there is no disagreement 
about credibility in the next subsection.

A key implication of Proposition 1 is correlated disagreement: A pre-screener thinks the state 
objectively favored by sn is more likely than what other agents think if and only if she thinks 
c = H is more likely. For example, suppose the signals objectively favor state A (na > nb). 
Then P (θ = A | c = H ; sn) − P (θ = A | c = L; sn) > 0, and the objective posterior probability 
of state A is objectively higher when the source is more credible. As a result, differences in beliefs 
about θ = A on the left-hand side of Equations (6) and (7) have the same sign as differences in 
beliefs about c = H on the right-hand side. Identical arguments for B apply when nb > na .

To simplify the exposition going forward, we define the following:

Definition 3 (Over- and under-trust). Given any signal path sn, a pre-screener overtrusts the 
source if P s(c = H |sn) > P(c = H |sn) and under-trusts if P s(c = H |sn) < P(c = H |sn).

Part 1 thus says there is correlated disagreement between a pre-screener and a Bayesian in that 
the pre-screener thinks the objectively-favored state is more likely than a Bayesian thinks if and 
only if she overtrusts the source. Conversely, she thinks that state is less likely than a Bayesian 
thinks if and only if she under-trusts the source.

Part 2 says that there is also correlated disagreement between two pre-screeners in that pre-
screener X thinks the objectively-favored state is more likely than pre-screener Y thinks if and 
only if she also thinks the source is more credible. The next section characterizes disagreement 
about credibility. A key result is that X and Y can disagree about credibility due to different 
ordering of signals even if sX

n and sY
n have identical information content.

3.2. Disagreement about credibility c

The reason disagreement about credibility occurs is that a pre-screener’s final posteriors er-
roneously depend on the order of signals. To see why, expand the recursion of κc(sn) in the 
pre-screener’s posterior belief in Equation (3) to obtain:

P s (c, θ | sn) = βc (sn)
∏n

t=1 P (st | c, θ)ωθ
0ωc

0∑
c βc (sn)

∑
θ

∏n
t=1 P (st | c, θ)ωθ

0ωc
0

, (8)

where βc(sn) summarizes the cumulative effect of pre-screening through time on beliefs:

βc(sn) ≡
(∑

θ

P (s1|c, θ)ωθ
0

)
×

(∑
θ

P (s1|c, θ)P (s2|c, θ)ωθ
0

)
× . . .
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×
(∑

θ

P (s1|c, θ)P (s2|c, θ) . . . P (sn|c, θ)ωθ
0

)

=
n∏

m=1

(∑
θ

(
m∏

t=1

P(st |c, θ)

)
ωθ

0

)
. (9)

A pre-screener’s posterior beliefs depend on signal order because βc(sn) depends on signal 
order. Early signals appear more often in βc(sn) because agents substitute first-stage updated 
beliefs about credibility for time-0 priors every time they update. When early signals indicate 
high credibility, βH is high and βL is low. This can occur when early signals are consistent with 
each other (e.g., {s1, s2} = {a, a} when ωA

0 = 1/2) or priors (e.g., {s1} = {a} when ωA
0 > 1/2). 

Conversely, when early signals indicate low credibility, βH is low and βL is high.
Pre-screening thus leads to a first impression bias where early signals of credibility have an 

outsized influence on beliefs through their effect on βc. Proposition 2 characterizes this effect 
through βH (sn)/βL(sn), which we shorten to βH/βL(sn).

Proposition 2 (Disagreement about c). Let sn be given.

1. P s(c = H | sn) ≥ P(c = H | sn) if and only if βH/βL(sn) ≥ 1, with equality holding if and 
only if βH/βL(sn) = 1.

2. For any sX
n , sY

n ∈ �(sn), P s
(
c = H | sX

n

) ≥ P s
(
c = H | sY

n

)
if and only if βH /βL(sX

n ) ≥
βH /βL(sY

n ), with equality holding if and only if βH/βL(sX
n ) = βH /βL(sY

n ).

Finally, note that βH/βL(sn) = ∏n
m=1

P(c=H |sm)(1−ωH
0 )

P (c=L|sm)(ωH
0 )

in terms of objective parameters.

Part 1 says that a pre-screener over-trusts the source if and only if βH/βL(sn) > 1 and under-
trusts the source if and only if βH/βL(sn) < 1. By Proposition 1, overtrust (under-trust) directly 
leads the pre-screener to think the objectively-favored state is more (less) likely than a Bayesian 
thinks. The condition for no disagreement about credibility in Proposition 1 Part 1 is identical to 
βH /βL(sn) = 1.

Part 2 makes an analogous statement about disagreement over credibility between two pre-
screeners X and Y who observe sX

n and sY
n that have identical information content but signals 

in different orders. If the signal order in sX
n generates higher βH /βL(sn) than sY

n generates, then 
pre-screener X thinks the source is more credible than pre-screener Y thinks. By Proposition 1, 
X also thinks the objectively-favored state is more likely than Y thinks.

The Proposition also shows how to interpret the key term βH/βL(sn) in terms of objective pa-

rameters, βH /βL(sn) = ∏n
m=1

P(c=H |sm)(1−ωH
0 )

P (c=L|sm)(ωH
0 )

. This formulation of βH /βL(sn) demonstrates 

that a pre-screener’s over- or under-trust depends on the cumulative effect of the substitution 
of first-stage updated beliefs about credibility on subsequent beliefs about credibility. Each mth 
term of βH /βL(sn) is the objective posterior odds that the source is high credibility given subse-
quence sm divided by the prior odds. Because any sm necessarily includes the signals previously 
observed in sm−1, sm−2, and so on, early signals and their initial effects on objective credibil-
ity have an outsized influence on βH/βL(sn). Thus, a pre-screener’s final beliefs are influenced 
by first impressions about credibility. In contrast, a Bayesian’s beliefs are independent of signal 
order.

12
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Corollary 1 fleshes out the above discussion by considering how changing signal order affects 
βH /βL(sn). Let sn contain at least one a and b (0 < na < n), and consider two permutations 
that differ only in how they order a single (a, b): Let sX

n , sY
n ∈ �(sn) with (sX

j , sX
j+1) = (a, b)

and (sY
j , sY

j+1) = (b, a) for some j < n. (For example, if sn = (a, a, a, b), consider sX
n = sn and 

sY
n = (a, a, b, a) with j = 3.) Let na,j−1 and nb,j−1 be the information content of sj−1 (i.e., the 

number of a and b signals through j − 1, respectively), which is common to both sX
n and sY

n . 
Whether βH /βL(sX

n ) is greater or less than βH/βL(sY
n ) depends on the information content of 

sj−1 and prior beliefs.
If the information content of sj−1 sufficiently indicates state A, the additional b in sY

j com-

pared to sX
j results in βH /βL(sY

n ) < βH /βL(sX
n ) irrespective of prior beliefs (Part 1). The reason 

is that the additional b in sY
j leads to lower objective beliefs about credibility than sX

j since it 

is inconsistent with the strong evidence favoring A: 
P

(
c=H |sYj

)
P

(
c=L|sYj

) <
P

(
c=H |sXj

)
P

(
c=L|sXj

) . This lower be-

lief about credibility at j influences the interpretation of subsequent signals and culminates in 
βH /βL(sY

n ) < βH /βL(sX
n ).

If the information content of sj−1 only weakly indicates state A, then it is also possible that 
βH /βL(sY

n ) > βH /βL(sX
n ) when priors strongly favor state B . The reason is that the additional 

b in sY
j is consistent with priors about the state even though it is inconsistent with the previ-

ous information. Thus, sY
j can generate either lower or higher objective beliefs about credibility 

compared to sX
j . Because these beliefs color the interpretation of subsequent signals, the ultimate 

relationship between βH /βL(sY
n ) and βH /βL(sX

n ) is ambiguous. Analogous reasoning applies if 
the information content of sj−1 favors B (Part 2 of the Corollary).

Corollary 1. Let sn with 0 < na < n be given, and consider sX
n , sY

n ∈ �(sn), which are identical 
except for (sX

j , sX
j+1) = (a, b) and (sY

j , sY
j+1) = (b, a) for some j < n. Let dj−1 = na,j−1 −

nb,j−1.

1. Case 1: dj−1 > 0. There exists a d∗
j−1 ≥ 0 such that 

P
(
c=H |sj−1

)
(1−ωH

0 )

P
(
c=L|sj−1

)
(ωH

0 )
is increasing in dj−1

for all dj−1 > d∗
j−1. By implication, if dj−1 > d∗

j−1, then βH /βL(sY
n ) < βH /βL(sX

n ). Other-
wise, the effect is ambiguous.

2. Case 2: dj−1 < 0. There exists a d∗∗
j−1 ≤ 0 such that 

P
(
c=H |sj−1

)
(1−ωH

0 )

P
(
c=L|sj−1

)
(ωH

0 )
is decreasing in dj−1

for all dj−1 < d∗∗
j−1. By implication, if dj−1 < d∗∗

j−1, then βH /βL(sY
n ) > βH /βL(sX

n ). Other-
wise, the effect is ambiguous.

More broadly, Corollary 1 suggests that pre-screeners tend to interpret signal sequences with 
early mixed messages about the state as less credible than other signal sequences that have the 
same objective information content. We show in the Appendix that, for the special case of ωA

0 =
1/2, re-ordering signals so that alternating the signals first generates the least trust in the source, 
while re-ordering so that the longest consistent streak appears first generates the most trust.9

9 For ωA
0 = 1/2, posterior beliefs about credibility do not depend on whether the information content of sn is consistent 

with prior beliefs about the state. They depend only on the likelihood function, which simplifies the intuition preceding 
the statement of the Corollary.
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Despite the first impression bias, Proposition 3 shows that, as n → ∞, pre-screeners learn the 
truth if and only if Bayesians do. The reason is that signals are weakly positively correlated with 
the truth, and therefore sufficient signals overcome the first-impression bias.

Proposition 3 (Asymptotic agreement). Let c′ and θ ′ be the true credibility and state of the world 
selected by nature. Pre-screeners and Bayesians agree in the limit, with pre-screeners learning 
the true state if and only if Bayesians do:

lim
n→∞P s

(
c = c′ | sn

) = lim
n→∞P

(
c = c′ | sn

) = 1

lim
n→∞P s

(
θ = θ ′ | sn

) = lim
n→∞P

(
θ = θ ′ | sn

) =
{

1 if c′ = H or qL > 1/2

ωθ ′
0 if c′ = L and qL = 1/2

.

Proposition 3 relies on qL ≥ 1/2: pre-screeners learn the truth because signals from both cred-
ibility types are weakly positively correlated with the true state. Section 5 introduces an extension 
where signals may be negatively correlated with the state because sources are slanted toward one 
state. In that case, pre-screeners may become certain of the wrong state even if Bayesians do not 
learn the truth.

3.3. Endogenous over- and underreaction to new information

Suppose a pre-screener has observed signal path sn and has posterior ωs
n. When do the 

pre-screener’s beliefs about the state over- or under-react in response to the next signal sn+1, 
compared to a Bayesian endowed with prior ωs

n? We say that the pre-screener has over-reacted 
(under-reacted) to new signal sn+1 if she updates more (less) toward the state indicated by sn+1
than the endowed Bayesian does.

Proposition 4 characterizes how a pre-screener’s beliefs react to news in terms of the sign of 
a new statistic, η(sn+1). The sign depends on two terms: (a) whether the information content of 
sn+1 supports A (equivalent to whether P(A|H ; sn+1) −P(A|L; sn+1) > 0), and (b) whether the 
evidence increases first-stage trust (whether κH (sn+1) − κH (sn) > 0).

Proposition 4 (Over- and under-reaction to new information). Let ωs
n equal the pre-screener’s 

joint posterior after signal path sn, and define:

η(sn+1) ≡ (P (A|H ; sn+1) − P(A|L; sn+1)) (κH (sn+1) − κH (sn)) .

Then:

1. Relative to Endowed Bayesian:

(a) P s[θ = A|sn+1] > P [θ = A|prior = ωs
n, {sn+1}] if η(sn+1) > 0,

(b) P s[θ = A|sn+1] < P [θ = A|prior = ωs
n, {sn+1}] if η(sn+1) < 0,

(c) P s[θ = A|sn+1] = P [θ = A|prior = ωs
n, {sn+1}] if η(sn+1) = 0.

Furthermore, sgn(η(sn+1)) is fully determined in terms of objective parameters by the infor-
mation content of sn+1 and the following condition: κH (sn+1) − κH (sn) ≥ 0 if and only if 
P(c = H |sn+1) ≥ ωH

0 , with equality if and only if P(c = H |sn+1) = ωH
0 .
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2. P s(c, θ |sn+1) = P s(c, θ |prior = ωs
n, {sn+1}) if and only if P s(c|sn) = ωc

0.

The key implication of Proposition 4 is that whether agents over- or under-react to a new 
signal sn+1 depends on not only whether the signal confirms or contradicts the existing evidence 
sn, but also on the sign of η(sn+1). Table 1 maps out the key possibilities. For brevity, we focus 
our discussion on the case in Panel (a) where the information content of the existing evidence 
sn indicates A and η(sn+1) �= 0. In this case, the sign of η(sn+1) is identical to the sign of 
κH (sn+1) − κH (sn).

For new signals that confirm existing evidence (sn+1 = a), pre-screeners will over-react if 
first-stage trust is high (Part 1a) and under-react if first-stage trust is low (Part 1b). The intuition 
for the under-reaction is that, even though the signal is confirmatory and the pre-screener and 
endowed Bayesian begin from the same beliefs, κH (sn+1) may be too low relative to κH (sn) (the 
effective prior over the informativeness of sn+1 for the endowed Bayesian). The low κH (sn+1)

weighs down the pre-screener’s perceived informativeness of the total evidence sn+1, which sup-
ports A.

For new signals that contradict existing evidence (sn+1 = b), pre-screeners will under-react 
when first-stage trust is high (Part 1a), and over-react when first-stage trust is low (Part 1b). This 
under-reaction is similar to models of confirmation bias (Rabin and Schrag, 1999), while the 
over-reaction is the opposite. We label this over-reaction the undercutting effect. In this case, 
contradictory information undercuts the first-stage belief κH(sn+1) and excessively undermines 
the history of evidence sn+1 (in particular, the evidence sn which supports A) in the second step. 
In essence, contradictory signals can lead pre-screeners to over-react because they wonder, “Can 
I trust anything they said?”

The Proposition shows that whether κH (sn+1) ≥ κH (sn) is equivalent to whether P(c = H |
sn+1) ≥ ωH

0 . Intuitively, the pre-screener’s first-stage belief about high credibility increases when 
the evidence objectively increases the likelihood that the source is high credibility relative to the 

Table 1
Over- and under-reaction to confirming and contradictory news. This table shows 
when pre-screeners’ beliefs over- and underreact to a new signal sn+1 for cases where 
η(sn+1) �= 0. Panel (a) considers the case where the information content of the existing evi-
dence sn indicates A while panel (b) considers B . The table omits two cases where the new 
signal sn+1 leads to η(sn+1) = 0; that is, when 1) the information content of sn+1 indicates 
neither state, or 2) P(c = H | sn+1) = ωH

0 . In both of these cases, Part 1(c) of Proposition 4
applies and pre-screeners’ and Bayesians’ beliefs have the same reaction to sn+1. Finally, 
note that, from Proposition 4, κH (sn+1) ≥ κH (sn) if and only if P(c = H | sn+1) ≥ ωH

0 , 
with equality if and only if P(c = H | sn+1) = ωH

0 .

(a) sn indicates A κH (sn+1) > κH (sn) κH (sn+1) < κH (sn)

η(sn+1) > 0 η(sn+1) < 0
sn+1 = a (confirm) Overreact Underreact
sn+1 = b (contradict) Underreact Overreact

Proposition 4 1(a) 1(b)

(b) sn indicates B κH (sn+1) > κH (sn) κH (sn+1) < κH (sn)

η(sn+1) < 0 η(sn+1) > 0
sn+1 = a (contradict) Underreact Overreact
sn+1 = b (confirm) Overreact Underreact

Proposition 4 1(b) 1(a)
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pre-screener’s prior on credibility. This effect occurs when the information content of sn+1 suffi-
ciently favors one state, where stronger information is required when the information contradicts 
the prior about the state.

The scale example in Section 2.4 combines several of the above intuitions. Suppose state A
is that the pre-screener’s weight is 300 pounds, state B is that his weight is 200 pounds, and 
that her prior strongly favors B . The agent initially under-reacts to readings of a but then over-
reacts after more readings. According to Proposition 4, the initial under-reaction occurs because 
η(sn+1) < 0. The early signals of a support A: P(A|H ; sn+1) − P(A|L; sn+1) > 0. However, 
they combine with the strong prior of B to generate low first-stage trust: κH (sn+1) −κH (sn) < 0. 
Thus, the agent initially under-reacts to each successive signal sn+1 = a even though they confirm 
the existing evidence. Eventually, the pre-screener over-reacts to further signals of a because 
sufficient a’s lead to high first-stage trust: κH (sn+1) − κH (sn) > 0 and thus η(sn+1) > 0.

Part 2 of Proposition 4 shows that the effect of a new signal sn+1 on a pre-screener’s beliefs 
cannot be summarized simply by its effect on ωs

n. This is because the pre-screener re-evaluates all 
the evidence sn+1 in light of the new first-stage belief κH (sn+1). In contrast, a Bayesian updates 
identically irrespective of whether she is endowed with a belief or observes a history of signals 
consistent with that belief: P(θ = A|sn+1) = P(θ = A|prior = ωu

n, {sn+1}), where ωu
n equals 

the Bayesian posterior generated by sn.

4. Multiple sources

Pre-screener’s beliefs are not only influenced by the order of signals, but also by the order of 
sources. The reason is that a source’s signals exert an outsized influence on how the pre-screener 
interprets signals from subsequent sources.

Suppose the pre-screener receives signals from two sources, with credibilities cj ∈ {H, L}. 
Source 1 sends signals first, and source 2 sends signals after source 1 is finished. As before, 
each source j ∈ {1, 2} sends one signal per period t , denoted stj . Each signal sent by source j
is independent of all other signals sent by any source, and nature draws each source’s credibility 
independently of each other. Therefore, P(stj | cj , ck, θ) = P(stj | cj , θ) for all t and j �= k. Let 
snj

denote the sequence of nj signals sent by source j , sn1,0 denote the sequence when only 
source 1 has sent its signals, and sn1,n2 = {sn1 , sn2} denote the entire sequence of signals sent 
from both sources.

The pre-screener now faces three sources of uncertainty—the two credibility types and the 
state of the world. We assume agents start with independent priors over all three unknowns 
(ωA

0 , ωH1
0 , ωH2

0 ) ∈ (0, 1)3 and think of the two sources symmetrically ex-ante with ωH1
0 = ω

H2
0 .

Pre-screening extends naturally from one to multiple sources. The pre-screener first forms a 
first-stage joint belief about (c1, c2) using Bayes’ Rule, denoted κc1c2(·), and then forms posterior 
P s(c1, c2, θ |sn1,n2) after substituting κc1c2(·) for her prior ωc1

0 ω
c2
0 . For example, upon observing 

the last signal from source 1, the pre-screener’s first-stage updated belief is:

κc1c2(sn1,0) = κc1c2(sn1−1,0)
(∑

θ

(∏n1
t=1 P(st1|c1, θ)

)
ωθ

0

)∑
c1

∑
c2

κc1c2(sn1−1,0)
(∑

θ

(∏n1
t=1 P(st1|c1, θ)

)
ωθ

0

) . (10)

The pre-screener’s posterior belief is then:

P s(c1, c2, θ |sn1,0) =
(∏n1

t=1 P(st1|c1, θ)
)
κc1c2(sn1,0)ω

θ
0∑

c2

∑
c1

∑
θ

(∏n1
t=1 P(st1|c1, θ)

)
κc1c2(sn1,0)ω

θ
0

. (11)
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Expanding the recursion, we can write her posterior belief as:

P s(c1, c2, θ |sn1,0) = βc1(sn1)
(∏n1

t=1 P(st1|c1, θ)
)
ω

c1
0 ω

c2
0 ωθ

0∑
c2

∑
c1

βc1(sn1)
∑

θ

(∏n1
t=1 P(st1|c1, θ)

)
ω

c1
0 ω

c2
0 ωθ

0

(12)

for βc1(sn1) ≡
∏n1

m=1

(∑
θ

(∏m
t=1 P(st1|c1, θ)

)
ωθ

0

)
and βc1(∅) ≡ 1.

After observing the last signal from source 2, the pre-screener’s first-stage updated belief 
equals:

κc1c2(sn1,n2)

=
(∑

θ

(∏n1+n2
t=n1+1 P(st2|c2, θ)

)(∏n1
t=1 P(st1|c1, θ)

)
ωθ

0

)
κc1c2(sn1,n2−1)∑

c2

∑
c1

(∑
θ

(∏n1+n2
t=n1+1 P(st2|c2, θ)

)(∏n1
t=1 P(st1|c1, θ)

)
ωθ

0

)
κc1c2(sn1,n2−1)

, (13)

and her final posterior belief equals:

P s(c1, c2, θ |sn1,n2)

=
(∏n1+n2

t=n1+1 P(st2|c2, θ)
)(∏n1

t=1 P(st1|c1, θ)
)
κc1c2(sn1,n2)ω

θ
0∑

c2

∑
c1

∑
θ

(∏n1+n2
t=n1+1 P(st2|c2, θ)

)(∏n1
t=1 P(st1|c1, θ)

)
κc1c2(sn1,n2)ω

θ
0

. (14)

Expanding the recursion, the pre-screener’s final posterior belief equals:

P s(c1, c2, θ |sn1,n2)

=
(∏n1+n2

t=n1+1 P(st2|c2, θ)
)(∏n1

t=1 P(st1|c1, θ)
)
ω

c1
0 ω

c2
0 ωθ

0βc1(sn1 )βc1c2(sn1,n2 )∑
c2

∑
c1

∑
θ

(∏n1+n2
t=n1+1 P(st2|c2, θ)

)(∏n1
t=1 P(st1|c1, θ)

)
ω

c1
0 ω

c2
0 ωθ

0βc1(sn1 )βc1c2(sn1,n2 )
,

(15)

where βc1c2(sn1,n2) ≡
∏n1+n2

m=n1+1

(∑
θ

(∏m
t=n1+1 P(st2|c2, θ)

) (∏n1
t=1 P(st1|c1, θ)

)
ωθ

0

)
.

Proposition 5 characterizes how perceptions of source 1’s credibility exert an outsized influ-
ence on how the pre-screener interprets source 2’s signals. The Proposition considers how final 
beliefs change when we re-arrange source 1’s signals and thus change βH1/βL1(sn1). Recall that 
βH1/βL1(sn1) captures how pre-screening distorts the agent’s beliefs about source 1’s credibility, 
with higher values associated with beliefs about higher credibility. The Proposition provides nec-
essary and sufficient conditions under which increasing βH1/βL1(sn1) makes the agent believe 
source 2 is more credible and that state A is more likely. As a benchmark, a Bayesian’s beliefs 
are always invariant to signal order.

Proposition 5 (Effects of credibility of source 1 on beliefs). Let sn1,n2 be given. Re-arranging 
source 1’s signals to increase βH1/βL1(sn1):

1. Increases P s(H1|sn1,n2).

2. Increases P s(H2|sn1,n2) if and only if 
P s(H2|H1;sn1,n2 )

P s(H2|L1;sn1,n2 )
> 1, and decreases if and only if strictly 

less than (<).

3. Increases P s(A|sn1,n2) if and only if 
P s(A|H1;sn1,n2 )

P s(A|L1;sn1,n2 )
> 1, and decreases if and only if strictly 

less than (<).
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In the proof, we show that 
P s(H2|H1;sn1,n2 )

P s(H2|L1;sn1,n2 )
and 

P s(A|H1;sn1,n2 )

P s(A|L1;sn1,n2 )
are fully determined in terms of 

objective parameters by the information content of sn1,n2 .

Part 1 says that re-arranging source 1’s signals to increase βH1/βL1(sn1) increases the pre-
screener’s perception of source 1’s credibility, even after source 2 has spoken. Part 2 says that 
doing so also affects the pre-screener’s final belief about source 2’s credibility. The intuition 
is that increasing the pre-screener’s perception of source 1’s credibility increases (decreases) her 
perception of source 2’s credibility if source 2’s early signals are sufficiently consistent (inconsis-
tent) with source 1’s information content. Such consistency (inconsistency) leads the pre-screener 
to think that source 2 is more (less) likely to be high credibility when source 1 is also the high 
credibility type than when source 1 is the low credibility type. In this way, a pre-screener’s “first 
impression” of source 1’s credibility casts a shadow over how the pre-screener ultimately views 
source 2.

Table 2 illustrates how Part 2 works when we re-arrange signals to increase source 1’s credibil-
ity. In the examples, source 1’s information content indicates state A, and source 2’s information 
content indicates state B . Going from Row 1 to Row 2, rearranging source 1’s a signals so that 
they appear earlier increases βH1/βL1(sn1) and her credibility. This change decreases source 2’s 
credibility since source 2’s early signals are inconsistent with source 1’s information. The same 
re-arrangement of source 1’s signals in Rows 3 and 4 increases source 2’s credibility since source 
2’s early signals are consistent with source 1’s information.

Part 3 summarizes how re-arranging source 1’s signals affects beliefs about the state. Increas-
ing the credibility of source 1 by increasing βH1/βL1(sn1) moves beliefs about state through two 
effects. First, there is a direct effect of increasing source 1’s credibility that moves beliefs toward 
the state suggested by the source 1’s information content. Second, there is an indirect effect: 
increasing βH1/βL1(sn1) changes source 2’s credibility per Part 2. If increasing βH1/βL1(sn1)

decreases source 2’s credibility, then the indirect effect moves the agents’ beliefs away from the 
state suggested by source 2’s information content. For example, if source 2’s information con-
tent suggests B , then the indirect effect moves beliefs away from B . If βH1/βL1(sn1) increases 
source 2’s credibility, the indirect effect moves beliefs toward the state suggested by source 2’s 
information content.

Intriguingly, it is possible for the indirect effect to overturn the direct effect when they con-
flict, so that increasing source 1’s credibility moves beliefs away from the state suggested by 
source 1. Corollary 2 first shows that a necessary condition is that source 2’s information must 
be objectively stronger than source 1’s information. It next shows that the direct effect always 
dominates the indirect effect when source 2’s information is weaker than source 1’s information. 
In the proof of Proposition 5, we provide further examples of each case.

Table 2
Pre-screener’s and Bayesian’s beliefs with multiple sources. Parameter values equal (qH , qL, ωA

0 , ωH1
0 , ωH2

0 ) =
(0.7, 0.55, 0.5, 0.5, 0.5). In all rows, the Bayesian’s posterior beliefs are P(H1|sn1,n2 ) = 0.441, P(H2|sn1,n2 ) = 0.400, 
and P(A|sn1,n2 ) = 0.506.

Row sn1 sn2

βH1 (sn1 )

βL1 (sn1 )

P s (H2|H1;sn1,n2 )

P s (H2|L1;sn1,n2 )

P s (A|H1;sn1,n2 )

P s (A|L1;sn1,n2 )
P s(H1|sn1,n2 ) P s(H2|sn1,n2 ) P s(A|sn1,n2 )

1 {a, b, a} {b, b, b, a, a} 0.720 0.522 1.423 0.131 0.368 0.463
2 {a, a, b} {b, b, b, a, a} 0.974 0.522 1.423 0.169 0.361 0.470

3 {a, b, a} {a, a, b, b, b} 0.720 1.055 1.337 0.224 0.279 0.492
4 {a, a, b} {a, a, b, b, b} 0.974 1.055 1.337 0.283 0.280 0.500
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Corollary 2. Without loss of generality, suppose na1 > nb1. A necessary condition for increasing 
βH1/βL1(sn1) to decrease P s(A|sn1,n2) is |na2 − nb2| > na1 − nb1. A sufficient condition for 
increasing βH1/βL1(sn1) to increase P s(A|sn1,n2) is |na2 − nb2| ≤ na1 − nb1.

5. Extensions

In the Internet Appendix, we consider three extensions. First, we consider a setting where 
agents are uncertain about whether the source may “slant” signals toward a given state, in that 
the source probabilistically flips a signal towards a certain state before reporting it to the agent. 
For example, an A-slanted source may report a when her true signal was b with some fixed 
probability. Sources are non-strategic as before. We show that the presence of slant can lead the 
pre-screener’s beliefs to be sufficiently wrong that she becomes certain of the state even when 
the evidence should not change beliefs about the state from priors. The possibility of slant thus 
creates further scope for error by pre-screeners.

Second, we extend pre-screening to the case where a source may send multiple signals in 
one period. We show that a source can countervail other sources more effectively by delivering 
signals in a simultaneous “blast” rather than sequentially. This effect further illustrates how the 
timing of signals can be important for persuasion.

Third, we show that key results hold when we allow for fading memory. Pre-screening as-
sumes that agents have memory over previous signals in that they evaluate the likelihood of 
previous signals in light of first-stage updated beliefs κc(sn) every period. We allow for fading 
memory in the manner of Mangel (1990) and Nagel and Xu (2019) by assuming that signals 
farther in the past receive less weight in the likelihood function. The pre-screening process is 
otherwise identical. We show that Propositions 1, 2, and 4 hold when comparing the pre-screener 
with fading memory to the Bayesian with fading memory.

6. Application: speculative trade, bubbles, and crashes

The goal of this section is to illustrate the implications of pre-screening for prices and trade. 
We adopt a simple trading game comparable to the model of Harris and Raviv (1993), which 
features Bayesian agents who exogenously “agree to disagree” about source credibility. We show 
that a similar game featuring pre-screeners can generate rapid changes in prices and positions that 
are similar to speculative trade, bubbles, and crashes.

We first show that trading volume between pre-screeners weakly exceeds trading volume be-
tween Bayesians due to the speculative motive defined by Harrison and Kreps (1978). We then 
show that pre-screening can lead to bubbles and crashes following the definition outlined by 
Barberis (2018, p. 88). Prices can rise sharply before crashing endogenously, with some traders 
“riding the bubble” and generating abnormal volume beyond what a Bayesian benchmark pro-
duces.

6.1. Pricing and speculative trade

6.1.1. Trading environment
Harris and Raviv (1993) features two groups of risk-neutral Bayesian agents who trade be-

cause they have different (exogenously fixed) beliefs over signal credibility. We adopt an anal-
ogous trading environment but with pre-screeners. Two groups of risk-neutral traders, X and Y , 
trade shares of a risky asset at dates t = 1, 2, . . . , T . The asset makes a single random payment 
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Endowed Bayesians: heterogeneous priors

XEB,YEB

Pre-trade Period:

X observes sXpre , Y observes sYpre

Trading Period:

public signals sT = {s1, s2, . . . , sT }

T0−τ

time (t )

R realizes

Pre-screeners: common prior

X,Y ω−τ

beliefs

ωX
pre,ω

Y
pre

ωXEB

0 ≡ ωX
pre,ω

YEB

0 ≡ ωY
pre

Fig. 2. Timeline of trading game.

of R immediately after the end of date T . If the state θ is A, then the payoff is R = 1. If the state 
θ is B , then the payoff is R = 0. There are a fixed number of shares available normalized to 1 
with no short sales. There is a risk-free asset whose return is zero.

At each date t = 1, 2, . . . T , both groups X and Y first observe a common public signal st ∈
{a, b}, after which they update their beliefs and can trade at price pt determined in equilibrium. 
Each signal st is independent and identically distributed conditional on the true payoff, and comes 
from a single unslanted source with unknown accuracy q . Let the public signal path as of period 
t be denoted st = {s1, . . . , st } where na,t and nb,t are the number of a’s and b’s in st , respectively.

How do prices and trade in the game between pre-screeners compare with prices and trade 
when agents are Bayesians? If all traders had common priors just before trade opens at t = 1, 
all agents would have identical beliefs during the trading period, regardless of whether they are 
Bayesians or pre-screeners, because they observe the same signals in the same order.

To make things interesting, we assume that pre-screeners observe signals during τ pre-trade 
“burn-in” periods starting in period (−τ + 1) < 0 and ending at the end of period 0. X and Y
share common priors ω−τ before they see any signals. As before, we assume that the beliefs 
about the state and credibility are independent in the prior: ω−τ = ωθ−τω

c−τ . During the pre-trade 
periods, X and Y separately observe one signal per period cumulating in signal path sX

pre and 
sY
pre, which generates beliefs ωX

pre and ωY
pre at the end of period 0. Fig. 2 illustrates.

We assume that the two pre-trade signal paths sX
pre and sY

pre have the same information con-
tent but that X and Y observe this information in different orders. For example, X might observe 
sX
pre = {a, a, b, b} while Y observes sY

pre = {a, b, a, b}. This assumption ensures that any trade 
between pre-screeners is due to differently-experienced first impressions of credibility early in 
their life prior to time 1, not differences in objective information or priors. Specifically, we as-
sume that nj

a,pre = n
j
b,pre for j ∈ {X, Y }, where nj

a,pre is the number of a signals observed in 

sj
pre. By Proposition 1, this implies P s(H |sX

pre) �= P s(H |sY
pre), but P s(A|sX

pre) = P s(A|sY
pre) =

ωθ−τ .
We adopt the market structure of Harris and Raviv (1993) where Y has sufficient market power 

each period to make a take-it-or-leave-it (TIOLI) offer to X. We also assume that agents “agree 
to disagree”: X does not revise her beliefs irrespective of any offers from Y or even knowing Y ’s 
beliefs, and vice versa. We elaborate on higher-order beliefs below.
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To make apples-to-apples comparisons, we compare outcomes in two games. First, we con-
sider a benchmark trading game between XEB and YEB , two risk-neutral “Endowed Bayesians” 
who start time 1 with heterogeneous priors equal to ωX

pre and ωY
pre, the beliefs of the two pre-

screeners at the end of the pre-trade period. We then move to the trading game where X and Y
are pre-screeners.

6.1.2. Bayesian benchmark
Endowed Bayesians {XEB, YEB} begin t = 1 with priors ωXEB

0 = ωX
pre and ωYEB

0 = ωY
pre, 

respectively. By construction of ωX
pre and ωY

pre, such priors are heterogeneous in that agents ex-

ante agree about the cash flow but disagree about source credibility: P XEB

0 (H) �= P YEB

0 (H) but 

P XEB

0 (A) = P YEB

0 (A) = ωA−τ . Although agents learn about credibility, equilibrium outcomes are 
similar to Harris and Raviv (1993). We sketch the analysis below.

Group XEB ’s reservation price each period, and thus the equilibrium price pEB
t , equals XEB ’s 

expectation of the final cash flow, EXEB

t (R). (To de-clutter notation, we drop the EB superscript 
in the rest of this paragraph and the next.) The reason is that X believes the expected value 
of future trade with Y is zero. Y makes TIOLI offers, so X anticipates that Y will offer Y ’s 
perception of X’s reservation price in any subsequent period s > t . X knows that Y knows that 
X is a Bayesian, and X also knows that Y knows X’s current beliefs but “agrees to disagree.” 
Working backwards from period T , X’s best guess about what Y will offer in future periods s > t

is EX
t (ps) = EX

t EY
s EX

s (R) = EX
t EX

s (R) = EX
t (R). This is the same as X’s best guess about the 

final cash flow, so X expects no value from future trade with Y .
Given the equilibrium price, trade occurs whenever beliefs about R cross the threshold where 

EY
t (R) = EX

t (R). Given common priors about the state, this occurs whenever the number of a
and b signals crosses the threshold na,t = nb,t .

6.1.3. Pre-screening
Pre-screeners X and Y also begin t = 1 with beliefs ωX

pre and ωY
pre from having observed sX

pre

and sY
pre, respectively. As in the EB analysis, the equilibrium price will depend on X’s belief 

about what Y will offer X in the future and thus on the fact that agents agree to disagree about 
the expected value of R. Apart from the EB analysis, whether a pre-screener realizes her own 
pre-screening and whether she thinks that others also realize any pre-screening is crucial. Our 
analysis has hitherto not required specification of these higher-order beliefs.

We assume that a pre-screener thinks she forms rational and dynamically consistent beliefs 
using Bayes’ Rule and is unaware of her pre-screening and others’ perceptions about her pre-
screening. This assumption naturally extends from the premise that agents overlook the first-stage 
substitution of updated beliefs for priors. It also naturally extends from hindsight bias, as such 
bias prevents the pre-screener from realizing that her past beliefs are dynamically inconsistent 
and that any offers in the market may be inconsistent with what she anticipated in the past. 
Instead, a pre-screener thinks she is a Bayesian and that others think she is a Bayesian. Her 
perceptions about herself as a Bayesian extend to all higher order beliefs. Thus, for example, X
thinks X is a Bayesian, and X thinks Y thinks X is a Bayesian, and so forth.

We also assume that agents, although unaware of their own pre-screening, recognize that other 
agents pre-screen and that other agents are oblivious to their own pre-screening. This assumption 
is consistent with experimental evidence in psychology and economics about the “bias blind 
spot,” that one can recognize cognitive or motivational biases more in others than in oneself 

21



I.-H. Cheng and A. Hsiaw Journal of Economic Theory 200 (2022) 105401

(Pronin et al., 2002; Ehrlinger et al., 2005; Fedyk, 2021; West et al., 2012). Thus, for example, 
X thinks Y is a pre-screener and X thinks that Y thinks that Y is a Bayesian.

The combined effect of these higher-order beliefs with the TIOLI market structure is that 
X’s reservation price each period, and thus the equilibrium price pt , equals X’s pre-screened 
belief EX

t (R).10 As in the EB case, X anticipates that Y will offer what Y believes is X’s 
reservation price in future periods s > t because Y makes TIOLI offers. Since X thinks Y thinks 
X is Bayesian, X thinks that Y will calculate X’s belief in the future by combining X’s current 
belief with the next period’s signal using Bayes’ Rule.11 X’s expected value of this future belief, 
calculated using the likelihood of future signals given her current beliefs and working backwards 
from period T , equals EX

t (R). As a result, X believes the future value of trade with Y is zero. Y
understands X’s calculation,12 and thus offers pt = EX

t (R).13

Given these assumptions, Proposition 6 shows that pre-screeners {X, Y } trade whenever EB’s 
{XEB, YEB} trade, but also trade when EB’s do not. Part 1 shows that pre-screeners trade when-
ever their beliefs about fundamental value cross (na,t = nb,t ), which is also when EB’s trade.

Part 2 shows that pre-screeners also engage in “speculative behavior” defined by Harrison and 
Kreps (1978): “an investor may buy the stock now so as to sell it later for more than he thinks it 
is actually worth, thereby reaping capital gains.” Suppose Y believes that the asset’s fundamental 
value is lower than X believes because she thinks the source is less credible than X does. Y
may nevertheless buy and hold the asset speculatively: EY

t (pt+1) > EX
t (R) = pt even though 

EY
t (R) < EX

t (R) = pt , so long as disagreement between X and Y is not too large and there is 
enough existing good cash flow news. The reason is that Y correctly believes X will under-react 
to (disconfirming) bad news and over-react to further good cash flow news (using Proposition 4), 
and Y is not too skeptical about prospects of such further news, leading Y to expect an upward 
drift in the price. However, X believes they are Bayesians in the future and fail to anticipate 
this upward drift. Analogously, X holds the asset speculatively in the symmetric case, when Y
believes the source is more credible than X does after the pre-trade signals and bad cash flow 
news arrives after trade opens.

Overall, Proposition 6 implies that the extent of excess speculative trade due to pre-screening 
depends on the extent of disagreement about credibility and how disagreement originates. In 
the game with pre-screeners, initial disagreement about credibility originates from differing first 
impressions of credibility from signals prior to trade, ωX

pre �= ωY
pre. Even though we endow iden-

tical disagreement in the game with Bayesians, ωjEB

0 = ω
j
pre for j ∈ {X, Y }, and even though 

10 As Harris and Raviv (1993) note, if one assumes the equilibrium price is competitively set each period, then the price 
is determined by the beliefs of potentially different groups through time. Scheinkman and Xiong (2003) analyze a market 
with this added significant complication. Our stated goal is more modest: we seek to analyze whether the belief dynamics 
of pre-screening can generate interesting implications in the simplest structure with results that are easily comparable to 
Harris and Raviv (1993).
11 X thus anticipates wrong offers in the future from Y , and Y ’s realized offer in periods s > t will differ from X’s 
anticipated possibilities. Given X’s hindsight bias, this does not faze X ex-post. In future periods s > t , X thinks he 
arrived at EX

s (R) rationally and that the offer is consistent with what he rationally anticipated in the past. Similarly, Y
knows X’s current belief because Y knows X is a pre-screener, even though X thinks Y knows X’s current belief was 
obtained through Bayesian updating. We thank an anonymous referee for clarifying our thinking on this point.
12 Specifically, Y knows X thinks Y thinks X is a Bayesian.
13 One can alternatively consider what happens if pre-screeners were “sophisticated” in that they recognize their own 
pre-screening yet somehow continue to pre-screen each period. In this case, agents would recognize their own dynamic 
inconsistency, and X may think there is value to future trade with Y . Our assumptions abstract from this significant 
complication and focus on a more modest goal.
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all traders see a common signal path when trade is open, outcomes differ across the two games 
because of how new signals interact with pre-screeners’ first impressions of credibility.

Proposition 6 (Speculative trade). Let pre-screeners X and Y observe pre-period signal paths 
sX
pre and sY

pre, where nj
a,pre = n

j
b,pre ≥ 2 for signal paths j ∈ {X, Y }, and then public signal path 

st . Let Bayesians XEB and YEB be endowed with priors that equal the pre-screeners’ posterior 
beliefs after the pre-period, ωXEB

0 = ωX
pre and ωYEB

0 = ωY
pre, and observe st . Let ωA−τ = 1/2.14

The price in the pre-screeners’ game is ps
t = EX

t (R|{sX
pre, st }), and the price in the EB game 

is pEB
t = EXEB

t (R|{sX
pre, st }). Groups X and Y trade weakly more than groups XEB and YEB :

1. If P s(H |sX
pre) �= P s(H |sY

pre), then XEB and YEB trade only when beliefs cross threshold 
na,t = nb,t . Pre-screeners X and Y also trade when beliefs cross threshold na,t = nb,t .

2. (Speculative trade) Suppose P s(H |sX
pre) > P s(H |sY

pre). There exists at least one signal path 
sY
pre such that Y holds the asset (buys it from X) if the following conditions are satisfied:

(a) State A is objectively more likely: na,t > nb,t .
(b) Group X (weakly) under-reacts to disconfirming news: P(H |{sX

pre, st , st+1 = b}) ≥ ωH−τ .

X holds the asset in the symmetric case, where all of the above inequalities are reversed.

6.2. Bubbles and crashes

Pre-screening can generate rapid changes in prices and positions in line with several features 
of bubbles, crashes, and speculation described by Barberis (2018, p. 88), beyond what the EB

framework can explain. Fig. 3 provides a numerical example, which we discuss in narrative form 
to build intuition. We consider the case where, at the start of trade, 1) X trusts the source more 
than Y does and 2) X and Y agree about the state, due to differences in the order of pre-trade 
signals. After trade opens, a string of good cash flow news arrives, followed by bad cash flow 
news.

The game begins with Y holding the asset in period 0. In period 1, good cash flow news arrives 
and X thinks R = 1 is more likely than Y does, leading Y to sell the asset to X, in both the pre-
screening and EB frameworks. Good cash flow news arrives through period 7, and through this 
point, prices rise sharply and trade occurs in the pre-screening game, both of which are abnormal 
relative to the EB game. The trade in period 3 reflects group Y increasing asset exposure: Y
speculatively “rides the bubble” and buys the asset from X even though the price is higher than 
Y ’s belief about fundamental value (Proposition 6 Part 2). As more good cash flow news arrives, 
prices rise substantially beyond the price in the EB game. The reason is that agents develop too 
much trust in the source and become too optimistic about cash flows.

Bad cash flow news begins to arrive in period 8. Prices in the pre-screening game initially 
remain high. This is because X thinks the history of good cash flow news provided by the source 
is credible and under-reacts to the bad cash flow news, behavior that is akin to confirmation 

14 For clarity of exposition, the Proposition supposes that ωA−τ = 1/2. As the proof details, this assumption is not 
required for Part 2 and can be partially relaxed in Part 1. Specifically, the proof provides sufficient conditions for regions 
of (ωA−τ , qL, qH ) where Part 1 applies.
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Fig. 3. Trading game. This figure plots outcomes from a trading game between two groups of traders, X and Y , de-
scribed in Section 6, when they are either both pre-screeners or both endowed Bayesians. Prices are in Panel (a) and 
the asset holdings of group Y are in Panel (b). Realized signals in periods 1-7 are good cash flow news (‘a’), while 
periods 8-14 have bad cash flow news (‘b’). Trader beliefs at period 0 are equal to the beliefs that pre-screeners 
would have after observing {a, a, b, b} for X and {a, b, a, b} for Y , starting from common priors. Parameters are 
(qH , qL, ωA−τ , ωH−τ , T , τ) = (0.8, 0.5, 0.5, 0.3, 14, 4).

bias (Proposition 4 Part 1a). As more bad cash flow news comes in, X begins to doubt whether 
they believe anything the source reported before, due to the contradiction with the previously-
reported good cash flow news (the “undercutting effect” of Proposition 4 Part 1b). Anticipating 
this possibility, Y sells the asset to X in period 9. Bad news continues to arrive, and prices steeply 
decline as X’s belief about source credibility collapses. In period 14, X and Y share the same 
beliefs about the state, and Y buys the asset back from X.

In sum, the paths depicted in Fig. 3 in the pre-screening game reasonably constitute a bubble 
and crash. Prices rise steeply and speculative trade occurs, both in excess of what happens in the 
EB game. Prices then crash endogenously due to revisions in beliefs in response to bad news. This 
endogenous crash distinguishes our model from those that assume a crash due to the exogenous 
realization of cash flows.15 Thus, pre-screening generates rapid changes in prices and positions 
that are hard to generate in a Bayesian framework.

Proposition 7 provides the formal result beyond the specific signals and parameters considered 
in Fig. 3. It shows when and how pre-screening game can generate bubbles, crashes, and volume. 
Part 1 shows that over-valuation (under-valuation) occurs when consistent (inconsistent) good 
news about cash flows leads the pre-screener to trust (distrust) the source so much that she over-
reacts (under-reacts) to additional good news. Part 2 shows that this can accelerate into bubbles 
and crashes: when overvaluation occurs, rises and subsequent falls in prices are steeper when 
traders are pre-screeners rather than Bayesian. As in Fig. 3, prices initially under-react to bad 
cash flow news before beliefs over-react and prices crash. Part 3 shows there exists at least one 
pre-path sY

pre such that speculative trade occurs during the bubble. Agents “ride the bubble” 

15 Hong and Stein (2003) model an endogenous crash caused by the revelation of hidden information from pessimistic 
investors. In our model, there is no hidden information since all investors see the same information. The Internet Ap-
pendix shows that confirmation bias does not produce such sudden price declines, because agents always under-react to 
contradictory information.
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Fig. 4. Trading game price distributions. This figure plots a fan chart of the distribution of prices in 10,000 simulated 
trading games with identical parameters as Fig. 3. Darker regions indicate a greater frequency of prices. The solid line 
indicates the average price each period. The simulations assume c = H and R = 1.

because they anticipate that others will over-react to future good news. These features provide a 
theory of bubbles and crashes that match key features described by Barberis (2018, p. 88).

Proposition 7 (Bubbles and crashes). Let pre-screeners X and Y observe pre-period signal paths 
sX
pre and sY

pre, where nj
a,pre = n

j
b,pre ≥ 2 for signal paths j ∈ {X, Y }, and then public signal path 

st . Let Bayesians XEB and YEB be endowed with priors that equal the pre-screeners’ posterior 
beliefs after the pre-period, ωXEB

0 = ωX
pre and ωYEB

0 = ωY
pre, and observe st . Let ωA−τ ∈ (0, 1).

1. (Over- and under-valuation) Wlog, suppose na,t > nb,t . Under-valuation (ps
t < pEB

t ) occurs 
if and only if P s(H |{sX

pre, st }) < P(H |prior = ωX
pre, st ). Over-valuation (ps

t > pEB
t ) occurs 

if and only if P s(H |{sX
pre, st }) > P(H |prior = ωX

pre, st ).

2. (Bubbles and crashes) Consider a path sT such that na,t > nb,t for t ∈ (0, T ) with na,T =
nb,T . If there exists t̂ ∈ (0, T ) such that ps

t̂
> pEB

t̂
> ωA−τ where pk

t̂
≡ maxpk

t for k ∈ {s, EB}, 
the average price change of ps

t must be strictly greater than the average price change of pEB
t

for t ∈ [0, ̂t] (bubbles) and t ∈ [t̂ , T ] (crashes). Moreover, the pre-screeners exhibit initial 
under-reaction relative to the endowed Bayesians after the peak: |ps

t̂+1
−ps

t̂
| < |pEB

t̂+1
−pEB

t̂
|.

3. (“Riding the bubble”) Given any signal path sT such that ps
t̂
> pEB

t̂
> ωA−τ , there exists at 

least one signal path sY
pre such that speculative trade between pre-screeners occurs (e.g., Y

holds the asset at t = t̂ , at least).

Figs. 4 and 5 give a broader sense of the possible outcomes suggested by Propositions 6 and 7
by plotting the distribution of prices and trade from 10,000 simulated trading games. We assume 
the same parameters that underlie the example in Fig. 3, that c = H , and that the true asset payoff 
is R = 1. Fig. 4 illustrates that the average price path in the game with two pre-screeners is higher 
than in the game with two EB agents, with a greater propensity for rapid run-ups in price. Fig. 5
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Fig. 5. Histogram of number of trades. This figure plots a histogram of the total number of trades in 10,000 simulated 
trading games with identical parameters as Fig. 3. The simulations assume c = H and R = 1.

shows that there is more trade: the average (median) number of trades in the game with two 
pre-screeners is 3.6 (4) compared to 1.6 (1) in the game with two EB agents.

7. Discussion and literature

7.1. Two alternative models

We consider two models that separately adopt each step of pre-screening to highlight how 
they differ in their mechanisms and predictions. Recall that a pre-screener first forms an updated 
belief about credibility. Second, she forms final posterior beliefs by following Bayes’ Rule using 
updated beliefs instead of priors.16

In “Alternative Model 1” (AM1), an agent follows the same first step as pre-screening but a 
different second step that assumes agents separately update on credibility and the state. Specif-
ically, agents form a marginal belief about credibility but also form a separate marginal belief 
about the state before combining them in a final posterior that equals the product of the two 
marginals. This model of “pure separate updating” effectively assumes that agents do not under-
stand joint distributions or correlation in beliefs (Koçak, 2018, considers a similar model). If, for 
example, an AM1 agent saw signals {a, a}, she would think P(c = H | θ = A) = P(c = H | θ =
B) even though {a, a} rationally suggests that H is more likely if the state is A than if the state 
is B .

In “Alternative Model 2” (AM2), an agent follows the same second step as pre-screening but 
a different first step that assumes agents first form joint beliefs. Specifically, in the first step, an 
AM2 agent forms an updated belief over (c, θ) using Bayes’ Rule before forming her final belief 
in the second step by applying Bayes’ Rule again using the updated joint belief as her prior. 
Agents in this model of “pure double dipping” are equivalent to agents who use Bayes’ Rule 
but who have seen too many copies of early signals. For example, if an AM2 agent saw signals 

16 We thank an anonymous referee for motivating the following discussion. The Internet Appendix contains formal 
details.
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{a, a, b, b, b}, we show she has the same beliefs as a Bayesian who saw eleven a and nine b
signals.

These two models differ from pre-screening in mechanisms, foundations, and empirical pre-
dictions. In terms of mechanisms, pre-screeners understand that beliefs about one unknown 
parameter are related to beliefs about other parameters through correlation, unlike AM1 agents. 
Pre-screeners only substitute an updated belief about credibility in the second step, unlike AM2 
agents who substitute an updated belief about the entire joint distribution as their prior.

In terms of conceptual and psychological foundations, pre-screening begins from the premise 
that agents may form data-dependent priors for the seemingly-legitimate purpose of estimating 
an ancillary parameter (the first step) but overlook double-dipping the data in the final analysis 
(the second step) as outlined in Section 2.3. In contrast, the premise of AM1 is that agents do 
not understand how unknown parameters are related through correlation. The premise of AM2 is 
that agents double-dip the data but do not treat one parameter as ancillary.

Pre-screening, AM1, and AM2 are each plausible in different ways; for example, AM1 seems 
plausible since joint distributions may be difficult quantities for individuals to process. Ulti-
mately, which model (among these or others below) more accurately describes learning is an 
open empirical question. We next discuss different testable empirical predictions that future re-
search can use to further evaluate the plausibility of alternative models.

7.2. Empirical predictions and other approaches

The first empirical prediction of pre-screening is correlated disagreement (Lemma 1 and 
Proposition 1). Correlated disagreement is a testable prediction that agents’ opinions about which 
side of an issue is correct should be positively correlated with their beliefs about the credibility of 
information sources on the same side of the issue. For example, in individual-level survey data, 
individuals’ opinions on whether climate change is real should be positively correlated with their 
opinions on the credibility of scientists who think climate change is real.

Other models of agents’ beliefs about both credibility and an unknown state roughly fall into 
three categories: 1) They do not predict correlated disagreement, 2) They do predict correlated 
disagreement since agents have fixed beliefs (i.e., do not learn) about credibility, or 3) They do 
predict correlated disagreement due to agents’ heterogeneous priors. In category 1 are models 
such as AM1 and AM2. As the Internet Appendix elaborates, these models do not generate 
correlated disagreement since AM1 agents ignore correlation and AM2 agents double-dip the 
data through joint beliefs rather than through beliefs about credibility alone. In category 2 are 
models such as Harrison and Kreps (1978), Scheinkman and Xiong (2003), Kandel and Pearson 
(1995), and Harris and Raviv (1993). In category 3 are Bayesian models with heterogeneous 
beliefs such as Acemoglu et al. (2016), Sethi and Yildiz (2016) and Suen (2004).17 Models in 
categories 2 and 3 exogenously assume the positive correlation noted above and hence make no 
prediction about how the correlation comes about. Since the correlation is endogenous in our 

17 Glaeser and Sunstein (2014) consider how polarization from common information can occur when consumers have 
different priors about senders’ motives. Gentzkow and Shapiro (2006) and Mullainathan and Shleifer (2005) show that 
different media sources may generate disagreement by slanting news to build a reputation or to cater to consumers’ 
preferences for beliefs. Without heterogeneous priors in these models, media slant generates biased beliefs, but not 
disagreement. Our results suggest that erroneous learning about credibility leads to demand distortions that complement 
these strategic supply distortions. Morris (1995) reviews the literature on heterogeneous priors.
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model, additional tests below can isolate whether pre-screening is the underlying mechanism 
relative to these models.

The second empirical prediction of pre-screening relates to the first-impression bias inherent 
in a pre-screener’s beliefs. The psychology literature has accumulated substantial evidence of 
such a bias (e.g., Asch, 1946; Anderson, 1965; Hogarth and Einhorn, 1992; Uleman and Kressel, 
2013). A specific empirical test of pre-screening would ideally study two groups of individuals 
who receive the same objective information, where one group is exogenously treated with early 
signals suggesting a credible source and the other with early signals suggesting a less credible 
source. Pre-screening predicts that the first group believes the source is more credible relative to 
the second group (Proposition 2 and Corollary 1) and that the state is more likely (Proposition 1). 
Such a joint test would distinguish pre-screening relative to models featuring path-dependent 
beliefs about only the state (e.g., confirmation bias in Rabin and Schrag, 1999). An experimental 
setting where signal order is within the control of the researcher would be particularly suited to 
test this prediction.

The third empirical prediction of pre-screening relates to when agents under- and over-react 
to new information (Proposition 4). Empirical evidence in the literature suggests that individuals 
tend to exhibit confirmation bias, or under-reaction to disconfirming news about the state (Lord et 
al., 1979; Griffin and Tversky, 1992; Rabin and Schrag, 1999; Fryer et al., 2019; Gentzkow et al., 
2018). However, individuals also overreact to disconfirming news if it causes them to re-evaluate 
their worldview or paradigm (Ortoleva, 2012; Galperti, 2019). De Filippis et al. (forthcoming)
find evidence that individuals over-react to contradictory signals, citing a similar mechanism, 
and Grether (1992) and Holt and Smith (2009) experimentally find that rare events cause larger 
deviations from Bayes’ Rule. Other evidence suggests that agents over-react to signals due to 
over-confidence (e.g., Hirshleifer, 2015).

Pre-screening predicts that whether agents over- or under-react to news depends on how the 
source’s evidence interacts with the effect of news on credibility (Proposition 4). In contrast 
with confirmation bias, pre-screeners can over-react to news that disconfirms existing evidence 
if such news is also sufficiently bad news about credibility. Empirically, whether or not agents 
underreact to news that disconfirms existing evidence should depend on an interaction term with 
credibility.18

The fourth empirical prediction of pre-screening relates to multiple signal sources. Pre-
screening predicts that agents can disagree about the credibility of multiple sources even when 
they observe all signals from all sources, as long as they encounter sources in different orders 
(Proposition 5). This prediction distinguishes our theory from the growing literature on rational 
attention (Sims, 2003, 2006; Gabaix et al., 2006) and selective attention (Schwartzstein, 2014; 
Nimark and Sundaresan, 2019; Kominers et al., 2019). Broadly speaking, theories of attention 
suggest that “putting all the signals on the table” and forcing agents to see all signals should help 
resolve disagreement.

In contrast, pre-screeners disagree about the credibility of signals that they all see. Empirical 
evidence suggests that the differential interpretation of commonly-observed information is an 
important feature of real-world disagreement. Kandel and Zilberfarb (1999), Lahiri and Sheng 
(2008) and Patton and Timmermann (2010) provide evidence that differences in information sets 

18 To cleanly contrast confirmation bias with pre-screening, empirical tests would experimentally study settings where 
agents begin with neutral priors on the state. The reason is that confirmation bias relates to how agents react to news that 
disconfirm beliefs while pre-screening relates to how agents react to news that disconfirms existing evidence. In a setting 
with neutral priors on the state, news that disconfirms the existing evidence is equivalent to news that disconfirms beliefs.
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do not explain disagreement among macroeconomic forecasters and emphasize the importance 
of differences in how forecasters interpret information. Cookson and Niessner (2020) provide 
evidence that differing signal interpretation is an important component of disagreement about 
firm stock prices.

Tests of this prediction could thus examine whether agents disagree because they have not seen 
other sources’ information. Pre-screening predicts that both sides are well aware of each side’s 
sources but ultimately discount them as non-credible. For example, pre-screening predicts that 
disagreement about climate change occurs even when all agents have seen the same information, 
whereas theories of attention broadly predict that disagreement occurs because one side has not 
seen the other side’s sources. Tests of this prediction could also study how varying the order in 
which agents encounter sources affects beliefs, analogous to the tests of signal order.19

8. Conclusion

The key predictions of pre-screening are that: 1) Differing first impressions about credibility 
generate disagreement, 2) Disagreement about states of the world and credibility are endoge-
nously correlated, and 3) Pre-screeners can over- and under-react depending on how signals 
interact with beliefs about credibility. New information sources may not resolve disagreement 
when they should, and agents can become certain of incorrect states if sources are slanted. In 
a trading game, pre-screening can generate price bubbles and crashes along with speculative 
trades, with traders “riding the bubble” along the way, even in an environment where Bayesians 
with heterogeneous priors would not do so.

Future research can extend our theory and apply it to several settings. For example, extending 
the theory beyond the two-state model may yield additional insights. The two-step process of 
pre-screening would be nearly identical, and we speculate that qualitative insights such as the 
occurrence of disagreement and the existence of order effects in beliefs would be similar. How-
ever, such an extended model may yield even richer predictions about the dynamics of beliefs 
and over- and under-reaction to news. Developing context-specific models or empirically testing 
the predictions of Section 7 may help illuminate disagreement in contexts as varied as climate 
change, medicine, and politics. Overall, exploring the endogenous reasons for why individuals 
jointly disagree about subject matter and the credibility of sources is a fruitful area for future 
research.

Acknowledgments

The authors thank the Editor (Pietro Ortoleva), an anonymous Associate Editor, three anony-
mous referees, Roland Bénabou, Douglas Bernheim, Philip Bond, Vince Crawford, Jesse Davis, 
Dan Feiler, Jeffry Frieden, Teresa Fort, Jens Großer, Adam Kleinbaum, Botond Kőszegi, David 
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Appendix A. Proofs of main propositions

A.1. Equations for beliefs of pre-screener and Bayesian

To illustrate the mechanics that drive the divergence between the beliefs of a pre-screener and 
a Bayesian, as in Section 2.4, we expand the recursion of κc(sn) in the pre-screener’s posterior 
beliefs. For brevity, we show the evolution of beliefs for three signals.

After the first signal s1, the pre-screener’s beliefs are:

κc({s1}) =
∑

θ P (s1|c, θ)ωθ
0ωc

0∑
c

∑
θ P (s1|c, θ)ωθ

0ωc
0

P s(c, θ |{s1}) = P(s1|c, θ)κc({s1})ωθ
0∑

c

∑
θ P (s1|c, θ)κc({s1})ωθ

0

= [∑θ P (s1|c, θ)ωθ
0 ]P(s1|c, θ)ωθ

0ωc
0∑

c[
∑

θ P (s1|c, θ)ωθ
0 ]∑θ P (s1|c, θ)ωθ

0ωc
0

.

In contrast, the Bayesian’s posterior beliefs after the first signal are:

P(c, θ |{s1}) = P(s1|c, θ)ωc
0ω

θ
0∑

c

∑
θ P (s1|c, θ)ωc

0ω
θ
0

.

After the second signal s2, the pre-screener’s beliefs are:

κc({s1, s2}) =
∑

θ P (s2|c, θ)P s(c, θ |{s1})∑
c

∑
θ P (s2|c, θ)P s(c, θ |{s1})

=
∑

θ P (s2|c, θ)P (s1|c, θ)κc({s1})ωθ
0∑

c

∑
θ P (s2|c, θ)P (s1|c, θ)κc({s1})ωθ

0

= [∑θ P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s1|c, θ)ωθ

0 ]ωc
0∑

c[
∑

θ P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s1|c, θ)ωθ

0 ]ωc
0

P s(c, θ |{s1, s2}) = P(s2|c, θ)P (s1|c, θ)κc({s1, s2})ωθ
0∑

c

∑
θ P (s2|c, θ)P (s1|c, θ)κc({s1, s2})ωθ

0

= [∑θ P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s1|c, θ)ωθ

0 ]P(s2|c, θ)P (s1|c, θ)ωc
0ωθ

0∑
c

∑
θ [∑θ P (s2|c, θ)P (s1|c, θ)ωθ

0 ][∑θ P (s1|c, θ)ωθ
0 ]P(s2|c, θ)P (s1|c, θ)ωc

0ωθ
0
.

30



I.-H. Cheng and A. Hsiaw Journal of Economic Theory 200 (2022) 105401

In contrast, the Bayesian’s posterior beliefs after the second signal are:

P(c, θ |{s1, s2}) = P(s2|c, θ)P (s1|c, θ)ωc
0ω

θ
0∑

c

∑
θ P (s2|c, θ)P (s1|c, θ)ωc

0ω
θ
0

.

After the third signal s3, the pre-screener’s beliefs are:

κc({s1, s2, s3}) =
∑

θ P (s3|c, θ)P s(c, θ |{s1, s2})∑
c

∑
θ P (s3|c, θ)P s(c, θ |{s1, s2})

=
∑

θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)κc({s1, s2})ωθ
0∑

c

∑
θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)κc({s1, s2})ωθ

0

= [∑θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s2|c, θ)P (s1|c, θ)ωθ

0 ][∑θ P (s1|c, θ)ωθ
0 ]ωc

0∑
c[

∑
θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωθ

0 ][∑θ P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s1|c, θ)ωθ

0 ]ωc
0

P s(c, θ |{s1, s2, s3}) = P(s3|c, θ)P (s2|c, θ)P (s1|c, θ)κc({s1, s2, s3})ωθ
0∑

c

∑
θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)κc({s1, s2, s3})ωθ

0

= [∑θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s2|c, θ)P (s1|c, θ)ωθ

0 ][∑θ P (s1|c, θ)ωθ
0 ]P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωc

0ωθ
0∑

c
∑

θ [∑θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωθ
0 ][∑θ P (s2|c, θ)P (s1|c, θ)ωθ

0 ][∑θ P (s1|c, θ)ωθ
0 ]P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωc

0 .ωθ
0

In contrast, the Bayesian’s posterior beliefs after the third signal are:

P(c, θ |{s1, s2, s3}) = P(s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωc
0ω

θ
0∑

c

∑
θ P (s3|c, θ)P (s2|c, θ)P (s1|c, θ)ωc

0ω
θ
0

.

A.2. Proof of Lemma 1

Proof. Without loss of generality, let (c, θ) = (L,B). The posterior odds ratio of (L,B) versus 
(L,A) equals:

P s (L,B | sn)

P s (L,A | sn)
= βL (sn)

∏n
t=1 P (st | L,B)ωB

0 ωL
0

βL (sn)
∏n

t=1 P (st | L,A)ωA
0 ωL

0

=
∏n

t=1 P (st | L,B)ωB
0 ωL

0∏n
t=1 P (st | L,A)ωA

0 ωL
0

= P (L,B | sn)

P (L,A | sn)
.

Since x
y

= x′
y′ implies x

x+y
= x′

x′+y′ and P s (θ = B | L; sn) = P s(L,B|sn)
P s(L,B|sn)+P s(L,A|sn)

, the conclusion 
follows. �
A.3. Proof of Proposition 1

1. Since P s (θ | c; sn) = P (θ | c; sn), we have:

P s (θ | sn) − P (θ | sn) =P (θ | H ; sn) × [
P s (H | sn) − P (H | sn)

]
+ P (θ | L; sn) × [

P s (L | sn) − P (L | sn)
]

=P (θ | H ; sn) × [
P s (H | sn) − P (H | sn)

]
+ P (θ | L; sn) × [

P (H | sn) − P s (H | sn)
]

= [P (θ | H ; sn) − P (θ | L; sn)] × [
P s (H | sn) − P (H | sn)

]
.
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Without loss of generality, consider θ = B:

P (B | H ; sn) =P (B | L; sn)

P (H,B | sn)

P (H,B | sn) + P (H,A | sn)
= P (L,B | sn)

P (L,B | sn) + P (L,A | sn)

P (H,B | sn)

P (H,A | sn)
=P (L,B | sn)

P (L,A | sn)(
1 − qH

qH

)na−nb (1 − ωA
0 )ωH

0

ωA
0 ωH

0

=
(

1 − qL

qL

)na−nb (1 − ωA
0 )ωL

0

ωA
0 ωL

0

.

Therefore, P (θ | H ; sn) − P (θ | L; sn) = 0 if and only if na = nb. Moreover, P s (H | sn) =
P (H | sn) if and only if βH (sn)

βL(sn)
= 1:

P s (H | sn) =P (H | sn)

P s (H | sn)

P s (L | sn)
=P (H | sn)

P (L | sn)

βH (sn)
∑

θ

∏n
t=1 P (st | H,θ)ωθ

0ωc
0

βL (sn)
∑

θ

∏n
t=1 P (st | L,θ)ωθ

0ωc
0

=
∑

θ

∏n
t=1 P (st | H,θ)ωθ

0ωc
0∑

θ

∏n
t=1 P (st | L,θ)ωθ

0ωc
0

βH (sn)

βL (sn)
=1.

From the definition of βc(sn),

βH (sn)

βL (sn)
=

∏n
m=1

∑
θ

(∏m
t=1 P (st | H,θ)ωθ

0

)∏n
m=1

∑
θ

(∏m
t=1 P (st | L,θ)ωθ

0

)
=

n∏
m=1

ωL
0

∑
θ

(
P (sm | H,θ)ωθ

0ωH
0

)
ωH

0

∑
θ

(
P (sm | L,θ)ωθ

0(1 − ωH
0 )

)
=

n∏
m=1

P (c = H | sm) (1 − ωH
0 )

P (c = L | sm)ωH
0

. (A.1)

Therefore, P s (c = H | sn) − P (c = H | sn) = 0 if and only if 
∏n

m=1
P(c=H |sm)(1−ωH

0 )

P (c=L|sm)ωH
0

= 1.

2. This follows from Lemma 1 and the proof of Part 1 of Proposition 1.

A.4. Proof of Proposition 2

Shown in the proof of Part 1 of Proposition 1.

A.5. Proof of Corollary 1

Equation (A.1) shows how a pre-screener’s over- or under-trust depends on the cumulative 
effect of the signals on their beliefs about credibility. Each individual mth term of βH/βL(sn)

is the objective odds that the source of high credibility relative to priors, given the information 
content of subsequence sm. Each mth term of Equation (A.1) is strictly greater than 1 if and only 
if
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(∑
θ

(
m∏

t=1

P(st |H,θ)

)
ωθ

0

)
−

(∑
θ

(
m∏

t=1

P(st |L,θ)

)
ωθ

0

)
≥ 0. (A.2)

Without loss of generality, consider the m = nth term of Equation (A.1) and suppose na ≥ nb

for sn. Let d ≡ na −nb. Expanding Equation (A.2), the m = nth term of Equation (A.1) is strictly 
greater than 1 if and only if

ωA
0 q

na

H (1 − qH )nb + (1 − ωA
0 )(1 − qH )naq

nb

H

> ωA
0 q

na

L (1 − qL)nb + (1 − ωA
0 )(1 − qL)naq

nb

L (A.3)

We can re-write Equation (A.3) as(
qH (1 − qH )

qL(1 − qL)

)nb

(
ωA

0 qd
H + (1 − ωA

0 )(1 − qH )d

ωA
0 qd

L + (1 − ωA
0 )(1 − qL)d

)
> 1. (A.4)

Note that Equation (A.4) is strictly decreasing in nb. We show that G(d) ≡ ωA
0 qd

H +(1−ωA
0 )(1−qH )d

ωA
0 qd

L+(1−ωA
0 )(1−qL)d

is increasing in d when d ≥ 0 is sufficiently large:

∂G

∂d
=

(
ωA

0 qd
H ln(qH ) + (1 − ωA

0 )(1 − qH )d ln(1 − qH )
) (

ωA
0 qd

L + (1 − ωA
0 )(1 − qL)d

)
(
ωA

0 qd
L + (1 − ωA

0 )(1 − qL)d
)2

−
(
ωA

0 qd
H + (1 − ωA

0 )(1 − qH )d
) (

ωA
0 qd

L ln(qL) + (1 − ωA
0 )(1 − qL)d ln(1 − qL)

)
(
ωA

0 qd
L + (1 − ωA

0 )(1 − qL)d
)2 .

(A.5)

The numerator of Equation (A.5) is positive if and only if

ωA
0 qd

H ln(qH ) + (1 − ωA
0 )(1 − qH )d ln(1 − qH )

ωA
0 qd

H + (1 − ωA
0 )(1 − qH )d

>
ωA

0 qd
L ln(qL) + (1 − ωA

0 )(1 − qL)d ln(1 − qL)

ωA
0 qd

L + (1 − ωA
0 )(1 − qL)d

.

Thus the numerator of Equation (A.5) is positive if the following holds:

∂

∂q

(
ωA

0 qd ln(q) + (1 − ωA
0 )(1 − q)d ln(1 − q)

ωA
0 qd + (1 − ωA

0 )(1 − q)d

)
> 0,

which we re-write as

∂

∂q

⎛
⎜⎝ ln(q) + (

1−ωA
0

ωA
0

)(
1−q
q

)d ln(1 − q)

1 + (
1−ωA

0
ωA

0
)(

1−q
q

)d

⎞
⎟⎠ > 0. (A.6)

The numerator of Equation (A.6) is(
1

q
+ (

1 − ωA
0

ωA
0

)d(
1 − q

q
)d−1(

−q − (1 − q)

q2 ) − (
1 − ωA

0

ωA
0

)(
1

1 − q
)

)

×
(

1 + (
1 − ωA

0

ωA
0

)(
1 − q

q
)d

)
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−
(

ln(q) + (
1 − ωA

0

ωA
0

)(
1 − q

q
)d ln(1 − q)

)(
(
1 − ωA

0

ωA
0

)d(
1 − q

q
)d−1(

−q − (1 − q)

q2 )

)

= 1

q
+ (

1 − ωA
0

ωA
0

)d(
1 − q

q
)d−1(

2q − 1

q2 ) ln(1 − q) − (
1 − ωA

0

ωA
0

)(
1 − q

q
)d(

1

1 − q
)

+ (
1 − ωA

0

ωA
0

)(
1 − q

q
)d(

1

q
)

+ (
1 − ωA

0

ωA
0

)2d(
1 − q

q
)2d−1(

2q − 1

q2 ) ln(1 − q) − (
1 − ωA

0

ωA
0

)2(
1 − q

q
)2d(

1

1 − q
)

− (
1 − ωA

0

ωA
0

)d(
1 − q

q
)d−1(

2q − 1

q2 ) ln(q) − (
1 − ωA

0

ωA
0

)2d(
1 − q

q
)2d−1(

2q − 1

q2 ) ln(1 − q)

= 1

q
+ (

1 − ωA
0

ωA
0

)(
1 − q

q
)d(

2q − 1

q(1 − q)
)(d ln(

1 − q

q
) − 1) − (

1 − ωA
0

ωA
0

)2(
1 − q

q
)2d(

1

1 − q
).

(A.7)

The first term of Equation (A.7) is positive and the second and third terms are negative. The 

third term is clearly increasing in d and limd→∞ −(
1−ωA

0
ωA

0
)2(

1−q
q

)2d( 1
1−q

) = 0. The second term 

is also increasing in d :

∂

∂d

(
(
1 − ωA

0

ωA
0

)(
1 − q

q
)d(

2q − 1

q(1 − q)
)(d ln(

1 − q

q
) − 1)

)

= (
1 − ωA

0

ωA
0

)(
2q − 1

q(1 − q)
)(

1 − q

q
)dd

(
ln(

1 − q

q
)

)2

> 0,

and its limit as d → ∞ is zero:

lim
d→∞(

1 − ωA
0

ωA
0

)(
1 − q

q
)d(

2q − 1

q(1 − q)
)(d ln(

1 − q

q
) − 1)

= (
1 − ωA

0

ωA
0

)(
2q − 1

q(1 − q)
) lim

d→∞

(
ln(

1 − q

q
)

d

(
q

1−q
)d

− (
1 − q

q
)d

)

= (
1 − ωA

0

ωA
0

)(
2q − 1

q(1 − q)
) lim

d→∞

(
ln(

1 − q

q
)

1

d(
q

1−q
)d−1

− (
1 − q

q
)d

)

= 0.

This implies that there exists some d ≥ 0 such that Equation (A.7) is positive for all d > d and 
negative for all d < d . Thus, there exists some d ≥ 0 such that G(d) is increasing in d for all 
d > d . Moreover, since Equation (A.7) is clearly increasing in ωA

0 , then d is decreasing in ωA
0 .

Finally, we know that limd→∞ G(d) = ∞:

lim
d→∞

ωA
0 qd

H + (1 − ωA
0 )(1 − qH )d

ωA
0 qd

L + (1 − ωA
0 )(1 − qL)d

= lim
d→∞

(
qH

qL
)d + (

1−ωA
0

ωA
0

)(
1−qH

qL
)d

1 + (
1−ωA

0
ωA

0
)(

1−qL

qL
)d

= ∞ + 0

1 + 0
= ∞.
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Since G(d) is increasing in d for all d > d , G(0) = 1, and limd→∞ G(d) = ∞, then for any 
nb ≥ 0, there exists some d∗ ≥ 0 such that Equation (A.4) equals 1 for d = d∗, Equation (A.4)
is less than 1 for d < d∗, and Equation (A.4) is greater than 1 and increasing in d for d > d∗. 
Since the right-hand side of Equation (A.4) decreases in nb, then d∗ increases in nb. Since d is 
decreasing in ωA

0 , then d∗ is decreasing in ωA
0 .

Analogous results hold if nb ≥ na so that d ≤ 0, since Equation (A.3) would instead become(
qH (1 − qH )

qL(1 − qL)

)na
(

ωA
0 (1 − qH )d + (1 − ωA

0 )qd
H

ωA
0 (1 − qL)d + (1 − ωA

0 )qd
L

)
> 1. (A.8)

Analogously, Equation (A.8) is strictly decreasing in na and there exists some d∗∗ ≤ 0 such that 
Equation (A.8) equals 1 for d = d∗∗, Equation (A.8) is less than 1 for d > d∗∗, and Equation 
(A.8) is greater than 1 and decreasing in d for d < d∗∗. Likewise, d∗∗ is decreasing in ωA

0 .
Let na,m be the number of a’s in subsequence sm, nb,m be the number of b’s in subsequence 

sm, and let dm = na,m −nb,m. We have shown from Equation (A.4) that if na,m ≥ nb,m so dm ≥ 0, 
then an mth term of βH/βL(sn) is decreasing in nb,m. We have also show that an mth term of 
βH /βL(sn) is increasing in d when dm > d∗

m. Note that mechanically, if nb,m+1 = nb,m + 1 then 
dm+1 = dm − 1.

Likewise, if nb,m ≥ na,m so dm ≤ 0, then an mth term of βH/βL(sn) is decreasing in na,m, and 
it is decreasing in dm when dm < d∗∗

m . Mechanically, if na,m+1 = na,m + 1 then dm+1 = dm + 1.
This implies the following: Consider sX

n , sY
n ∈ �(sn) where nX

b,j = nY
b,j − 1 and nX

b,m = nY
b,m

for all m �= j .

1. If na,j−1 ≥ nb,j−1, then for any nb,j−1 ≥ 0 there exists some d∗
j−1 ≥ 0 such that

P
(
c=H |sj−1

)
(1−ωH

0 )

P
(
c=L|sj−1

)
(ωH

0 )
is increasing in dj−1 for all dj−1 > d∗

j−1. For any j such that na,j−1 ≥
nb,j−1 and dj−1 > d∗

j−1, then βH /βL(sX
n ) > βH /βL(sY

n ).

Let na,j−1 ≥ nb,j−1. Sequences sX
n and sY

n are ordered identically except that (sX
j , sX

j+1) =
(a, b) while (sY

j , sY
j+1) = (b, a). From Equation (A.1), it follows that βH /βL(sX

n ) >

βH /βL(sY
n ) if and only if

P(c = H |sX
j )

P (c = L|sX
j )

>
P (c = H |sY

j )

P (c = L|sY
j )

. (A.9)

Note that nY
b,j = nX

b,j + 1 so dX
j = dX

j−1 + 1 and dY
j = dX

j−1 − 1. Since dj−1 > d∗
j−1, then 

dX
j > dY

j ≥ d∗
j−1. Thus Equation (A.9) holds.

2. If nb,j−1 ≥ na,j−1, then for any na,j−1 ≥ 0, there exists some d∗∗
j−1 ≤ 0 such that 

P
(
c=H |sj−1

)
(1−ωH

0 )

P
(
c=L|sj−1

)
(ωH

0 )
is decreasing in dj−1 for all dj−1 < d∗∗

j−1. For any j such that nb,j−1 ≥
na,j−1 and dj−1 < d∗∗

j−1, then βH /βL(sX
n ) < βH /βL(sY

n ).
Analogous argument as above.

A.6. Special Case of Corollary 1

Corollary 3 shows the implications of Corollary 1 in the special case where the prior on 
the state does not color the pre-screener’s interpretation of signals (ωA

0 = 1/2). It illustrates 
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the intuition for how signal order generates first impression bias by showing that pre-screeners 
erroneously believe that the timing of signal reversals is itself informative, in that a pattern 
of few (more) initial reversals inflates (deflates) their beliefs about source credibility. Con-
sider the sequences {a, a, b} and {a, b, a}, which have identical information content. Under 
{a, a, b}, the first two signals {a, a} are consistent and objectively indicate high credibility. Un-
der {a, b, a}, the first two signals {a, b} are inconsistent and objectively indicate low credibility. 
In both cases, the pre-screener overinfers credibility from the first two signals, and this first im-
pression of credibility colors the pre-screener’s interpretation of the third signal. As a result, 
P s(c = H |{a, a, b}) > P s(c = H {(a, b, a}). Corollary 3 broadens this example and shows that 
re-ordering the signals so that the longest consistent streak appears first generates the most trust 
in the source, while alternating the signals first generates the least trust. In contrast, a Bayesian’s 
final beliefs are independent of signal order.

Corollary 3. Let sn be a signal path with na ≥ nb be given. Let sX
n ≡ {a, a, . . . , b, b, . . .} and 

sY
n ≡ {a, b, a, b, . . . , a, a, . . .} where sX

n , sY
n ∈ �(sn). If (ωA

0 , ωH
0 ) = (1/2, ω̂) where ω̂ ∈ (0, 1), 

then sX
n = argmaxs∈�(sn) βH /βL(s) and sY

n = arg mins∈�(sn) βH /βL(s).

Proof. Let sn a set of signals with na ≥ nb , and �(sn) be the permutations of sn. Consider any 
pair of sequences sX

n , sY
n ∈ �(sn).

By Proposition 2, a necessary and sufficient condition for P s(c = H |sX
n ) > P s(c = H |sY

n ) is 
βH /βL(sX

n ) > βH /βL(sY
n ). Consider sX

n and sY
n , where the first j signals are ordered identically 

and n −2 ≥ j ≥ 1, the two sequences differ in the j +1 and j +2 signals, and then all subsequent 
signals are identical (i.e., terms j + 3 through n). Suppose the first j terms contain k a’s and 
j − k b’s, where k ≥ j − k. Let sX

j+1 = a, sX
j+2 = b, sY

j+1 = b, and sY
j+2 = a. (For example, sX

n

could be {a, a, b, a, b, a} and sY
n could be {a, a, b, b, a, a}, so j = 3, k = 2.) Then βH /βL(sX

n ) >
βH /βL(sY

n ) whenever k > j − k and βH /βL(sX
n ) = βH /βL(sY

n ) whenever k = j − k. To see this, 
note that, given Equation (9), all of the terms are identical for βc(sX

n ) and βc(sY
n ) except term 

j + 1. When ωA
0 = 1/2, then βH/βL(sX

n ) ≥ βH /βL(sY
n ) if and only if(

qk+1
H (1 − qH )j−k + (1 − qH )k+1q

j−k
H

)(
qk
L(1 − qL)j−k+1 + (1 − qL)kq

j−k+1
L

)
−

(
qk+1
L (1 − qL)j−k + (1 − qL)k+1q

j−k
L

)(
qk
H (1 − qH )j−k+1 + (1 − qH )kq

j−k+1
H

)
≥ 0

(qH − qL)
(
(qH qL)2k−j − ((1 − qH )(1 − qL))2k−j

)
+ (qH + qL − 1)

(
(qH (1 − qL))2k−j − (qL(1 − qH ))2k−j

)
≥ 0.

We can verify that both terms on the left-hand side are positive when k > j − k and zero 
when k = j − k. Thus, P s(c = H |sX

n ) > P s(c = H |sY
n ) when k > j − k. Using this result, 

we can iteratively apply it to order sequences in �(sn) by decreasing trust, by starting with 
the sequence with the least reversals (all a’s followed by all b’s), and iteratively switching 
the first b and last a to generate sequences in which the first b moves forward. For exam-
ple, P s(c = H |{a, a, a, a, b, b}) > P s(c = H |{a, a, a, b, a, b}) > P s(c = H |{a, a, b, a, a, b}) >
P s(c = H |{a, b, a, a, a, b}). Then, P s(c = H |{a, a, a, b, b, a}) > P s(c = H |{a, a, b, a, b, a}) >
P s(c = H |{a, b, a, a, b, a}), where P s(c = H |{a, a, a, b, a, b}) > P s(c = H |{a, a, a, b, b, a})
and P s(c = H |{a, b, a, a, a, b}) > P s(c = H |{a, b, a, a, b, a}). We continue this procedure (and 
applying the result that P s(c = H |sX

n ) > P s(c = H |sY
n ) when k > j − k) to establish that 

{a, a, a, a, b, b} generates the most trust and {a, b, a, b, a, a} generates the least trust.
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Thus, if (ωA
0 , ωH

0 ) = (1/2, ω̂) where ω̂ ∈ (0, 1), then sX
n = argmaxs∈�(sn) βH /βL(s) and sY

n =
arg mins∈�(sn) βH /βL(s), where sX

n ≡ {a, a, . . . , b, b, . . .} and sY
n ≡ {a, b, a, b, . . . , a, a, . . .}. �

A.7. Proof of Proposition 3

Proof. Suppose 
(
c′, θ ′) = (L,A). The proof shows that the posterior odds ratio of any other 

(c, θ) versus (L,A) converges to zero when qL > 1/2, which we assume unless otherwise noted. 
If qL = 1/2, the posterior odds ratios of (L,B) versus (L,A) converge to ωB

0 /ωA
0 . Arguments

for other 
(
c′, θ ′) are similar. We consider convergence almost surely.

Bayesian. Suppose 
(
c′, θ ′) = (L,A). We show the asymptotic belief for every other (c, θ) is 

zero through standard arguments.
Let (c, θ) = (L,B). The posterior odds ratio of (L,B) versus (L,A) equals:

P (L,B | sn)

P (L,A | sn)
=q

nb

L (1 − qL)na ωB
0 ωL

0

q
na

L (1 − qL)nb ωA
0 ωL

0

=
(

1 − qL

qL

)na−nb (1 − ωA
0 )

ωA
0

→ 0,

since qL > 1/2 implies (na − nb) → ∞ and 1−qL

qL
< 1.20 If qL = 1/2, the posterior odds ratio 

equals ωB
0 /ωA

0 as (1 − qL)/qL = 1.
Now let (c, θ) = (H,A). The posterior odds ratio of (H,A) versus (L,A) equals:

P (H,A | sn)

P (L,A | sn)
=q

na

H (1 − qH )nb ωA
0 ωH

0

q
na

L (1 − qL)nb ωA
0 ωL

0

=
(

q
na/n
H (1 − qH )nb/n

q
na/n
L (1 − qL)nb/n

)n
ωH

0

ωL
0

→ 0.

The formal limit proof of the last line is as follows. Let ε > 0 be given. Since xna/n (1 − x)nb/n

converges with limit xqL (1 − x)1−qL for x ∈ {qL, qH }, that means for any ν > 0, there exists an 
N1 large enough so that, for any n > N1:∣∣∣∣∣q

na/n
H (1 − qH )nb/n

q
na/n
L (1 − qL)nb/n

− q
qL

H (1 − qH )1−qL

q
qL

L (1 − qL)1−qL

∣∣∣∣∣ < ν.

Note that η ≡ q
qL
H (1−qH )1−qL

q
qL
L (1−qL)1−qL

< 1 since f (x) = xqL (1 − x)1−qL is a strictly decreasing function 

for x ∈ (qL,1).21 This implies that we can also choose ν small enough so that there exists an 

N1 such that 
q

na/n
H (1−qH )nb/n

q
na/n
L (1−qL)nb/n

< 1 −
(

1−η
2

)
and in particular is bounded away from 1 for any 

n > N1. Therefore, there exists an N2 > N1 such that 
(

q
na/n
H (1−qH )nb/n

q
na/n
L (1−qL)nb/n

)n

< ε for n > N2. If 

qL = 1/2, the posterior odds ratio also equals zero, and a similar argument applies for (H,B)

versus (L,B). Intuitively, conditional on the state, the agent learns the true type (L) for sure 
based on the long-run frequency.

20 Note that na − nb = 2n 
(

na
n − 1

2

)
, which diverges to +∞ when qL > 1/2 since na/n → qL .

21 Let f (x) = xqL (1 − x)1−qL . Note that f (x) is decreasing if and only if g (x) = qL logx + (1 − qL) log (1 − x) is 
decreasing. Taking derivatives:

g′ (x) = qL

x
− 1 − qL

1 − x
.

Therefore, we have g′ (x) < 0 ⇔ qL
1−qL

< x
1−x

⇔ qL < x.
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Now let (c, θ) =(H,B). The posterior odds ratio of (H,B) versus (H,A) equals:

P (H,B | sn)

P (H,A | sn)
=q

nb

H (1 − qH )na

q
na

H (1 − qH )nb

ωB
0 ωH

0

ωA
0 ωH

0

=
(

1 − qH

qH

)na−nb (1 − ωA
0 )

ωA
0

→ 0,

for qL > 1/2.
Thus:

lim
n→∞

P (H,B | sn)

P (L,A | sn)
= lim

n→∞

[
P (H,B | sn)

P (H,A | sn)

P (H,A | sn)

P (L,A | sn)

]

= lim
n→∞

P (H,B | sn)

P (H,A | sn)
lim

n→∞
P (H,A | sn)

P (L,A | sn)
= 0,

for qL > 1/2.
If qL = 1/2, then:

lim
n→∞

P (H,B | sn)

P (L,A | sn)
= q

nb

H (1 − qH )na

q
na

L (1 − qL)nb

ωB
0 ωH

0

ωA
0 ωL

0

= 2nq
nb

H (1 − qH )na
ωB

0 ωH
0

ωA
0 ωL

0

.

But:

2nq
nb

H (1 − qH )na =
(

2q
nb
n

H (1 − qH )
na
n

)n

.

The inside term on the right-hand side converges to 2q
1
2
H(1 − qH )

1
2 . Observe qH ∈ (1/2, 1) im-

plies qH (1 − qH ) < 1/4 and thus 2q
1
2
H (1 − qH )

1
2 < 1. This means we can choose N sufficiently 

large so that 2q
nb
n

H (1 − qH )
na
n is less than and bounded away from 1 for all n > N . This in turn 

implies 
(

2q
nb
n

H (1 − qH )
na
n

)n

→ 0.

Pre-screener. The pre-screener’s belief equals:

P s (c, θ | sn) = βc (sn)
∏n

t=1 P (st | c, θ)ωθ
0ωc

0∑
c βc (sn)

∑
θ

∏n
t=1 P (st | c, θ)ωθ

0ωc
0

βc (sn) =
n∏

m=1

∑
θ

(
m∏

t=1

P (st | c, θ)ωθ
0

)
.

Let (c, θ) = (L,B). The posterior odds ratio of (L,B) versus (L,A) equals:

P s (L,B | sn)

P s (L,A | sn)
=βL (sn)

∏n
t=1 P (st | L,B)ωB

0 ωL
0

βL (sn)
∏n

t=1 P (st | L,A)ωA
0 ωL

0

=
∏n

t=1 P (st | L,B) (1 − ωA
0 )∏n

t=1 P (st | L,A)ωA
0

→ 0,

by the same arguments as the Bayesian. If qL = 1/2, the posterior odds ratio evidently equals 
ωB

0 /ωA
0 as it does for a Bayesian.

Let (c, θ) = (H,A). The posterior odds ratio of (H,A) versus (L,A) equals:

P s (H,A | sn)

P s (L,A | sn)
=βH (sn)

∏n
t=1 P (st | H,A)ωA

0 ωH
0

βL (sn)
∏n

t=1 P (st | L,A)ωA
0 ωL

0

From Equation (A.1), βH (sn)
βL(sn)

= ∏n
m=1

P(c=H |sm)(1−ωH
0 )

P (c=L|sm)ωH
0

. Because the Bayesian learns the truth, 

we have 
P(c=H |sn)ωL

0
P(c=L|sn)ωH

0
→ 0. In particular, there exists an N such that for all n > N , 

P(c=H |sn)ωL
0

P(c=L|sn)ωH
0

<
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1. This implies that for any ε > 0, there exists an N1 > N such that 
∏n

m=1
P(c=H |sm)ωL

0
P(c=L|sm)ωH

0
< ε for 

all n > N1. Therefore, βH (sn)
βL(sn)

→ 0. But then:

P s (H,A | sn)

P s (L,A | sn)
=βH (sn)

∏n
t=1 P (st | H,A)ωA

0 ωL
0

βL (sn)
∏n

t=1 P (st | L,A)ωA
0 ωH

0

= βH (sn)

βL (sn)

P (H,A | sn)

P (L,A | sn)
→ 0.

If qL = 1/2, the posterior odds ratio also equals zero. A similar argument applies for (H,B)

versus (L,B).
Let (c, θ) = (H,B). The posterior odds ratio of (H,B) versus (L,A) equals:

P s (H,B | sn)

P s (L,A | sn)
=βH (sn)

∏n
t=1 P (st | H,B)ωB

0 ωL
0

βL (sn)
∏n

t=1 P (st | L,A)ωA
0 ωH

0

= βH (sn)

βL (sn)

P (H,B | sn)

P (L,A | sn)
→ 0.

since βH (sn)
βL(sn)

→ 0 from the arguments above and P(H,B|sn)
P (L,A|sn)

→ 0 from the arguments for the 
Bayesian. �
A.8. Proof of Proposition 4

1. Let ωs
n equal the pre-screener’s joint posterior after the sequence sn.

First, note that each joint belief on the state and credibility for the prior ωs
n, denoted ωcθ

n , is 
given by

ωcθ
n ≡ P s(c, θ |sn) =

(∏n
t=1 P(st |c, θ)

)
ωθ

0ωc
0βc(sn)∑

θ

∑
c

(∏n
t=1 P(st |c, θ)

)
ωθ

0ωc
0βc(sn)

. (A.10)

Thus, the Bayesian’s posterior belief given the biased prior is

P(θ = A|prior = ωs
n, {sn+1}) =

ωA
0

∑
c

(∏n+1
t=1 P(st |c,A)

)
ωc

0βc(sn)∑
θ ωθ

0

∑
c

(∏n+1
t=1 P(st |c, θ)

)
ωc

0βc(sn)
.

In contrast, the pre-screener’s posterior belief after observing sn+1 is

P s(θ = A|sn+1) =
ωA

0

∑
c

(∏n+1
t=1 P(st |q,A)

)
ωc

0βc(sn+1)∑
θ ωθ

0

∑
c

(∏n+1
t=1 P(st |c, θ)

)
ωc

0βc(sn+1)
,

where

βc(sn+1) =
n+1∏
m=1

(∑
θ

(
m∏

t=1

P(st |c, θ)

)
ωθ

0

)
= βc(sn)

(∑
θ

(
n+1∏
t=1

P(st |c, θ)

)
ωθ

0

)
.

(A.11)

Substituting all of the preceding information into P s(θ = A|sn+1) > P(θ = A|prior =
ωs

n, {sn+1}), the inequality is only satisfied if

ωA
0 (1 − ωA

0 )ωH
0 (1 − ωH

0 )βL(sn)βH (sn)

×
((∑

θ

(
n+1∏
t=1

P(st |H,θ)

)
ωθ

0

)
−

(∑
θ

(
n+1∏
t=1

P(st |L,θ)

)
ωθ

0

))
︸ ︷︷ ︸

X
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×
((

n+1∏
t=1

P(st |H,A)

)(
n+1∏
t=1

P(st |L,B)

)
−

(
n+1∏
t=1

P(st |H,B)

)(
n+1∏
t=1

P(st |L,A)

))
︸ ︷︷ ︸

Y

> 0. (A.12)

By direct calculation, Y > 0 if and only if P(A|H ; sn+1) > P(A|L; sn+1), Y = 0 if and only if 
P(A|H ; sn+1) − P(A|L; sn+1) = 0, and Y < 0 if and only if P(A|H ; sn+1) < P(A|L; sn+1).

Moreover, note that κc(sn) ≡ βc(sn)ωc
0∑

c βc(sn)ωc
0
. Then Equation (A.11) implies that κH (sn+1) >

κH (sn) if and only if

ωH
0 (1 − ωH

0 )βH (sn)βL(sn)

×
((∑

θ

(
n+1∏
t=1

P(st |H,θ)

)
ωθ

0

)
−

(∑
θ

(
n+1∏
t=1

P(st |L,θ)

)
ωθ

0

))
> 0,

which is the requirement that X > 0. Thus, X > 0 if and only if κH (sn+1) > κH (sn), X = 0 if 
and only if κH (sn+1) = κH (sn), and X < 0 if and only if κH (sn+1) < κH (sn).
Since the sign of Equation (A.12) is determined by the sign of XY , this yields the proposition.

Finally, note that P(H |sn+1) =
ωH

0
∑

θ

(∏n+1
t=1 P(st |c,θ)

)
ωθ

0∑
c ωc

0
∑

θ

(∏n+1
t=1 P(st |c,θ)

)
ωθ

0

. By direct calculation, P(H |sn+1)

> ωH
0 if and only if X > 0. Thus, κH (sn+1) > κH (sn) if and only if P(θ = H |sn+1) > ωH

0 , 
κH (sn+1) = κH (sn) if and only if P(c = H |sn+1) = ωH

0 , and κH (sn+1) < κH (sn) if and only 
if P(c = H |sn+1) < ωH

0 .
Below, we relate η(sn+1) to properties of the signal sources.
By direct calculation, P(A|H ; sn+1) − P(A|L; sn+1) ≥ 0 if and only if the number of a’s is 
greater than or equal to the number of b’s contained in sn+1.
Above we have shown that κH(sn+1) − κH (sn) ≥ 0 if and only if P(θ = H |sn+1) ≥ ωH

0 , 
which is true if and only if X ≥ 0.
Let ma be the number of a’s in sn+1 and mb be the number of b’s in sn+1. Expanding X
yields:

ωA
0 q

ma

H (1 − qH )mb + (1 − ωA
0 )(1 − qH )maq

mb

H

≥ ωA
0 q

ma

L (1 − qL)mb + (1 − ωA
0 )(1 − qL)maq

mb

L . (A.13)

Without loss of generality, suppose ma ≥ mb . Then defining d ≡ ma − mb where d ≥ 0, we 
can re-write Equation (A.13) as(

qH (1 − qH )

qL(1 − qL)

)mb

(
ωA

0 qd
H + (1 − ωA

0 )(1 − qH )d

ωA
0 qd

L + (1 − ωA
0 )(1 − qL)d

)
≥ 1, (A.14)

which is identical to Equation (A.4). As we have shown in the proof of Proposition 2, for any 
mb > 0, there exists some d∗ ≥ 0 such that Equation (A.14) equals 1 for d = d∗, Equation 
(A.14) is less than 1 for d < d∗, and Equation (A.14) is greater than 1 for d > d∗. Further, 
d∗ increases in mb and decreases in ωA

0 . The analogous result applies to mb ≥ ma . Thus 
P(c = sn+1) ≥ ωH

0 when the information content of sn+1 sufficiently favors one state, where 
stronger information is required when it is contrary to the prior on the state.
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2. First, note that P s(c, θ |sn+1) is equal to

P s(c, θ |sn+1) =
βc(sn+1)

(∏n+1
t=1 P(st |c, θ)

)
ωθ

0ωc
0∑

c βc(sn+1)
∑

θ

(∏n+1
t=1 P(st |c, θ)

)
ωθ

0ωc
0

(A.15)

where βc(sn+1) is described by Equation (A.11). Second, applying the generalized pre-
screening described in the Internet Appendix, P s(c, θ |prior = ωs

n, {sn+1}) is equal to

P s(c, θ |prior = ωs
n, {sn+1}) =

βcθ (sn+1)
(

1∑
θ ωcθ

n

)
P(st+1|c, θ)ωcθ

n∑
c

∑
θ βcθ (sn+1)

(
1∑

θ ωcθ
n

)
P(st+1|c, θ)ωcθ

n

,

where βcθ (sn+1) = ∑
θ P (sn+1|c, θ)ωcθ

n and ωcθ
n is described by Equation (A.10) and βc(sn)

is described by Equation (9). Substituting this into P s(c, θ |prior = ωs
n, {sn+1}) yields:

P s(c, θ |prior = ωs
n, {sn+1})

=
βcθ (sn+1)

(
1∑

θ ωcθ
n

)
P(st+1|c, θ)βc(sn)

(∏n
t=1 P(st |c, θ)

)
ωθ

0ωc
0∑

c

∑
θ βcθ (sn+1)

(
1∑

θ ωcθ
n

)
P(st+1|c, θ)βc(sn)

(∏n
t=1 P(st |c, θ)

)
ωθ

0ωc
0

=
βcθ (sn+1)

(
1∑

θ ωcθ
n

)
βc(sn)

(∏n+1
t=1 P(st |c, θ)

)
ωθ

0ωc
0∑

c

∑
θ βcθ (sn+1)

(
1∑

θ ωcθ
n

)
βc(sn)

(∏n+1
t=1 P(st |c, θ)

)
ωθ

0ωc
0

, (A.16)

where

βcθ (sn+1)

(
1∑

θ ωcθ
n

)
= βc(sn)

(∑
θ

(
n+1∏
t=1

P(st |c, θ)

)
ωθ

0

)(
ωc

0∑
θ ωcθ

n

)
.

Equation (A.11) implies that Equation (A.16) equals Equation (A.15) if and only if 
ωc

0 = ∑
θ ωcθ

n . Since ωcθ
n ≡ P s(c, θ |sn), then P s(c, θ |sn+1) �= P s(c, θ |prior = ωs

n, {sn+1})
if P s(c|sn) �= ωc

0 and P s(c, θ |sn+1) = P s(c, θ |prior = ωs
n, {sn+1}) if P s(c|sn) = ωc

0.

A.9. Proof of Proposition 5

Proof. Analogous to the one-source case, for the two-source case we can relate κc2c1(·) to 
βc1c2(sn1,n2)βc1(sn1) in the following way:

κc1c2(sn1,n2) = βc1c2(sn1,n2)βc1(sn1)ω
c1
0 ω

c2
0∑

c1

∑
c2

βc1c2(sn1,n2)βc1(sn1)ω
c1
0 ω

c2
0

.

Note that we can also write βc1(sn1) and βc1c2(sn1,n2) as

βc1(sn) =
n1∏

t1=1

1

ω
c1
0 ω

c2
0

P(c1, c2|st1)

βc1c2(sn1,n2) =
n1+n2∏

t2=n1+1

1

ω
c1
0 ω

c2
0

P(c1, c2|sn1,t2). (A.17)
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This means that βc1c2(sn1,n2)βc1(sn) separates the key components of the pre-screener’s cred-
ibility weight into two pieces. The term βc1(sn) clearly depends on the order in which the 
pre-screener observes source 1’s signals, and governs the first impressions of source 1’s cred-
ibility (after source 1 has sent all its signals and before source 2 has sent any signals). The term 
βc1c2(sn1,n2) is the effect on the pre-screener’s credibility weight from evaluating source 2’s sig-
nals against source 1’s signals, holding aside the first impressions of source 1’s credibility. That 
is, this is how the pre-screener evaluates the signals from source 2 given source 1’s entire body 
of signals, so βc1c2(sn1,n2) does not depend on the order of source 1’s signals.

For ease of exposition, let πc1c2θ = (∏n1+n2
t=n1

P(st2|c1, c2, θ)
) (∏n1

t=n1
P(st1|c1, c2, θ)

)
where 

c1 ∈ {H, L}, c2 ∈ {H, L} and θ ∈ {A, B}. let c1 = c1 and c2 = c2.

1. We can write the pre-screener’s posterior belief that source 1 is type H as the following:

P s(H1|sn1,n2)

= κH1H2 (sn1 ,n2 )
(∑

θ πH1H2θ ωθ
0

) + κH1L2 (sn1 ,n2 )
(∑

θ πH1L2θ ωθ
0

)
κH1H2 (sn1,n2 )

(∑
θ πH1H2θ ωθ

0

) + κH1L2 (sn1,n2 )
(∑

θ πH1L2θ ωθ
0

) + κL1H2 (sn1 ,n2 )
(∑

θ πL1H2θ ωθ
0

) + κL1L2 (sn1,n2 )
(∑

θ πL1L2θ ωθ
0

)

=
βH1 (sn1 )

βL1 (sn1 )

(
βH1H2 (sn1 ,n2 )

(∑
θ πH1H2θ ωθ

0

) + βH1L2 (sn1 ,n2 )
(∑

θ πH1L2θ ωθ
0

))
βH1 (sn1 )

βL1 (sn1 )

(
βH1H2 (sn1 ,n2 )

(∑
θ πH1H2θ ωθ

0

) + βH1L2 (sn1 ,n2 )
(∑

θ πH1L2θ ωθ
0

)) + (
βL1H2 (sn1 ,n2 )

(∑
θ πL1H2θ ωθ

0

) + βL1L2 (sn1 ,n2 )
(∑

θ πL1L2θ ωθ
0

)) .
(A.18)

Note that only the term 
βH1 (sn1 )

βL1 (sn1 )
depends on the order of source 1’s signals. By direct differ-

entiation of Equation (A.18), it is straightforward to show that 
∂P s(H1|sn1,n2 )

∂
(
βH1 /βL1 (sn1 )

) > 0.

2.

Lemma A.1. P s(c2|c1; sn1,n2) and P s(θ |c1; sn1,n2) do not depend on the order of source 1’s 
signals.

Proof.

P s(c2|c1; sn1,n2) = κc1c2(sn1,n2)
(∑

θ πc1c2θω
θ
0

)∑
c2

κc1c2(sn1,n2)
(∑

θ πc1c2θω
θ
0

)
= βc1c2(sn1,n2)βc1(sn1)ω

c1
0 ω

c2
0

(∑
θ πc1c2θω

θ
0

)
∑

c2
βc1c2(sn1,n2)βc1(sn1)ω

c1
0 ω

c2
0

(∑
θ πc1c2θω

θ
0

)
= βc1(sn1)ω

c1
0 βc1c2(sn1,n2)ω

c2
0

(∑
θ πc1c2θω

θ
0

)
βc1(sn1)ω

c1
0

∑
c2

βc1c2(sn1,n2)ω
c2
0

(∑
θ πc1c2θω

θ
0

)
= βc1c2(sn1,n2)ω

c2
0

(∑
θ πc1c2θω

θ
0

)∑
c2

βc1c2(sn1,n2)ω
c2
0

(∑
θ πc1c2θω

θ
0

) . (A.19)

None of the terms in Equation (A.19) depend on the order of source 1’s signals. Analogously, 
let θ = θ . We can conduct the same exercise to obtain:

P s(θ |c1; sn1,n2) =
ωθ

0

(∑
c2

κc1c2(sn1,n2)πc1c2θ

)
∑

θ ωθ
0

(∑
c2

κc1c2(sn1,n2)πc1c2θ

)
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=
ωθ

0

(∑
c2

πc1c2θ
βc1c2(sn1,n2)ω

c2
0

)
∑

c2
βc1c2(sn1,n2)ω

c2
0

(∑
θ πc1c2θω

θ
0

) . (A.20)

None of the terms in Equation (A.20) depend on the order of source 1’s signals. �
Note that

P s(H2|sn1,n2)

= P s(H2|H1; sn1,n2)P
s(H1|sn1,n2) + P s(H2|L1; sn1,n2)P

s(L1|sn1,n2)

= P s(H2|L1; sn1,n2) + P s(H1|sn1,n2)[P s(H2|H1; sn1,n2) − P s(H2|L1; sn1,n2)]
where

P s(H2|H1; sn1,n2) = P(sn1,n2 |H1,H2)κH1H2(sn1,n2)

P (sn1,n2 |H1,H2)κH1H2(sn1,n2) + P(sn1,n2 |H1,L2)κH1L2(sn1,n2)

P s(H2|L1; sn1,n2) = P(sn1,n2 |L1,H2)κL1H2(sn1,n2)

P (sn1,n2 |L1,H2)κL1H2(sn1,n2) + P(sn1,n2 |L1,L2)κL1L2(sn1,n2)
.

Holding source 1’s information content fixed, we have shown that P s(H1|sn1,n2) increases in 
βH1 (sn1 )

βL1 (sn1 )
. By Lemma A.1, P s(H2|H1; sn1,n2) and P s(H2|L1; sn1,n2) do not vary with 

βH1 (sn1 )

βL1 (sn1 )
.

Expanding this out, we have P s(H2|H1; sn1,n2) − P s(H2|L1; sn1,n2) > 0 if and only if

κH1H2(sn1,n2)κL1L2(sn1,n2)

κH1L2(sn1,n2)κL1H2(sn1,n2)
>

P (sn1,n2 |H1,L2)P (sn1,n2 |L1,H2)

P (sn1,n2 |H1,H2)P (sn1,n2 |L1,L2)

βH1H2(sn1,n2)βH1(s1)βL1L2(sn1,n2)βL1(s1)

βH1L2(sn1,n2)βH1(s1)βL1H2(sn1,n2)βL1(s1)
>

P (sn1,n2 |H1,L2)P (sn1,n2 |L1,H2)

P (sn1,n2 |H1,H2)P (sn1,n2 |L1,L2)

βH1H2(sn1,n2)βL1L2(sn1,n2)

βH1L2(sn1,n2)βL1H2(sn1,n2)
>

P (sn1,n2 |H1,L2)P (sn1,n2 |L1,H2)

P (sn1,n2 |H1,H2)P (sn1,n2 |L1,L2)
.

Using Equation (A.17), we can say that P s(H2|H1; sn1,n2) − P s(H2|L1; sn1,n2) > 0 if and 
only if∏n1+n2

t2=n1+1
1

(ωH
0 )2(1−ωH

0 )2 P(H1,H2|sn1,t2)P (L1,L2|sn1,t2)∏n1+n2
t2=n1+1

1
(ωH

0 )2(1−ωH
0 )2 P(H1,L2|sn1,t2)P (L1,H2|sn1,t2)

>
P (sn1,n2 |H1,L2)P (sn1,n2 |L1,H2)

P (sn1,n2 |H1,H2)P (sn1,n2 |L1,L2)∏n1+n2
t2=n1+1 P(H1,H2|sn1,t2)P (L1,L2|sn1,m2)∏n1+n2
t2=n1+1 P(H1,L2|sn1,t2)P (L1,H2|sn1,t2)

>
P (sn1,n2 |H1,L2)P (sn1,n2 |L1,H2)

P (sn1,n2 |H1,H2)P (sn1,n2 |L1,L2)
.

(A.21)

However, we can actually write the right-hand side of Equation (A.21) in the following way:

P(sn1,n2 |H1,L2)P (sn1,n2 |L1,H2)

P (sn1,n2 |H1,H2)P (sn1,n2 |L1,L2)

=
∑

θ

(
P

(
sn1,n2 | H1,L2, θ

)
ωθ

0

)∑
θ

(
P

(
sn1,n2 | L1,H2, θ

)
ωθ

0

)∑
θ

(
P

(
sn1,n2 | H1,H2, θ

)
ωθ

0

)∑
θ

(
P

(
sn1,n2 | L1,L2, θ

)
ωθ

0

)
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=

∑
θ P

(
sn1,n2 |H1,L2

)
ωθ

0ωH
0 ωL

0
P

(
sn1,n2

) ∑
θ P

(
sn1,n2 |L1,H2

)
ωθ

0ωH
0 ωL

0
P

(
sn1,n2

)
∑

θ P
(
sn1,n2 |H1,H2

)
ωH

0 ωH
0 ωθ

0
P

(
sn1,n2

) ∑
θ P

(
sn1,n2 |L1,L2

)
ωθ

0ωL
0 ωL

0
P

(
sn1,n2

)
= P

(
H1,L2 | sn1,n2

)
P

(
L1,H2 | sn1,n2

)
P

(
H1,H2 | sn1,n2

)
P

(
L1,L2 | sn1,n2

) .

Thus Equation (A.21) can also be written as(∏n1+n2
t2=n1+1 P(H1,H2|sn1,t2)P (L1,L2|sn1,t2)∏n1+n2
t2=n1+1 P(H1,L2|sn1,t2)P (L1,H2|sn1,t2)

)

×
(

P
(
H1,H2 | sn1,n2

)
P

(
L1,L2 | sn1,n2

)
P

(
H1,L2 | sn1,n2

)
P

(
L1,H2 | sn1,n2

)
)

> 1.

3. We will perform an analogous decomposition on the pre-screener’s posterior belief about A
given sn1,n2 .

P s(A|sn1,n2) = P(A|H1,H2; sn1,n2)P
s(H1,H2|sn1,n2)

+ P(A|H1,L2; sn1,n2)P
s(H1,L2|sn1,n2)

+ P(A|L1,H2; sn1,n2)P
s(L1,H2|sn1,n2)

+ P(A|L1,L2; sn1,n2)P
s(L1,L2|sn1,n2)

= P(A|H1,H2; sn1,n2)P
s(H2|H1, sn1,n2)P

s(H1|sn1,n2)

+ P(A|H1,L2; sn1,n2)P
s(L2|H1, sn1,n2)P

s(H1|sn1,n2)

+ P(A|L1,H2; sn1,n2)P
s(H2|L1, sn1,n2)P

s(L1|sn1,n2)

+ P(A|L1,L2; sn1,n2)P
s(L2|L1, sn1,n2)P

s(L1|sn1,n2)

= P(A|L1,H2; sn1,n2)P
s(H2|L1; sn1,n2)

+ P(A|L1,L2; sn1,n2)P
s(L2|L1, sn1,n2)

+ P s(H1|sn1,n2)
(
P(A|H1,H2; sn1,n2)P

s(H2|H1; sn1,n2)

+ P(A|H1,L2; sn1,n2)P
s(L2|H1; sn1,n2)

− P(A|L1,H2; sn1,n2)P
s(H2|L1; sn1,n2)

− P(A|L1,L2; sn1,n2)P
s(L2|L1; sn1,n2)

)
P s(A|sn1,n2) = P(A|L1,H2; sn1,n2)P

s(H2|L1; sn1,n2)

+ P(A|L1,L2; sn1,n2)P
s(L2|L1, sn1,n2)

+ P s(H1|sn1,n2)
(
P s(A|H1; sn1,n2) − P s(A|L1; sn1,n2)

)
. (A.22)

By Lemma A.1, the only part of Equation (A.22) that changes with 
βH1 (sn1 )

βL1 (sn1 )
is P s(H1|sn1,n2).

Thus, P s(A|sn1,n2) increases with 
βH1 (sn1 )

βL1 (sn1 )
if and only if 

P s(A|H1;sn1,n2 )

P s(A|L1;sn1,n2 )
> 1, and decreases if 

and only if <.
Note that
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P s(A|H1; sn1,n2) =
∑

c2
P(sn1,n2 |c2,H1,A)ωA

0 κH1c2∑
θ

∑
c2

P(sn1,n2 |c2,H1,A)ωθ
0κH1c2

=
∑

c2
P(sn1,n2 |c2,H1,A)ωA

0 βH1c2(sn1,n2)βH1(sn1)ω
c2
0 ω

H1
0∑

θ

∑
c2

P(sn1,n2 |c2,H1,A)ωθ
0βH1c2(sn1,n2)βH1(sn1)ω

c2
0 ω

H1
0

=
∑

c2
P(sn1,n2 |c2,H1,A)ωA

0 βH1c2(sn1,n2)ω
c2
0 ω

H1
0∑

θ

∑
c2

P(sn1,n2 |c2,H1,A)ωθ
0βH1c2(sn1,n2)ω

c2
0 ω

H1
0

. (A.23)

The numerator of Equation (A.23) is expanded out as∑
c2

P(sn1,n2 |c2,H1,A)ωA
0 βc2H1(sn1,n2)ω

c2
0 ω

H1
0

= βH1H2(sn1,n2)ω
A
0 ωH

0 ωH
0 P(sn1,n2 |H2,H1,A)

+ βH1L2(sn1,n2)ω
A
0 ωH

0 ωL
0 P(sn1,n2 |L2,H1,A),

and we can analogously expand the denominator. Multiplying the numerator and denominator 
of Equation (A.23) by 1

P s(sn1,n2 )
, we can write this as

P s(A|H1; sn1,n2)

= βH1H2(sn1,n2)P (H1,H2,A|sn1,n2) + βH1L2(sn1,n2)P (H1,L2,A|sn1,n2)

βH1H2(sn1,n2)P (H1,H2|sn1,n2) + βH1L2(sn1,n2)P (H1,L2|sn1,n2)
.

Likewise,

P s(A|L1; sn1,n2)

= βL1H2(sn1,n2)P (L1,H2,A|sn1,n2) + βL1L2(sn1,n2)P (L1,L2,A|sn1,n2)

βL1H2(sn1,n2)P (L1,H2|sn1,n2) + βL1L2(sn1,n2)P (L1,L2|sn1,n2)
.

Thus, we have

P s(A|H1; sn1,n2)

P s(A|L1; sn1,n2)
=

βH1H2 (sn1,n2 )P (H1,H2,A|sn1,n2 )+βH1L2 (sn1,n2 )P (H1,L2,A|sn1,n2 )

βH1H2 (sn1,n2 )P (H1,H2|sn1,n2 )+βH1L2 (sn1,n2 )P (H1,L2|sn1,n2 )

βL1H2 (sn1,n2 )P (L1,H2,A|sn1,n2 )+βL1L2 (sn1,n2 )P (L1,L2,A|sn1,n2 )

βL1H2 (sn1,n2 )P (L1,H2|sn1,n2 )+βL1L2 (sn1,n2 )P (L1,L2|sn1,n2 )

,

where recall that βc1c2(sn1,n2) =
∏n1+n2

t2=n1+1 P(c1, c2|sn1,t2).

To illustrate possible cases of Part 3: In Table A.1, both sources’ information content indicate 
state A. From Row 1 to Row 2, and from Row 3 to Row 4, changing the order of source 
1’s signals so that a’s come earlier increases source 1’s credibility. In Rows 1 and 2, source 
2’s early signals are consistent with source 1’s information content, so the direct and indirect 
effects both move the pre-screener’s final beliefs toward A. In Rows 3 and 4, source 2’s early 
signals are inconsistent with source 1’s information content, so the indirect effect is that source 
2’s credibility decreases even though source 2 objectively agrees with source 1. Moreover, the 
indirect effect on source 2’s credibility is stronger the direct effect on source 1’s credibility, so 
the pre-screener’s final beliefs move away from A (note that |na2 −nb2| > na1 −nb1 here). �
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Table A.1
Pre-screener’s and Bayesian’s beliefs with multiple sources. Parameter values equal (qH , qL, ωA

0 , ωH1
0 , ωH2

0 ) = (0.7, 0.55, 0.5, 0.5, 0.5). In all rows, the Bayesian’s posterior 
beliefs are P(H1|sn1,n2 ) = 0.51442, P(H2|sn1,n2 ) = 0.72946, and P(A|sn1,n2 ) = 0.96971.

Row sn1 sn2

βH1 (sn1 )

βL1 (sn1 )

P s (H2|H1;sn1,n2 )

P s (H2|L1;sn1,n2 )

P s (A|H1;sn1,n2 )

P s (A|L1;sn1,n2 )
P s (H1|sn1,n2 ) P s(H2|sn1,n2 ) P s(A|sn1,n2 )

1 {a, b, a} {a, a, a, a, a, b, b, b, b, b, a, a, a, a, a, a, a, a} 0.71993 1.085837 1.01246 0.51944 0.94750 0.99242
2 {a, a, b} {a, a, a, a, a, b, b, b, b, b, a, a, a, a, a, a, a, a} 0.97450 1.085837 1.01246 0.59401 0.95331 0.99334

3 {a, b, a} {b, b, b, b, b, a, a, a, a, a, a, a, a, a, a, a, a, a} 0.71993 0.78062 0.99856 0.02109 0.80019 0.97155
4 {a, a, b} {b, b, b, b, b, a, a, a, a, a, a, a, a, a, a, a, a, a} 0.97450 0.78062 0.99856 0.02834 0.79891 0.97154
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A.10. Proof of Corollary 2

Proof. From Proposition 5 Part 3, a necessary and sufficient condition for P s(A|sn1,n2) increas-

ing in βH1/βL1(sn1) is 
P s(A|H1;sn1,n2 )

P b(A|L1;sn1,n2 )
> 1. For ease of exposition, let

πc1c2θ =
(

n1+n2∏
t=n1

P(st2|c1, c2, θ)

)(
n1∏

t=n1

P(st1|c1, c2, θ)

)

where c1, c2 ∈ {H, L} and θ ∈ {A, B}.
Expanding out P s(A|H1; sn1,n2) − P s(A|L1; sn1,n2), we obtain:

sgn
(
P s(A|H1; sn1,n2) − P s(A|L1; sn1,n2)

)
= (ωH

0 )2βH1H2(sn1,n2)βL1H2(sn1,n2)
(
πH1H2AπL1H2B − πL1H2AπH1H2B

)
+ ωH

0 (1 − ωH
0 )βH1H2(sn1,n2)βL1L2(sn1,n2)

(
πH1H2AπL1L2B − πL1L2AπH1H2B

)
+ ωH

0 (1 − ωH
0 )βH1L2(sn1,n2)βL1H2(sn1,n2)

(
πH1L2AπL1H2B − πL1H2AπH1L2B

)
+ (1 − ωH

0 )2βL1L2(sn1,n2)βH1L2(sn1,n2)
(
πH1L2AπL1L2B − πL1L2AπH1L2B

)
. (A.24)

The first and fourth terms of Equation (A.24) are strictly positive since na1 > nb1:

πH1H2AπL1H2B − πL1H2AπH1H2B

= [qH (1 − qH )]na2+nb2[qH (1 − qH )qL(1 − qL)]nb1

× [(qH (1 − qL))na1−nb1 − (qL(1 − qH ))na1−nb1] > 0

πH1L2AπL1L2B − πL1L2AπH1L2B

= [qL(1 − qL)]na2+nb2 [qH (1 − qH )qL(1 − qL)]nb1

× [(qH (1 − qL))na1−nb1 − (qL(1 − qH ))na1−nb1] > 0.

Suppose that nb2 − na2 ≥ 0. Then the third term is also positive since nb2 ≥ na2 and na1 > nb1:

πH1L2AπL1H2B − πL1H2AπH1L2B

= [qH (1 − qH )qL(1 − qL)]nb1+na2

× [(qH (1 − qL))nb2−na2+na1−nb1 − (qL(1 − qH ))nb2−na2+na1−nb1] > 0.

The second term is non-negative if nb2 −na2 ≤ na1 −nb1, but negative if nb2 −na2 > na1 −nb1:

πH1H2AπL1L2B − πL1L2AπH1H2B

= [qH (1 − qH )qL(1 − qL)]nb1+na2[(qH (1 − qL))na1−nb1(qL(1 − qH ))nb2−na2

− (qH (1 − qL))nb2−na2(qL(1 − qH ))na1−nb1].
Thus if nb2 − na2 ≥ 0, then a necessary condition for P s(A|sn1,n2) to be decreasing in 
βH1/βL1(sn1) is nb2 −na2 > na1 −nb1. If nb2 −na2 ≤ na1 −nb1, then P s(A|sn1,n2) is decreasing 
in βH1/βL1(sn1).

Suppose that na2 − nb2 ≥ 0. Then the second term is also positive since na2 ≥ nb2 and na1 >

nb1:
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πH1H2AπL1L2B − πL1L2AπH1H2B

= [qH (1 − qH )qL(1 − qL)]nb1+nb2

× [(qH (1 − qL))na2−nb2+na1−nb1 − (qL(1 − qH ))na2−nb2+na1−nb1] > 0.

The third term is non-negative if na2 − nb2 ≤ na1 − nb1, but negative if na2 − nb2 > na1 − nb1:

πH1L2AπL1H2B − πL1H2AπH1L2B

= [qH (1 − qH )qL(1 − qL)]nb1+nb2[(qH (1 − qL))na1−nb1(qL(1 − qH ))na2−nb2

− (qH (1 − qL))na2−nb2(qL(1 − qH ))na1−nb1].
Thus if na2 − nb2 ≥ 0, then a necessary condition for P s(A|sn1,n2) to be decreasing in 
βH1/βL1(sn1) is nb2 −na2 > na1 −nb1. If na2 −nab ≤ na1 −nb1, then P s(A|sn1,n2) is increasing 
in βH1/βL1(sn1).

Thus, a necessary condition for increasing βH1/βL1(sn1) to decrease P s(A|sn1,n2) is |na2 −
nb2| > na1 − nb1. A sufficient condition for increasing βH1/βL1(sn1) to increase P s(A|sn1,n2) is 
|na2 − nb2| ≤ na1 − nb1. �
Appendix B. Application: Speculative trade, bubbles, and crashes

B.1. Proof of Proposition 6 (speculative trade)

Let (ωA−τ , ω
H−τ ) = (θ̂ , ω̂) for any θ̂ ∈ (0, 1) and ω̂ ∈ (0, 1). After observing na,t = nb,t (in any 

order), the disagreement about the state is zero by Proposition 1.

Lemma B.1. If group Y offers the price and group X takes the price, then in any period t the 
price of the asset is ps

t = EX
t (R). If group YEB offers the price and group XEB takes the price, 

then in any period t the price of the asset is pt = EXEB

t (R).

Proof. We can determine the price in any period t ∈ {1, 2, . . . T } by backwards induction, as in 
the proof of Lemma 2 of Harris and Raviv (1993). In period T , Y buys from X if and only if 
EY

T (R) ≥ pT where pT is the time-T price. Since Y has all the bargaining power, she offers to 
buy at pT = EX

T (R), which X accepts (and receives zero expected utility). Conversely, Y sells to 
X if and only if EY

T (R) < pT , and sells at pT = EX
T (R).

In period T − 1, consider what price Y would offer if she wants to trade (buy or sell). X
is willing to buy if EX

T −1(pT ) ≥ pT −1. Since X expects Y to offer pT = EX
T (R) in period T , 

then EX
T −1(pT ) = EX

T −1(E
Y
T (EX

T (R)). Since X thinks Y thinks X is Bayesian, X thinks that Y
will calculate X’s period-T belief by taking X’s current T − 1 belief and combine it with the 
likelihood of the new signal sT using Bayes’ Rule. Call this value EX,u

T (R). Then from the per-
spective of X in period T − 1, the two possible outcomes in period T for what Y offers are either 
E

X,u
T (R | sT = a) or EX,u

T (R | sT = b). This implies that EX
T −1(E

Y
T (EX

T (R)) = EX
T −1(E

X,u
T (R)).

Given EX
T −1(E

Y
T (EX

T (R)) = EX
T −1(E

X,u
T (R)), we will now show that EX

T −1(E
X,u
T (R)) =

EX
T −1(R) even though X is anticipating the wrong offer EX,u

T (R). Suppose X holds beliefs 
EX

T −1 (R), P X
T −1 (sT = a) and P X

T −1 (sT = b), but falsely believes these were derived from 
Bayes’ Rule when in fact they were the result of pre-screening. X will try to calculate:
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EX
T −1

(
EY

T EX
T (R)

)
= EX

T −1

(
E

X,u
T (R)

)
= P

X,b
T −1 (sT = a)E

X,u
T (R | sT = a)

+ P
X,b
T −1 (sT = b)E

X,u
T (R | sT = b) . (B.1)

Direct calculation shows:

P X
T −1 (sT = a) =

∑
c

∑
θ

P (sT = a | c, θ)P s (c, θ | sT −1)

P s (c, θ | sT −1) = βc (sT −1)
∏T −1

t=1 P (st | c, θ)ωθ
0ωc

0∑
c βc (sT −1)

∑
θ

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0

⇒ P X
T −1 (sT = a) =

∑
c βc

(
sT −1

)∑
θ P (sT = a | c, θ)

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0∑

c βc

(
sT −1

)∑
θ

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0

E
X,u
T (R | sT = a) = βc

(
sT −1

)∏T −1
t=1 P (sT = a | c, θ)P (st | c, θ)ωθ

0ωc
0∑

c βc

(
sT −1

)∑
θ

∏T −1
t=1 P (sT = a | c, θ)P (st | c, θ)ωθ

0ωc
0

⇒ P X
T −1 (sT = a)E

X,u
T (R | sT = a) =βc (sT −1)

∏T −1
t=1 P (sT = a | c, θ)P (st | c, θ)ωθ

0ωc
0∑

c βc (sT −1)
∑

θ

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0

P X
T −1 (sT = b)E

X,u
T (R | sT = b) =βc (sT −1)

∏T −1
t=1 P (sT = b | c, θ)P (st | c, θ)ωθ

0ωc
0∑

c βc (sT −1)
∑

θ

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0

Since P (sT = a | c, θ) + P (sT = b | c, θ) = 1, then:

P X
T −1 (sT = a)E

X,u
T (R | sT = a) + P X

T −1 (sT = b)E
X,u
T (R | sT = b)

= βc (sT −1)
∑

c

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0∑

c βc (sT −1)
∑

θ

∏T −1
t=1 P (st | c, θ)ωθ

0ωc
0

= EX
T −1 (R) . (B.2)

Thus, EX
T −1

(
E

X,u
T (R)

)
= EX

T −1 (R).

Combining the insights above:

EX
T −1(pT ) = EX

T −1(E
Y
T (EX

T (R)) = EX
T −1

(
E

X,u
T (R)

)
= EX

T −1 (R) .

Since Y offers X so that X has zero reservation utility, Y offers pT −1 = EX
T −1 (pT ) = EX

T −1 (R). 
Note that Y must know how X does the calculation in Equation (B.2). Therefore, Y must know 
that X thinks Y thinks X is a Bayesian. Likewise, X is willing to sell if pT −1 ≥ EX

T −1(R) so Y
will offer pT −1 = EX

T −1(R). And so on for all preceding periods. Thus, in any given period t , 
we have ps

t = EX
t (R).

An analogous argument applies for trade between XEB and YEB . Thus, in any given period 
t = 1, 2, . . . , T , we have pEB

t = EXEB

t (R). �
Lemma B.2. In period T , agent Y will hold the asset if and only if EY

T (R) ≥ EX
T (R). In period 

t = 1, 2 . . . , T − 1, agent Y will hold the asset if and only if EY
t (EX

t+1(R)) ≥ EX
T (R).

Likewise, in period T , agent YEB will hold the asset if and only if EYEB

T (R) ≥ EXEB

T (R). 

In period t = 1, 2 . . . , T − 1, agent YEB will hold the asset if and only if EYEB

t (EYEB

t+1 (R)) ≥
EXEB

T (R).
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Proof. In period T , Y ’s expected utility from buying is EY
T (R) − pT and her expected utility 

from not buying is 0. Thus, Y will buy if and only if EY
T (R) ≥ pT . Since pT = EX

T (R) by 
Lemma B.1, then Y will buy if and only if EY

T (R) ≥ EX
T (R). If Y is holding the asset, Y ’s 

expected utility from selling is pT and her expected utility from not selling is EY
T (R). Since 

pT = EX
T (R) by Lemma B.1, then in period T , Y will buy if and only if EY

T (R) ≤ EX
T (R).

In period T − 1, Y ’s expected utility from buying over not buying is EY
T−1(pT ) − pT −1, so 

Y will buy if and only if EY
T −1(pT ) − pT −1 ≥ 0. Since pT = EX

T (R) and Y knows that X is 
a pre-screener, then EY

T −1(pT ) = EY
T −1(E

X
T (R)). Since pT −1 = EX

T −1(R), then Y will buy if 
and only if EY

T −1(E
X
T (R)) ≥ EX

T −1(R). And so on for all preceding periods. Thus, in any period 
t = 1, 2 . . . , T − 1, agent Y will hold the asset if and only if EY

t (EX
t+1(R)) ≥ EX

T (R).
An analogous argument applies to show the trading behavior of YEB when she trades with 

XEB . �
Lemma B.3. Suppose that pre-screener X observes signal path sX

pre in the pre-period. In 
contrast, suppose pre-screener Y observes signal path sY

pre in the pre-period. Then both pre-

screeners observe public signal path Z = st in the trading period. Let nX
a,pre = nY

a,pre and 

nX
b,pre = nY

b,pre where nj
a,pre + n

j
b,pre = n

j
pre for j ∈ {X, Y }, so signal paths sX

pre and sY
pre con-

tain the same information content. Let c ∈ {v, w}.
If P s(v|sX

pre) > P s(v|sY
pre), then P s(v|{sX

pre, st }) > P s(v|{sY
pre, st }).

Proof. From the proof of Proposition 2, we already know that the necessary and sufficient con-
dition for P s(v|sX

pre) > P s(v|sY
pre) is that βX

v βY
w − βX

w βY
v > 0.22 Suppose that this holds.

Analogously, we can only have P s(v|{sX
pre, st }) > P s(v|{sY

pre, st }) if β
{X,Z}
v β

{Y,Z}
w −

β
{X,Z}
w β

{Y,Z}
v > 0. Note that

β{X,Z}
c = βX

c bc

β{Y,Z}
c = βY

c bc,

where

bc =
t∏

m=1

(∑
θ

(
0∏

i=−τ+1

P(si |c, θ)

)(
m∏

i=1

P(si |c, θ)

)
ωθ−τ

)

because 
∏0

i=−τ+1 P(si |c, θ) is the same for signal paths sX
pre and sY

pre since they have the same 
information content. Thus,

β{X,Z}
v β{Y,Z}

w − β{X,Z}
w β{Y,Z}

v = βX
v bvβ

Y
wbw − βX

w bwβY
v bv

= bvbw(βX
v βY

w − βX
w βY

v ) > 0,

since βX
v βY

w − βX
w βY

v > 0. �
Lemma B.4. Suppose a pre-screener or Bayesian with prior ω0 = ωθ

0ωc
0 observes na,t = nb,t

signals. Then P s(θ, c|st ) = P s(θ |st )P
s(c|st ) and P(θ, c|st ) = P(θ |st )P

s(c|st ) ∀ θ, c.

22 Note that this property does not require any restrictions on the c type-space or on the number a’s and b’s in the 
pre-period signals, only that X and Y have the same information content.
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Proof. This is easily verified by direct calculation. �
First, suppose without loss of generality that groups X and Y observe sX

pre and sY
pre such that 

P s(H |sX
pre) > P s(H |sY

pre).

Lemma B.5. Suppose two Bayesians XEB and YEB are endowed with priors that coincide with 
the pre-screeners’ posterior beliefs after the pre-period: ωXEB

0 = ωX
pre and ωYEB

0 = ωY
pre. Then 

the only threshold at which XEB and YEB trade is na,t = nb,t : XEB holds the asset when na,t >

nb,t and YEB holds the asset when na,t < nb,t .

Proof. By Lemma B.4, each Bayesian is endowed with independent priors on the state and 

credibility, where ωjEB,A
0 = ωA−τ and ωjEB,H

0 = P s(c|sj
pre) where j ∈ {X, Y }. Clearly, the anal-

ogous argument and conclusion of Lemma B.3 apply to two endowed Bayesians: If ωXEB,H
0 >

ω
YEB,H
0 , then P(H |prior = ωXEB

0 , st }) > P(H |prior = ωYEB

0 , st }). Thus, XEB always trusts 

the source more than YEB does. By Proposition 1, this means that P(H |prior = ωXEB

0 , st ) >

P(H |prior = ωYEB

0 , st ) if and only if P(A|prior = ωXEB

0 , st ) > P(A|prior = ωYEB

0 , st )

when na,t > nb,t . Likewise, P(H |prior = ω
XEB

0 , st ) > P(H |prior = ωYEB

0 , st ) if and only if 

P(A|prior = ωXEB

0 , st ) < P(A|prior = ωYEB

0 , st ) when na,t < nb,t . When na,t = nb,t , then by 

direct calculation P(A|prior = ωXEB

0 , st ) = P(A|prior = ωYEB

0 , st ) = ωA−τ .

Thus, EXEB

t (R) > EYEB

t (R) when na,t > nb,t , EXEB

t (R) < EYEB

t (R) when na,t < nb,t , 
and EXEB

t (R) = EYEB

t (R) when na,t = nb,t . Combining this with the law of iterated expecta-

tions also implies that EXEB

t (R) > EYEB

t [EXEB

t+1 (R)] > EYEB

t (R) when na,t > nb,t , EXEB

t (R) <

EYEB

t [EXEB

t+1 (R)] < EYEB

t (R) when na,t < nb,t , and EXEB

t (R) = EYEB

t [EXEB

t+1 (R)] = EYEB

t (R)

when na,t = nb,t . Thus, by Lemma B.2, the only threshold at which XEB and YEB trade in the 
trading period is na,t = nb,t (i.e., when the two sides “switch sides” at na,t = nb,t ). �

Consider pre-screeners X and Y . By Lemma B.3, since P s(H |sX
pre) > P s(H |sY

pre), then 
P s(H |{sX

pre, st }) > P s(H |{sY
pre, st }). By Proposition 1, this means that when na,t > nb,t , 

P s(H |{sX
pre, st }) > P s(H |{sY

pre, st }) if and only if P s(A|{sX
pre, st }) > P s(A|{sY

pre, st }). Like-
wise, when na,t < nb,t , P s(H |{sX

pre, st }) > P(H |{sY
pre, st }) if and only if P s(A|{sX

pre, st }) <
P s(A|{sY

pre, st }). When na,t = nb,t , then by direct calculation P s(A|{sX
pre, st }) = P s(A|{sY , st })

= ωA−τ .
Thus, EX

t (R) > EY
t (R) when na,t > nb,t , EX

t (R) < EY
t (R) when na,t < nb,t , and EX

t (R) =
EY

t (R) when na,t = nb,t .
To determine trade between pre-screeners, we need to compare EY

t (EX
t+1(R)) to EX

t (R).
First, we will show that if ωA−τ = 1/2, then pre-screeners always trade whenever their en-

dowed Bayesian counterparts do.

Lemma B.6. Suppose two pre-screeners have independent priors ω−τ = ωθ−τω
c−τ where ωθ−τ =

1/2, and they observe pre-period signal paths j ∈ {X, Y }, respectively, where nj
a,pre = n

j
b,pre ≥

2. Then X and Y always trade at the threshold na,t = nb,t : X holds the asset when na,t −nb,t = 1
and Y holds the asset when nb,t − na,t = 1.
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Proof. Let ωX
t denote pre-screener X’s posterior belief after observing {sX

pre, st }. Note that:

EX
t (EX

t+1(R)) − EX
t (R)

= P s(st+1 = a|{sX
pre, st })[P s(A|{sX

pre, st , st+1 = a}) − P(A|prior = ωX
t , st+1 = a)]

+ [1 − P s(st+1 = a|{sX
pre, st })][P s(A|{sX

pre, st+1 = b}) − P(A|prior = ωX
t , st+1 = b)].

Suppose na,t = nb,t + 1. By Lemma B.3, P s(H |{sX
pre, st }) > P s(H |{sY

pre, st }). By Proposi-

tion 1, EX
t (R) > EY

t (R). We will show that for any ωA
0 ∈ (0, 1), P(H |{sX

pre, st , st+1 = a}) < ωH−τ

is a sufficient condition for X to hold the asset.
Suppose that P(H |{sX

pre, st , st+1 = a}) < ωH−τ . By Proposition 4, P s(A|{sX
pre, st , st+1 =

a}) − P(A|prior = ωX
t , st+1 = a) < 0 and P s(A|{sX

pre, st , st+1 = b}) − P(A|prior = ωX
t ,

st+1 = b) = 0. This implies that EY
t (EX

t+1(R)) − EX
t (R) < 0. Thus, X holds the asset when 

na,t = nb,t + 1.
Suppose nb,t = na,t + 1. By Lemma B.3, P s(H |{sX

pre, st }) > P s(H |{sY
pre, st }). By Proposi-

tion 1, EX
t (R) < EY

t (R). We will show that for any ωA
0 ∈ (0, 1), P(H |{sX

pre, st , st+1 = b}) < ωH−τ

is a sufficient condition for Y to hold the asset. Applying the preceding argument symmet-
rically, by Proposition 4, P s(A|{sX

pre, st , st+1 = b}) − P(A|prior = ωX
t , st+1 = b) > 0 and 

P s(A|{sX
pre, st , st+1 = a}) −P(A|prior = ωX

t , st+1 = a) = 0. This implies that EY
t (EX

t+1(R)) −
EX

t (R) > 0. Thus, Y holds the asset when nb,t = na,t + 1.
We verify that P(H |{sX

pre, st , st+1}) < ωH−τ is satisfied for ωA−τ = 1/2.
Suppose na,t = nb,t + 1. By direct calculation, P(H |{sX

pre, st , st+1 = a}) < ωH−τ if and only if

1 <

(
qL(1 − qL)

qH (1 − qH )

)nb
(

(qL)2 + (1 − qL)2

(qH )2 + (1 − qH )2

)
,

where the first term of the right-hand side is strictly greater than one and strictly in-
creasing in nb. Thus a sufficient condition for P(H |{sX

pre, st , st+1 = a}) < ωH−τ is 1 <(
qL(1−qL)
qH (1−qH )

)(
(qL)2+(1−qL)2

(qH )2+(1−qH )2

)
, which is satisfied since ∂

∂q
(q(1 − q)(q2 + (1 − q)2)) = −(2q −

1)3 ≤ 0.
Suppose nb,t = na,t + 1. Analogously, by direct calculation, P(H |{sX

pre, st , st+1 = b}) < ωH−τ

if and only if

1 <

(
qL(1 − qL)

qH (1 − qH )

)na
(

(1 − qL)2 + (qL)2

(1 − qH )2 + (qH )2

)
,

where the first term of the right-hand side is strictly greater than one and strictly in-
creasing in na . Thus a sufficient condition for P(H |{sX

pre, st , st+1 = b}) < ωH−τ is 1 <(
qL(1−qL)
qH (1−qH )

)(
(1−qL)2+(qL)2

(1−qH )2+(qH )2

)
, which is satisfied. Thus, X holds the asset when na,t = nb,t + 1

and Y holds the asset when nb,t = na,t + 1. At na,t = nb,t , EY
t (EX

t+1(R)) = EX
t (R) so Y is 

indifferent about holding or not holding the asset.
Then X and Y always trade at the threshold na,t = nb,t : X holds the asset when na,t −nb,t = 1

and Y holds the asset when nb,t − na,t = 1. �
To show that speculative trade can occur when agents are pre-screeners, suppose a signal path 

st with na,t > nb,t . We have shown in Lemma B.5 that endowed Bayesians will never trade in this 
case, and X will hold the asset. Moreover, we know that pt = EX

t (R) > EY
t (R) when na,t > nb,t . 
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Thus, the pre-screeners will only trade in period t if there exists some point at which Y buys the 
asset from X because EY

t (EX
t+1(R)) > EX

t (R). Note that we can re-write this as:

EY
t (EX

t+1(R)) − EX
t (R)

= P s(st+1 = a|{sY
pre, st })EX

t+1(R|st+1 = a)

+ (1 − P s(st+1 = a|{sY
pre, st }))EX

t+1(R|st+1 = b)

− P s(st+1 = a|{sX
pre, st })Et+1(R|prior = ωX

t , st+1 = a)

− (1 − P s(st+1 = a|{sX
pre, st }))Et+1(R|prior = ωX

t , st+1 = b)

= P s(st+1 = a|{sX
pre, st })

(
EX

t+1(R|st+1 = a) − Et+1(R|prior = ωX
t , st+1 = a)

)
+ (1 − P s(st+1 = a|{sX

pre, st }))
(
EX

t+1(R|st+1 = b) − Et+1(R|prior = ωX
t , st+1 = b)

)
+

(
P s(st+1 = a|{sX

pre, st }) − P s(st+1 = a|{sY
pre, st })

)
×

(
EX

t+1(R|st+1 = b) − EX
t+1(R|st+1 = a)

)
. (B.3)

By Proposition 4, Equation (B.3) is negative if we have signals such that P(H |{sX
pre, st , st+1 =

a}) ≤ ωH−τ . Thus, a necessary condition for Equation (B.3) to be positive is that we have signals 
such that P(H |{sX

pre, st , st+1 = a}) > ωH−τ .
To demonstrate existence of the speculative trade, fix the parameters qc ∈ [1/2, 1), prior ω−τ , 

and signal paths sX
pre and st such that P(H |{sX

pre, st , st+1 = b}) ≥ ωH−τ , so the sum of the first 
two terms of Equation (B.3) is strictly positive. Since na > nb and EX

t (R) > EY
t (R), then the 

third term of Equation (B.3) is strictly negative because P s(st+1 = a|{sX
pre, st } > P s(st+1 =

a|{sY
pre, st }) whenever EX

t (R) > EY
t (R). Note that the third term of Equation (B.3) is strictly 

increasing in P s(st+1 = a|{sY
pre, st }) and equals zero if sY

pre = sX
pre. We will show that there 

exists some signal path sY
pre such that Equation (B.3) is satisfied whenever P(H |{sX

pre, st , st+1 =
b}) ≥ ωH−τ , so P(H |{sX

pre, st , st+1 = b}) ≥ ωH−τ is a sufficient condition for extra trade.

To find the sequence(s) sY
pre to satisfy Equation (B.3) when nY

a,pre = nX
a,pre and nY

b,pre =
nX

b,pre > 1: Let sY
pre be identical to sX

pre in all positions except for the last reversal pair (a, b), 

if it exists, in the sequence sX
pre. Call the positions of this pair j + 1 and j + 2 (so this means 

that sX
j+1 = a and sX

j+2 = b). If nj
a,pre > n

j
b,pre (i.e., more a’s have been observed than b’s in the 

subsequence sX
j , which is the first j signals of sX

pre), then replace this (a, b) with (b, a) so that 

sY
j+1 = b and sY

j+2 = a. If nj
a,pre ≤ n

j
b,pre or the pair (a, b) does not exist in sX

pre, then instead 

find the last reversal pair (b, a) in the sequence sX
pre. Call the positions of this pair k+1 and k+2

(so this means that sX
k+1 = b and sX

k+2 = a). If nk
b,pre > nk

a,pre (i.e., more b’s have been observed 

than a’s in the subsequence sX
k , which is the first k signals of sX

pre), then replace this (b, a) with 
(a, b) so that sY

k+1 = a and sX
k+2 = b. If nk

b ≤ nk
a , then continue by finding the second-to-last 

reversal pair (a, b) and applying this procedure, and so on. By the argument made in the proof 
of Corollary 3, this constructed sequence generates the greatest degree of trust such that we still 
have P s(H |sY

pre) < P s(H |sX
pre), and therefore by Lemma B.3 and Proposition 1 it generates the 

greatest belief in A such that we still have EY
t (R|{sY

pre, st })) < EX
t (R|{sX, st }). By Corollary 3, 

we can construct such a sequence sY
pre as long as sX

pre is not the sequence that generates the 

53



I.-H. Cheng and A. Hsiaw Journal of Economic Theory 200 (2022) 105401

minimal degree of trust. This is already satisfied by assumption that P s(H |sX
pre) > P s(H |sY

pre). 
We can continue constructing sequences that lead to decreasing degrees of trust by iterating in 
this procedure for each constructed sY

pre.

Then there exists some signal path sYpre such that:

EX
t (R|{sX

pre, st }) > EY
t (R|{sY

pre, st })),
and:

EY
t (EX

t+1(R|{sX
pre, st })|{sY

pre, st }) − EX
t (R) = 0.

This implies that for any signal path sY
pre that results in beliefs such that P s(st+1 = a|{sX

pre, st }) >
P s(st+1 = a|{sY

pre, st }) > P s(st+1 = a|{sY
pre, st }), we thus have EX

t (R|{sX
pre, st }) > EY

t (R|
{sY

pre, st })) and EY
t (EX

t+1(R|{sX
pre, st })|{sY

pre, st }) − EX
t (R) > 0. Thus, Y will buy the as-

set from X. Likewise, for any signal path sY
pre that results in beliefs such that P s(st+1 =

a|{sX
pre, st }) > P s(st+1 = a|{sY

pre, st }) > P s(st+1 = a|{sY
pre, st }), we have EX

t (R|{sX
pre, st }) >

EY
t (R|{sY

pre, st })) and EY
t (EX

t+1(R|{sX
pre, st })|{sY

pre, st }) − EX
t (R) < 0. Thus, Y will not buy the 

asset from X.
Suppose that na,t < nb,t . As we have already shown, pt = EX

t (R) < EY
t (R) when na,t < nb,t . 

Thus, EX
t (R) < EY

t (EX
t+1(R)) when na,t < nb,t and no trade occurs because Y always holds the 

asset. Thus, na,t > nb,t is a necessary condition for speculative trade between pre-screeners to 
occur.

Suppose that sX
pre = sY

pre. Since Y buys the asset whenever EY
t (EX

t+1(R)) ≥ EX
t (R), then Y

always buys the asset if sX
pre = sY

pre. Therefore, when sX
pre = sY

pre, there is no trade between X
and Y , nor between XEB and YEB .

Second, suppose groups X and Y observe sX
pre and sY

pre such that P s(H |sX
pre) < P s(H |sY

pre). 
We can apply the exact same analysis as in the preceding case of P s(H |sX

pre) > P s(H |sY
pre) to 

show that the mirror image holds when P s(H |sX
pre) < P s(H |sY

pre). For brevity, we do not repeat 
it in detail. In particular, it is easy to show that Y will always hold the asset when na,t > nb,t , 
and X will buy it at na,t = nb,t . The key portion is that extra trade can only occur if nb,t < na,t

and EY
t (EX

t+1(R)) − EX
t (R) > 0 as in Equation (B.3). Again by Proposition 4, Equation (B.3)

is negative if we have signals such that P(H |{sX
pre, st , st+1 = a}) ≥ ωH−τ . Thus, a necessary 

condition for Equation (B.3) to be positive is that we have signals such that P(H |{sX
pre, st , st+1 =

a}) < ωH−τ . Likewise, the sufficient condition is that P(H |{sX
pre, st , st+1 = b}) ≤ ωH−τ . When the 

sufficient condition is satisfied given sX
pre and st , then there exists at least one signal path sY

pre

such that Y holds the asset.

Trade when ωA−τ �= 1/2

If ωA−τ �= 1/2, then all proofs in Proposition 6 apply with the exceptions of Lemma B.6 and 
Corollary 3. We discuss the generalizations below.

First, Lemma B.6 can be generalized to Lemma B.7.

Lemma B.7. If P s(H |sX
pre) �= P s(H |sY

pre), then XEB and YEB trade only when beliefs cross 
at na,t = nb,t . A sufficient condition for pre-screeners X and Y to trade when beliefs cross at 
na,t = nb,t is P(H |{sX

pre, st , st+1}) < ωH−τ when |na,t − nb,t | = 1.
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Proof. Let ωX
t denote pre-screener X’s posterior belief after observing {sX

pre, st }. Note that:

EX
t (EX

t+1(R)) − EX
t (R) = P s(st+1 = a|{sX

pre, st })[P s(A|{sX
pre, st , st+1 = a})

− P(A|prior = ωX
t , st+1 = a)]

+ [1 − P s(st+1 = a|{sX
pre, st })][P s(A|{sX

pre, st+1 = b})
− P(A|prior = ωX

t , st+1 = b)].
Suppose na,t = nb,t + 1. As shown in Lemma B.6 for any ωA

0 ∈ (0, 1), P(H |{sX
pre, st , st+1 =

a}) < ωH−τ is a sufficient condition for X to hold the asset.
Suppose nb,t = na,t + 1. As shown in Lemma B.6 for any ωA

0 ∈ (0, 1), P(H |{sX
pre, st , st+1 =

b}) < ωH−τ is a sufficient condition for Y to hold the asset.
At na,t = nb,t , who holds the asset depends on ωA

0 . If ωA
0 = 1/2, then EY

t (EX
t+1(R)) = EX

t (R)

so Y is indifferent about holding the asset. If ωA
0 �= 1/2, then EY

t (EX
t+1(R)) �= EX

t (R) so Y either 
strictly prefers to hold or not hold.

Sufficient conditions to have P(H |{sX
pre, st , st+1}) < ωH−τ when |na,t − nb,t | = 1 are as fol-

lows.
Suppose na,t = nb,t + 1. By direct calculation, P(H |{sX

pre, st , st+1 = a}) < ωH−τ if and only if

1 <

(
qL(1 − qL)

qH (1 − qH )

)nb
(

ωA
0 (qL)2 + (1 − ωA

0 )(1 − qL)2

ωA
0 (qH )2 + (1 − ωA

0 )(1 − qH )2

)
,

where the first term of the right-hand side is strictly greater than one and strictly in-
creasing in nb. Thus a sufficient condition for P(H |{sX

pre, st , st+1 = a}) < ωH−τ is 1 <(
qL(1−qL)
qH (1−qH )

)(
ωA

0 (qL)2+(1−ωA
0 )(1−qL)2

ωA
0 (qH )2+(1−ωA

0 )(1−qH )2

)
, which can also be written as

qL(1 − qL)3 − qH (1 − qH )3

− ωA
0 [qL(1 − qL)3 − qH (1 − qH )3 + q3

H (1 − qH ) − q3
L(1 − qL)] > 0. (B.4)

Suppose nb,t = na,t + 1. Analogously, by direct calculation, P(H |{sX
pre, st , st+1 = b}) < ωH−τ if 

and only if

1 <

(
qL(1 − qL)

qH (1 − qH )

)na
(

ωA
0 (1 − qL)2 + (1 − ωA

0 )(qL)2

ωA
0 (1 − qH )2 + (1 − ωA

0 )(qH )2

)
,

where the first term of the right-hand side is strictly greater than one and is strictly in-
creasing in na . Thus a sufficient condition for P(H |{sX

pre, st , st+1 = b}) < ωH−τ is 1 <(
qL(1−qL)
qH (1−qH )

)(
ωA

0 (1−qL)2+(1−ωA
0 )(qL)2

ωA
0 (1−qH )2+(1−ωA

0 )(qH )2

)
, which can also be written as

q3
H (1 − qH ) − q3

L(1 − qL)

− ωA
0 [q3

H (1 − qH ) − q3
L(1 − qL) + qL(1 − qL)3 − qH (1 − qH )3] < 0. (B.5)

Thus, sufficient conditions to have P(H |{sX
pre, st , st+1}) < ωH−τ when |na,t − nb,t | = 1 are that 

Equations (B.4) and (B.5) are satisfied.
These sufficient conditions do not unduly constrain the set of parameters (ωA−τ , qL, qH ) such 

that Lemma B.7 applies. As shown in the proof of Lemma B.6, these conditions are satisfied 
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for any 1/2 ≤ qL < qH < 1 when ωA−τ = 1/2. Further, Equations (B.4) and (B.5) are satisfied 
for all ωA−τ ∈ (0, 1) whenever we have (qL, qH ) such that b ≡ q3

H (1 − qH ) − q3
L(1 − qL) ≤ 0. 

Note that ∂b
∂qH

= q2
H (3 − 4qH ), which is strictly positive for qH < 3/4 and strictly negative for 

qH > 3/4. Combining with the fact that b(qH = qL) = 0 and b(qH = 1) < 0, this implies that 
b ≤ 0 whenever qL ≥ 3/4. Also, for any qL ∈ [1/2, 3/4), then there exists a unique q

H
∈ (qL, 1)

satisfying b(q
H

) = 0 such that for all qH ≥ q
H

, b ≤ 0. �
Second, for ωA−τ �= 1/2, one can find the sequences of pre-trade signals ordered by degrees of 

trust (analogous to Corollary 3), and therefore demonstrate the existence of speculative trade.

B.2. Proof of Proposition 7

Since the pre-screener and endowed Bayesian have the same beliefs at the start of the trading 
period, ps

0 = pEB
0 = ωA−τ . As can be seen from the proof of Proposition 1, ps

T = pEB
T = ωA−τ

when na,T = nb,T . Also na,t > nb,t implies that ps
t > ωA−τ and pEB

t > ωA−τ .

1. First, we demonstrate existence of ps
t > pEB

t > ωA−τ . Note that

ps
t = P s(A|{sX

pre, st })

=
ωA−τ

∑
c

(∏0
i=−τ+1 P(si |q,A)

)(∏t
i=1 P(si |q,A)

)
ωc−τ βc({sX

pre, st })∑
θ ωθ−τ

∑
c

(∏0
i=−τ+1 P(si |q,A)

)(∏t
i=1 P(si |c, θ)

)
ωc−τ βc({sX

pre, st })
pEB

t = P(A|prior = ωX
pre, st )

=
ωA−τ

∑
c

(∏0
i=−τ+1 P(si |q,A)

)(∏t
i=1 P(si |q,A)

)
ωc−τ βc(sX

pre)∑
θ ωθ−τ

∑
c

(∏0
i=−τ+1 P(si |q,A)

)(∏t
i=1 P(si |c, θ)

)
ωc−τ βc(sX

pre)

where

βc(sX
pre) =

0∏
m=−τ

(∑
θ

(
m∏
i

P (si |c, θ)

)
ωθ−τ

)

βc({sX
pre, st }) = βc(sX

pre)

n∏
m=1

(∑
θ

(
0∏

i=−τ+1

P(si |c, θ)

)(
m∏

i=1

P(si |c, θ)

)
ωθ−τ

)
.

By direct comparison, ps
t > pEB

t if and only if ωH−τ (1 − ωH−τ )βH (sX
pre)βL(sX

pre)FG > 0, 
where

F =
(

t∏
m=1

(∑
θ

(
0∏

t=−τ

P (si |H,θ)

)(
m∏

i=1

P(si |H,θ)

)
ωθ−τ

))

−
(

t∏
m=1

(∑
θ

(
0∏

t=−τ

P (si |L,θ)

)(
m∏

i=1

P(si |L,θ)

)
ωθ−τ

))

G =
(

0∏
i=−τ+1

P(si |H,A)

)(
t∏

i=1

P(si |H,A)

)(
0∏

i=−τ+1

P(si |L,B)

)(
t∏

i=1

P(si |L,B)

)
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−
(

0∏
i=−τ+1

P(si |H,B)

)(
t∏

i=1

P(si |H,B)

)(
0∏

i=−τ+1

P(si |L,A)

)(
n∏

i=1

P(si |L,A)

)
,

where we have already shown in the Proof of Proposition 4 that G > 0 when na,t > nb,t , 
since nX

a,pre = nX
b,pre. Thus, ps

t > pEB
t if and only if F > 0. Moreover, we can easily show 

that P s(H |{sX
pre, st }) > P(H |prior = ωX

pre, st ) if and only if F > 0. Thus, ps
t > pEB

t > ωA−τ

if and only if P s(H |{sX
pre, st }) > P(H |prior = ωX

pre, st ). By the argument in Corollary 3, 
there exists at least one path st that generates P s(H |{sX

pre, st }) > P(H |prior = ωX
pre, st ). 

For example, if st contains na,t > 1 signals, we can show that there exists a unique thresh-
old na,t (nb,t ) such that F > 0 if na,t > na,t (nb,t ) and F ≤ 0 if na,t ≤ na,t (nb,t ). By direct 
computation, F < 0 when na,t = nb,t , ∂F

∂na,t
> 0, and limna,t→∞ F = ∞. Thus, there exists 

a unique threshold na,t such that ps
t > pEB

t for all na,t < na,t ≤ na,T and P s
t ≤ pEB

t for all 
0 ≤ na ≤ na .
Clearly, we can reverse the inequalities to show pEB

t > ps
t > ωA−τ if and only if P s(H |

{sX
pre, st }) < P(H |prior = ωX

pre, st ).

2. Suppose we have sT such that ps
t̂
> pEB

t̂
> ωA−τ . Since ps

0 = pEB
0 = ps

T = pEB
T = ωA−τ and 

ps
t̂
> pEB

t̂
, then the average price change of ps

t must be strictly greater than the average price 
change of pEB

t for t ∈ [0, ̂t] and t ∈ [t̂ , T ].
By Proposition 4, ps

1 < pEB
1 because P(H |{sX

pre, s1 = a}) < ωH−τ for nX
a,pre = nX

b,pre ≥ 1. 

This implies that we can only have pb
t̂

> pEB
t̂

≥ 0 if there are sufficiently many a’s that 
the pre-screener over-reacts (under-reacts) to confirming (disconfirming) signals (i.e., more 
a signals). By Proposition 4, if at least one such t ′ such that ps

t ′ > pEB
t ′ exists, then it must 

be that P(H |sX
pre, st ′) > ωH−τ for at least one of these t ′ dates. Suppose there exists some t ′′

such that ps
t ′′ > pEB

t ′′ but P(H |sX
pre, st ′) ≤ ωH−τ . Since P(H |sX

pre, st ′) ≤ ωH−τ , then there must 
necessarily be a lower proportion of a’s than b’s observed at t ′′ than at t ′. Thus it cannot be 
that ps

t ′′ = maxps
t and we must have that P(H |sX

pre, st̂ ) > ωH−τ whenever ps
t̂
> pEB

t̂
.

Suppose ps
t̂
= pEB

t̂
and P(H |sX

pre, st̂ ) > ωH−τ but P(H |sX
pre, st̂ , st̂+1 = b) < ωH−τ . Since ps

t̂
≡

maxP s
t , this implies P(H |sX

pre, st̂ , st ) < ωH−τ for all signal paths st with t ∈ (t̂ , T ] because 
they are below the peak. By Proposition 7, this implies that the pre-screener under-reacts 
to each a and over-reacts to each b in t ∈ (t̂ , T ]. But this means that for any t such that 
na,t = nb,t , ps

t < pEB
t , which cannot be true. Thus, P(H |sX

pre, st̂ , st̂+1 = b) ≥ ωH−τ when 
ps

t̂
= pEB

t̂
. If ps

t̂
> pEB

t̂
, then the Bayesian posterior belief in accuracy must be even higher 

than when ps
t̂
= pEB

t̂
. Thus P(H |sX, st̂ , st̂+1 = b) ≥ ωH−τ when ps

t̂
≥ pEB

t̂
.

Since pt̂ ≡ maxpt , then st̂+1 = b and pEB
t̂+1

−pEB
t̂

< 0 and ps
t̂+1

−ps
t̂
< 0. Moreover, because 

have we have shown that P(H |sX
pre, st̂ , st̂+1 = b) ≥ ωH−τ , then P s(A|{sX

pre, st̂ , st̂+1 = b}) >
P(A|prior = ωb

t̂
, st̂+1 = b) by Proposition 7, where each joint belief for the prior ωb

t̂
, denoted 

by ωcθ
t̂

, is the pre-screener’s belief after observing signal path sX
pre and the public path st̂ :

ωcθ
t̂

≡ P s(c, θ |{sX
pre, st̂ })

=
ωA−τ

∑
c

(∏0
i=−τ+1 P(si |q,A)

)(∏t̂
i=1 P(si |q,A)

)
ωc−τ βc({sX

pre, st̂ })∑
θ ωθ−τ

∑
c

(∏0
i=−τ+1 P(si |q,A)

)(∏t̂
i=1 P(si |c, θ)

)
ωc−τ βc({sX

pre, st̂ })
.
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Since ps
t̂

= P s(A|{sX
pre, st̂ }) = P(A|prior = ωb

t̂
) and pEB

t̂
= P(A|prior = ωX

pre, st̂ ) by 

definition, then ps
t̂

> pEB
t̂

implies P(A|prior = ωb
t̂
) > P(A|prior = ωX

pre, st̂ ). Thus 

0 > P(A|prior = ωb
t̂
, st̂+1 = b) − P(A|prior = ωb

t̂
) > P(A|prior = ωX

pre, {st̂ , st̂+1 =
b}) − P(A|prior = ωX

pre, st̂ ). Combining this with the fact that P s(A|{sX
pre, st̂ , st̂+1 =

b}) > P(A|prior = ωb
t̂
, st̂+1 = b) by Proposition 7, then 0 > P s(A|{sX

pre, st̂ , st̂+1 =
b}) − P s(A|{sX

pre, st̂ }) > P(A|prior = ωX
pre, {st̂ , st̂+1 = b}) − P(A|prior = ωX

pre, st̂ ). Thus, 
|ps

t̂+1
− ps

t̂
| < |pEB

t̂+1
− pEB

t̂
|.

3. If ps
t̂
> pEB

t̂
> ωA−τ , then we have already shown in the proof of Proposition 7 that the nec-

essary and sufficient conditions given in Proposition 6 must hold. Thus, there exists at least 
one signal path sY

pre such that speculative trade between pre-screeners occurs (e.g., Y holds 
the asset at t = t̂ , at least).

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2021 .105401.
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