
FTG Working Paper Series

Pricing and Liquidity in Decentralized Asset Markets

by

Semih Uslu

Working Paper No. 00050-00

Finance Theory Group

www.financetheory.com

*FTG working papers are circulated for the purpose of stimulating discussions and generating 
comments. They have not been peer reviewed by the Finance Theory Group, its members, or its 

board. Any comments about these papers should be sent directly to the author(s).



Pricing and Liquidity in Decentralized Asset
Markets∗

Semih Üslü †

Johns Hopkins Carey Business School

First version: November 2, 2015

Current version: February 5, 2019

Abstract

I develop a search-and-bargaining model of endogenous intermediation in over-the-counter
markets. Unlike the existing work, my model allows for rich investor heterogeneity in
three simultaneous dimensions: preferences, inventories, and meeting rates. By comparing
trading-volume patterns that arise in my model and are observed in practice, I argue that
the heterogeneity in meeting rates is the main driver of intermediation patterns. I find
that investors with higher meeting rates (i.e., fast investors) are less averse to holding
inventories and more attracted to cash earnings, which makes the model corroborate
a number of stylized facts that do not emerge from existing models: (i) fast investors
provide intermediation by charging a speed premium, and (ii) fast investors hold more
extreme inventories. Then, I use the model to study the effect of trading frictions on the
supply and price of liquidity. On social welfare, I show that the interaction of meeting
rate heterogeneity with optimal inventory management makes the equilibrium inefficient.
I provide a financial transaction tax/subsidy scheme that corrects this inefficiency, in
which fast investors cross-subsidize slow investors.

JEL classification: G1, G11, G12, G21, D83, D53, D61

Keywords: Search frictions, bargaining, price dispersion, financial intermediation

∗I thank the co-editor, Gianluca Violante, and four anonymous referees for their comments, which improved
the paper. I am deeply indebted to Pierre-Olivier Weill for his supervision, his encouragement, and many detailed
comments and suggestions. I also would like to thank for fruitful discussions and comments Daniel Andrei,
Andrew Atkeson, Ana Babus, Simon Board, Briana Chang, David Cimon, Will Cong, Adrien d’Avernas, Darrell
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1 Introduction

Recent empirical analyses of over-the-counter (OTC) markets point to a high level of hetero-

geneity among intermediaries along three interrelated dimensions of market liquidity: frequency

of trades, trade size, and price of intermediation services.1 Some intermediaries, who appear to

be central in the network of trades, trade very frequently and provide liquidity to their coun-

terparties by trading in larger quantities. Moreover, intermediation markups calculated from

transaction prices differ systematically across intermediaries. In the corporate bond market,

for example, central intermediaries earn higher markups compared to peripheral intermedi-

aries.2 On the other hand, central intermediaries in the market for asset-backed securities earn

lower markups.3 In this paper, I provide an endogenous intermediation model that generates

these empirical trading patterns as equilibrium outcome based on ex ante heterogeneity across

investors in the frequency of trade opportunities.

More precisely, I consider an infinite-horizon dynamic model—in the spirit of Duffie, Gârleanu,

and Pedersen (2005)—in which investors meet in pairs to trade an asset. I go beyond the lit-

erature by considering investors who differ in meeting rates, time-varying hedging needs, and

asset positions. Investors are assumed to have quadratic utility, with marginal utility being

linear in asset position and hedging need. As a result, bilateral trade quantities and prices

become linear in asset position and hedging need, allowing for an analytical characterization

of the steady-state equilibrium, in which the equilibrium objects are available in closed form

up to endogenous degree of inventory aversion that solves a functional equation. Therefore,

one contribution of this paper to the literature is methodological: It shows that, by using a

quadratic utility structure, accommodating unrestricted asset positions and ex ante and ex post

heterogeneity in investor characteristics without forgoing fully decentralized trading is possible.

With this level of generality, my model offers a workhorse framework that allows for further

study of positive and normative issues surrounding OTC markets.

As is typical in search models, intermediation arises endogenously as a result of equilibrium

price dispersion. Not only do investors trade to share risk with other investors, but they also

trade to provide intermediation to others, i.e., to profit from price dispersion. In my model, an

1The heterogeneity among intermediaries is documented for the corporate bond market (Hendershott, Li,
Livdan, and Schürhoff, 2015 and Di Maggio, Kermani, and Song, 2017), the municipal bond market (Li and
Schürhoff, 2019), the fed funds market (Bech and Atalay, 2010), the overnight interbank lending market (Afonso,
Kovner, and Schoar, 2013), the market for asset-backed securities (Hollifield, Neklyudov, and Spatt, 2017), and
the market for credit default swaps (Siriwardane, 2018).

2See Di Maggio et al. (2017).
3See Hollifield et al. (2017).
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investor’s hedging need, asset position, and meeting rate jointly determine her instantaneous

incentive to provide intermediation to others. I show that investors with moderate hedging

needs, moderate asset positions, and high meeting rates endogenously arise as “central inter-

mediaries” as they have the largest intermediation volume. I compare trading-volume patterns

that arise in equilibrium with the empirically documented patterns. In equilibrium, gross trad-

ing volume is highest for investors with extreme hedging need, extreme asset position, and high

meeting rate. Thus, if the hedging need or asset position is the main driver of intermediation

patterns, gross volume must decline with centrality. If the meeting rate is the main driver of

intermediation patterns, gross volume must increase with centrality. In light of the empirical

evidence that gross volume increases with centrality in OTC markets, I argue that the main

underlying heterogeneity that drives the centrality differentials across intermediaries is their

meeting rate.

In the characterization of equilibrium, I show that an investor’s trading behavior can be

summarized by her meeting rate and an endogenous object dependent on her hedging need

type, asset position, and meeting rate. I call this endogenous object “inventory” because it is

equal to the difference between the investor’s current asset position and target asset position.

The main mechanism behind meeting rates affecting systematically investors’ trading behavior

is that a high meeting rate gives an investor comparative advantage in carrying inventory by

leading to a lower endogenous degree of aversion to inventory holding. The inventory aversion

is lower for investors with high meeting rates (i.e., fast investors) because they are able to

transition to a future state faster by rebalancing their holdings. This increases the importance

of the option value of search, and decreases the importance of the current inventory. In other

words, low inventory aversion leads to lower sensitivity of marginal valuation to current inven-

tory. Therefore, fast investors put less weight on their inventories and more weight on their

cash earnings when bargaining with counterparties. Each bilateral negotiation between a slow

and a fast investor results in a trade size more in line with the slow party’s trading need and

a trade price containing a premium benefitting the fast party (which I call speed premium).

Controlling for the inventory level, fast investors provide more intermediation because of this

comparative advantage channel. In addition, fast investors engage in higher offsetting buying

and selling activity due to the higher matching rate with counterparties. However, the compar-

ative advantage channel leads to an increase in the intermediation level above and beyond that

direct effect. As in the data, not only do fast investors trade more often, but they also trade

larger quantities on average in each match.
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In addition to the empirical relationship between centrality and quantity, the model can

rationalize the relationship between centrality and price of intermediation services observed in

OTC markets. I show that bilaterally negotiated prices can be written as the sum of post-trade

marginal valuation and speed premium. These two components generate opposite effects in

determining the sign of the relationship between centrality and intermediation markups. As

in the empirical studies, let markup refer to the wedge between the price at which an investor

buys and the price at which she resells in an offsetting intermediation trade. As I argue above,

fast investors’ marginal valuations are less sensitive to inventory levels. This stable marginal

valuation effect allows a fast investor to sell at a low marginal cost, and hence, tends to reduce

the markup she earns. If this is the dominant effect, we observe a negative relationship between

centrality and markups. On the other hand, fast investors charge a speed premium above

their marginal cost. This tends to increase the markup fast investors earn. When the speed

premium effect is dominant, we observe a positive relationship between centrality and markups.

I find that the speed premium is dominant in markets with large cross-sectional dispersion of

inventories.

Another important result of my model is that the interaction of unrestricted trade quantities

and investor heterogeneity makes the equilibrium constrained inefficient.4 The root cause of

inefficiency is ex post bargaining, which makes fast investors able to capture a private transac-

tion surplus larger than their contribution to surplus creation. This result reveals that there is

room for beneficial intervention in markets with ex post bargaining and investor heterogeneity,

as in virtually all OTC markets. Turning to policy, I provide an optimal tax/subsidy scheme

on financial transactions that corrects this inefficiency. This scheme requires policymakers to

monitor the changes in investors’ hedging needs and asset positions and give out subsidies or

collect taxes on the transactions they conduct with one another.5 I show that this policy makes

fast investors cross-subsidize slow investors over time as expected because, in the privately

optimal equilibrium, fast investors capture larger surplus than their contribution.

In the last part of the paper, I study how my results differ from the one that would obtain

4For the inefficiency result, the coexistence of unrestricted trade quantities and investor heterogeneity is
essential. Afonso and Lagos (2015) and Farboodi, Jarosch, and Shimer (2015) show, respectively, that if there is
no investor heterogeneity or if trade quantities are restricted to {0, 1}, the negotiated trade quantities coincide
with the planner’s quantities (unless meeting rates are endogenized).

5The recently implemented section of the Dodd-Frank Act, often referred to as “the Volcker Rule,” which
disallows proprietary trading by banks and their affiliates, also requires a similar level of monitoring. Some
forms of proprietary trading are exempted from the Volcker Rule, such as those related to market making or
hedging. Thus, regulators must monitor banks’ positions and trading behavior and calculate certain metrics
like transaction frequency or hedging need to determine proprietary trading, unrelated to hedging or market
making. See Duffie (2012) for a discussion.
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in a static network-theoretic model of OTC market. I find that, in both of these environments,

having access to a larger number of counterparties gives an investor advantage in providing

liquidity to others. The advantage in the static network model is being able to unload any

unwanted asset-position portion from a trade to a larger number of counterparties in the cross

section, while the advantage in the dynamic search model is being able to unload any unwanted

asset-position portion from a trade to a larger number of counterparties (in the sense of first-

order stochastic dominance) over a fixed period of time. One key difference in these two

approaches, on the other hand, stems from the static vs. dynamic nature of the two models. In

the static network model, there is no concept of option value of continuing search, and hence,

there does not arise a sensitivity differential across investors’ marginal valuations due to the

different number of counterparties they have. As a result, the bargaining parties’ contributions

to surplus creation coincide with their privately captured shares of surplus. This means that

investors with larger number of counterparties provide liquidity but do so at its marginal cost,

and hence, there does not arise any “connectedness” premium in negotiated prices.

1.1 Related literature

A fast-growing body of literature, spurred by Duffie et al. (2005), has recently applied search-

theoretic methods to asset pricing. The early models in this literature —such as Duffie,

Gârleanu, and Pedersen (2007), Weill (2008), and Vayanos and Weill (2008),6—studied the-

ories of fully decentralized markets in a random search and bilateral bargaining environment

and used these theories to present a better understanding of the individual and aggregate im-

plications of distinctively non-Walrasian features of those markets. These models maintain

tractability by limiting the investors to two asset positions, 0 or 1. Another part of this body of

literature, with papers by Gârleanu (2009) and Lagos and Rocheteau (2007, 2009), eliminates

the {0, 1} restriction on holdings by introducing a partially centralized market structure. In

their framework, investors trade in a centralized market but only infrequently and by paying

an intermediation fee to exogenously designated intermediaries who have continuous access to

the centralized market.7 In these models, the part of trade surplus captured by exogenous

6The framework of Duffie et al. (2005) has also been adopted to analyze a number of issues, such as market
fragmentation (Miao, 2006), liquidity in corporate bond market (He and Milbradt, 2014), the co-existence of
illiquid and liquid markets (Praz, 2014, Chapter I), the liquidity spillover between bond and CDS markets
(Sambalaibat, 2015), the supply of liquid assets (Geromichalos and Herrenbrueck, 2016), and the endogenous
bargaining delays (Tsoy, 2016).

7Other papers that use the same partially centralized market structure include Lagos, Rocheteau, and Weill
(2011), Lester, Rocheteau, and Weill (2015), Pagnotta and Philippon (2018), and Randall (2015). Lester
et al. (2015) differs from the other papers by employing ex ante price posting and directed search as the
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intermediaries is purely speed premium because intermediaries do not have any contribution

to surpluses. I show that speed premium is a natural equilibrium outcome in a model with

endogenous intermediation.

Recently, there has been a proliferation of endogenous intermediation models. Similarly to

my paper, many of them generalize the random search framework of Duffie et al. (2005), such as

Afonso and Lagos (2015), Hugonnier, Lester, and Weill (2014), Neklyudov (2014), Shen, Wei,

and Yan (2015), Farboodi et al. (2015), and Farboodi, Jarosch, and Menzio (2016).8 Chang

and Zhang (2016), on the other hand, offer a theory of intermediation with a flavor of directed

search by allowing investors to form optimal trading links. While these papers consider at most

one-dimensional rich heterogeneity,9 my model features rich heterogeneity in three simultaneous

dimensions and hence uncovers important interactions among different investor characteristics

in jointly determining the intermediation patterns. For instance, the special case of my model

with a homogeneous meeting rate can be considered an extension of Hugonnier et al. (2014) with

risk-averse investors and unrestricted asset holdings. They show that investors with moderate

exogenous valuations have the highest instantaneous incentive to provide intermediation. In

my setup with unrestricted holdings, investors with the “correct” amount of assets have the

highest incentive to intermediate instead of those with the moderate exogenous valuation. In

other words, in my setup, intermediaries might be “low valuation-low holding,” “moderate

valuation-moderate holding,” or “high valuation-high holding” investors.

The combination of unrestricted holdings and fully decentralized trade is essential for my

analysis because fully decentralized trade is necessary for endogenous intermediation, and unre-

stricted holdings are necessary for studying optimal inventory holding behavior. To my knowl-

edge, there are two papers with this combination. Afonso and Lagos (2015) study trading

dynamics in the fed funds market. In their model, banks are homogeneous in terms of pref-

erences and meeting rates. The basic insight from their model on endogenous intermediation

trading protocol instead of random search and ex post bargaining. Sambalaibat (2018) also adopts a directed
search approach with segmented interdealer and dealer-customer markets. However, the interdealer platform is
frictional in her model.

8The seminal work of Rubinstein and Wolinsky (1987) provides the earliest treatment of intermediaries in
random search markets. While Duffie et al. (2005) study a market for an infinitely-lived retradeable asset
with infinitely-lived investors, the buyers and sellers of Rubinstein and Wolinsky (1987) trade a consumption
good only once and leave the market. Recently, Nosal, Wong, and Wright (2017) generalized the framework of
Rubinstein and Wolinsky (1987) by incorporating an endogenous choice of being a middleman or a supplier and
by allowing the traded object to have negative or positive return (i.e., to be a good or an asset, respectively).

9The models of Neklyudov (2014), Farboodi et al. (2015), and Farboodi et al. (2016) have also two-type
heterogeneity in exogenous valuations to generate gains from trade in the steady-state equilibrium. Since
this heterogeneity is limited, exogenous valuation does not constitute a dimension over which the patterns of
intermediation are determined.
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applies to my model as well. They show that banks with average asset holdings endogenously

become middlemen of the market by buying from banks with excess reserves and selling to

banks with low reserves. Relative to Afonso and Lagos (2015), my contribution is to solve for a

steady-state equilibrium with two new dimensions of heterogeneity: hedging need and meeting

rate. As I explain above, these are important for explaining stylized OTC market facts and

obtaining new policy implications. Chapter III of Praz (2014, co-authored with Julien Cujean)

studies the impact of information asymmetry between counterparties. Although their model

also features unrestricted asset holdings and a fully decentralized market structure, my work

is different from theirs in that they assume all investors have the same meeting rate. In or-

der to analyze the microstructure of OTC markets, I introduce meeting rate heterogeneity but

keep the usual symmetric information assumption of the literature. Then I study the resulting

topology of trading relations.

My model is the first that introduces ex ante heterogeneity in meeting rates into a fully

decentralized market model with unrestricted asset holdings. To the best of my knowledge, in

the literature, there are only two other papers with heterogeneity in meeting rate: Neklyudov

(2014) and Farboodi et al. (2015). Both restrict the asset positions so that they lie in {0, 1}.
Relative to these models, an important additional insight of my model is that fast investors

can differentiate themselves from slow investors by offering more attractive trade quantities to

their counterparties. In this way, they can charge a speed premium, and earn higher markups

depending on the equilibrium dispersion of inventories. In the {0, 1} models, fast investors typ-

ically earn lower markups because of the lower variability of their reservation values.10 On the

normative side, I show that the interaction of unrestricted holdings and investor heterogeneity

makes the equilibrium inefficient.

Alternative approaches to endogenous intermediation include the static matching approach

(Atkeson, Eisfeldt, and Weill, 2015) and the static network approach (Babus and Kondor,

2018; Malamud and Rostek, 2017; Gofman, 2011; and Farboodi, 2014). I show that some of

the key insights of my model, such as the dependence of target asset positions on the level of

connectivity and the emergence of speed premium in negotiated prices, are dynamic phenomena

and do not arise in static environments. Similarly to my paper, a vast majority of the papers in

the endogenous intermediation literature start with ex ante heterogeneous investors and analyze

10Providing an alternative theory based on directed search and exogenously stable valuations of central in-
termediaries, Chang and Zhang (2016) also show that markups can be increasing in centrality. Starting with
investors with the same level of stability in exogenous valuations, my model generates endogenously the higher
stability of central intermediaries’ valuations.
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how the existing heterogeneity shapes investors’ trading behavior. Farboodi (2014), Farboodi

et al. (2015), and Wang (2016) instead start with ex ante identical investors and show how

investor heterogeneity arises endogenously to leverage the gains from intermediation.11

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3

studies the equilibrium of the model, while Section 4 assesses the implications of the endogenous

asset positions in OTC markets given by the equilibrium. Section 5 makes a comparison between

the search and the network modelling approaches to OTC markets. Section 6 is the conclusion.

2 Environment

Time is continuous and runs forever. I fix a probability space (Ω,F ,Pr) and a filtration

{Ft, t ≥ 0} of sub-σ-algebras satisfying the usual conditions (see Protter, 2004). There is a

continuum of investors with a total measure normalized to 1 and a long-lived asset in fixed

supply denoted by A ≥ 0. There is also a perishable good, called the numéraire, which all

investors produce and consume.

2.1 Preferences

I borrow the specification of preferences and trading motives from Duffie et al. (2007). The

investors’ time preference rate is denoted by r. The instantaneous utility function of an investor

is u(δ, a) + c, where

u(δ, a) ≡ δa− 1

2
κa2

is the instantaneous quadratic benefit to the investor from holding a ∈ R units of the asset

when of type δ ∈ [δL, δH ] and c ∈ R denotes the net consumption of the numéraire good. An

investor’s net consumption becomes negative when she produces the numéraire to make side

payments. This utility specification is interpreted in terms of mean-variance risk aversion.12

Importantly, taste type, δ, is heterogeneous across investors, creating the fundamental gains

from trade. I further assume that each investor’s taste type itself is stochastic, in order for the

gains from trade to exist in a stationary equilibrium. Namely, an investor receives idiosyncratic

11Farboodi et al. (2015) start from ex ante homogeneity and endogenize the meeting rate distribution by
restricting asset holdings to {0, 1}. In my paper, the meeting rate distribution is taken as exogenous and trade
quantities and the asset holding distribution are endogenized.

12In Appendix G, I derive this quadratic utility specification from first principles, up to a suitable first-order
approximation. I leave the micro-foundation of this specification to the appendix because the reduced-form
imparts the main intuitions without the burden of derivations. See Duffie et al. (2007), Vayanos and Weill
(2008), and Gârleanu (2009) for a similar derivation.
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taste shocks at Poisson arrival times with intensity α > 0. The arrival of these shocks is

independent from other stochastic processes and across investors. For simplicity, I assume that

types are not persistent, and upon the arrival of an idiosyncratic shock, the investor’s new taste

type is drawn according to the pdf f on [δL, δH ].

2.2 Trade

All trades are fully bilateral. I assume that investors with different trading speed coexist in a

sense that will now be described.

The cross-sectional distribution of investors’ speed type, λ, is given by cdf Ψ (λ) on [0,M ]

for some M > 0. The variable λ is distributed independently from the taste type δ in the cross

section and from all the stochastic processes in the model. An investor who is endowed with

a speed type of λ meets another investor with a speed type of λ′ at a Poisson arrival rate of

m (λ, λ′) dΨ (λ′), where m (., .) is symmetric, increasing, and linear in both arguments. As a

result, an investor with speed type λ finds a counterparty at total instantaneous rate m (λ,Λ):

M∫
0

m (λ, λ′) dΨ (λ′) = m (λ,Λ) ,

where

Λ ≡
M∫
0

λ′dΨ (λ′) .

The assumptions above accommodate two famous examples of linear search technology,

m (λ, λ′) = λ + λ′ and m (λ, λ′) = 2λλ
′

Λ
, discussed by Diamond (1982), Mortensen (1982), and

Shimer and Smith (2001). Both technologies capture the fact that an investor can initiate

a contact or be contacted by others. The former assumes that, conditional on contact, the

counterparty is chosen randomly and uniformly from the pool of all investors. The latter

assumes that the counterparty is chosen randomly but with likelihood proportional to their

speed type.

Finally, each contact between a pair of investors is followed by a symmetric Nash bar-

gaining game over quantity q and unit price P . Suppose the types of contacting investors

are (δ, a, λ) and (δ′, a′, λ′). The number of assets the investor (δ, a, λ) purchases is denoted by

q [(δ, a, λ) , (δ′, a′, λ′)]. Thus, she will become an investor of type (δ, a+q [(δ, a, λ) , (δ′, a′, λ′)] , λ)

after this trade, while her counterparty will become type (δ′, a′ − q [(δ, a, λ) , (δ′, a′, λ′)] , λ′),

9



due to bilateral feasibility. The per unit price the investor (δ, a, λ) will pay is denoted by

P [(δ, a, λ) , (δ′, a′, λ′)].

Now the model environment has been fully laid out, I can be more precise about how it

relates to Duffie et al. (2007). My model is a generalization of the stationary version of Duffie

et al. (2007) along three dimensions. First, there is a continuum of taste types in my model,

while there are only two taste types (high and low) in Duffie et al. (2007). Second, Duffie et al.

(2007) allow the asset positions to lie in a binary set {L,H} and any successful trade is the

exchange of H − L units of the asset against transferable utility. In my model, the asset is

exchanged against transferable utility, too, but investors are free to mutually decide how many

units of the asset will be exchanged. Finally, in Duffie et al. (2007), all investors meet each

other at the same rate, while there is rich investor heterogeneity in meeting rates in my model.

3 Equilibrium

In this section, I define a stationary equilibrium for this economy. Then, as a benchmark

case, I solve the Walrasian counterpart of this economy. Finally, I characterize the stationary

decentralized market equilibrium.

3.1 Definition

First, I will define the investors’ value functions, taking as given the equilibrium joint distri-

bution, Φ(δ, a, λ), of taste types, asset positions, and speed types. Then I will write down the

conditions that the equilibrium distribution satisfies.

3.1.1 Investors

Let J(δ, a, λ) be the maximum attainable utility of an investor of type (δ, a, λ). In steady state,

an application of Bellman’s principle of optimality implies (see Appendix A)

rJ(δ, a, λ) = u(δ, a) + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {J(δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)− J(δ, a, λ)

−q [(δ, a, λ) , (δ′, a′, λ′)]P [(δ, a, λ) , (δ′, a′, λ′)]}Φ(dδ′, da′, dλ′), (1)

10



where

{q [(δ, a, λ) , (δ′, a′, λ′)] , P [(δ, a, λ) , (δ′, a′, λ′)]}

= arg max
q,P

[J(δ, a+ q, λ)− J(δ, a, λ)− Pq]
1
2 [J(δ′, a′ − q, λ′)− J(δ′, a′, λ′) + Pq]

1
2 , (2)

s.t.

J(δ, a+ q, λ)− J(δ, a, λ)− Pq ≥ 0,

J(δ′, a′ − q, λ′)− J(δ′, a′, λ′) + Pq ≥ 0.

The first term on the RHS of Equation (1) is the investor’s utility flow; the second term

is the expected change in the investor’s continuation utility, conditional on switching taste

types, which occurs with Poisson intensity α; and the third term is the expected change in

the continuation utility, conditional on trade, which occurs with Poisson intensity m (λ,Λ) =
M∫
0

m (λ, λ′) dΨ (λ′). The potential counterparty is drawn randomly from the population, with

the likelihood, m(λ,λ′)
m(λ,Λ)

, that depends on her speed type λ′. Terms of trade, q [(δ, a, λ) , (δ′, a′, λ′)]

and P [(δ, a, λ) , (ρ′, a′, λ′)], maximize the symmetric Nash product (2) subject to the usual

individual rationality constraints.

3.1.2 Market clearing and the distribution of investor types

Let Φ(δ∗, a∗, λ∗) denote the joint cumulative distribution of taste types, asset positions, and

speed types in the stationary equilibrium. Since Φ(δ∗, a∗, λ∗) is a joint cdf, it should satisfy

M∫
0

∞∫
−∞

δH∫
δL

Φ(dδ∗, da∗, dλ∗) = 1. (3)

The clearing of the market for the asset requires that

M∫
0

∞∫
−∞

δH∫
δL

a∗Φ(dδ∗, da∗, dλ∗) = A. (4)

Since the heterogeneity in speed types is ex ante, I impose

λ∗∫
0

∞∫
−∞

δH∫
δL

Φ(dδ, da, dλ) = Ψ (λ∗) (5)
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for all λ∗ ∈ [0,M ] to ensure that the equilibrium distribution is consistent with the cross-

sectional distribution of λs. I also impose

λ∗∗∫
0

∞∫
−∞

δH∫
δL

aΦ(dδ, da, dλ) ≥
λ∗∫
0

∞∫
−∞

δH∫
δL

aΦ(dδ, da, dλ) (6)

for all λ∗, λ∗∗ ∈ [0,M ] such that λ∗ < λ∗∗. This can be understood as a within-speed-class

aggregate short-sale constraint; i.e., asset positions are unrestricted for individual investors,

but once aggregated across investors with the same speed type, it must be non-negative. This

is essentially a technical constraint used in establishing the uniqueness of the equilibrium.13

Finally, the conditions for stationarity are

− αΦ(δ∗, a∗, λ∗)(1− F (δ∗)) + α

λ∗∫
0

a∗∫
−∞

δH∫
δ∗

Φ(dδ, da, dλ)F (δ∗)

−
λ∗∫
0

a∗∫
−∞

δ∗∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) I{q[(δ,a,λ),(δ′,a′,λ′)]>a∗−a}Φ(dδ′, da′, dλ′)

Φ(dδ, da, dλ)

+

λ∗∫
0

∞∫
a∗

δ∗∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) I{q[(δ,a,λ),(δ′,a′,λ′)]≤a∗−a}Φ(dδ′, da′, dλ′)

Φ(dδ, da, dλ) = 0 (7)

for all (δ∗, a∗, λ∗) ∈ [δL, δH ]× R× [0,M ], where

F (δ∗) ≡
δ∗∫
δL

f (δ) dδ.

The first term of the first line is the outflow from idiosyncratic shocks. Investors who belong

to Φ(δ∗, a∗, λ∗) receive taste shocks at rate α and leave Φ(δ∗, a∗, λ∗) with probability 1−F (δ∗),

i.e., if their new type is higher than δ∗. Similarly, the second term of the first line is the inflow

from idiosyncratic shocks. Investors who do not belong to Φ(δ∗, a∗, λ∗) but have an asset holding

less than a∗ and a speed type less than λ∗ receive taste shocks at rate α and enter Φ(δ∗, a∗, λ∗)

with probability F (δ∗), i.e., if their new type is less than δ∗.

The second line represents the outflow from trade. Conditional on a contact, investors who

belong to Φ(δ∗, a∗, λ∗) leave Φ(δ∗, a∗, λ∗) if they buy a sufficiently high number of assets, i.e., if

they buy at least a∗−a units, where a is the number of assets before trade. Similarly, the third

13In particular, this constraint is used to prove that the first moment of the asset holding distribution con-
ditional on the speed type is unique. The particular fixed-point result used in the proof requires that the first
moment as a function of speed type belongs to the set of non-negative functions.
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line represents the inflow from trade. Investors who do not belong to Φ(δ∗, a∗, λ∗) but have a

taste type less than δ∗ and a speed type less than λ∗ enter Φ(δ∗, a∗, λ∗) if they sell a sufficiently

high number of assets, i.e., if they sell at least a − a∗ units, where a is the number of assets

before trade. Note that selling at least a−a∗ units is equivalent to buying at most a∗−a units,

and hence, I write q [(δ, a, λ) , (δ′, a′, λ′)] ≤ a∗ − a inside the indicator function.

Let T = [δL, δH ] × R × [0,M ]. Let ω− : T → R and ω+ : T → R be two functions as

defined in Appendix A, which provide natural lower and upper bounds for the equilibrium

value function, respectively. Then, a stationary equilibrium is defined as follows:

Definition 1. A stationary equilibrium is (i) a function J : T → R for continuation utilities,

which is continuous and satisfies ω− ≤ J ≤ ω+, (ii) a pricing function P : T 2 → R, (iii) a

trade size function q : T 2 → R, and (iv) a joint distribution function Φ : T → R of taste types,

asset positions, and speed types, such that

• Steady state: Given (iii), (iv) solves the system (3)-(7).

• Optimality: Given (ii), (iii), and (iv), (i) solves the investor’s problem (1) subject to (2).

• Nash bargaining: Given (i), (ii) and (iii) satisfy (2).

3.2 The Walrasian benchmark

I present the stationary equilibrium of a continuous frictionless Walrasian market as a bench-

mark. Later in the paper I use the outcome of this benchmark to better understand the effect

of trading frictions on market outcomes. Investors’ preferences and trading motives are as de-

scribed in Subsection 2.1, but the trading protocol is perfectly competitive Walrasian trade.

Calculations in Appendix C imply that an auxiliary Hamilton-Jacobi-Bellman (HJB) equation

for investors in this Walrasian market can be written as

rJW (δ, a) = u (δ, a) + α

δH∫
δL

max
a′

{
JW (δ′, a′)− JW (δ, a)− PW (a′ − a)

}
f(δ′)dδ′, (8)

where PW is the market-clearing price. The first term is the investor’s utility flow. The second

term is the expected change in the investor’s continuation utility, conditional on switching

types, which occurs with Poisson intensity α. Since investors have continuous access to the

market, they rebalance their holding as soon as they receive an idiosyncratic shock. Using the

FOC for the asset position and the envelope condition, I get the optimal demand of the investor
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with δ:

â(δ;PW ) =
r

κ

(
δ

r
− PW

)
.

Since, in this market, every investor can trade instantly at the single market-clearing price, all

investors with the same taste type end up holding the same number of assets.

The market-clearing condition

δH∫
δL

â(δ;PW )f(δ)dδ = A

implies that the equilibrium objects are

aW (δ) = A+
δ − δ
κ

(9)

for all δ ∈ [δL, δH ] and

PW =
u2

(
δ, A

)
r

=
δ

r
− κ

r
A,

where

δ ≡
δH∫
δL

δ′f (δ′) dδ′.

The implication of the equilibrium is intuitive: The equilibrium holding is an increasing

function of δ. As δ increases, investors like the asset more and hold more of it. The investor

with the average taste type holds the per capita supply. The coefficient of the current taste

in the optimal holding is 1/κ. The risk aversion coefficient κ has a negative impact on the

dispersion of investors’ holdings because the importance of the cost of risk-bearing relative to

the taste rises when κ is larger. Thus, investors’ positions become closer to one another as

required by efficient risk sharing.

The instantaneous trading volume in the Walrasian market is

VW = α

δH∫
δL

δH∫
δL

∣∣aW (δ′)− aW (δ)
∣∣ f (δ) f (δ′) dδdδ′ =

α

κ

δH∫
δL

δH∫
δL

|δ′ − δ| f (δ) f (δ′) dδdδ′.

This is basically the multiplication of the flow of investors who receive idiosyncratic shock, α,

and the change in the optimal holding of those investors. When I characterize the OTC market

equilibrium, I will show that the Walrasian market outcomes differ markedly from the OTC

outcomes. As a preview, in the Walrasian equilibrium, (i) there is no price dispersion, (ii) no

one provides intermediation (apart from the Walrasian auctioneer), and, therefore, (iii) net and

gross trade volume coincide.
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3.3 Characterization

3.3.1 Individual trades

Terms of individual trades, q [(δ, a, λ) , (δ′, a′, λ′)] and P [(δ, a, λ) , (δ′, a′, λ′)], are determined by

the symmetric Nash bargaining protocol with the solution given by the optimization problem

(2). I guess and verify that J(δ, ., λ) is continuously differentiable and strictly concave for all

δ and λ. This allows me to set up the Lagrangian of this problem and find the first-order

necessary and sufficient conditions (see Theorem M.K.2., p. 959, and Theorem M.K.3., p. 961,

in Mas-Colell, Whinston, and Green, 1995) for optimality by differentiating the Lagrangian.

The trade size, q [(δ, a, λ) , (δ′, a′, λ′)], solves

J2(δ, a+ q, λ) = J2(δ′, a′ − q, λ′), (10)

where J2 represents the partial derivative with respect to the second argument. The continuous

differentiability and strict concavity of J(δ, ., λ) guarantees the existence and uniqueness of the

trade quantity q [(δ, a, λ) , (δ′, a′, λ′)]. Notice that the quantity that solves Equation (10) is also

the maximizer of the total trade surplus, i.e.,

q [(δ, a, λ) , (δ′, a′, λ′)] = arg max
q

J(δ, a+q, λ)−J(δ, a, λ)+J(δ′, a′−q, λ′)−J(δ′, a′, λ′). (11)

Then, the transaction price, P [(δ, a, λ) , (δ′, a′, λ′)], is determined such that the total trade

surplus is split equally between the parties:

P =
J(δ, a+ q, λ)− J(δ, a, λ)− (J(δ′, a′ − q, λ′)− J(δ′, a′, λ′))

2q
(12)

if J2(δ, a, λ) 6= J2(δ′, a′, λ′); and P = J2(δ, a, λ) if J2(δ, a, λ) = J2(δ′, a′, λ′). Substituting (11)

and (12) into (1), I get the following auxiliary HJB equation:

rJ(δ, a, λ) = u (δ, a) + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
1

2

[
max
q
{J(δ, a+ q, λ)− J(δ, a, λ)

+J(δ′, a′ − q, λ′)− J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′). (13)

In order to solve for J(δ, a, λ), I follow a guess-and-verify approach. The complete solution

is given in the appendix. In the models with {0, 1} holding, the investors’ trading behavior is

determined by their reservation value, which is the difference between the value of holding the
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asset and that of not holding the asset. The counterpart of the reservation value in my model

with unrestricted holdings is the marginal continuation utility —or the marginal valuation, in

short. To find the marginal valuation, I differentiate Equation (13) with respect to a, applying

the envelope theorem:

rJ2(δ, a, λ) = u2 (δ, a) + α

δH∫
δL

[J2(δ′, a, λ)− J2(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′) {J2(δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)− J2(δ, a, λ)}Φ(dδ′, da′, dλ′),

(14)

where

u2(δ, a) = δ − κa.

Since the utility function is quadratic, the marginal utility flow is linear. Equation (14) is

basically a flow Bellman equation that has a linear return function with a slope coefficient inde-

pendent of δ. Therefore, the solution J2(δ, a, λ) is linear in a if and only if q [(δ, a, λ) , (δ′, a′, λ′)]

is linear in a. Conjecturing that q [(δ, a, λ) , (δ′, a′, λ′)] is linear in a and that the slope coefficient

of a in the marginal valuation is − κ
r̃(λ)

for r̃ (λ) > 0,14 the FOC (10) implies that

J2(δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ) =
r̃ (λ) J2(δ, a, λ) + r̃ (λ′) J2(δ′, a′, λ′)

r̃ (λ) + r̃ (λ′)
, (15)

i.e., the post-trade marginal valuation of both investors is equal to the weighted average of their

initial marginal valuations, with the weights being the reciprocal of the slope coefficient of a in

the marginal valuation. Note that the post-trade marginal valuation will equal the midpoint of

the investors’ initial marginal valuations if they are endowed with the same speed type.

In principle, solving a fully bilateral trade model with unrestricted holdings is a difficult task

because optimal trading rules and the equilibrium asset holding distribution must be pinned

down simultaneously. Indeed, the trading rules depend, in part, on the option value of searching

for a counterparty drawn at random according to the equilibrium asset holding distribution.

The distribution, in turn, must be generated by the optimal trading rules. This creates a

14These conjectures are verified in the proof of Theorem 1. Here, r̃ (λ) is an important endogenous coefficient
that determines the sensitivity of an investor’s marginal valuation to her current asset position; i.e., it effectively
determines the cost of inventory holding. Since this coefficient depends on the speed type, λ, investors will differ
from one another in the cross section in terms of their effective aversion to inventory holding.
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complex fixed-point problem. So far, the literature has side-stepped this complexity by con-

sidering models with trading rules that can be characterized before solving for the endogenous

distribution.15 This is not the case in my model. As can be seen from (10), (14), and (15),

calculating the trading rules requires using the entire equilibrium distribution. However, the

problem becomes relatively easy because (i) marginal utility is linear and additively separable

in taste type and asset position and (ii) the distribution of taste types and the distribution

of speed types are independent. Thanks to these assumptions, the calculation of the marginal

valuation and trading rules requires using only the first moment of the equilibrium asset holding

distribution conditional on speed type. As a result, the core fixed-point problem is reduced to

two linear functional equations connecting the average asset holding conditional on λ and the

average marginal valuation conditional on λ. Combined with the market clearing, I show that

the unique solution of this fixed-point problem implies that the average asset holding condi-

tional on λ is the supply A, which is independent of λ; i.e., the primary effect of heterogeneity

in λ will be on the variance and the higher-order moments of the distribution. This allows me

to obtain the following theorem:

Theorem 1. The economy studied has a unique stationary equilibrium. In this equilibrium,

investors’ marginal valuations satisfy

J2 (δ, a, λ) =
1

r
u2

(
rδ + (α + r̃ (λ)− r) δ

α + r̃ (λ)
,
ra+ (r̃ (λ)− r)A

r̃ (λ)

)
, (16)

where

r̃ (λ)− r =

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′). (17)

And the average marginal valuation of the market is

M∫
0

∞∫
−∞

δH∫
δL

J2 (δ, a, λ) Φ (dδ, da, dλ) =
u2(δ, A)

r
. (18)

15Existing papers do this either by eliminating heterogeneity in investors’ exogenous characteristics (Afonso
and Lagos, 2015) or by employing the {0, 1} restriction on asset positions (Hugonnier et al., 2014 and Farboodi
et al., 2015, for example). In the former, because their exogenous characteristics are identical, investors find
it optimal to trade in a way that they move to the midpoint of their initial asset positions, regardless of
the endogenous asset holding distribution. In the latter, it is shown that whenever there is gain from trade
in a meeting, an indivisible unit of the asset changes hands, and the comparison of the investors’ exogenous
characteristics solely determines whether a gains from trade exists; i.e. it is independent of the endogenous
asset holding distribution.
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Equation (16) shows that the investors’ marginal valuation inherits linearity and additive

separability of the marginal utility flow, where a weighted sum of the investor’s current taste

and the average taste of the market and a weighted sum of the investor’s current asset position

and the average asset position of the market enter as linear arguments. The relative weights

of the current and the average characteristics depend on the discount rate (r), the intensity

of idiosyncratic shocks (α), and an endogenous object (r̃ (λ)− r) that depends on speed type,

λ.16 In this characterization, r̃ (λ) − r has the role of capturing how intensely the expected

asset position, A, or the expected taste, δ, of her counterperty in the next trade opportunity

contributes to an investor’s marginal valuation. As r̃ (λ) − r gets larger, the average market

conditions become a more important determinant of her marginal valuation, while her current

characteristics, δ and a, become less important.

The functional equation (17) shows two key properties of r̃ (λ): being increasing and concave.

On the one hand, the speed type, λ, has a direct linear positive impact on r̃ (λ) throughm (λ, λ′).

If an investor is able to find counterparties very often, her marginal valuation must reflect more

the average market conditions compared to the marginal valuation of another investor with a

smaller speed type. This makes the function r̃ (λ) an increasing function. On the other hand,

Equation (15) shows that the post-trade marginal valuation is closer to the initial marginal

valuation of the party with higher r̃ (λ). As a result, a high speed type dampens the effect of

the average market conditions on marginal valuation, and thus an indirect negative impact of

λ on the function r̃ (λ) arises through r̃(λ′)
r̃(λ)+r̃(λ′)

. Consequently, the function r̃ (λ) turns out to

be an increasing but concave function of λ.

Lemma 1. The function r̃ (λ), which is consistent with the optimality of the investors’ prob-

lem, exists, is unique, continuously differentiable, strictly increasing, and strictly concave, and

satisfies

M∫
0

r̃ (λ) dΨ(λ) = r +
m (Λ,Λ)

4
,

16The functional equation (17) that pins down r̃ (λ) − r is very parsimonious and depends only on discount
rate, matching function, and the distribution of speed types. This is due to (i) separability of marginal utility in
asset position and (ii) the fact that the only ex ante heterogeneity across investors is in trading speed. Thanks
to (i), the distribution of taste types does not enter (17). Thanks to (ii), investors’ common risk aversion
parameter does not enter (17). In Appendix H, I solve for an extension with heterogeneity in risk aversion in
addition to trading speed. I show that a generalized version of (17) obtains featuring the joint distribution of
risk aversion and trading speed.
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where

Λ ≡
M∫
0

λ′dΨ(λ′).

Although the function r̃ (λ) is not available in closed form, most of the important qualitative

implications of heterogeneity in speed types come from the properties stated in Lemma 1 —in

particular, from the fact that r̃ (λ) is an increasing function of λ. An important implication of

this, combined with (16), is that the marginal valuation of investors with very high λ is close

to the average marginal valuation of the market. Therefore, these fast investors become the

natural counterparty for investors with high marginal valuations and those with low marginal

valuations. They buy the assets from investors with low marginal valuations and sell to investors

with high marginal valuations and thus become endogenous “middlemen.”

Let me turn our attention to the determination of negotiated prices. Again, using the fact

that J(δ, a, λ) is quadratic in a, an exact second-order Taylor expansion shows that:

J(δ, a+ q, λ)− J(δ, a, λ) = J2(δ, a+ q, λ)q +
κ

2r̃ (λ)
q2.

Next, Equation (12) implies

P [(δ, a, λ) , (δ′, a′, λ′)] =J2(δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)

+
1

4
q [(δ, a, λ) , (δ′, a′, λ′)]

(
κ

r̃ (λ)
− κ

r̃ (λ′)

)
; (19)

i.e., the transaction price is given by the post-trade marginal valuation plus an adjustment

term. I call the adjustment term the “speed premium” because it always benefits the investor

who is able to find counterparties faster.17 Note that the transaction price will equal the post-

trade marginal valuation if the trading parties have the same speed. This formula for the price

will provide the main mechanism behind the relation between λ and intermediation markups

defined using the price difference between the two legs of a round-trip transaction in Subsection

4.3. Due to the first term, investors with high λ tend to earn lower markups since they have

stable marginal valuations that do not fluctuate much in response to changes in asset position

and taste. On the other hand, they earn a premium increasing in trade size.

17An advantage of this setup is that the speed premium of (19) is a sophistication premium, which arises
solely due to the differences in speed types. In reality, the sophistication of fast investors might come with
higher bargaining power as well, which might give rise to additional premia in prices. However, I show that a
sophistication premium arises even without bargaining-power asymmetry.
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As an intermediate step in understanding the investors’ trading behavior in equilibrium, I

define a?(δ, λ) as the target asset position of the investor with taste δ and speed type λ, where

a?(δ, λ) = A+
r̃ (λ)

r̃ (λ) + α

δ − δ
κ

(20)

solves

J2(δ, a?, λ) =
u2(δ, A)

r
;

i.e., a?(δ, λ) equates the investor’s marginal valuation to the average marginal valuation of the

market (18). An investor would be able to reach her target immediately if her counterparty

had a constant marginal valuation of u2(δ, A)/r.18

Lemma 2. Let a?(δ, λ) be the target asset position of the investor with taste δ and speed type

λ, given by (20). Then,

∂a?(δ, λ)

∂δ
> 0 and sgn

∂a?(δ, λ)

∂λ
= sgn

(
δ − δ

)
.

The first part of Lemma 2 implies that as δ increases, the target position increases. Natu-

rally, a higher δ implies that the investor likes the asset more, so she prefers to hold a larger

position in the asset. The second part implies that, an increase in trading speed increases the

distance between the target asset position and the per capita supply, A. Investors with higher-

than-average δ have higher-than-average taste, and hence, they prefer to hold a larger position

in the asset than A. For these investors, an increase in trading speed increases the distance

between their target position and A, by increasing the target position, so the derivative has a

positive sign. For investors with lower-than-average δ, however, an increase in trading speed

increases the distance between their target position and A, by decreasing the target position,

so the derivative has a negative sign.

The next proposition summarizes the investors’ optimal trading behavior in equilibrium

and shows analytically how the difference between investors’ current and target asset positions

becomes an important determinant of equilibrium terms of trade in the presence of OTC market

frictions.

18Alternatively, suppose all investors are given a chance to participate in a Walrasian market that opens
only for an instant. Because investors return to the frictional trading environment after the Walrasian trading
instant, their trading decisions in the Walrasian market still obey the marginal valuation function (16). Thus,
their post-Walrasian-market positions a?(δ, λ) equalize all their marginal valuations to the market-clearing price,
which is equal to u2(δ, A)/r thanks to the linearity of (16).
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Proposition 2. Let

θ(δ, a, λ) ≡ a− a?(δ, λ) = a− A− r̃ (λ)

r̃ (λ) + α

δ − δ
κ

(21)

denote the “inventory” of the investor with (δ, a, λ). In equilibrium, investors’ marginal valua-

tions, individual trade sizes, and transaction prices are given by:

J2(δ, a, λ) =
u2(δ, A)

r
− κ

r̃ (λ)
θ(δ, a, λ), (22)

q [(δ, a, λ) , (δ′, a′, λ′)] =
− κ
r̃(λ)

θ(δ, a, λ) + κ
r̃(λ′)

θ(δ′, a′, λ′)
κ
r̃(λ)

+ κ
r̃(λ′)

, (23)

and

P [(δ, a, λ) , (δ′, a′, λ′)] =
u2(δ, A)

r
− κ

3r̃(λ)+r̃(λ′)
4r̃(λ)

θ(δ, a, λ) + r̃(λ)+3r̃(λ′)
4r̃(λ′)

θ(δ′, a′, λ′)

r̃ (λ) + r̃ (λ′)

=
u2(δ, A)

r
− κθ(δ, a, λ) + θ(δ′, a′, λ′)

r̃ (λ) + r̃ (λ′)︸ ︷︷ ︸
post-trade marginal valuation

+
1

4
q [(δ, a, λ) , (δ′, a′, λ′)]

(
κ

r̃ (λ)
− κ

r̃ (λ′)

)
︸ ︷︷ ︸

speed premium

. (24)

If there were no heterogeneity in δ or in λ, the quantity traded in a bilateral meeting would

depend only on pre-trade asset positions as in Afonso and Lagos (2015). In this sense, my model

generalizes the trading rule of Afonso and Lagos (2015) by showing that, in my more general

model, it depends also on preference parameters (r, κ, and α) and search efficiency parameters

(λ and λ′).19 This effect of the preference parameters on trading rules is a key channel through

which changes in the OTC market frictions affect trading volume, price dispersion, and welfare,

as I will show in Section 4 when I discuss the empirical implications of the model.

The composite type θ of Proposition 2 is called inventory because it is equal to the difference

between the investor’s current asset position and the target asset position. If the inventory is

0, the investor’s marginal valuation is equal to the average marginal valuation of the market. If

the investor has a positive inventory, she is a natural seller because she has a lower-than-average

marginal valuation. If she has a negative inventory, she is a natural buyer because she has a

higher-than-average marginal valuation. Thus, θ is also a sufficient statistic for the effect of an

investor’s current state on her ideal trading behavior in the presence of frictions.

19To be more precise, my model can be viewed as nesting a steady-state version of Afonso and Lagos (2015)
with quadratic utility. Although it does not nest the general version of Afonso and Lagos (2015) with general
concave utility, it helps us understand why their trading rules are independent of preference and market friction
parameters.
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In this characterization, κ/r̃ (λ) can be interpreted as the endogenous degree of aversion to

inventory holding, since it captures how much the marginal valuation decreases in response to

holding an additional unit of inventory, as seen in (22).20 Since r̃ (λ) is an increasing function,

inventory aversion is a decreasing function of speed type. This reveals the key channel through

which the speed type differentials across investors affect their trading behavior systematically.

Having a higher λ increases the importance of the option value of search and decreases the

importance of the current utility flow from holding the asset. Controlling for the inventory

level, a slow investor is more desperate to sell/buy, which gives the advantage to fast investors

in holding unwanted positions. This situation manifests itself as a comparative advantage,

because an increase in the trading speed of one of the bargaining parties benefits both of them

when they negotiate on mutually agreeable terms.

More specifically, in a bilateral match between investors (δ, a, λ) and (δ′, a′, λ′), ideally,

the first party would want to buy −θ(δ, a, λ) units, and the second party would want to sell

θ(δ′, a′, λ′) units of the asset. Thus, the realized trade quantity (23) is a linear combination of the

parties’ ideal trade quantities, with weights being proportional to their inventory aversion. This

is an important result because of its implications for the supply of liquidity services. Because

the inventory aversion, κ/r̃ (λ), is a decreasing function, Equation (23) reveals that the trade

quantity reflects the slower party’s trading need to a greater extent. In this sense, fast investors

provide immediacy by trading according to their counterparties’ needs. For an investor with a

very high λ, the weight of her ideal trade quantity in the bilateral trade quantity is very small

—and so is the disturbance her current taste type creates for her counterparty. Her counterparty

is able to buy from or sell to her in almost exactly the ideal amount. This asymmetry in how

the trade quantity reflects the counterparties’ trading needs results in a speed premium in the

price. Having high λ reduces the endogenous inventory aversion. Therefore, fast investors put

less weight on their inventories and more weight on their cash earnings when bargaining with

a counterparty. Each bilateral negotiation results in a trade size that is more in line with the

slower counterparty’s trading need and a trade price that contains a premium benefitting the

faster counterparty. An investor can achieve the average marginal valuation by trading with the

right counterparty (or the right sequence of counterparties). The key observation here is that

20It is important to note that all investors have the same utility function, and the exogenous parameter κ that
contributes to their inventory aversion is common for all of them. Thus, the heterogeneity in their endogenous
inventory aversion arises only due to heterogeneity in their trading speed. In Appendix H, I solve a version of this
model with ex ante heterogeneity in risk aversion parameter as well as in trading speed. I obtain a generalized
version of (17) to determine endogenous inventory aversion. I show that upward-sloping iso-inventory-aversion
curves arise on the plane of risk aversion and trading speed because risk aversion and trading speed have an
opposite impact on the investor’s inventory aversion.
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if she trades with a fast counterparty, she will achieve the average marginal valuation relatively

quickly. The trade-off an investor faces is between the fast correction of the asset position and

paying a low price. That is how the speed premium arises optimally.

Although the analytical results of Proposition 2 rely on the quadratic utility specification,

the comparative advantage channel resulting from trading speed differentials, and its implication

about the asymmetries that arise in the determination of bilateral trade quantities and prices

are new insights that would carry over to this class of models more generally (e.g., to models

that do not assume quadratic utility).

3.3.2 The joint distribution of taste types, inventories, and speed types

Since I have an explicit expression for trade sizes, I can eliminate indicator functions in Equation

(7). Writing the system of steady-state equations in terms of conditional pdfs φδ,λ(a), I derive

a system of steady-state equations for conditional pdfs of asset positions. In turn, I apply a

change of variable using the inventory definition of Proposition 2 and arrive at the following

lemma:

Lemma 3. In any stationary equilibrium, the conditional pdf gδ,λ(θ) of inventories must satisfy

the system

(α +m (λ,Λ)) gδ,λ (θ) = α

δH∫
δL

gδ′,λ (θ − (δ′ − δ)C (λ)) f (δ′) dδ′

+

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′)

(
1 +

r̃ (λ′)

r̃ (λ)

)
gδ,λ (θ′)

gδ′,λ′

(
θ

(
1 +

r̃ (λ′)

r̃ (λ)

)
− θ′

)
f (δ′) dθ′dδ′dΨ(λ′), (25)

for all (δ, θ, λ) ∈ [δL, δH ]× R× supp (dΨ);

∞∫
−∞

gδ,λ (θ) dθ = 1 (26)

for all λ ∈ supp (dΨ) and δ ∈ [δL, δH ]; and

M∫
0

δH∫
δL

∞∫
−∞

θgδ,λ (θ) f (δ) dθdδdΨ(λ) = 0, (27)
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where

C (λ) ≡ 1

κ

r̃ (λ)

r̃ (λ) + α
.

Equation (26) implies that gδ,λ (θ) is a pdf. Equation (27) is the market-clearing condition

applied to the inventory definition of Proposition 2. Equation (25) has the usual steady-state

interpretation. The LHS represents the outflow from idiosyncratic shocks and trade. The

terms on the RHS represent the inflow from idiosyncratic shocks and the inflow from trade,

respectively. The last term is an “adjusted” convolution (i.e., a convolution after an appropriate

change of variable) since any investor of type (δ, θ′, λ) can become one of type (δ, θ, λ) if she

meets the right counterparty. The right counterparty in this context means an investor of

type (δ′, θ
(

1 + r̃(λ′)
r̃(λ)

)
− θ′, λ′). Proposition 2 immediately implies that the post-trade type

of the first investor will be (δ, θ, λ), and hence, she will create inflow. Since the convolution

term complicates the computation of the distribution function, I will make use of the Fourier

transform.21 I follow the definition of Bracewell (2000) for the Fourier transform:

ĥ(z) =

∞∫
−∞

e−i2πxzh (x) dx,

where ĥ(.) is the Fourier transform of the function h (.).

Let ĝδ,λ(.) be the Fourier transform of the equilibrium conditional pdf gδ,λ(.). Then the

Fourier transform of Equations (25)-(27) are, respectively,

0 = − (α +m (λ,Λ)) ĝδ,λ (z) + α

δH∫
δL

e−i2π(δ′−δ)C(λ)zĝδ′,λ (z) f (δ′) dδ′ (28)

+

M∫
0

δH∫
δL

m (λ, λ′) ĝδ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
f (δ′) dδ′dΨ(λ′)

for all λ ∈ supp (dΨ), δ ∈ [δL, δH ] and for all z ∈ R;

ĝδ,λ(0) = 1 (29)

for all λ ∈ supp (dΨ) and δ ∈ [δL, δH ]; and

M∫
0

δH∫
δL

ĝ′δ,λ(0)f (δ) dδdΨ(λ) = 0. (30)

21Following Duffie and Manso (2007); Duffie, Malamud, and Manso (2009, 2014), Duffie, Giroux, and Manso
(2010), Andrei (2013), Praz (2014, Chapter III), and Andrei and Cujean (2017) also made use of convolution
for distributions in the context of search and matching models.
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The system (28)-(30) cannot be solved in closed form. However, it facilitates the calculation

of the moments which are derivatives of the transform, with respect to z, at z = 0. Thus, the

system allows me to derive a recursive characterization of the moments of the equilibrium

conditional distribution.

Proposition 3. The following system characterizes uniquely all moments of the equilibrium

conditional distribution of inventories:α +m (λ,Λ)−
M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
dΨ(λ′)

Eg [θn | δ, λ]

= α
n∑
j=0

(
n
j

)
(C (λ))j

j∑
k=0

(
j
k

)
(−δ)j−k Eg

[
δkθn−j | λ

]
+

n−1∑
j=0

(
n
j

)
Eg
[
θj | δ, λ

] M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
Eg
[
θn−j | λ′

]
dΨ(λ′) (31)

for all λ ∈ supp (dΨ), δ ∈ [δL, δH ] and for all n ∈ Z+; and

Eg [θ | λ] = 0

for all λ ∈ supp (dΨ); where

C (λ) ≡ 1

κ

r̃ (λ)

r̃ (λ) + α
.

I use this characterization in Section 4 to analyze various dimensions of market liquidity,

such as expected prices, average trade sizes, intermediation markups, and welfare.

3.4 Equilibrium trading volume

Let GV , defined as

GV (θ, λ) =

M∫
0

∞∫
−∞

m (λ, λ′) |q [(θ, λ) , (θ′, λ′)]| gλ′ (θ′) dθ′dΨ(λ′),

denote individual instantaneous expected gross trading volume conditional on inventory level

and speed type. Similarly, one can define (unsigned) net trading volume, NV , as

NV (θ, λ) =

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′) q [(θ, λ) , (θ′, λ′)] gλ′ (θ
′) dθ′dΨ(λ′)

∣∣∣∣∣∣ .
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In a frictionless market, the gross and the net trading volume would coincide because the

investor would trade at a single price against the entire market to satisfy her fundamental

trading need perfectly. In the OTC market, there is a discrepancy between the gross and the

net volume, reflecting the investor’s incentive to buy from one side of the market and to sell to

the other side in bilateral meetings in order to make profit from price dispersion. I label this

difference between gross and net trading volume as intermediation volume, IV , as it is caused by

the investor’s incentive to profitably provide intermediation to others instead of fundamental

trading. Consequently, my model belongs to the set of models that generate the customer-

intermediary trading patterns endogenously. Although investors are not assigned exogenous

roles about how they will trade, the level of their equilibrium intermediation volume reveals

their endogenous roles. I map the investors with large intermediation volume to intermediaries

and the investors with small intermediation volume to customers.

It is true that fast investors engage in higher trading activity due to their higher meeting

rate with counterparties. However, the endogenous determination of trade quantities affects

trading volume on top of that direct effect. To isolate the effect of endogenous trade quantities

on trading volume, I define per meeting counterparts GVpm, NVpm, and IVpm of GV , NV , and

IV , respectively, by dividing them by m (λ,Λ).

Proposition 4. Suppose δ is symmetrically distributed, i.e., f
(
δ − ε

)
= f

(
δ + ε

)
for all ε ∈[

0, δ − δL
]
, m(λ, λ′) = 2λλ

′

Λ
, and λ has a pdf with full support on [0,M ]. Then

(i)

sgn
∂GV (θ, λ)

∂θ
= sgn

∂NV (θ, λ)

∂θ
= sgn θ and sgn

∂IV (θ, λ)

∂θ
= − sgn θ

for all λ ∈ (0,M ].

(ii)

∂GV (θ, λ)

∂λ
,
∂IV (θ, λ)

∂λ
> 0 and

∂NV (θ, λ)

∂λ
≥ 0 (with equality if θ = 0)

for all θ ∈ R.

(iii)

∂GVpm (θ, λ)

∂λ
,
∂IVpm (θ, λ)

∂λ
> 0 and

∂NVpm (θ, λ)

∂λ
≤ 0 (with equality if θ = 0)

for all θ ∈ R.
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Part (i) of Proposition 4 shows how the trading volume depends on inventory level, con-

trolling for speed type. The finding is that gross and net volumes are higher when inventory

gets more extreme (i.e., |θ| gets larger), but intermediation volume gets larger as inventory gets

closer to 0. Consistent with the findings of Afonso and Lagos (2015), Atkeson et al. (2015),

and Hugonnier et al. (2014), investors with moderate marginal valuations tend to specialize in

intermediation. If an investor’s inventory is closer to 0, her marginal valuation is closer to the

average marginal valuation of the market, and hence, her incentive for rebalancing asset posi-

tion is smaller, leading to lower net trading volume for her. On the other hand, her marginal

valuation’s close positioning to the market average makes her a natural counterparty for both

investors on buy and sell sides of the market, increasing intermediation volume for her. In-

vestors with very high positive or negative inventories have low intermediation volume as they

are mostly concerned with correcting their asset position.

Endogenous intermediation models with the {0, 1} restriction on asset positions, such as

Hugonnier et al. (2014) and Shen et al. (2015), show that investors with moderate exogenous

valuations specialize as intermediaries.22 My model complements their results with an ad-

ditional dimension as endogenous asset position appears to be an important determinant of

marginal valuations in my model. When asset position is determined at the margin, having a

moderate marginal valuation means holding the “correct” amount of assets, rather than hav-

ing a moderate exogenous valuation. Indeed, any investor with any exogenous valuation (i.e.,

any δ) can be an intermediary if her asset position is correct (i.e., if she has close-to-0 inven-

tory). In other words, in my setup with rich heterogeneity in holdings, intermediaries might be

“low valuation-low holding,” “moderate valuation-moderate holding,” or “high valuation-high

holding” investors.

Importantly, Proposition 4 provides a device for distinguishing empirically among the models

of intermediation with different underlying heterogeneity. In the existing models with one-

dimensional heterogeneity, investors with moderate asset positions (Afonso and Lagos, 2015),

moderate exogenous valuations (Hugonnier et al., 2014, Chang and Zhang, 2016, and Shen et al.,

2015), or high meeting rates (Neklyudov, 2014 and Farboodi et al., 2015) are intermediaries.

In my model, moderate asset position or moderate exogenous valuation are represented by low

inventory (i.e., |θ| close to 0), while high meeting rate means high λ. Part (i) of Proposition

4 shows that if the main determinant of intermediation patterns is asset position or exogenous

22To be more precise, in these models, the investors with “near-marginal” valuations have the largest inter-
mediation volume, where marginal valuation refers to the level of valuation that makes the investor indifferent
between holding and not holding the asset in the Walrasian benchmark.
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valuation, customers have higher net and gross volumes than intermediaries. On the other

hand, part (ii) of Proposition 4 shows that if the main determinant of intermediation patterns

is meeting rate, intermediaries have higher net and gross volumes than customers. The latter

situation fits better the observed trading patterns in real-world OTC markets. Because of long

intermediation chains, intermediaries’ gross volume exceeds customers’ gross volume in OTC

markets, such as the market for municipal bonds and asset-backed securities, as findings of Li

and Schürhoff (2019) and Hollifield et al. (2017) indicate, respectively. These papers analyze

only the trades that occur for intermediation purposes and thus are silent about the net trading

volume. However, Siriwardane (2018) looks at both net and gross volume in the CDS market

and he finds that not only do intermediaries have higher gross volume than customers, but

they also account for higher net selling and net buying volume. To sum up, Proposition 4

is suggestive of the fact that these empirical findings corroborate the endogenous customer-

intermediary trading patterns that arise from heterogeneity in meeting rates rather than those

that arise from heterogeneity in asset positions or exogenous valuations.

The heterogeneity in speed types creates heterogeneity even in per-matching intermediation

activity, as part (iii) of Proposition 4 demonstrates. Specifically, fast investors intermediate

more due to the comparative advantage channel. Each bilateral negotiation results in a trade

size more in line with the slower counterparty’s trading need and a trade price that contains

a speed premium benefitting the faster counterparty. Since fast investors trade according to

their counterparties’ trading needs this way, they provide more intermediation per matching.

Another interesting result of Proposition 4 is that, controlling for the inventory level, the

net volume increases with speed, while the per-matching net volume decreases. Higher speed

provides an investor with more frequent opportunities to satisfy her fundamental trading need.

Thus, controlling for the inventory level, a faster investor has a larger net volume. On the

other hand, given a meeting, a faster investor focuses more on providing intermediation to

her counterparty and less on satisfying her own fundamental trading need. This is why the

per-matching net volume decreases as speed increases.23

3.5 Discussion

Before turning to assessing the model’s implications, let me briefly discuss some of the assump-

tions of the model. To begin with, the reduced-form utility function adopted in this paper,

which is linear in consumption and concave in asset position, can be viewed as arising from a

23See Subsection 4.2 for more details.
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source-dependent preference specification, in the spirit of Skiadas (2008) and Hugonnier, Pel-

grin, and St-Amour (2013). In particular, in Appendix G, I show that this functional form

arises when investors are risk averse toward the diffusion risk sources (asset payoff and back-

ground risk) but risk neutral toward the jump risk sources (the uncertainty of arrival times of

idiosyncratic shocks and trade opportunities).24 Heterogeneity in the concave-quadratic com-

ponent of this utility can stand in for various reasons, such as heterogeneous beliefs about the

mean dividend rate or exogenous inventory cost, although I micro-found it using the preferred

interpretation of Duffie et al. (2007) based on hedging need.

Because investors are assumed to have quadratic utility, trading rules and prices end up

linear in asset positions and tastes. As a result, the part of investors’ decisions that reflects the

option value of search depends only on the aggregate conditions of the market (i.e., only the

first moment of the equilibrium asset holding distribution). This introduces two limitations.

First, the average marginal valuation of the market and, hence, the mean of the equilibrium

price distribution turn out to be unaffected by search frictions.25 Thus, in this model, liquidity

is priced at the investor pair level but not at the aggregate level. Second, the quadratic util-

ity specification preserves the precautionary motive for holding/selling assets against expected

trading delays but kills the precautionary motive against the variability of trading delays and

the uncertainty over asset position and taste of the particular counterparty one will meet.

Rather than an expected delay in finding a random counterperty in the literal sense, it is best

to interpret the expected trading delays in this model as capturing a broad set of imperfections

in the search process for a suitable counterparty, including the mentioned higher-order uncer-

tainties. Despite this limitation, my approach still provides an improvement over the literature

as the existing fully bilateral models26 feature trade quantities that are totally invariant to the

equilibrium distribution, including its first moment. My model instead shows how aggregate

market conditions become an important determinant of liquidity provision incentives at the

transaction level.

24A partial justification for such preferences might be the competence hypothesis of Heath and Tversky (1991).
They argue and provide experimental support for that people have source-dependent risk aversion, where they
exhibit lower aversion toward risk sources they feel competent about due to experience. Investors’ feeling of
competence in the context of my model may be considered to be higher for the arrival of idiosyncratic shocks
and trade opportunities because these are experienced by investors at the individual level, while innovations of
the diffusion risks come from sources outside their experiential realm, such as firm fundamentals and overall
market sentiments.

25This is reminiscent of the result that, with unrestricted asset positions, the centralized market price is
invariant to search frictions in the partially centralized models like Gârleanu (2009) and the special case of
Lagos and Rocheteau (2009) with log utility.

26See Afonso and Lagos (2015), Hugonnier et al. (2014), and Farboodi et al. (2015), for example.
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Finally, I do not impose any exogenous restrictions on bilaterally negotiated trade quantities.

This can be viewed as moving from one extreme (i.e., the {0, 1} restriction) in the literature to

the other. Both approaches come with advantages and disadvantages. A virtue of the {0, 1}
restriction is that it makes the analysis of intermediation chains very transparent because

all intermediation trades occur as non-split round-trip trades. This provides an ideal model

environment in which all trades can be assigned to an intermediation chain. However, the

observed trade size heterogeneity in many real-world OTC markets makes it difficult to assign

dealers’ trades to particular intermediation chains.27 Moreover, even in the municipal bond

market, where the trading is first and foremost considered to be about blocks of fixed sizes,

intermediation chains contain trade splits.28 In Appendix I, I empirically document that there is

a considerable trade-size dispersion in the corporate bond market. In some other OTC markets

such as the foreign exchange market and the fed funds market, trade-size heterogeneity is even

more prevalent.29 My model with unrestricted trade sizes captures this heterogeneity in an

extreme fashion so that intermediation chains in which an investor trades −q units after having

traded q units become a zero probability event, implying that the second leg of a round-trip

trade is always a split trade.

Another implication of having unrestricted asset positions is that I do not impose the no-

shorting restriction of many other OTC market models. Short positions have very natural and

direct correspondence in the OTC derivatives markets: The writer of a derivative basically

holds a short position in that derivative. Because the asset in my model can be in zero net

supply (A ≥ 0), the model applies to such markets. If we think about the assets in positive net

supply, repo contracts, for example, provide a natural way of shorting Treasury bonds. Similar

to the repo market, Asquith, Au, Covert, and Pathak (2013) study the market for borrowing

corporate bonds and document “that shorting represents 19.1% of all corporate bond trades”

between 2004 and 2007 (p. 155).

27In their empirical paper about the municipal bond market, Li and Schürhoff (2019) determine approximately
12 million chains of an average length of 1.5 using 72.2 million trades in their sample, which means they are
able to assign only 41 percent of the trades to intermediation chains.

28Li and Schürhoff (2019)’s round-trip matching algorithm, which is actually conservative in catching split
trades, finds that 28 percent of the immediate round-trip trades (chains of length 1) contain splits.

29See Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006) for the foreign exchange market and Afonso
and Lagos (2012) for the fed funds market.
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4 The model’s implications

4.1 Average holdings, trade sizes, and prices

One immediate result that can be derived using Proposition 2 and Proposition 3 is the cross-

sectional average asset positions, trade sizes, and prices of investors of type (δ, λ). These results

are summarized in the following corollary:

Corollary 5. The average asset holdings, trade sizes, and prices of investors of type (δ, λ) ∈
[δL, δH ]× supp (dΨ) are given by:

Eφ [a | δ, λ] =
α

α + 2 (r̃ (λ)− r)
A+

2 (r̃ (λ)− r)
α + 2 (r̃ (λ)− r)

[
A+

r̃ (λ)

r̃ (λ) + α

δ − δ
κ

]
, (32)

Eφ [q | δ, λ] =
α

α + 2 (r̃ (λ)− r)

[
2 (r̃ (λ)− r)
m (λ,Λ)

r̃ (λ)

r̃ (λ) + α

δ − δ
κ

]
, (33)

Eφ [P | δ, λ] = PW +
α

α + 2 (r̃ (λ)− r)

[
δ − δ

r̃ (λ) + α

(
3

4
− r̃ (λ)− r
m (λ,Λ)

)]
. (34)

The implication of (32) is intuitive: The average asset position is an increasing function of

taste. The investor with average taste holds the per capita supply on average. It is instructive

to compare (32) with the Walrasian position (9) in order to understand the distortions that

OTC market frictions create on the extensive margin and on the intensive margin. First, note

that if there were not any distortion on the extensive margin, all investors of type (δ, λ) would

hold the target OTC position (20). However, (32) is a weighted average of the target OTC

position and the per capita supply A. In equilibrium, we observe investors who have recently

become of type (δ, λ) but have not had the chance to interact with other investors. On average,

these investors hold A, due to the i.i.d. and non-persistence of taste shocks. The remaining

investors (i.e., those who have had the chance to interact with another investor after becoming

of type (δ, λ)) hold the target OTC position on average.30 As a result, the fraction α
α+2(r̃(λ)−r)

can be broadly considered a measure of the distortion on the extensive margin. When r̃ (λ) is

finite, this fraction is bigger than 0, and this creates the first source of the deviation from the

Walrasian position.

A second deviation of (32) from the Walrasian position is caused by the distortion on the

intensive margin, i.e., even the target OTC position (20) is different from the Walrasian position

30When the equilibrium asset position density of investors of type (δ, λ) is numerically calculated, this result
manifests itself with a bimodal density structure. However, this bimodal structure of the density functions is a
result I can only verify numerically. The characterization of the equilibrium distribution in Proposition 3 allows
for the calculation of moments but not density functions. Due to this technical difficulty, the equilibrium asset
position densities can be calculated numerically only.
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(9). The coefficient of current taste in the target OTC position is 1
κ

r̃(λ)
r̃(λ)+α

instead of 1
κ
. Investors

put less weight on their current taste by scaling down the Walrasian weight as previously shown

by the partially centralized models of Gârleanu (2009) and Lagos and Rocheteau (2009). This

is because investors want to hedge against the risk of being stuck with undesirable positions for

long periods upon the arrival of an idiosyncratic shock. They achieve this specific hedging by

distorting their decisions on the intensive margin. Hence, investors’ average asset positions are

less extreme than the Walrasian position because of the intensive and extensive margin effects.

This analysis also implies that fast investors hold more extreme positions (exhibiting larger

deviation from A) than slow investors on average for two reasons. First, since they are able to

trade often, their target OTC positions are more extreme. Second, they are exposed to lower

distortion on the extensive margin so that their positions are relatively closer to their target.

From Equation (33), we see that the average signed trade size is an increasing function of

δ. The investor with average taste has 0 net volume on average. Investors with higher δs are

net buyers, and investors with lower δs are net sellers on average. Average individual trade

sizes are also less extreme compared to Walrasian individual trade sizes since investors trade

less aggressively by putting lower weight on their current taste.

Equation (34) reveals that the average price is an increasing function of δ.31 The investor

with average taste δ faces the Walrasian price on average. Investors with δ < δ face lower prices

than the Walrasian price, and investors with δ > δ face higher prices than the Walrasian price.

Expected sellers trade at lower prices, and expected buyers trade at higher prices because their

need to buy or sell is reflected in the transaction price through the bargaining process. In other

words, investors with a stronger need to trade —i.e., with high
∣∣δ − δ∣∣—trade at less favorable

terms. This implication is consistent with empirical evidence in Ashcraft and Duffie (2007) in

the fed funds market.

To sum up, in my model, liquidity is priced at the investor pair level but not at the aggre-

gate level. Investors’ average asset positions are less extreme as they put less weight on their

current valuation and more weight on their future expected valuation for the asset, compared

to the frictionless case. In other words, net suppliers of the asset supply less than the Wal-

rasian market, and net demanders of the asset demand less. However, the overall effect on the

aggregate demand is zero, and the mean of the equilibrium price distribution is equal to the

Walrasian price.32 Therefore, my model complements the results of the existing purely decen-

31This is because r̃(λ)−r
m(λ,Λ) is smaller than 1

2 , which follows directly from (17) using the fact that r̃ (λ) is

positive-valued.
32This result is expected to depend on the quadratic specification of u(δ, a). Indeed, the average price is
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tralized markets model by showing that, once portfolio restrictions are eliminated, the pricing

impact of search frictions is low. This result is consistent with the findings of illiquid market

models such as Gârleanu (2009) and transaction cost models such as Constantinides (1986).

These papers show that infrequent trading and high transaction costs have a first-order effect

on investors’ asset positions but only a second-order effect on prices because of the investors’

ability to adjust their asset positions. My model demonstrates that a similar intuition carries

over to decentralized markets when there are no restrictions on holdings.

4.2 Optimal inventory management

To better understand the equilibrium inventory management behavior of investors, I derive

expressions for the expectation and variance of the post-trade inventory for an investor of type

(θ, λ) using the result of Proposition 3. The results are summarized in the following proposition:

Proposition 6. Let varg [θ | λ] represent the cross-sectional variance of inventories among

investors with speed type λ, m(λ, λ′) = 2λλ
′

Λ
, and λ have the pdf ψ (·) with full support on

[0,M ]. For an investor of type (θ, λ), the expectation and variance of the inventory after her

next trade opportunity are

E [θ + q | θ, λ] = θ

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

]
(35)

and

var [θ + q | θ, λ]

= θ2var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

+

M∫
0

λ′

Λ
varg [θ | λ′]

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)2

ψ (λ′) dλ′, (36)

respectively, where

2 (r̃ (λ)− r)
m (λ,Λ)

∈ (0, 1) and var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]
∈ (0, 1)

are decreasing functions of λ.

Equation (35) of Proposition 6 reveals the mean reversion to 0-inventory behavior of in-

vestors. For an investor with inventory θ, the inventory level after her next trade is a random

unaffected by frictions since the marginal utility flow is linear in type and asset position. On the other hand, a
more general intuition is underlined here: The asset demands of different type of investors are affected differently.
Hence, the aggregate demand does not have to be affected significantly.
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variable that can take any real number value depending on the inventory level and the speed

type of her counterparty. However, when we look at the average of all the possible post-trade

inventory levels, we see that it will be closer to 0 than her current inventory θ. How much it

becomes closer to 0 depends on her speed type. Proposition 6 shows that, controlling for the

inventory level, a slow investor becomes closer to 0-inventory than a fast investor would. This

is consistent with the fact that slow investors trade mostly to correct their holding and fast

investors to provide intermediation to their counterparties.

Equation (36) decomposes the variance of the post-trade inventory to a term related to

fundamental trading and another term related to intermediation. The first term, which depends

on the current inventory level, reflects the fact that an investor with higher (positive or negative)

inventory level will face more variability for her post-trade inventory level simply because she

is far away from her target asset position. The second term, which depends on the potential

counterparties’ inventory levels, captures the extent to which the counterparty’s trading need

will contribute to the variance of the post-trade inventory. Consistent with the optimal trading

behavior of investors, Proposition 6 shows that as λ increases, the contribution of the former

term to the variance of the post-trade inventory decreases, while the contribution of the latter

term increases.

4.3 Intermediation markups

In this subsection, I focus on the cross-sectional relationship between investor centrality and in-

termediation markups. My analysis follows closely the markup calculations of empirical papers,

such as Li and Schürhoff (2019), Di Maggio et al. (2017), and Hollifield et al. (2017). In the

calculation of intermediation markup, an essential step is to determine trades for intermediation

purposes. The empirical papers use a round-trip trade matching algorithm to determine which

trades occur for intermediation reason. In a round-trip trade, a dealer buys a certain amount

of the asset from a client. Later, the dealer sells the same amount of assets to another dealer

or to a client or sells to a group of clients and dealers in split amounts. In such a round-trip

trade, the notion of markup Li and Schürhoff (2019) use, for example, is

1
Par

∑
x ParxPDx − PCD

PCD
,

where PCD is the price at which the dealer initially buys the asset and 1
Par

∑
x ParxPDx is the

par-weighted price at which the dealer sells later.

Now I will calculate the counterpart of this markup notion in my model. Although I try to
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follow as closely as possible the markup calculations of empirical papers, some of the mappings

between the model and the real world are not as clean as one would hope, mainly due to the

perfect divisibility of the asset as I discuss in Subsection 3.5.

First, I have to make sure that the initial trade at which an investor buys is a trade for

intermediation purpose. For this, I will calculate the price for an investor with 0 inventory.33

Any trade an investor with 0 inventory conducts will happen to provide intermediation to her

counterparty. Suppose the investor has 0 inventory and speed type λ. And, suppose she meets

a counterparty with speed type λ′ and she buys θ units of the asset from this counterparty.

Proposition 2 implies that the transaction price of this particular trade will be

u2

(
δ, A

)
r

− κθ

4

(
3

r̃(λ)
+

1

r̃(λ′)

)
=
u2(δ, A)

r
− κ θ

r̃ (λ)︸ ︷︷ ︸
post-trade marg. val.

+
κ

4
θ

(
1

r̃ (λ)
− 1

r̃ (λ′)

)
.︸ ︷︷ ︸

speed premium

After this transaction, the investor becomes of type (θ, λ). In the next instant, her net trading

behavior will be to try to revert to the 0-inventory condition. The average price at which this

mean reversion will take place is

E[Pq|θ, λ; η]

E[q|θ, λ; η]
,

where

E[x [(θ, λ) , (θ′′, λ′′)] |θ, λ; η] =

M∫
0

η∫
−η

x [(θ, λ) , (θ′′, λ′′)]
gλ′′ (θ

′′)

Gλ′′ (η)−Gλ′′ (−η)
dθ′′dΨ(λ′′)

for η > 0.34 Then calculations in Appendix E imply that the expected markup an investor with

speed type λ earns by providing intermediation in the amount of θ to another investor with

speed type λ′ is

µ(θ, λ, λ′) = µihr(θ, λ, λ
′) + µsp(θ, λ, λ

′), (37)

33This implies that the total measure of the trades for which I calculate the markup is zero. Alternatively,
one could pick a threshold ζ > 0 and focus on investors with initial inventory of |θ| ≤ ζ so that the measure of
trades in the calculation of markups is strictly positive. For simplicity, I choose ζ = 0 but, by continuity, the
results I derive in this section are robust for small enough ζ.

34One concern about this average price calculation might be that the investor will strive to revert to the 0-
inventory condition in expectation but it may very well be the case that the investor will actually take on more
inventory depending on her future counterparty’s inventory level. This issue arises when the counterparty’s
inventory level is extreme. Thus, I partially alleviate this concern by imposing the restriction |θ′′| ≤ η on the
future counterparty’s inventory.
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where

µihr(θ, λ, λ
′) ≡

κθ
M∫
0

m(λ, λ′′)

2(r̃(λ)− r)

(
r̃(λ′′)

r̃(λ) + r̃(λ′′)

)2
1

r̃(λ)
dΨ(λ′′)

+
κ

θ

M∫
0

m(λ, λ′′)

2(r̃(λ)− r)
r̃(λ)

(r̃(λ) + r̃(λ′′))2varg[θ
′′|λ′′; η]dΨ(λ′′)

 1
u2(δ,A)

r
− κθ

4

(
3

r̃(λ)
+ 1

r̃(λ′)

)
and

µsp(θ, λ, λ
′) ≡

κθ4
 1

r̃(λ′)
− 2

M∫
0

m(λ, λ′′)

2(r̃(λ)− r)

(
r̃(λ′′)

r̃(λ) + r̃(λ′′)

)2
1

r̃(λ)
dΨ(λ′)


+
κ

4θ

M∫
0

m(λ, λ′′)

2(r̃(λ)− r)
r̃(λ)− r̃(λ′′)

(r̃(λ) + r̃(λ′′))2

r̃(λ)

r̃(λ′′)
varg[θ

′′|λ′′; η]dΨ(λ′)

 1
u2(δ,A)

r
− κθ

4

(
3

r̃(λ)
+ 1

r̃(λ′)

) .

As a whole, µ(θ, λ, λ′) can be interpreted as the dealer-specific expected intermediation profit

per unit of asset normalized by the initial buying price. This markup can be decomposed into

two terms: a compensation for inventory-holding risk, µihr(θ, λ, λ
′), as implied by the changes

in the investor’s marginal valuation in response to change in inventory; and a speed premium,

µsp(θ, λ, λ
′), that is earned or paid by the investor. While the compensation for inventory-

holding risk is always positive, the speed premium can be negative or positive; i.e., the investor

can pay or receive speed premium depending on her speed type. One can easily verify that both

the sum of the first terms of µihr(θ, λ, λ
′) and µsp(θ, λ, λ

′) and the sum of the second terms of

µihr(θ, λ, λ
′) and µsp(θ, λ, λ

′) are positive if the normalizing price is positive, which means that,

as expected, the whole intermediation markup will be positive.35 This is in line with the fact

that the investors’ trading behavior is optimal. An investor with 0 inventory decides to buy the

asset only if the price at which she buys is low enough so that she earns profit in expectation

when she resells it later.

The first term of µihr(θ, λ, λ
′) inside the curly brackets, which is positive, reflects that the

investor initially lowers her marginal valuation below the average marginal valuation of the

market as she buys θ units of the asset from the investor with speed type λ′. This marginal

value reduction contributes positively to the markup. It is also increasing in θ, the amount by

35If θ is too large, the normalizing price can be negative. In this case, the expected intermediation profit
is still positive, but the markup calculation is not meaningful. Thus, in the analysis of markups, I focus my
attention on the case in which θ is small enough.
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which the investor increases her inventory. The second term, also positive, captures the expected

price impact of future counterparties stemming from their inventory positions; i.e., selling to a

future counterparty who has a strong need to buy yields extra return due to bargaining. Both

the first and the second terms of µsp(θ, λ, λ
′) inside the curly brackets, which can be non-zero

only if there is heterogeneity in speed types, are due to the fact that there is a speed premium in

negotiated prices (24). The first term, which is increasing in θ, reflects that when the investor

initially provides liquidity in a larger quantity, the speed premium (she receives or pays) tends

to be larger. The second term, which gets more extreme as varg[θ
′′|λ′′; η] increases, reflects the

fact that a higher variability of inventories across future potential counterparties also tends to

increase the expected speed premium (received or paid).

The relationship between centrality and markup will be reflected by the sign of the derivative

of µ(θ, λ, λ′) with respect to λ. The normalizing price in the denominator contributes negatively

to this derivative because, fixing the quantity of liquidity θ, a fast investor provides liquidity at

a more attractive price for her counterparty thanks to her lower aversion toward inventory risk.

The numerator of µsp(θ, λ, λ
′) contributes positively to the derivative as λ increases the investor

receives a larger speed premium (or pays a smaller speed premium). For small values of λ or

if varg[θ
′′|λ′′; η]s are small enough, the numerator of µihr(θ, λ, λ

′) contributes negatively to the

derivative because, fixing θ, a fast investor requires lower compensation for taking inventory-

holding risk. For large values of λ or if varg[θ
′′|λ′′; η]s are large enough, the numerator of

µihr(θ, λ, λ
′) contributes positively because a fast investor keeps herself exposed to a large

amount of inventory risk in the process of unloading her initial inventory, by prioritizing her

future counterparties’ trading needs over her own. Collecting all these effects together, signing

the derivative of markup with respect to λ is not easy. However, the following proposition does

this for special cases of interest.

Proposition 7. Suppose δ is symmetrically distributed, i.e., f
(
δ − ε

)
= f

(
δ + ε

)
for all ε ∈[

0, δ − δL
]
, m(λ, λ′) = 2λλ

′

Λ
, and λ has a pdf with full support support on

[
1
8
,M
]

for M > 1
8
.

Suppose θ > 0 is small enough so that

u2

(
δ, A

)
r

− κθ

4

(
3

r̃(λ)
+

1

r̃(λ′)

)
> 0

for all λ ∈ [1
8
,M ]. Let µ(θ, λ, λ′) denote the expected intermediation markup of an investor with

speed type λ when she provides θ amount of liquidity to an investor with speed type λ′ given by

(37). Then there exist v(θ, λ′) > v(θ, λ′) > 0 such that

(i) ∂µ(θ,λ,λ′)
∂λ

< 0 if var[θ′′|λ′′; η] < v(θ, λ′) for all λ′′ ∈ [1
8
,M ] and
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(ii) ∂µ(θ,λ,λ′)
∂λ

> 0 if var[θ′′|λ′′; η] > v(θ, λ′) for all λ′′ ∈ [1
8
,M ].

Proposition 7 shows that if the equilibrium dispersion of inventories are small enough or

large enough, there is an unambiguous relationship between speed type and markup. This

unambiguous relationship arises when the speed premium effect is strong enough or weak enough

against the stable marginal valuation effect. When the dispersion of inventories is small enough,

the dominant determinant of markup is the first term of µihr(θ, λ, λ
′). Investors with high λ

tend to earn lower markups since they have stable marginal valuations that do not fluctuate

much in response to changes in asset position, reflecting their small inventory-holding cost. In

this case, fast investors earn lower markups. When the dispersion of inventories is large enough,

the dominant determinant of markup is the second term of µsp(θ, λ, λ
′), which stems from the

speed premium in negotiated prices. As can be seen from (24) and (23), for the speed premium

effect to be strong enough, the inventory levels, |θ|, must be large enough; i.e., investors’ need

for immediacy must be large enough. If this is the case, fast investors earn higher markups.

Consequently, my model rationalizes both the centrality premium and the centrality discount

in intermediation markups, which are empirically documented in distinct works.36

The equilibrium dispersion of inventories can be interpreted as a level of illiquidity. The

dispersion of inventories will be small in very liquid or very illiquid markets. Investors would

not need to deviate from their desired position in very liquid markets, and they would not

want to deviate at all in very illiquid markets, and hence, the dispersion of inventories will be

small in such markets. Therefore, the speed premium effect will be dominated, and a negative

relationship between speed type and markup will arise in the cross section of investors. This

implies that, for the positive relationship between speed type and markup to arise, the level of

illiquidity must be moderate. This implication of my model sheds light on the empirical findings

regarding the centrality discount vs. premium documented in different OTC markets. Hollifield

et al. (2017) find that central dealers earn lower markups in the markets for asset-backed

securities, mortgage-backed securities, and collateralized debt obligations, which are considered

to be very liquid markets. On the other hand, a centrality premium is documented for the

municipal bond market (Li and Schürhoff, 2019) and the corporate bond market (Di Maggio

et al., 2017), which are considered to be moderately illiquid markets. To my knowledge, the

relationship between centrality and dealer markup has not been studied for very illiquid markets,

36To my knowledge, there are two other random search models that rationalize the presence of both a discount
and a premium. Neklyudov (2014) reaches this conclusion by varying the customer’s bargaining power with
dealers. Hugonnier et al. (2014) reach it by allowing the bargaining power to vary across buyers and sellers.
In my model, bargaining power is symmetric in all trades, and the presence of both a premium and a discount
follows from the speed premium channel.
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such as the real-estate, business-aircraft, or art markets. In light of the centrality-markup

relationship that arises in the equilibrium of my model, that there must be a centrality discount

in these markets can be regarded as a novel testable implication, which has not been explored

yet.

4.4 Welfare and policy

In this subsection, I investigate whether the fully decentralized market structure with unre-

stricted positions is able to reallocate the assets efficiently. I take the frictions as given and

ask how a benevolent social planner would choose the quantity of assets transferred in bilateral

meetings between investors. The social welfare function, the planner’s current-value Hamilto-

nian, and the social optimality conditions are presented in Appendix E.

Comparison of the planner’s optimality conditions with the equilibrium conditions reveals

the source of inefficiency. Because of a composition externality typical of ex post bargaining

environments, as discussed by Afonso and Lagos (2015), an individual investor of current type

(δ, a, λ) does not internalize fully the social benefit that arises from the fact that having her in

the current state (δ, a, λ) increases the meeting intensity of all other investors with an investor

of type (δ, a, λ). As a result, the planner wants investors to trade as if the matching function is

2m (λ, λ′) instead of m (λ, λ′). Thus, the inventory aversion that the benevolent social planner

would assign to investors with λ solves the functional equation

r̃e (λ) = r +

M∫
0

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
dΨ(λ′). (38)

The quantities chosen by the planner are given by

qe [(δ, a, λ) , (δ′, a′, λ′)] =
− κ
r̃e(λ)

θe(δ, a, λ) + κ
r̃e(λ′)

θe(δ′, a′, λ′)
κ

r̃e(λ)
+ κ

r̃e(λ′)

, (39)

where

θe(δ, a, λ) = a− A− r̃e (λ)

r̃e (λ) + α

δ − δ
κ

. (40)

It is important to note that this constrained inefficiency of the fully decentralized market

equilibrium follows from the interaction of investor heterogeneity and unrestricted asset posi-

tions. The literature has already established that the equilibrium is constrained efficient when

one of these elements is missing. Farboodi et al. (2015) show in their model with {0, 1} holding
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that the equilibrium trade quantities are the same as the planner’s quantities, given the distri-

bution of speed types.37 In other words, whenever it is optimal for the planner to transfer one

indivisible unit of the asset from one investor to the other, investors themselves would also find

it optimal do the same thing, although privately they would attach a different value to doing

so. Afonso and Lagos (2015) show that if there is no investor heterogeneity, the equilibrium

of a fully decentralized market with unrestricted holdings is constrained efficient, even though

there is a composition externality. Because all investors are identical in their exogenous char-

acteristics, their marginal valuations are distorted in exactly the same way, so the negotiated

trade quantities coincide with the planner’s quantities.

The comparison of (39) and (40) with Proposition 2 reveals two types of distortions that the

OTC market frictions create for investors’ decision on the intensive margin. First, controlling

for inventory levels, investors exchange smaller quantities of the asset in equilibrium compared

to the socially efficient quantities, because, in equilibrium, their marginal valuation is more

sensitive to current inventory level. Note that, for this distortion to be present, there must be

heterogeneity in speed types. Second, the calculation of inventory in the equilibrium and in the

planner’s problem are different. More specifically, in the equilibrium problem, investors come

up with smaller inventories to dampen their net trading need. This effect would be present

even without heterogeneity in speed types. The following proposition shows how trade-size

dependent transaction taxes/subsidies help eliminate these two types of distortion.

Proposition 8. Suppose λ has the pdf ψ (·) with full support on [0,M ]. Suppose an investor of

type (δ, a, λ) pays a financial transaction tax in the amount of τ1(λ)(2aq+q2)/2+τ2(λ)
(
δ − δ

)
q

whenever she trades q units of the asset and receives a flow payment T from the government

regardless of her type, where T is equal to the instantaneous per capita tax collected by the

government. Let r̃e (λ) be the solution of the functional equation (38). The tax/subsidy scheme

that decentralizes the constrained efficient allocation is

τ1(λ) =
−κ
r̃e (λ)

r̃e (λ)− r
r̃e (λ) + r

,

τ2(λ) =
r

(r + α) (α + r̃e (λ))

r̃e (λ)− r
r̃e (λ) + r

,

37To be more precise, Farboodi et al. (2015) show that, when the trade quantities are restricted to {0, 1},
the equilibrium trading pattern is socially optimal, but the endogenous investment in meeting rate is not, as
a result of the usual bargaining externality. Thus, the endogenous distribution of speed types in a model with
the {0, 1} restriction does not coincide with the distribution of speed types the planner would choose.
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and

T =

M∫
0

τ(λ)ψ(λ)dλ,

where

τ(λ) ≡ rα

r + α

r̃e (λ)

r̃e (λ) + r

(
r̃e (λ)− r
r̃e (λ) + α

)2
var[δ]

κ
,

which is a strictly increasing function of λ. Under this tax/subsidy scheme, the present value

of net payment that an investor with speed type λ will receive from the government is

1

r
(−τ(λ) + T ) .

Proposition 8 tells us that, in the optimal policy, fast investors cross-subsidize slow investors.

The root cause of inefficiency in this environment is the ex post bargaining, which makes fast

investors capture a larger transaction surplus than their contribution. The optimal policy

corrects this inefficiency by reallocating the numéraire from fast investors to small investors

in a particular way. Again, this shows us the importance of recognizing the correct source

of heterogeneity in shaping the patterns of intermediation. In an alternative model without

heterogeneity in speed types, there would still be social inefficiency because one of the two

intensive margin distortions would be present. However, the optimal policy would contain no

long-term cross-subsidization. Over their lifetimes, all investors would receive an equal amount

of money to the amount they pay.

5 Comparison with the static network approach to OTC

markets

Currently, there are two dominant approaches in modelling OTC markets: the dynamic search

approach, which my paper belongs to; and the static network approach, with papers such as

Malamud and Rostek (2017) and Babus and Kondor (2018). In this section, I will define and

solve for an equilibrium in the static network counterpart of my baseline economic environment.

My search model allows for a meaningful comparison of the two approaches because, unlike other

search models but similarly to network models, it has the following features at the same time:

(i) trade is fully decentralized, (ii) trade quantities are unrestricted, and (iii) intermediation

arises as a result of the heterogeneity in (expected) number of counterparties.
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Environment and equilibrium. Time is discrete with two dates t ∈ {0, 1}. There are I

atomic investors indexed by i ∈ {1, 2, ..., I} who are subjective expected utility maximizers with

CARA felicity functions. The investors’ common coefficient of absolute risk aversion is denoted

by γ. There is one divisible risky asset in fixed per capita supply denoted by A > 0. At t = 0−,

investor i starts with a0
i ∈ R shares of the asset such that

1

I

I∑
i=1

a0
i = A.

This asset is traded over the counter at t = 0+ and each share of the asset pays D ∼ N
(

0, κ
γ

)
at t = 1. In addition to the uncertain payoff from the asset position, an uncertain income

ηi
iid∼N

(
mη,

κ2η
κγ

)
realizes for investor i at t = 1. Importantly, this random income is correlated

with the asset payoff, and the correlation corr(D, ηi) is heterogeneous across investors, and I

let investor i’s taste type to be δi ≡ −κηcorr(D, ηi).
Investors are organized into a trading network, Ψ. A link ij ∈ Ψ implies that, at t = 0+,

investor i and investor j can bilaterally trade at a mutually agreeable quantity and price, which

are determined by the symmetric Nash bargaining protocol. Let Ψi denote the set of investors

linked to investor i and λi ≡ |Ψi| the number of investor i’s links. For each ij ∈ Ψ, let qij denote

the number of assets investor i purchases and Pij the unit price of this transaction. Links in the

network are undirected such that if ij ∈ Ψ, then ji ∈ Ψ also, and ij and ji refer to the same

link. Thus, bilateral feasibility requires that qij = −qji and Pij = Pji. I adopt the convention

qij = 0 for all ij /∈ Ψ.

Let a1
i denote investor i’s post-trade asset position:

a1
i = a0

i +
I∑
j=1

qij.

Then

E [Ui] = E
[
−e−γ(a1iD+ηi−

∑I
j=1 qijPij)

]
(41)

= −e
−γ
(
mη− 1

2

κ2η
κ

)
e−γ[u(δi,a

1
i )−

∑I
j=1 qijPij],

where

u (δ, a) ≡ aδ − 1

2
a2κ. (42)

For all ij ∈ Ψ,

(qij, Pij) = arg max
q,P
{E [Ui]− E [U−ij]}

1
2 {E [Uj]− E [U−ji]}

1
2 , (43)
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s.t.

E [Ui]− E [U−ij] ≥ 0,

E [Uj]− E [U−ji] ≥ 0,

where E [U−ij] is investor i’s expected utility if she decides not to trade with investor j, although

she is linked to him.

Definition 2. An equilibrium is (i) a set of prices {Pij | ij ∈ Ψ}, (ii) a set of trade quantities

{qij | ij ∈ Ψ}, and (iii) a set of bargaining threat points (or outside options)
{
a1
−ij | ij ∈ Ψ

}
,

such that

• Nash bargaining: Given (iii), (i) and (ii) satisfy (43).

• Consistency: Given (ii), (iii) is consistent with the optimal trading behavior:

a1
−ij = a0

i +
∑

k∈Ψi\{j}

qik.

Characterization of the equilibrium. By solving the constrained optimization problem

(43), I obtain the equilibrium trade quantities, qij, as a function of the trading parties’ bar-

gaining threat points and tastes. Summing qik over all counterparties, k, of investor i, except

for one particular counterparty j,

a1
−ij − a0

i =
∑

k∈Ψi\{j}

a1
−ki − (λi − 1) a1

i +
1

κ

(λi − 1) δi −
∑

k∈Ψi\{j}

δk

 . (44)

Equation (44) shows that calculating the equilibrium threat point of investor i when bargaining

with investor j requires using the taste type of all of investor i’s other counterparties as well as

their threat points when bargaining with investor i. In principle, this situation, combined with

intricate local network patterns, might make the equilibrium computation problematic. As a

result, I will employ mean-field approximation at this point.38 I assume:

1

λi − 1

∑
k∈Ψi\{j}

δk ≈
1

I

I∑
k=1

δk ≡ δ

and

1

λi − 1

∑
k∈Ψi\{j}

a1
−ki ≈

1

I

I∑
k=1

a1
k = A

38This approximation is commonly used in network models in natural sciences. For instance, see Gao, Barzel,
and Barabási (2016). To my knowledge, Su (2018) has the first application of this in the finance field.
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for all i ∈ {1, 2, ..., I}, where the last equality holds due to market clearing. What is imposed

economically by this approximation is that when two investors bargain over the terms of trade,

the characteristics of their other counterparties do not matter. What matters is only the number

of counterparties they have.

There are two reasons why I adopt this approximation. First, in cases where the equilibrium

computation issues arise due to intricate local network patterns, network researchers resort to

similar “tricks.”39 Second, this approximation is actually in the spirit of Law of Large Numbers,

which could be applied exactly in search models. Thus, applying this approximation method

will increase the comparability of this network model and the original search model I solve.

Applying the mean-field approximation to (44) and rearranging,

a1
−ij =

1

λi
a0
i +

λi − 1

λi

[
A− qij −

δ − δi
κ

]
. (45)

Equation (45) gives us a1
−ij as a function of a0

i , ρi, qij, and λi. Importantly, qij is a determinant

of a1
−ij, which reveals that the investor tries to coordinate simultaneously all her trades with all

counterparties. If the investor purchases a high quantity of the asset from investor j, she will

reduce the quantity she purchases from her other counterparties, and vice versa. In addition,

λi has the role of determining the relative weight of initial endowment a0
i . When the investor

has a larger number of counterparties, she has the opportunity of unloading a larger fraction of

her initial endowment to others, and hence, the weight, 1/λi, of the initial endowment in a1
−ij

gets smaller.

The following proposition states the equilibrium terms of trade.

Proposition 9. Let

θi = a0
i − A−

δi − δ
κ

(46)

denote the “inventory” of investor i, stemming from her initial endowment and taste. In equi-

librium with mean-field approximation, for all ij ∈ Ψ, individual trade sizes and transaction

prices are given by

qij =
− κ
λi
θi + κ

λj
θj

κ
λi

+ κ
λj

(47)

and

Pij = u2

(
δ, A

)
− κ θi + θj

λi + λj
. (48)

39In Jackson and Yariv (2007) and Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2009), agents make
decisions before knowing the identity of their counterparties. In Kelly, Lustig, and Van Nieuwerburgh (2013),
the dispersion in a firm’s customer set is approximated by the dispersion of the entire customer population.
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To understand the differences in investors’ trading behavior in the dynamic search model

and the static network model, one can directly compare Proposition 9 with Proposition 2.

Comparing Equation (46) with (21) implies that the number of counterparties is a determinant

of inventory only in the dynamic search model. Indeed, the reason why investors scale down

the coefficient of taste in calculation of inventories in the dynamic search model is that they

prefer their asset positions to partially hedge them against future idiosyncratic shocks, too.

As having higher number of counterparties makes investors less afraid of future idiosyncratic

shock, the number of counterparties becomes a determinant of inventory. Since there are no

future idiosyncratic shocks in the static environment of the network model, initial endowment

and taste type are the only determinants of inventory.

Comparing (47) with (23) implies that the reciprocal of the number of counterparties has the

role of determining the weight of an investor’s inventory in the trade quantity in both models.

In the static network model, the advantage of a fast investor in liquidity provision is being able

to unload any unwanted asset-position portion from a trade to a larger number of counterparties

in the cross section, while the advantage in the dynamic search model is being able to unload

any unwanted asset-position portion from a trade to a larger number of counterparties (in the

sense of first-order stochastic dominance) over a fixed period of time.

Finally, comparing (48) with (24) reveals that there is no “connectedness” premium in the

network model. The root cause of this difference is, again, the static vs. dynamic nature

of the two models. Since the network model is static, there is no concept of option value of

continuing search, and hence, there does not arise a sensitivity differential across investors’

marginal valuations due to the different number counterparties they have. As is explained in

greater detail in Appendix F, the bargaining parties contribute equally to the trade surplus

and then split it equally by taking the threat points as given. Because there is no discrepancy

between the contributed and captured shares of surplus, the transaction price becomes equal to

the effective post-trade marginal valuation when the price is written as a function of inventories

defined according to the initial endowment. Thus, the speed premium term of (24) that appears

in the search model does not appear in (48) of the network model.

6 Conclusion

OTC markets played a significant role in the 2007-2008 financial crisis, as derivative securities,

collateralized debt obligations, repurchase agreements, and many other assets are traded OTC.

Accordingly, understanding the functioning of these markets, detecting potential inefficiencies,
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and proposing regulatory action have become a focus of attention for economists and policy

makers. This paper contributes to a fast-growing body of literature on OTC markets by pre-

senting a search-and-bargaining model à la Duffie et al. (2005). I complement this literature by

considering investors who can differ in their meeting rates, time-varying tastes, and asset posi-

tions. By means of its multi-dimensional rich heterogeneity, my model allows for a formulation

of precise empirical predictions, which can distinguish different dimensions of heterogeneity.

Based on this formulation, I argue that the heterogeneity in meeting rates is the main driver

of intermediation patterns. I show that investors with higher meeting rates (i.e., fast investors)

arise endogenously as the main intermediation providers. Then, as observed in the data, they

trade in larger quantities and hold more extreme inventories. They can earn higher or lower

markups than slow investors, depending on the equilibrium dispersion of inventories. Both

are observed in real-world OTC markets. The model’s insight into the meeting rate hetero-

geneity being the main driver of intermediation patterns is also important for potential policy

implications. I provide a financial transaction tax/subsidy scheme that corrects the inefficiency

created by OTC frictions. Importantly, as a result of this scheme, fast investors cross-subsidize

slow investors. In an equilibrium in which intermediation arises only from other sources of

heterogeneity, this cross-subsidization would not be arising.

This paper leads to several avenues for future research. First, the stationary equilibrium in

this paper is silent about the role of intermediation in times of financial distress. Thus, I plan

to study the transitional dynamics of intermediation following an aggregate liquidity shock.

The dynamics of the price and supply of liquidity along the recovery path could inform the

debate on optimal policy during crises. Second, this paper presents a single-asset model. I plan

to analyze how intermediation patterns change in a setup with multiple assets. This analysis

could lead to interesting dynamics of liquidity across markets, as maintaining high inventory in

one market would limit an intermediary’s ability to provide liquidity in other markets. Finally,

this paper is totally agnostic about why we observe an ex ante heterogeneity in meeting rates.

Given that this speed heterogeneity is an important source of intermediation, studying a model

with endogenous meeting rates would be a worthwhile way to explore whether the size of the

intermediary sector is socially efficient.
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Ana Babus and Péter Kondor. Trading and information diffusion in over-the-counter markets.

Econometrica, 86(5):1727–1769, 2018. 7, 41

Morten L. Bech and Enghin Atalay. The topology of federal funds market. Physica A, 389(22):

5223–5246, 2010. 2

Bruno Biais. Price formation and equilibrium liquidity in fragmented and centralized markets.

Journal of Finance, 48(1):157–185, 1993. 119

Ronald N. Bracewell. The Fourier Transform and Its Applications. McGraw Hill, New York,

NY, 2000. 24, 85
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Appendix A. Optimization

This appendix covers the stochastic control problem that an individual investor with the

reduced-form quasi-linear utility faces in the OTC market equilibrium of Section 2. I define the

investor’s problem and provide HJB equations and an optimality verification argument along

the lines of Duffie et al. (2005) and Vayanos and Weill (2008). I conclude by establishing the

existence and uniqueness of the solution to the individual investor’s problem taking as given

the joint distribution of taste types, asset positions, and speed types.

A.1 Investor’s problem

I fix a probability space (Ω,F ,Pr) and a filtration {Ft, t ≥ 0} of sub-σ-algebras satisfying the

usual conditions (see Protter, 2004). An investor can be of either one of the three-dimensional

continuum of types denoted by (δ, a, λ) ∈ T ≡ [δL, δH ]×R×[0,M ]. The arrival times of changes

of taste types and of potential counterparties are counted by two independent adapted counting

processes Nα and Nλ with constant intensities α and m (λ,Λ), respectively. The details of these

counting processes that govern idiosyncratic shocks and trade are as described in Section 2.

An investor with initial type (δ0, a0, λ) and initial wealth W0 chooses a feasible trading

strategy {at}t∈[0,∞) and an adapted consumption and wealth process {(ct,Wt)}t∈[0,∞) subject to

the following feasibility conditions. First, the type (δt, at, λ) must remain constant during the

inter- and intra-arrival times of the counting processes Nα and Nλ. Second, when the investor

is in state (δ, a, λ) ∈ T and when the process Nα
t jumps, the investor transitions into the

state (δ′, a, λ) ∈ T , where the investor’s new taste type, δ′, is drawn according to the pdf f

on [δL, δH ]. Third, when the investor is in state (δ, a, λ) ∈ T and when the process Nλ
t jumps,

the investor transitions into the state (δ, a + qt [(δ, a, λ) , (δ′, a′, λ′)] , λ) ∈ T , where the trade

quantity, qt [(δ, a, λ) , (δ′, a′, λ′)], is bargained with the counterparty of type (δ′, a′, λ′) who is

drawn according to the stationary joint cdf, Φ(δ′, a′, λ′), of taste types, asset positions, and

speed types, with the likelihood, m(λ,λ′)
m(λ,Λ)

, that depends on her speed type λ′.40

First, I start by describing an investor’s continuation utility at time t from remaining lifetime

consumption. For a particular investor, the arguments of this continuation utility function are,

naturally, the investor’s current wealth Wt, her current type (δt, at, λ), and time t. More

precisely, the continuation utility is

40Since investors have quasi-linear preferences, terms of trade are independent of wealth levels, as will be clear
shortly.
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U (Wt, δt, at, λ, t) = sup
C,a

Et

∞∫
0

e−rsdCt+s (A.1)

s.t.

dWt = rWtdt− dCt + u (δt, at) dt− Pt [(δt−, at−, λ) , (δ′t, a
′
t, λ
′
t)] dat, (A.2)

dat =

{
qt [(δt−, at−, λ) , (δ′t, a

′
t, λ
′
t)] if there is contact with investor (δ′t, a

′
t, λ
′
t)

0 if no contact,

where

{qt [(δ, a, λ) , (δ′, a′, λ′)] , Pt [(δ, a, λ) , (δ′, a′, λ′)]} =

arg max
q,P

{
[U(W − qP, δ, a+ q, λ, t)− U(W, δ, a, λ, t)]

1
2

[U(W ′ + qP, δ′, a′ − q, λ′, t)− U(W ′, δ′, a′, λ′, t)]
1
2

}
,

s.t.

U(W − qP, δ, a+ q, λ, t) ≥ U(W, δ, a, λ, t),

U(W ′ + qP, δ′, a′ − q, λ′, t) ≥ U(W ′, δ′, a′, λ′, t).

where Et denotes expectation conditional on the information at time t, {Ct}t∈[0,∞) is a cumula-

tive consumption process, {(ρt, at, λ)}t∈[0,∞) is a T -valued type process induced by the feasible

trading strategy {at}t∈[0,∞), and the benefit u (ρt, at) has a similar holding benefit/cost interpre-

tation as in Duffie et al. (2005). The difference is that I assume the holding benefit is a concave

quadratic function of asset position while it is linear in Duffie et al. (2005). (A.1) and (A.2) im-

ply that the continuation utility is linear in wealth, i.e., U (Wt, δt, at, λ, t) = Wt + J (δt, at, λ, t),

where

J (δt, at, λ, t) = sup
a

Et

∞∫
t

e−r(s−t)u (δs, as) ds− e−r(s−t)Ps [(δs−, as−, λ) , (δ′s, a
′
s, λ
′
s)] das

 .

(A.3)

Finally, to guarantee the global optimality of the trading strategy induced by (A.3), I impose

the transversality condition

lim
t→∞

e−rtJ (δ, a, λ, t) = 0 (A.4a)
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for all (δ, a, λ) ∈ T and the condition

E

 T∫
0

(
e−rsJ (δs, as, λ, s)

)2
ds

 <∞ (A.4b)

for any T > 0, for any initial investor type (δ0, a0, λ), any feasible trading strategy {at}t∈[0,∞),

and the associated type process {(δt, at, λ)}t∈[0,∞). These conditions will allow me to complete

the usual verification argument for stochastic control.

A.2 HJB equations

In order to derive J , q, and P , I focus on a particular investor and a particular time t. I let

τα be an exponential random variable that represents the next (stopping) time at which that

investor’s taste type changes, let τλ be an exponential random variable that represents the next

(stopping) time at which another investor is met, and let τ = min {τα, τλ}. Then,

J (δt, at, λ, t) = Et

 τ∫
t

e−r(s−t)u (δs, as) ds+ e−r(τα−t)I{τα=τ}

δH∫
δL

J(δ′, at, λ)f(δ′)dδ′

+ e−r(τλ−t)I{τλ=τ}

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

m (λ,Λ)
{J(δt, at + qτλ [(δ, a, λ) , (δ′, a′, λ′)] , λ)

−qτλ [(δt, at, λ) , (δ′, a′, λ′)]Pτλ [(δt, at, λ) , (δ′, a′, λ′)]}Φ(dδ′, da′, dλ′)] . (A.5)

Differentiating the both sides of (A.5) with respect to time argument t and suppressing it,

I arrive at

.

J (δ, a, λ) = rJ(δ, a, λ)− u(δ, a)− α
δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

−
M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {J(δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)− J(δ, a, λ)

−q [(δ, a, λ) , (δ′, a′, λ′)]P [(δ, a, λ) , (δ′, a′, λ′)]}Φ(dδ′, da′, dλ′). (A.6)

In steady state,
.

J (δ, a, λ) = 0 and hence (A.6) implies the HJB equation (1) of Section 3.

After using the Nash bargaining procedure for the determination of q [(δ, a, λ) , (δ′, a′, λ′)] and
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P [(δ, a, λ) , (δ′, a′, λ′)], I get the auxiliary HJB equation (13) of Subsection 3.3:

rJ(δ, a, λ) = δa− 1

2
κa2 + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
1

2

[
max
q
{J(δ, a+ q, λ)− J(δ, a, λ)

+J(δ′, a′ − q, λ′)− J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′). (A.7)

A.3 Optimality verification

Now, to verify the sufficiency of the HJB equation (1) for individual optimality, I consider any

initial investor type (δ0, a0, λ), any feasible trading strategy {at}t∈[0,∞), and the associated type

process {(δt, at, λ)}t∈[0,∞). I assume, without loss of generality, the wealth process is Wt = 0 for

all t ≥ 0. Therefore, the resulting cumulative consumption process {Ca
t }t∈[0,∞) satisfies

dCa
t = u (δt, at) dt− Pt [(δt−, at−, λ) , (δ′t, a

′
t, λ
′
t)] dat. (A.8)

At any time T > 0,

E

 T∫
0

e−rsdCa
s + e−rTJ(δT , aT , λ)


= E

 T∫
0

e−rsdCa
s + J(δ0, a0, λ) +

T∫
0

d
(
e−rsJ(δs, as, λ)

)
= E

J(δ0, a0, λ) +

T∫
0

e−rsdCa
s +

T∫
0

(
−re−rsJ(δs, as, λ)

)
ds+

T∫
0

e−rsd (J(δs, as, λ))


= E

J(δ0, a0, λ) +

T∫
0

e−rs (dCa
s − rJ(δs, as, λ) + (J(δs, as, λ)− J(δs−, as, λ)) dNα

s

+ (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)− J(δs, as, λ)) dNλ

s

)]
, (A.9)

where Nα
s and Nλ

s are counting processes that govern the arrivals of idiosyncratic shocks and

of potential counterparties, respectively. Note that any transfer of the numéraire at an arrival

time of Nλ is reflected by Ca according to (A.8).

The next step is to calculate the stochastic integrals containing the counting processes. The
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condition (A.4b) implies that,

T∫
0

|J(δs, as, λ)− J(δs−, as, λ)| ds ≤ sup
s,s′∈[0,T ]

|J(δs′ , as′ , λ)− J(δs, as, λ)|T <∞.

Corollary C4 of Brémaud (1981, p. 235), in turn, implies that

E

 T∫
0

e−rs (J(δs, as, λ)− J(δs−, as, λ)) dNα
s


= E

 T∫
0

e−rsα


δH∫
δL

(J(δs, as, λ)− J(δs−, as, λ)) f(δ′s)dδ
′
s

 ds

 .

Similarly,

E

 T∫
0

e−rs (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)− J(δs, as, λ)) dNλ

s


= E

 T∫
0

e−rs


M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′s) (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)

−J(δs, as, λ)) Φ(dδ′s, da
′
s, dλ

′
s)} ds] .

Using these equalities in (A.9),

E

 T∫
0

e−rsdCa
s + e−rTJ(δT , aT , λ)


= E

J(δ0, a0, λ) +

T∫
0

e−rsdCa
s +

T∫
0

e−rs

αδH∫
δL

(J(δs, as, λ)− J(δs−, as, λ)) f(δ′s)dδ
′
s

− rJ(δs, as, λ) +

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′s) (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)

−J(δs, as, λ)) Φ(dδ′s, da
′
s, dλ

′
s)) ds]

≤ E

J(δ0, a0, λ) + sup
C


T∫
0

e−rsdCs +

T∫
0

e−rs

αδH∫
δL

(J(δs, as, λ)− J(δs−, as, λ)) f(δ′s)dδ
′
s

− rJ(δs, as, λ) +

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′s) (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)

−J(δs, as, λ)) Φ(dδ′s, da
′
s, dλ

′
s)) ds}] = J(δ0, a0, λ).
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This means that, at any future meeting date τn, n ∈ N,

J(δ0, a0, λ) ≥ E

τn∫
0

e−rtdCa
t

+ E
[
e−rτ

n

J(δτn , aτn , λ)
]

.

Then, letting n→∞ and using the transversality condition (A.4a), I find J(δ0, a0, λ) ≥ U (Ca).

Since J(δ0, a0, λ) = U (C∗), where C∗ is the consumption process associated with the candidate

equilibrium strategy, I have established optimality.

A.4 Existence and uniqueness

In Appendix B, I will construct a solution to the HJB equation (A.7) for J(δ, a, λ). Before

doing that, here I establish the fact that it admits a unique real solution, taking as given the

equilibrium joint cdf Φ(δ, a, λ) of taste types, asset positions, and speed types. The argument

does not use standard fixed point tools for dynamic programming unlike the earlier models

with unrestricted asset positions, such as Gârleanu (2009) and Lagos and Rocheteau (2009),

because the return function, u, is unbounded below in the support of the equilibrium asset

distribution, which is the entire real line. Thus, I prove the existence and uniqueness without

relying on the boundedness of the return function along feasible paths. In particular, I follow

the metric approach of Rincón-Zapatero and Rodŕıguez-Palmero (2003) and Martins-da Rocha

and Vailakis (2010) and show that the operator defined by (A.7) is a contraction. Then, the

contraction mapping theorem implies that it has a unique fixed point.

Let ω− ≤ ω+ < ω be three real-valued continuous functions defined on T , such that

ω− (δ, a, λ) =
1

r

ru (δ, a) + αu
(
δ, a
)

r + α
,

ω+ (δ, a, λ) =
1

r

ru (δ, a) +
(
α + 1

2
m (λ,Λ)

)
u
(
δH ,

δH
κ

)
r + α + 1

2
m (λ,Λ)

,

and

ω (δ, a, λ) =
η

r
u

(
δH ,

δH
κ

)
,

where η > 1 is an arbitrarily large real number. Now consider the following metric on C (T ) ≡
{f : T → R |f is continuous, ω− ≤ f ≤ ω+}:

d (f, g) = sup
x∈T

∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
g − ω
ω+ − ω

(x)

)∣∣∣∣ , f, g ∈ C (T ) .

Here, ω− and ω+ functions provide natural lower and upper bounds for the candidate equilib-

rium value function, respectively. The function ω− is calculated assuming the investor cannot
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trade, i.e., m (λ, λ′) = 0. The function ω (which is in fact a constant) is the value of receiving

the highest possible utility flow forever, scaled up by the coefficient η. As will be clear shortly,

choosing η large enough makes the operator, defined by (A.7), a contraction that maps C (T )

into itself. Lastly, ω+ is the value of of receiving the highest possible utility flow forever after

the operator is applied once.

Lemma 4. (C (T ) , d) is a complete metric space.

Proof. That d is a metric is obvious (Stokey and Lucas, 1989, p. 44). It suffices to show that

every Cauchy sequence in C (T ) converges to a function in C (T ). I do it in three steps. First,

given a Cauchy sequence {fn} in C (T ) I find a candidate limiting function f . Second, I show

that {fn} converges to the candidate functions in d metric. Finally, I show that the candidate

function f belongs to C (T ).

1. Given a Cauchy sequence {fn} in C (T ), it holds that d (fn, fm) → 0 as n,m → ∞. Fix

x ∈ T ; then the sequence of real numbers
{

log
(
fn−ω
ω+−ω (x)

)}
satisfies the Cauchy criterion;

and by the completeness of real numbers, it converges to a limit point—call it g (x). The

limiting values define a function g : T → R+. I take our “candidate” limiting function

for {fn} to be f ≡ eg (ω+ − ω) + ω.

2.

d (fn, f) = d (fn, e
g (ω+ − ω) + ω) = sup

x∈T

∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− g (x)

∣∣∣∣
tends to zero as n→∞.

3. I have to show that f is continuous and ω− ≤ f ≤ ω+. To prove that f is continuous, I

must show that for every ε > 0 and every x ∈ T , there exists ζ > 0 such that∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
f − ω
ω+ − ω

(y)

)∣∣∣∣ < ε if ‖x− y‖E < ζ,

where ‖.‖E is the Euclidean sup norm on R3. Let ε and x be given. Choose k so that

d (f, fk) < ε/3; since fn → f , such a choice possible. Then choose ζ so that

‖x− y‖E < ζ implies

∣∣∣∣log

(
fk − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(y)

)∣∣∣∣ < ε/3.
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Since fk is continuous, such a choice is possible. Then,∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
f − ω
ω+ − ω

(y)

)∣∣∣∣ ≤ ∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(x)

)∣∣∣∣
+

∣∣∣∣log

(
fk − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(y)

)∣∣∣∣+

∣∣∣∣log

(
fk − ω
ω+ − ω

(y)

)
− log

(
f − ω
ω+ − ω

(y)

)∣∣∣∣
≤ 2d (f, fk) +

∣∣∣∣log

(
fk − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(y)

)∣∣∣∣ < ε,

which implies that f is continuous. Lastly, ω− ≤ f ≤ ω+ follows from the fact that ≤ is

a continuous relation.

Lemma 5. Suppose J ∈ C (T ). Let S : T 2 × R→ R and S∗ : T 2 → R be

S [(δ, a, λ), (δ′, a′, λ′), q] = J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

and

S∗ [(δ, a, λ), (δ′, a′, λ′)] = max
q∈R

S [(δ, a, λ), (δ′, a′, λ′), q] ,

respectively. Then, S∗ is continuous.

Proof. This result is a direct application of Theorem 3.1 of Montes-de Oca and Lemus-Rodŕıguez

(2012), which is a generalization of Berge’s theorem that permits to deal with optimization prob-

lems with unbounded objective function and noncompact restrictions set. The theorem states

that if the restrictions set is a closed-valued and continuous correspondence and if the objective

function of the minimization problem is continuous, inf-compact, and satisfies the Moment

Condition (MC), then the minimized values define a continuous function on the parameter

space (Montes-de Oca and Lemus-Rodŕıguez, 2012, p. 272).

Our restrictions correspondence takes the value of R for all [(δ, a, λ), (δ′, a′, λ′)] ∈ T 2, which

means it is closed-valued and continuous. Then, when I show that −S [(δ, a, λ), (δ′, a′, λ′), q] is

continuous, satisfies the MC, and is inf-compact, the proof will be complete. Continuity follows

from the assumption that J ∈ C (T ). To see the MC holds, let Tn = [δL, δH ]× [−n, n]× [0,M ]

and consider the sequence of compact sets be {Kn} = {T 2
n × [−n, n]} such that Kn ↑ T 2 × R.

Since J ∈ C (T ),

−ω+(δ, a+q, λ)−ω+(δ′, a′−q, λ′) ≤ −S [(δ, a, λ), (δ′, a′, λ′), q] ≤ −ω−(δ, a+q, λ)−ω−(δ′, a′−q, λ′).
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Thus,

inf
[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn

− ω+(δ, a+ q, λ)− ω+(δ′, a′ − q, λ′)

≤ inf
[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn

− S [(δ, a, λ), (δ′, a′, λ′), q]

≤ inf
[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn

− ω−(δ, a+ q, λ)− ω−(δ′, a′ − q, λ′).

Since

lim
n→∞

(
inf

[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn
− ω+(δ, a+ q, λ)− ω+(δ′, a′ − q, λ′)

)
=∞

and

lim
n→∞

(
inf

[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn
− ω−(δ, a+ q, λ)− ω−(δ′, a′ − q, λ′)

)
=∞,

then, by Squeeze Theorem,

lim
n→∞

(
inf

[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn
− S [(δ, a, λ), (δ′, a′, λ′), q]

)
=∞,

which means the MC holds. Finally, to show that −S is inf-compact, I must show that for every

[(δ, a, λ), (δ′, a′, λ′)] ∈ T 2 and c ∈ R, the set {q ∈ R | S [(δ, a, λ), (δ′, a′, λ′), q] ≥ c} is compact

(Montes-de Oca and Lemus-Rodŕıguez, 2012, p. 271). It suffices to show that the set is bounded

and closed. Note that J ∈ C (T ) implies

{q ∈ R | S [(δ, a, λ), (δ′, a′, λ′), q] ≥ c} ⊂ {q ∈ R | ω+(δ, a+ q, λ) + ω+(δ′, a′ − q, λ′) ≥ c} .

As ω+(δ, a + q, λ) + ω+(δ′, a′ − q, λ′) is a concave-quadratic function of q, the latter set is

bounded, which implies that the former is bounded as well. To see closedness, let {qn} ⊂
{q ∈ R | S [(δ, a, λ), (δ′, a′, λ′), q] ≥ c} and qn → q∗. Then, because S [(δ, a, λ), (δ′, a′, λ′), qn] ≥ c

and the weak inequality is preserved under the limit, we have S [(δ, a, λ), (δ′, a′, λ′), q∗] ≥ c,

which completes the proof.

Lemma 6. Suppose Φ is a joint cdf such that

M∫
0

∞∫
−∞

δH∫
δL

f (x) dΦ (x) <∞ (A.10)

for any f ∈ C (T ). Then, in the set C (T ), there exists a unique solution to (13) (or A.7).
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Proof. Rewrite (13) as

J(δ, a, λ) =
1

r + α + 1
2
m (λ,Λ)

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′)) . (A.11)

The RHS of (A.11) defines a mapping O:

(OJ) (δ, a, λ) =
1

r + α + 1
2
m (λ,Λ)

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′)) .

I want to show that there exists a unique solution J to OJ = J . I do so in two steps. In

the first step, I establish that O : C (T ) → C (T ). In the second step, I show that O is a

contraction. Then, it follows from the contraction mapping theorem that O has a unique fixed

point J ∈ C (T ).

1. Suppose J ∈ C (T ), then by Lemma 5 OJ is continuous. Next, I show ω− ≤ OJ ≤ ω+.

For ω− ≤ OJ , it suffices to show that

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′ − (r + α)ω− (δ, a, λ)

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−ω− (δ, a, λ)− J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′) ≥ 0

for all (δ, a, λ) ∈ T . The expression in the last two lines is weakly larger than zero by the
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choice of q = 0. And,

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′ − (r + α)ω− (δ, a, λ)

≥ u (δ, a) + α

δH∫
δL

ω−(δ′, a, λ)f(δ′)dδ′ − (r + α)ω− (δ, a, λ) = 0,

which implies ω− ≤ OJ . For OJ ≤ ω+, it suffices to show that

u (δ, a)− u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′ − αη
r
u

(
δH ,

δH
κ

)

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−η
r
u

(
δH ,

δH
κ

)
− J(δ′, a′, λ′)

}]
Φ(dδ′, da′, dλ′) ≤ 0

for all (δ, a, λ) ∈ T . That the first line is weakly smaller than zero is obvious. And,

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−η
r
u

(
δH ,

δH
κ

)
− J(δ′, a′, λ′)

}]
Φ(dδ′, da′, dλ′)

≤
M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{ω+(δ, a+ q, λ) + ω+(δ′, a′ − q, λ′)

−η
r
u

(
δH ,

δH
κ

)
− ω−(δ′, a′, λ′)

}]
Φ(dδ′, da′, dλ′)

Thanks to (A.10), it is possible to choose η sufficiently large so that the RHS of the

previous inequality is weakly smaller than zero, which implies OJ ≤ ω+. Hence, O :

C (T )→ C (T ).

2. I next show that O is a contraction mapping. The main property of the mapping O, I

use in this proof is convexity, i.e., for ζ ∈ [0, 1],

O
(
ζJA + (1− ζ)JB

)
≤ ζOJA + (1− ζ)OJB,

thanks to the convexity of the max operator. Moreover, I make use of a version of

monotonicity. It is easy to see that O does not have to be monotone because of the
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“−J(δ′, a′, λ′)” term at the end of its definition. As a result, I use the monotonicity of

(Of) (δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) f(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α + 1
2
m (λ,Λ)

,

which is the property that JA ≤ JB implies

(
OJA

)
(δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) JA(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α + 1
2
m (λ,Λ)

≤
(
OJB

)
(δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) JB(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α + 1
2
m (λ,Λ)

.

Following the same steps as in Rincón-Zapatero and Rodŕıguez-Palmero (2003, p. 1553),

JA ≤ e−d(J
A,JB)JB +

(
1− e−d(JA,JB)

)
ω (A.12)

for all JA, JB ∈ C (T ). Using the monotonicity and convexity,

(
OJA

)
(δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) JA(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α + 1
2
m (λ,Λ)

≤ O
(
e−d(J

A,JB)JB +
(

1− e−d(JA,JB)
)
ω
)

(δ, a, λ) +

(
1− e−d(JA,JB)

)
1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

ω

+

e−d(J
A,JB)

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) JB(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α + 1
2
m (λ,Λ)

≤ e−d(J
A,JB)OJB(δ, a, λ) +

(
1− e−d(JA,JB)

)
Oω(δ, a, λ)

+

(
1− e−d(JA,JB)

)
1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

ω

+

e−d(J
A,JB)

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) JB(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α + 1
2
m (λ,Λ)

.

Defining

h(δ, a, λ|JA, JB) ≡

M∫
0

∞∫
−∞

δH∫
δL

m(λ,λ′)
m(λ,Λ)

[
e−d(J

A,JB)JB(δ′, a′, λ′)− JA(δ′, a′, λ′)
]

Φ(dδ′, da′, dλ′)

e−d(JA,JB) − 1

64



and suppressing (δ, a, λ)s,

OJA ≤ e−d(J
A,JB)OJB +

(
1− e−d(JA,JB)

)
Oω

+
(

1− e−d(JA,JB)
) 1

2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

ω +
(
e−d(J

A,JB) − 1
) 1

2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

h.

Applying (A.12) to the second and the last terms on the RHS,

OJA ≤ e−d(J
A,JB)OJB

+
(

1− e−d(JA,JB)
) [
e−d(OJ

B ,Oω)OJB +
(

1− e−d(OJB ,Oω)
)
ω
]

+
(

1− e−d(JA,JB)
) 1

2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

ω

+
(
e−d(J

A,JB) − 1
) 1

2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

[
e−d(OJ

B ,h)OJB +
(

1− e−d(OJB ,h)
)
ω
]
.

Subtracting ω from both sides and dividing both sides by ω+ − ω,

OJA − ω
ω+ − ω

≥ OJB − ω
ω+ − ω

[
e−d(OJ

B ,Oω) −
1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

e−d(OJ
B ,h)

+
(

1− e−d(OJB ,Oω)
)(

1− e−d(OJB ,Oω) +
1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

e−d(OJ
B ,h)
)]

.

Taking the logarithm of both sides,

log

(
OJA − ω
ω+ − ω

)
≥ log (z) + log

(
OJB − ω
ω+ − ω

)
, (A.13)

where

z = e−d(OJ
B ,Oω) −

1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

e−d(OJ
B ,h)

+
(

1− e−d(OJB ,Oω)
)(

1− e−d(OJB ,Oω) +
1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

e−d(OJ
B ,h)
)
.

Appendix B of Rincón-Zapatero and Rodŕıguez-Palmero (2003, p. 1554) shows that

log (a+ e−x(1− a)) ≥ − (1− a)x. Applying to (A.13),

log

(
OJB − ω
ω+ − ω

)
≤ log

(
OJA − ω
ω+ − ω

)
+

(
1− e−d(OJB ,Oω) +

1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

e−d(OJ
B ,h)
)
d
(
JA, JB

)
.
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Applying the same procedure in reverse establishes

log

(
OJA − ω
ω+ − ω

)
≤ log

(
OJB − ω
ω+ − ω

)
+

(
1− e−d(OJA,Oω) +

1
2
m (λ,Λ)

r + α + 1
2
m (λ,Λ)

e−d(OJ
A,h′)

)
d
(
JA, JB

)
,

where

h′(δ, a, λ|JA, JB) ≡

M∫
0

∞∫
−∞

δH∫
δL

m(λ,λ′)
m(λ,Λ)

[
e−d(J

A,JB)JA(δ′, a′, λ′)− JB(δ′, a′, λ′)
]

Φ(dδ′, da′, dλ′)

e−d(JA,JB) − 1
.

Thus, to show that O is a contraction, I have to establish that

sup
JA,JB∈C(T )

max

{
1− e−d(OJB ,Oω) +

1
2
m (M,Λ)

r + α + 1
2
m (M,Λ)

e−d(OJ
B ,h),

1− e−d(OJA,Oω) +
1
2
m (M,Λ)

r + α + 1
2
m (M,Λ)

e−d(OJ
A,h′)

}
< 1. (A.14)

One can easily verify that

lim
η→∞

d (J,Oω) = log

(
r + α + 1

2
m (M,Λ)

r

)
,

lim
η→∞

d
(
J, h

(
JA, JB

))
=∞,

and

lim
η→∞

d
(
J, h′

(
JA, JB

))
=∞

for any J, JA, JB ∈ C (T ). Thus, the LHS of (A.14) approaches
α+ 1

2
m(M,Λ)

r+α+ 1
2
m(M,Λ)

as η → ∞.

Thus, it is possible to choose η sufficiently large so that the LHS of (A.14) is strictly

smaller than 1, which implies that O is a contraction mapping on the complete metric

space (C (T ) , d), as is proven in Lemma 4. Hence, it follows from the contraction mapping

theorem that O has a unique fixed point J ∈ C (T ) (Theorem 3.2 of Stokey and Lucas,

1989, p. 50).
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Appendix B. Proofs

B.0 Existence and uniqueness of the equilibrium

Part of the statements in Theorem 1 concern the existence and uniqueness of the equilibrium. I

will now describe step by step how those results obtain and in what sense. Definition 1 lists J ,

q, P , and Φ as the equilibrium objects. The methods that I use to characterize the equilibrium

allow for an analysis of the moments of the equilibrium distribution Φ, but do not allow for

an analysis of the function Φ itself. Thus, I establish that the functions J , q, and P , and all

moments of Φ exist and are unique.

1. Lemma 6 shows that J exists and is uniquely determined given Φ.

2. In the proof of Theorem 1, it is established that the unique J given Φ is a strictly concave

function. As a result, q is determined uniquely given this strictly concave J . In particular,

the equations (B.3a) and (B.5), combined with the unique positive solution of (17) (see

Lemma 1) characterize q. Similarly, P is determined uniquely by (B.3b), (B.3a) and

(B.5).

3. Steps 1-2 imply that J , q, and P are uniquely determined given Φ. Now, the key step is

to show that J , q, P , and Φ are jointly uniquely determined. Thanks to the assumptions

(i) that marginal utility is linear and additively separable in δ and a and (ii) that the

distribution of δs and the distribution of λs are independent, the core fixed-point problem

is reduced to two linear functional equations connecting the first moment of Φ conditional

on λ and the average marginal valuation conditional on λ: Equations (B.8) and (B.9).

The proof of Theorem 1 shows that there exists a unique solution to this fixed-point

problem. As a result, J , q, P , and the first moment of Φ are jointly uniquely determined.

4. Proposition 3 provides a recursive characterization, which pins down the higher order

moments of Φ uniquely.

B.1 Proof of Theorem 1 and Lemma 3

Rewrite the auxiliary HJB equation (13) of Subsection 3.3:
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rJ(δ, a, λ) = δa− 1

2
κa2 + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

[
max
q

{
J(δ, a+ q, λ)− J(δ, a, λ)

2

+
J(δ′, a′ − q, λ′)− J(δ′, a′, λ′)

2

}]
Φ(dδ′, da′, dλ′).

Conjecture that

J(δ, a, λ) = D (λ) + E (λ) δ + F (λ) a+G (λ) a2 +H (λ) δa+M (λ) δ2, (B.1)

implying

J2(δ, a, λ) = F (λ) + 2G (λ) a+H (λ) δ

and

J22(δ, a, λ) = 2G (λ) .

Therefore, the value function can be written as

J(δ, a, λ) = −G (λ) a2 + J2(δ, a, λ)a+D (λ) + E (λ) δ +M (λ) δ2.

q [(δ, a, λ) , (δ′, a′, λ′)] is given by (10). Using the conjecture,

F (λ) + 2G (λ) a+ 2G (λ) q +H (λ) δ = F (λ′) + 2G (λ′) a′ − 2G (λ′) q +H (λ′) δ′.

Therefore,

q =
J2(δ′, a′, λ′)− J2(δ, a, λ)

2 (G (λ) +G (λ′))
.

Substituting back inside the conjectured marginal valuation, the post-trade marginal valuation

is

J2(δ, a+ q, λ) = J2(δ′, a′ − q, λ′) = G (λ)
J2(δ′, a′, λ′)

G (λ) +G (λ′)
+G (λ′)

J2(δ, a, λ)

G (λ) +G (λ′)
. (B.2)

P [(δ, a, λ) , (δ′, a′, λ′)] is given by (12). Using the fact that J(δ, a, λ) is quadratic in a, a

second-order Taylor expansion shows that:

J(δ, a+ q, λ)− J(δ, a, λ) = J2(δ, a+ q, λ)q −G (λ) q2.
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Then, Equation (12) implies

P =
q

2
(G (λ′)−G (λ)) + J2(δ, a+ q, λ).

Hence, the terms of trade satisfy the system

q =
J2(δ′, a′, λ′)− J2(δ, a, λ)

2 (G (λ) +G (λ′))
, (B.3a)

P =
q

2
(G (λ′)−G (λ)) +G (λ)

J2(δ′, a′, λ′)

G (λ) +G (λ′)
+G (λ′)

J2(δ, a, λ)

G (λ) +G (λ′)
. (B.3b)

Using (B.2) and (B.3a), the implied trade surplus is

J(δ, a+ q, λ)− J(δ, a, λ) + J(δ′, a′ − q, λ′)− J(δ′, a′, λ′)

= −G (λ)
(
2aq + q2

)
+ J2(δ, a+ q, λ) (a+ q)− J2(δ, a, λ)a

−G (λ′)
(
−2a′q + q2

)
+ J2(δ′, a′ − q, λ′) (a′ − q)− J2(δ′, a′, λ′)a′

= −(J2(δ′, a′, λ′)− J2(δ, a, λ))2

4 (G (λ) +G (λ′))
.

Rewrite the investors’ problem by substituting the trade surplus implied by the Nash bar-

gaining solution:

rJ(δ, a, λ) = δa− 1

2
κa2 + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

{
−(J2(δ′, a′, λ′)− J2(δ, a, λ))2

8 (G (λ) +G (λ′))

}
Φ(dδ′, da′, dλ′). (B.4)

Therefore, my conjectured value function is verified after substituting the Nash bargaining

solution. The marginal valuation satisfies the flow Bellman equation:

rJ2(δ, a, λ) = δ − κa+ α

δH∫
δL

[J2(δ′, a, λ)− J2(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

{
J2(δ′, a′, λ′)− J2(δ, a, λ)

4 (G (λ) +G (λ′))
2G (λ)

}
Φ(dδ′, da′, dλ′).

Taking all terms which contain J2(δ, a, λ) to the LHS,r + α +

M∫
0

1

2
m (λ, λ′)

G (λ)

G (λ) +G (λ′)
ψ(λ′)dλ′

 J2(δ, a, λ) = δ − κa

+α

δH∫
δL

J2(δ′, a, λ)f(δ′)dδ′ +

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

G (λ)

G (λ) +G (λ′)
J2(δ′, a′, λ′)Φ(dδ′, da′, dλ′).
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Substitute the conjectured marginal valuation and match coefficients:

(α + r̃ (λ)) (F (λ) + 2G (λ) a+H (λ) δ)

= δ − κa + α

δH∫
δL

[F (λ) + 2G (λ) a+H (λ) δ′] f(δ′)dδ′ + (r̃ (λ)− r) J2 (λ) ,

where

r̃ (λ) ≡ r +

M∫
0

1

2
m (λ, λ′)

G (λ)

G (λ) +G (λ′)
ψ(λ′)dλ′,

J2 (λ) ≡

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) G(λ)

G(λ)+G(λ′)
J2(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r̃ (λ)− r
.

Equivalently,

(α + r̃ (λ)) (F (λ) + 2G (λ) a+H (λ) δ)

= δ − κa + α
(
F (λ) + 2G (λ) a+H (λ) δ

)
+ (r̃ (λ)− r) J2 (λ) .

Then, undetermined coefficients solve the system:

r̃ (λ)F (λ) = αH (λ) δ + (r̃ (λ)− r) J2 (λ) ,

r̃ (λ) 2G (λ) = −κ, (B.5)

(α + r̃ (λ))H (λ) = 1.

Using the resulting G from the matched coefficients, the definition of r̃ (λ) implies

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

−κ
2r̃(λ)

−κ
2r̃(λ)

+ −κ
2r̃(λ′)

dΨ(λ′).

Then, r̃ (λ) satisfies the recursive functional equation:

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′).

Using the matched coefficients,

J2 (δ, a, λ) =

r̃(λ)δ+αδ
r̃(λ)+α

− κa+ (r̃ (λ)− r) J2 (λ)

r̃ (λ)
, (B.6)
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where

J2 (λ) =

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) r̃(λ′)

r̃(λ)+r̃(λ′)
J2(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r̃ (λ)− r
.

To complete the proof of Theorem 1, I need to show that J2 (λ) =
u2(δ,A)

r
. Using (B.6):

J2 (λ) =

M∫
0

∞∫
−∞

δH∫
δL

1
2
m (λ, λ′) r̃(λ′)

r̃(λ)+r̃(λ′)

[
r̃(λ′)δ′+αδ
r̃(λ′)+α

−κa′+(r̃(λ′)−r)J2(λ′)

r̃(λ′)

]
Φ(dδ′, da′, dλ′)

r̃ (λ)− r
.

After cancellations, and using the fact that meeting rate is independent of idiosyncratic taste

shocks,

(r̃ (λ)− r) J2 (λ) =

M∫
0

1

2
m (λ, λ′)

1

r̃ (λ) + r̃ (λ′)

(
δ − κEφ [a′ | λ′] + (r̃ (λ′)− r) J2 (λ′)

)
dΨ(λ′). (B.7)

This equation reveals that the expected contribution of the market to an investor’s post-

trade marginal valuation depends on the mean of equilibrium holdings Eφ [a′ | λ′] conditional on

meeting rate. It will be determined when I derive the first moment of equilibrium distribution.

Thus, the proof of Theorem 1 will be complete after the proof of Lemma 3. The following

lemma constitutes the starting point of the proof of Lemma 3.

Lemma 7. Given J2 (λ), the conditional pdf φδ,λ (a) of asset positions satisfies the system

(α +m (λ,Λ))φδ,λ (a) = α

δH∫
δL

φδ′,λ (a) f(δ′)dδ′

+

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′)

(
1 +

r̃ (λ′)

r̃ (λ)

)
φδ,λ (a′)

φδ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − C̃ [(δ, λ) , (δ′, λ′)]− J̃ (λ, λ′)

)
da′f(δ′)dδ′dΨ(λ′),

where

C̃ [(δ, λ) , (δ′, λ′)] ≡ 1

κ

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) δ + αδ

r̃ (λ) + α
− r̃ (λ′) δ′ + αδ

r̃ (λ′) + α

)
,

J̃ (λ, λ′) ≡ r̃ (λ′)

κr̃ (λ)
(r̃ (λ)− r) J2 (λ)− 1

κ
(r̃ (λ′)− r) J2 (λ′) .
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Proof. Assuming Φλ(δ, a) is the joint cdf of tastes and asset positions conditional on speed type,

rearrangement of Equation (7) yields

0 = −αΦλ∗(δ
∗, a∗) + α

a∗∫
−∞

δH∫
δL

Φλ∗(dδ, da)F (δ∗)

−
a∗∫
−∞

δ∗∫
δL

∞∫
0

∞∫
−∞

δH∫
δL

m (λ∗, λ′) I{q[(δ,a,λ∗),(δ′,a′,λ′)]>a∗−a}Φλ′(dδ
′, da′)dΨ(λ′)

Φλ∗(dδ, da)

+

∞∫
a∗

δ∗∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ∗, λ′) I{q[(δ,a,λ∗),(δ′,a′,λ′)]≤a∗−a}Φλ′(dδ
′, da′)dΨ(λ′)

Φλ∗(dδ, da)

for all λ∗ ∈ supp (dΨ). I write the above condition in terms of conditional pdfs, by letting

φδ,λ(a) denote the conditional pdf of asset positions by investors with taste δ and speed type λ:

0 = −α
δ∗∫
δL

a∗∫
−∞

φδ,λ∗(a)daf(δ)dδ + α

δH∫
δL

a∗∫
−∞

φδ,λ∗(a)daf(δ)dδF (δ∗)

−
δ∗∫
δL

a∗∫
−∞

M∫
0

δH∫
δL

∞∫
−∞

m (λ∗, λ′) I{q[(δ,a,λ∗),(δ′,a′,λ′)]>a∗−a}

φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)]φδ,λ∗(a)daf(δ)dδ

+

δ∗∫
δL

∞∫
a∗

M∫
0

δH∫
δL

∞∫
−∞

m (λ∗, λ′) I{q[(δ,a,λ∗),(δ′,a′,λ′)]≤a∗−a}

φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)]φδ,λ∗(a)daf(δ)dδ.

Using the expression for trade sizes implied by (B.3a), I can get rid of indicator functions

inside the integrals, using appropriate bounds:

0 = −α
δ∗∫
δL

a∗∫
−∞

φδ,λ∗(a)daf(δ)dδ + αF (δ∗)

δH∫
δL

a∗∫
−∞

φδ,λ∗(a)daf(δ)dδ

−
δ∗∫
δL

a∗∫
−∞

M∫
0

δH∫
δL

∞∫
ξ[(δ,a,λ∗),(δ′,a′,λ′)]

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ,λ∗(a)daf(δ)dδ

+

δ∗∫
δL

∞∫
a∗

M∫
0

δH∫
δL

ξ[(δ,a,λ∗),(δ′,a′,λ′)]∫
−∞

m (λ∗, λ′) φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ,λ∗(a)daf(δ)dδ,
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where

ξ [(δ, a, λ) , (δ′, a′, λ′)] = a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − C̃ [(δ, λ) , (δ′, λ′)]− J̃ (λ, λ′) ,

C̃ [(δ, λ) , (δ′, λ′)] ≡ 1

κ

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) δ + αδ

r̃ (λ) + α
− r̃ (λ′) δ′ + αδ

r̃ (λ′) + α

)
,

J̃ (λ, λ′) ≡ r̃ (λ′)

κr̃ (λ)
(r̃ (λ)− r) J2 (λ)− 1

κ
(r̃ (λ′)− r) J2 (λ′) .

Since this equality holds for any (δ∗, a∗, λ∗), one can take derivative of the both sides with

respect to δ∗ using Leibniz rule whenever necessary:

0 = −αf(δ∗)

a∗∫
−∞

φδ∗,λ∗(a)da+ αf(δ∗)

δH∫
δL

a∗∫
−∞

φδ,λ∗(a)daf(δ)dδ

− f(δ∗)

a∗∫
−∞

M∫
0

δH∫
δL

∞∫
ξ[(δ∗,a,λ∗),(δ′,a′,λ′)]

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ∗,λ∗(a)da

+ f(δ∗)

∞∫
a∗

M∫
0

δH∫
δL

ξ[(δ∗,a,λ∗),(δ′,a′,λ′)]∫
−∞

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ∗,λ∗(a)da.

After cancellations,

0 = −α
a∗∫
−∞

φδ∗,λ∗(a)da+ α

δH∫
δL

a∗∫
−∞

φδ,λ∗(a)daf(δ)dδ

−
a∗∫
−∞

M∫
0

δH∫
δL

∞∫
ξ[(δ∗,a,λ∗),(δ′,a′,λ′)]

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ∗,λ∗(a)da

+

∞∫
a∗

M∫
0

δH∫
δL

ξ[(δ∗,a,λ∗),(δ′,a′,λ′)]∫
−∞

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ∗,λ∗(a)da.

Similarly, take derivative with respect to a∗ using Leibniz rule whenever necessary:
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0 = −αφδ∗,λ∗(a∗) + α

δH∫
δL

φδ,λ∗(a
∗)f(δ)dδ

−
a∗∫
−∞

−(1 +
r̃ (λ′)

r̃ (λ)

) M∫
0

δH∫
δL

m (λ∗, λ′)

φδ′,λ′(ξ [(δ∗, a∗, λ∗) , (δ′, a′, λ′)])f(δ′)dδ′dΨ(λ′)]φδ∗,λ∗(a)da

−
a∗∫
−∞

M∫
0

δH∫
δL

∞∫
ξ[(δ∗,a∗,λ∗),(δ′,a′,λ′)]

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ∗,λ∗(a∗)
+

∞∫
a∗

(1 +
r̃ (λ′)

r̃ (λ)

) M∫
0

δH∫
δL

m (λ∗, λ′)

φδ′,λ′(ξ [(δ∗, a∗, λ∗) , (δ′, a′, λ′)])f(δ′)dδ′dΨ(λ′)]φδ∗,λ∗(a)da

−

M∫
0

δH∫
δL

ξ[(δ∗,a∗,λ∗),(δ′,a′,λ′)]∫
−∞

m (λ∗, λ′)φδ′,λ′(a
′)da′f(δ′)dδ′dΨ(λ′)

φδ∗,λ∗(a∗).
After simplification, the lemma is derived.

With further simplification, Lemma 7 implies

(α +m (λ,Λ))φδ,λ (a) = α

δH∫
δL

φδ′,λ (a) f(δ′)dδ′

+

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′)

(
1 +

r̃ (λ′)

r̃ (λ)

)
φδ,λ (a′)

φδ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − C [(δ, λ) , (δ′, λ′)]

)
da′f(δ′)dδ′dΨ(λ′),

where

C [(δ, λ) , (δ′, λ′)] ≡ C̃ [(δ, λ) , (δ′, λ′)] + J̃ (λ, λ′) .

Taking the Fourier transform of the steady-state condition above, the first equation of

Lemma 3 is proven. The second equation comes from the fact that φδ,λ (a) is a pdf. And, the

third equation is implied by market clearing. When I derive C̃ [(δ, λ) , (δ′, λ′)], the proof will be

complete.
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The first derivative of the Fourier transform evaluated at z = 0 is

(α +m (λ,Λ)) φ̂′δ,λ (0) = α

δH∫
δL

φ̂′δ′,λ (0) f(δ′)dδ′

+

M∫
0

δH∫
δL

m (λ, λ′)
1

1 + r̃(λ′)
r̃(λ)

φ̂′δ,λ (0) f(δ′)dδ′dΨ(λ′)

−
M∫
0

δH∫
δL

m (λ, λ′) i2πC [(δ, λ) , (δ′, λ′)]
1

1 + r̃(λ′)
r̃(λ)

f(δ′)dδ′dΨ(λ′)

+

M∫
0

δH∫
δL

m (λ, λ′)
1

1 + r̃(λ′)
r̃(λ)

φ̂′δ′,λ′ (0) f(δ′)dδ′dΨ(λ′).

Therefore, the first moments satisfy

(α +m (λ,Λ))Eφ [a | δ, λ] = α

δH∫
δL

Eφ [a | δ′, λ] f(δ′)dδ′

+

M∫
0

δH∫
δL

m (λ, λ′)
1

1 + r̃(λ′)
r̃(λ)

Eφ [a | δ, λ] f(δ′)dδ′dΨ(λ′)

+

M∫
0

δH∫
δL

m (λ, λ′)C [(δ, λ) , (δ′, λ′)]
1

1 + r̃(λ′)
r̃(λ)

f(δ′)dδ′dΨ(λ′)

+

M∫
0

δH∫
δL

m (λ, λ′)
1

1 + r̃(λ′)
r̃(λ)

Eφ [a | δ′, λ′] f(δ′)dδ′dΨ(λ′),

(α +m (λ,Λ))Eφ [a | δ, λ] = αEφ [a | λ] + Eφ [a | δ, λ] 2

(
r +

1

2
m (λ,Λ)− r̃ (λ)

)

+

M∫
0

m (λ, λ′)C
[
(δ, λ) ,

(
δ, λ′

)] 1

1 + r̃(λ′)
r̃(λ)

dΨ(λ′)

+

M∫
0

m (λ, λ′)
1

1 + r̃(λ′)
r̃(λ)

Eφ [a | λ′] dΨ(λ′),
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(α + 2 (r̃ (λ)− r))Eφ [a | δ, λ] = αEφ [a | λ]

+

M∫
0

m (λ, λ′)C
[
(δ, λ) ,

(
δ, λ′

)] 1

1 + r̃(λ′)
r̃(λ)

dΨ(λ′)

+

M∫
0

m (λ, λ′)
1

1 + r̃(λ′)
r̃(λ)

Eφ [a | λ′] dΨ(λ′),

where the second term is

M∫
0

m (λ, λ′)C [(δ, λ) , (δ′, λ′)]
1

1 + r̃(λ′)
r̃(λ)

dΨ(λ′)

=

M∫
0

1

2
m (λ, λ′)

1

κ

[
r̃ (λ′)

r̃ (λ)

r̃ (λ) δ + αδ

r̃ (λ) + α
− δ

+
r̃ (λ′)

r̃ (λ)
(r̃ (λ)− r) J2 (λ)− (r̃ (λ′)− r) J2 (λ′)

]
1

1 + r̃(λ′)
r̃(λ)

dΨ(λ′).

Take expectation over δ, and substitute out C [(δ, λ) , (δ′, λ′)]:

(r̃ (λ)− r)Eφ [a | λ] =

M∫
0

1

2
m (λ, λ′)

1

κ

[(
r̃ (λ′)

r̃ (λ)
− 1

)
δ

+
r̃ (λ′)

r̃ (λ)
(r̃ (λ)− r) J2 (λ)− (r̃ (λ′)− r) J2 (λ′)

]
r̃ (λ)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)

+

M∫
0

1

2
m (λ, λ′)

r̃ (λ)

r̃ (λ) + r̃ (λ′)
Eφ [a | λ′] dΨ(λ′).

And note that the equation (B.7) also connects J2 (λ′) and Eφ [a | λ′] as a result of optimality:

(r̃ (λ)− r) J2 (λ) = δ

(
r + 1

2
m (λ,Λ)

r̃ (λ)
− 1

)

+

M∫
0

1

2
m (λ, λ′)

1

r̃ (λ) + r̃ (λ′)

(
−κEφ [a′ | λ′] + (r̃ (λ′)− r) J2 (λ′)

)
dΨ(λ′).

After tedious algebra, the last two equations imply the following linear equalities:

J2 (λ) =
δ

r
− κ

r
Eφ [a | λ] , (B.8)

Eφ [a | λ] =

M∫
0

1
2
m (λ, λ′) r̃(λ)

r̃(λ)+r̃(λ′)
(r̃ (λ′)− r)Eφ [a | λ′]ψ(λ′)dλ′

[r̃ (λ)]2 − r2 − r 1
2
m (λ,Λ)

. (B.9)
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Thus, these equations combined with the market-clearing condition

M∫
0

Eφ [a | λ′] dΨ(λ′) = A

pin down Eφ [a | λ] and J2 (λ) for all λ ∈ supp (dΨ). It is easy to verify that one solution is as

follows:

Eφ [a | λ] =A, (B.10a)

J2 (λ) =
δ

r
− κ

r
A. (B.10b)

To complete the proof of Theorem 1, I need to show that the functional equation (B.9) does

not admit another linearly independent non-trivial solution. To prove this, define the mapping

K : Lp (supp (dΨ))→ Lp (supp (dΨ)) such that

Ks =


M∫
0

1
2
m (λ, λ′) r̃(λ)

r̃(λ)+r̃(λ′)
(r̃ (λ′)− r) s (λ′) dΨ(λ′)

[r̃ (λ)]2 − r2 − r 1
2
m (λ,Λ)


λ∈supp(dΨ)

,

where s = {s (λ)}λ∈supp(dΨ) and Lp (supp (dΨ)) is the space of the non-negative functions that

are pth power summable on supp (dΨ). Theorem 2.11 of Krasnosel’skĭı (1964) states that a u0-

positive mapping on a reproducing cone cannot have two linearly independent non-zero fixed

point (p. 78). Thus, I need to show that Lp (supp (dΨ)) constitutes a reproducing cone and that

K is u0-positive. Krasnosel’skĭı (1964) shows that the space of the non-negative functions which

are pth power summable on a bounded set is a reproducing cone (p. 18). Thus, Lp (supp (dΨ)) is

a reproducing cone. By the definition of u0-positivity, K is u0-positive if there exists a non-zero

element u0 ∈ Lp (supp (dΨ)) such that for an arbitrary non-zero s ∈ Lp (supp (dΨ)) there can

be found bl, bu ∈ R++ and a natural number n such that

blu0 ≤ Kns ≤ buu0.

Using the definition of K and Lemma 1, it can be easily verified that these inequalities are

satisfied for n = 1,

u0 =

{
m (λ,M)

[r̃ (λ)]2 − r2 − r 1
2
m (λ,Λ)

}
λ∈supp(dΨ)

,

bl =
1

2

1

m (M,M)

r

2r̃ (M)

M∫
0

(r̃ (λ′)− r) s (λ′) dΨ(λ′),
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and

bu =
1

2

r̃ (M)

2r

M∫
0

(r̃ (λ′)− r) s (λ′) dΨ(λ′).

This completes the proof of Theorem 1. Using the unique solution (B.10a) and (B.10b),

J̃ (λ, λ′) = −r (r̃ (λ′)− r̃ (λ))

κr̃ (λ)

(
δ

r
− κ

r
A

)
,

which implies

C [(δ, λ) , (δ′, λ′)] = r̃ (λ′)
1

κ

(
δ − δ

r̃ (λ) + α
− δ′ − δ
r̃ (λ′) + α

)
+

(
r̃ (λ′)

r̃ (λ)
− 1

)
A,

and the proof Lemma 3 is also complete.

Proposition 2 can be derived as a by-product of the steps in this proof. More precisely, (22)

is derived by substituting J2 (λ) into (B.6). Using the resulting formula for marginal valuation

and (B.5), Equations (B.3a) and (B.3b) imply (23) and (24), respectively.

Using the marginal valuation in Proposition 2, application of the method of undetermined

coefficients to (B.4) pins down all the coefficients in (B.1):

(r + α)M (λ) =
1

2κ (r̃ (λ) + α)2 r̃ (λ) (r̃ (λ)− r) ,

(r + α)E (λ) = H (λ)

M∫
0

m (λ, λ′)
F (λ′) + 2G (λ′)A+H (λ′) δ − F (λ)

4 (G (λ) +G (λ′))
dΨ(λ′),

rD (λ) = α
(
E (λ) δ +M (λ) δ2

)
+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

{
− [F (λ′) + 2G (λ′) a′ +H (λ′) δ′ − F (λ)]2

8 (G (λ) +G (λ′))

}
Φ(dδ′, da′, dλ′).

Therefore, the value function is available in closed form up to the function r̃ (λ). Lemma 1

shows that the function r̃ (λ), which is non-negative and bounded, exists and is unique. That

the value function I have constructed satisfies the transversality conditions (A.4a) and (A.4b)

is obvious. Finally, it is a matter of algebra to verify that the constructed function J belongs

to C (T ).
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B.2 Proof of Lemma 1 and 2

Existence and continuity. Restate Equation (17):

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′),

where r̃ (λ) ≥ 0 for all λ ∈ [0,M ] from the concavity of the value function. The functional

equation, in turn, implies that r̃ (λ) ≥ r for all λ ∈ [0,M ]. First, let’s establish the existence

and uniqueness of the solution of this functional equation. Define k (λ) ≡ r̃ (λ) − r. Rewrite

(17):

k (λ) = r +

M∫
0

1

2
m (λ, λ′) dΨ(λ′)−

M∫
0

1

2
m (λ, λ′)

k (λ) + r

k (λ) + k (λ′) + 2r
dΨ(λ′).

Rearrangement yields an alternative representation of the functional equation:

k (λ) =

1
2
m (λ,Λ)− r

M∫
0

1
2
m (λ, λ′) 1

k(λ)+k(λ′)+2r
dΨ(λ′)

1 +
M∫
0

1
2
m (λ, λ′) 1

k(λ)+k(λ′)+2r
dΨ(λ′)

.

Let C ([0,M ]) be a space of continuous functions f : [0,M ]→ R, with the sup norm. Let E

be the set of non-negative functions in C ([0,M ]). Define the mapping T : E → E such that

Tk =


1
2
m (λ,Λ)− r

M∫
0

1
2
m (λ, λ′) 1

k(λ)+k(λ′)+2r
dΨ(λ′)

1 +
M∫
0

1
2
m (λ, λ′) 1

k(λ)+k(λ′)+2r
dΨ(λ′)


λ∈[0,M ]

,

where k = {k (λ)}λ∈[0,M ]. C ([0,M ]) with the usual sup norm constitutes a real Banach space,

which is weakly complete and has a weakly compact unit sphere. And, the subset E of C ([0,M ])

is a normal cone (see Guo, Cho, and Zhu, 2004, p. 30). Thus, the solution of the functional

equation is a non-zero fixed point of T on a normal cone. The Tikhonov fixed point theorem

implies that every monotone and weakly continuous mapping on a normal cone acting in a

weakly complete space with weakly compact unit sphere has at least one non-zero fixed point

(Theorem 4.1 (d) of Krasnosel’skĭı, 1964, p. 122-123). It is easy to verify the monotonicity

of T , i.e. kA, kB ∈ E and kA ≤ kB imply TkA ≤ TkB. Therefore, in order to establish the

existence of the solution of the functional equation, what remains to show is weak continuity

of T . Consider an arbitrary sequence (kn) with lim
n→∞

kn = k0 ∈ E. Applying the Lebesgue
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dominated convergence theorem, the definition of T implies lim
n→∞

Tkn = Tk0 (Hutson, Pym, and

Cloud, 2005, p. 55). Hence, T is weakly continuous and the existence of the solution of the

functional equation is established.

Now let me prove that all solutions to the functional equation (17) are continuous. I need

to show that lim
ε→0

r̃ (λ+ ε) − r̃ (λ) = 0 for all λ ∈ [0,M) and lim
ε→0

r̃ (λ− ε) − r̃ (λ) = 0 for all

λ ∈ (0,M ]. Using (17) and applying the Lebesgue dominated convergence theorem,

lim
ε→0

r̃ (λ+ ε)− r̃ (λ)

= lim
ε→0

M∫
0

1

2
m (λ+ ε, λ′)

r̃ (λ′)

r̃ (λ+ ε) + r̃ (λ′)
dΨ(λ′)−

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)


= lim

ε→0

M∫
0

1

2
m (λ+ ε, λ′)

r̃ (λ′)

r̃ (λ+ ε) + r̃ (λ′)
dΨ(λ′)−

M∫
0

1

2
m (λ+ ε, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)


+ lim

ε→0

M∫
0

1

2
m (λ+ ε, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)−

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)


= lim

ε→0

M∫
0

1

2
m (λ+ ε, λ′)

[
r̃ (λ′)

r̃ (λ+ ε) + r̃ (λ′)
− r̃ (λ′)

r̃ (λ) + r̃ (λ′)

]
dΨ(λ′)

+ lim
ε→0

M∫
0

1

2
[m (λ+ ε, λ′)−m (λ, λ′)]

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)

= −
M∫
0

1

2

[
lim
ε→0

m (λ+ ε, λ′)
] lim

ε→0
r̃ (λ+ ε)− r̃ (λ)(

lim
ε→0

r̃ (λ+ ε) + r̃ (λ′)
)

(r̃ (λ) + r̃ (λ′))

 dΨ(λ′).

Rearranging,

[
lim
ε→0

r̃ (λ+ ε)− r̃ (λ)
]1 +

M∫
0

1

2
m (λ, λ′)

1(
lim
ε→0

r̃ (λ+ ε) + r̃ (λ′)
)

(r̃ (λ) + r̃ (λ′))
dΨ(λ′)

 = 0.

Hence,

lim
ε→0

r̃ (λ+ ε)− r̃ (λ) = 0.

Following the same steps, one can also show that

lim
ε→0

r̃ (λ− ε)− r̃ (λ) = 0.

Thus, any solution to the functional equation (17) is continuous.
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Uniqueness. To show the uniqueness, I follow Theorem 6.3 of Krasnosel’skĭı (1964), which

states that every u0-concave and monotone mapping on a cone has at most one non-zero fixed

point (p. 188). Therefore, it suffices to show that T is u0-concave. By the definition of u0-

concavity, T is u0-concave if there exists a non-zero element u0 ∈ E such that for an arbitrary

non-zero k ∈ E there exist bl, bu ∈ R++ such that

blu0 ≤ Tk ≤ buu0,

and if for every t0 ∈ (0, 1),

T (t0k) ≥ t0Tk,

with strict inequality for λs such that (Tk) (λ) 6= 0. The latter inequality follows directly from

the definition of mapping T . It can also be easily verified from the definition of T that the former

inequality is satisfied for u0 =
{

1
2
m (λ,Λ)

}
λ∈[0,M ]

, bl = (m (M,Λ) + 2r)−1 (1 + 1
4r
m (M,Λ)

)−1
,

and bu = 1. Hence, the uniqueness of the solution of the functional equation is established as

well.

Monotonicity. The function r̃ (λ) is strictly increasing if r̃ (λ′) > r̃ (λ) for all λ ∈ [0,M ] and

for all λ′ ∈ [0,M ] with λ′ > λ. To obtain a contradiction, suppose there exist λ, λ′ ∈ [0,M ]

with λ′ > λ, and r̃ (λ′) ≤ r̃ (λ). Equation (17) implies that r̃ (λ′) and r̃ (λ) satisfy the following

equations respectively:

r̃ (λ′) = r +

M∫
0

1

2
m (λ′, λ′′)

r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
dΨ(λ′′)

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′′)

r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
dΨ(λ′′).

As λ′ > λ and r̃ (λ′) ≤ r̃ (λ), the RHS of the second equation is lower than the RHS of the first

equation, which implies that r̃ (λ′) > r̃ (λ); and we obtain the desired contradiction. Hence,

the function r̃ (λ) is strictly increasing.

Concavity. To show the strict concavity of the function r̃ (λ), suppose λ0, λ1 ∈ [0,M ] and

λ2 = (1− ζ)λ0 + ζλ1 for ζ ∈ (0, 1). I need to show

r̃ (λ2) > (1− ζ) r̃ (λ0) + ζr̃ (λ1) .
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Equivalently,

1− ζ
ζ

>
r̃ (λ1)− r̃ (λ2)

r̃ (λ2)− r̃ (λ0)
.

Using (17), and using the facts that the function r̃ (λ) is strictly increasing and m (., .) is linear

in both of its arguments,

r̃ (λ1)− r̃ (λ2)

r̃ (λ2)− r̃ (λ0)
=

M∫
0

1
2
m (λ1, λ

′) r̃(λ′)
r̃(λ1)+r̃(λ′)

dΨ(λ′)−
M∫
0

1
2
m (λ2, λ

′) r̃(λ′)
r̃(λ2)+r̃(λ′)

dΨ(λ′)

M∫
0

1
2
m (λ2, λ′)

r̃(λ′)
r̃(λ2)+r̃(λ′)

dΨ(λ′)−
M∫
0

1
2
m (λ0, λ′)

r̃(λ′)
r̃(λ0)+r̃(λ′)

dΨ(λ′)

<

M∫
0

1
2

[m (λ1, λ
′)−m (λ2, λ

′)] r̃(λ′)
r̃(λ2)+r̃(λ′)

dΨ(λ′)

M∫
0

1
2

[m (λ2, λ′)−m (λ0, λ′)]
r̃(λ′)

r̃(λ2)+r̃(λ′)
dΨ(λ′)

=
λ1 − λ2

λ2 − λ0

=
1− ζ
ζ

.

Hence, the function r̃ (λ) is strictly concave.

Differentiability. Using (17) and applying the Lebesgue dominated convergence theorem,

lim
ε→0

r̃ (λ+ ε)− r̃ (λ)

ε
= lim

ε→0

M∫
0

1
2
m (λ+ ε, λ′) r̃(λ′)

r̃(λ+ε)+r̃(λ′)
dΨ(λ′)−

M∫
0

1
2
m (λ, λ′) r̃(λ′)

r̃(λ)+r̃(λ′)
dΨ(λ′)

ε

= lim
ε→0

M∫
0

1
2
m (λ+ ε, λ′) r̃(λ′)

r̃(λ+ε)+r̃(λ′)
dΨ(λ′)−

M∫
0

1
2
m (λ, λ′) r̃(λ′)

r̃(λ+ε)+r̃(λ′)
dΨ(λ′)

ε

−lim
ε→0

M∫
0

1
2
m (λ, λ′) r̃(λ′)

r̃(λ)+r̃(λ′)
dΨ(λ′)−

M∫
0

1
2
m (λ, λ′) r̃(λ′)

r̃(λ+ε)+r̃(λ′)
dΨ(λ′)

ε

= lim
ε→0

M∫
0

1

2

m (λ+ ε, λ′)−m (λ, λ′)

ε

r̃ (λ′)

r̃ (λ+ ε) + r̃ (λ′)
dΨ(λ′)

−lim
ε→0

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

ε

r̃ (λ+ ε)− r̃ (λ)

(r̃ (λ+ ε) + r̃ (λ′)) (r̃ (λ) + r̃ (λ′))
dΨ(λ′)

=

M∫
0

1

2

[
lim
ε→0

m (λ+ ε, λ′)−m (λ, λ′)

ε

] [
lim
ε→0

r̃ (λ′)

r̃ (λ+ ε) + r̃ (λ′)

]
dΨ(λ′)

−
M∫
0

1

2

m (λ, λ′) r̃ (λ′)

r̃ (λ) + r̃ (λ′)

[
lim
ε→0

r̃ (λ+ ε)− r̃ (λ)

ε

] [
lim
ε→0

1

r̃ (λ+ ε) + r̃ (λ′)

]
dΨ(λ′)
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=

M∫
0

1

2
m1 (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)

−
[
lim
ε→0

r̃ (λ+ ε)− r̃ (λ)

ε

] M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2dΨ(λ′).

Rearranging,

lim
ε→0

r̃ (λ+ ε)− r̃ (λ)

ε
=

M∫
0

1
2
m1 (λ, λ′) r̃(λ′)

r̃(λ)+r̃(λ′)
dΨ(λ′)

1 +
M∫
0

1
2
m (λ, λ′) r̃(λ′)

(r̃(λ)+r̃(λ′))2
dΨ(λ′)

.

Since the RHS exists and is continuous, r̃ (λ) is continuously differentiable.

Aggregation. To derive the last property of the function r̃ (λ), take the expectation of Equa-

tion (17):

M∫
0

r̃ (λ) dΨ(λ) = r +

M∫
0

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

M∫
0

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

+
1

2

M∫
0

M∫
0

1

2
m (λ, λ′)

r̃ (λ)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

M∫
0

M∫
0

1

2
m (λ, λ′)

r̃ (λ) + r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

M∫
0

M∫
0

1

2
m (λ, λ′) dΨ(λ′)dΨ(λ)

= r +
m (Λ,Λ)

4
.

Proof of Lemma 2. Equation (20) implies

∂a? (δ, λ)

∂δ
=

1

κ

r̃ (λ)

r̃ (λ) + α

and

∂a? (δ, λ)

∂λ
=

1

κ

r̃ ′ (λ)α

(r̃ (λ) + α)2

(
δ − δ

)
,
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which, in turn, imply the lemma.

B.3 Proof of Proposition 3

I first take the Fourier transform of the second and third lines of Equation (25):

∞∫
−∞

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′)

(
1 +

r̃ (λ′)

r̃ (λ)

)
gδ,λ (θ′)

gδ′,λ′

(
θ

(
1 +

r̃ (λ′)

r̃ (λ)

)
− θ′

)
f (δ′) dθ′dδ′dΨ(λ′)

]
e−i2πθzdθ

=

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′)

(
1 +

r̃ (λ′)

r̃ (λ)

)
gδ,λ (θ′)

 ∞∫
−∞

gδ′,λ′

(
θ

(
1 +

r̃ (λ′)

r̃ (λ)

)
− θ′

)
e−i2πθzdθ

 f (δ′) dθ′dδ′dΨ(λ′)

=

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′) gδ,λ (θ′) e

−i2πz

1+
r̃(λ′)
r̃(λ)

θ′

 ∞∫
−∞

gδ′,λ′

(
θ

(
1 +

r̃ (λ′)

r̃ (λ)

)
− θ′

)
e

−i2πz

1+
r̃(λ′)
r̃(λ)

(
θ

(
1+

r̃(λ′)
r̃(λ)

)
−θ′

)

d

(
θ

(
1 +

r̃ (λ′)

r̃ (λ)

)
− θ′

)]
f (δ′) dθ′dδ′dΨ(λ′)

=

M∫
0

δH∫
δL

∞∫
−∞

m (λ, λ′) gδ,λ (θ′) e

−i2πz

1+
r̃(λ′)
r̃(λ)

θ′

ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
f (δ′) dθ′dδ′dΨ(λ′)

=

M∫
0

δH∫
δL

m (λ, λ′) ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

) ∞∫
−∞

gδ,λ (θ′) e

−i2πz

1+
r̃(λ′)
r̃(λ)

θ′

dθ′

 f (δ′) dδ′dΨ(λ′)

=

M∫
0

δH∫
δL

m (λ, λ′) ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
ĝδ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
f (δ′) dδ′dΨ(λ′).

Now I take the Fourier transform of the first term on the RHS of Equation (25):

∞∫
−∞

δH∫
δL

gδ′,λ (θ − (δ′ − δ)C (λ)) f (δ′) dδ′

 e−i2πθzdθ
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=

δH∫
δL

 ∞∫
−∞

gδ′,λ (θ − (δ′ − δ)C (λ)) e−i2πθzdθ

 f (δ′) dδ′

=

δH∫
δL

e−i2π(δ′−δ)C(λ)z

 ∞∫
−∞

gδ′,λ (θ − (δ′ − δ)C (λ)) e−i2π(θ−(δ′−δ)C(λ))zd (θ − (δ′ − δ)C (λ))

 f (δ′) dδ′

=

δH∫
δL

e−i2π(δ′−δ)C(λ)zĝδ′,λ (z) f (δ′) dδ′.

And using the linearity and integrability of the Fourier transform, Equation (28) is obtained.

To obtain equations (29) and (30), I use the identities satisfied by the Fourier transform

(see Bracewell, 2000, p. 152-154) for any function h(x)

ĥ(0) =

∞∫
−∞

h(x)dx

and

ĥ′(0) = −i2π
∞∫
−∞

xh(x)dx

respectively.

n-th conditional moment of inventories can be written as follows using the Fourier transform:

Eg [θn | δ, λ] = (−i2π)−n
[
dn

dzn
ĝδ,λ(z)

]
z=0

.

Let’s first use the Fourier transform of θ distribution to find an expression for dn

dzn
ĝδ,λ(z):

(α +m (λ,Λ))ĝδ,λ(z) = α

δH∫
δL

ei2π(δ−δ′)C(λ)zĝδ′,λ (z) f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′) ĝδ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
f (δ′) dδ′dΨ(λ′),

(α +m (λ,Λ))
dn

dzn
ĝδ,λ(z) = α

δH∫
δL

dn

dzn

(
ei2π(δ−δ′)C(λ)zĝδ′,λ (z)

)
f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′)
dn

dzn

[
ĝδ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)]
f (δ′) dδ′dΨ(λ′).
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To proceed, I use the following generalization of the product rule:

dn

dxn

2∏
i=1

hi(x) =
∑

j1+j2=n

(
n

j1, j2

) 2∏
i=1

dji

dxji
hi(x),

(α +m (λ,Λ))
dn

dzn
ĝδ,λ(z)

= α

δH∫
δL

∑
j1+j2=n

(
n

j1, j2

){[
dj1

dzj1
ei2π(δ−δ′)C(λ)z

] [
dj2

dzj2
ĝδ′,λ (z)

]}
f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′)
∑

j1+j2=n

(
n

j1, j2

){[
dj1

dzj1
ĝδ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)]
[
dj2

dzj2
ĝδ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)]}
f (δ′) dδ′dΨ(λ′),

(α +m (λ,Λ))
dn

dzn
ĝδ,λ(z)

= α

δH∫
δL

∑
j1+j2=n

(
n

j1, j2

){
(i2π (δ − δ′)C (λ))j1ei2π(δ−δ′)C(λ)zĝ

(j2)
δ′,λ(z)

}
f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′)
∑

j1+j2=n

(
n

j1, j2

)
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)nĝ

(j1)
δ,λ (

z

1 + r̃(λ′)
r̃(λ)

)

ĝ
(j2)
δ′,λ′(

z

1 + r̃(λ′)
r̃(λ)

)f (δ′) dδ′dΨ(λ′),

(α +m (λ,Λ))
dn

dzn
ĝδ,λ(0)

= α

δH∫
δL

∑
j1+j2=n

(
n

j1, j2

){
(i2π (δ − δ′)C (λ))j1 ĝ

(j2)
δ′,λ(0)

}
f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′)
∑

j1+j2=n

(
n

j1, j2

)
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)nĝ

(j1)
δ,λ (0)ĝ

(j2)
δ′,λ′(0)f (δ′) dδ′dΨ(λ′).

Dividing both sides by (−i2π)n:
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(α +m (λ,Λ))Eg [θn | δ, λ]

= α

δH∫
δL

∑
j1+j2=n

(
n

j1, j2

){
(− (δ − δ′)C (λ))j1Eg

[
θj2 | δ′, λ

]}
f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′) (1+
r̃ (λ′)

r̃ (λ)
)n
∑

j1+j2=n

(
n

j1, j2

)
Eg
[
θj1 | δ, λ

]
Eg
[
θj2 | δ′, λ′

]
f (δ′) dδ′dΨ(λ′).

Using the binomial expansion of ((−δ + δ′)C (λ))j1 :

(α +m (λ,Λ))Eg [θn | δ, λ]

= α

δH∫
δL

∑
j1+j2=n

(
n

j1, j2

){
(C (λ))j1

j1∑
k=0

(
j1

k

)
(δ′)k(−δ)j1−kEg

[
θj2 | δ′, λ

]}
f (δ′) dδ′

+

M∫
0

δH∫
δL

m (λ, λ′) (
r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑
j1+j2=n

(
n

j1, j2

)
Eg
[
θj1 | δ, λ

]
Eg
[
θj2 | δ′, λ′

]
f (δ′) dδ′dΨ(λ′),

(α +m (λ,Λ))Eg [θn | δ, λ]

= α
∑

j1+j2=n

(
n

j1, j2

)
(C (λ))j1

j1∑
k=0

(
j1

k

)
(−δ)j1−k

δH∫
δL

(δ′)kEg
[
θj2 | δ′, λ

]
f (δ′) dδ′

+
∑

j1+j2=n

(
n

j1, j2

)
Eg
[
θj1 | δ, λ

]
M∫
0

δH∫
δL

m (λ, λ′) (
r̃ (λ)

r̃ (λ) + r̃ (λ′)
)nEg

[
θj2 | δ′, λ′

]
f (δ′) dδ′dΨ(λ′).

Applying the law of iterated expectations and rearranging, (31) is obtained.

What remains to show to complete the proof of the proposition is that all equilibrium mo-

ments exists and are unique. Existence and uniqueness of Eg [θ | λ] are established in the proof

of Theorem 1 because it is pinned down simultaneously by the optimality conditions and the

steady-state conditions. Given, Eg [θ | λ], Equation (31) generates Eg [θ | δ, λ] uniquely. Indeed,

given Eg
[
θk | λ

]
for k ∈ {1, 2, ..., n} and given Eg

[
θk | δ, λ

]
for k ∈ {1, 2, ..., n− 1}, Equation
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(31) generates Eg [θn | δ, λ] uniquely; i.e., the recursive system characterizes the moments con-

ditional on (δ, λ) by taking as given the moments conditional on λ. Then, the proof will be

complete when we show that the system characterizes uniquely the moments conditional on λ,

too; i.e., given Eg
[
θk | λ

]
for k ∈ {1, 2, ..., n− 1} and given Eg

[
θk | δ, λ

]
for k ∈ {1, 2, ..., n− 1},

Equation (31) generates Eg [θn | λ] uniquely. Start by taking the expectation of both sides of

(31) over δ and rearranging:m (λ,Λ)−
M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
dΨ(λ′)

Eg [θn | λ]

= α

n∑
j=1

(
n
j

)
(C (λ))j

j∑
k=0

(
j
k

)
(−δ)j−kEg

[
δkθn−j | λ

]
+

n−1∑
j=1

(
n
j

)
Eg
[
θj | δ, λ

] M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
Eg
[
θn−j | λ′

]
dΨ(λ′)

+

M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
Eg [θn | λ′] dΨ(λ′).

This is the functional equation that generates Eg [θn | λ] by taking as given Eg
[
θk | λ

]
for

k ∈ {1, 2, ..., n− 1} and given Eg
[
θk | δ, λ

]
for k ∈ {1, 2, ..., n− 1}. It can be re-written as

f (λ)−
M∫
0

m (λ, λ′)
(

r̃(λ)
r̃(λ)+r̃(λ′)

)n
m (λ,Λ)−

M∫
0

m (λ, λ′′)
(

r̃(λ)
r̃(λ)+r̃(λ′′)

)n
dΨ(λ′′)

f (λ′) dΨ(λ′)

=

m (λ,Λ)−
M∫
0

m (λ, λ′′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′′)

)n
dΨ(λ′′)

−1

{
α

n∑
j=1

(
n
j

)
(C (λ))j

j∑
k=0

(
j
k

)
(−δ)j−kEg

[
δkθn−j | λ

]
+
n−1∑
j=1

(
n
j

)
Eg
[
θj | δ, λ

] M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
Eg
[
θn−j | λ′

]
dΨ(λ′)

 .

This is an inhomogeneous Fredholm integral equation of the second kind. The celebrated Fred-

holm Alternative Theorem states that this equation has exactly one solution if the homogeneous

version has only the zero solution (Hutson et al., 2005, p. 189).
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The homogeneous version defines the monotone mapping

(Kf) (λ) =

M∫
0

m (λ, λ′)
(

r̃(λ)
r̃(λ)+r̃(λ′)

)n
m (λ,Λ)−

M∫
0

m (λ, λ′′)
(

r̃(λ)
r̃(λ)+r̃(λ′′)

)n
dΨ(λ′′)

f (λ′) dΨ(λ′).

If this mapping K has only the trivial fixed point, the proof will be done. To obtain a contra-

diction, suppose there is a fixed point f 6= 0. By definition of absolute value,

f (λ) ≤ |f (λ) |

for all λ ∈ supp (dΨ). Since K is a monotone mapping,

(Kf) (λ) ≤ (K|f |) (λ) .

Because f is a fixed point of K,

f (λ) ≤

M∫
0

m (λ, λ′)
(

r̃(λ)
r̃(λ)+r̃(λ′)

)n
|f (λ′) |dΨ(λ′)

m (λ,Λ)−
M∫
0

m (λ, λ′′)
(

r̃(λ)
r̃(λ)+r̃(λ′′)

)n
dΨ(λ′′)

.

Starting with −f (λ) ≤ |f (λ) | and following the same steps,

−f (λ) ≤

M∫
0

m (λ, λ′)
(

r̃(λ)
r̃(λ)+r̃(λ′)

)n
|f (λ′) |dΨ(λ′)

m (λ,Λ)−
M∫
0

m (λ, λ′′)
(

r̃(λ)
r̃(λ)+r̃(λ′′)

)n
dΨ(λ′′)

.

Thus,

|f (λ) | ≤

M∫
0

m (λ, λ′)
(

r̃(λ)
r̃(λ)+r̃(λ′)

)n
|f (λ′) |dΨ(λ′)

m (λ,Λ)−
M∫
0

m (λ, λ′′)
(

r̃(λ)
r̃(λ)+r̃(λ′′)

)n
dΨ(λ′′)

.

Since this holds for all λ ∈ supp (dΨ),m (λ,Λ)−
M∫
0

m (λ, λ′′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′′)

)n
dΨ(λ′′)

 |f (λ) |

≤
M∫
0

m (λ, λ′)

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)n
|f (λ′) |dΨ(λ′).
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Taking the expectation of both sides with respect to λ and rearranging,

M∫
0

M∫
0

m (λ, λ′)

[
1− (r̃ (λ))n + (r̃ (λ′))n

(r̃ (λ) + r̃ (λ′))n

]
|f (λ′) |dΨ(λ′)dΨ(λ) ≤ 0.

Since all integrands are positive, the inequality holds only if f = 0, which delivers the desired

contradiction.

B.4 Proof of Proposition 4

Using Proposition 2,

GV (θ, λ) =

M∫
0

∞∫
−∞

m (λ, λ′) |q [(θ, λ) , (θ′, λ′)]| gλ′ (θ′)ψ (λ′) dθ′dλ′

=

M∫
0

∞∫
−∞

m (λ, λ′)

∣∣∣∣ r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)

∣∣∣∣ gλ′ (θ′)ψ (λ′) dθ′dλ′

=

M∫
0

m (λ, λ′)


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

ψ (λ′) dλ′.

and

NV (θ, λ) =

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′) q [(θ, λ) , (θ′, λ′)] gλ′ (θ
′)ψ (λ′) dθ′dλ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′)
r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′)ψ (λ′) dθ′dλ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′)
r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′)ψ (λ′) dθ′dλ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∫
0

m (λ, λ′)
r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
ψ (λ′) dλ′

∣∣∣∣∣∣
= 2 (r̃ (λ)− r) |θ| .
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Therefore,

IV (θ, λ) =

M∫
0

m (λ, λ′)


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) [θ − |θ|]− r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) [θ + |θ|]
r̃ (λ) + r̃ (λ′)

gλ′ (θ
′) dθ′

ψ (λ′) dλ′.

To derive (i), one can take derivative with respect to θ applying the Leibniz rule whenever

necessary:

∂GV (θ, λ)

∂θ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

r̃ (λ) + r̃ (λ′)

[
2Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)
− 1

]
ψ (λ′) dλ′,

∂NV (θ, λ)

∂θ
= 2 (r̃ (λ)− r) sgn θ,

∂IV (θ, λ)

∂θ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

r̃ (λ) + r̃ (λ′)

[
2Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)
− 1− sgn θ

]
ψ (λ′) dλ′.

Since δ is distributed symmetrically, Equation (28) implies ĝλ (z) = ĝλ (−z), and hence, θ is

distributed symmetrically conditional on λ. Then,

∂GV (θ, λ)

∂θ


< 0 if θ < 0
= 0 if θ = 0
> 0 if θ > 0

and the gross volume is minimized at θ = 0. The behavior of the net volume is also the same.

However, the intermediation volume behaves oppositely:

∂IV (θ, λ)

∂θ


< 0 if θ > 0
= 0 if θ = 0
> 0 if θ < 0,

hence the gross volume is maximized at θ = 0.

To derive (ii), one takes derivative with respect to λ using Lemma 1 and applying the chain

rule and the Leibniz rule whenever necessary:
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∂GV (θ, λ)

∂λ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2

{(
Eg
[
θ′|θ′ > r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)(
1−Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))

−
(
Eg
[
θ′|θ′ < r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)
Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)}
ψ (λ′) dλ′

]
r̃′ (λ)

+

M∫
0

∂m (λ, λ′)

∂λ


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

ψ (λ′) dλ′,

∂NV (θ, λ)

∂λ
= 2r̃′ (λ) |θ| ,

∂IV (θ, λ)

∂λ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2

{
−θ
(

2Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)
− 1

)
+ |θ|

+Eg
[
θ′|θ′ > r̃ (λ′)

r̃ (λ)
θ, λ′

](
1−Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))
−Eg

[
θ′|θ′ < r̃ (λ′)

r̃ (λ)
θ, λ′

](
Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))}
ψ (λ′) dλ′

]
r̃′ (λ)

+

M∫
0

∂m (λ, λ′)

∂λ


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) [θ − |θ|]− r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) [θ + |θ|]
r̃ (λ) + r̃ (λ′)

gλ′ (θ
′) dθ′

ψ (λ′) dλ′.

Using the symmetry of θ around 0 for all λs, Eg
[
θ′|θ′ > r̃(λ′)

r̃(λ)
θ, λ′

]
> 0 and Eg

[
θ′|θ′ < r̃(λ′)

r̃(λ)
θ, λ′

]
<

0. Therefore, the first term of ∂GV(θ,λ)
∂λ

is strictly positive. Since m (λ, λ′) is a linear increasing

function of λ, the second term is strictly positive as well, impliying ∂GV(θ,λ)
∂λ

> 0. ∂NV(θ,λ)
∂λ

≥ 0

(with equality if θ = 0) by the definition of absolute value. −θ
(

2Gλ′

(
r̃(λ′)
r̃(λ)

θ
)
− 1
)

+ |θ| ≥ 0

by the definition of absolute value and the symmetry of θ around 0. The second line of ∂IV(θ,λ)
∂λ

is strictly positive by the same argument that is used for the first term of ∂GV(θ,λ)
∂λ

, implying
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the first term of ∂IV(θ,λ)
∂λ

(sum of first two lines) is strictly positive. Since m (λ, λ′) is a linear

increasing function of λ, the second term is weakly positive, implying ∂IV(θ,λ)
∂λ

> 0.

Finally, to derive (iii), one takes derivative with respect to λ using Lemma 1 and applying

the chain rule and the Leibniz rule whenever necessary:

∂GVpm (θ, λ)

∂λ
= r̃′ (λ)

M∫
0

m (λ, λ′)

m (λ,Λ)

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2{(
Eg
[
θ′|θ′ > r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)(
1−Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))
−
(
Eg
[
θ′|θ′ < r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)
Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)}
ψ (λ′) dλ′

]
,

∂NVpm (θ, λ)

∂λ
=

2 |θ|

(m (λ,Λ))2

(
1 +

M∫
0

1
2
m (λ, λ′) r̃(λ′)

(r̃(λ)+r̃(λ′))2
ψ(λ′)dλ′

)
m (λ,Λ)

M∫
0

1

2

∂m (λ, λ′)

∂λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

− ∂m (λ,Λ)

∂λ

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

−∂m (λ,Λ)

∂λ

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2ψ(λ′)dλ′

 .

Strict positivity of ∂GVpm(θ,λ)
∂λ

follows from the strict positivity of the first term of ∂GV(θ,λ)
∂λ

. Since

m (λ, λ′) = 2λλ
′

Λ
, then ∂NVpm(θ,λ)

∂λ
≤ 0 (with equality if θ = 0). The strict positivity of ∂IVpm(θ,λ)

∂λ

follows from ∂GVpm(θ,λ)
∂λ

> 0 and ∂NVpm(θ,λ)
∂λ

≤ 0.
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B.5 Proof of Proposition 6

Let us start by calculating E [θ + q|θ, λ]. Proposition 2 implies

E [θ + q|θ, λ] = θ + E [q|θ, λ] = θ + E
[
−r̃ (λ′) θ + r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
|θ, λ

]

= θ +

M∫
0

∞∫
−∞

m (λ, λ′)

m (λ,Λ)

−r̃ (λ′) θ + r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
G (dθ′, dλ′)

= θ +

M∫
0

m (λ, λ′)

m (λ,Λ)

−r̃ (λ′) θ + r̃ (λ)Eg [θ′|λ′]
r̃ (λ) + r̃ (λ′)

ψ (λ′) dλ′

= θ − θ

m (λ,Λ)

M∫
0

m (λ, λ′)
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ (λ′) dλ′

= θ − 2 (r̃ (λ)− r)
m (λ,Λ)

θ = θ

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

]
,

where the last equality follows from the definition of r̃ (λ) in Theorem 1 and the previous one

follows from the fact that Eg [θ′|λ′] = 0 for λ′ ∈ [0,M ].

Now, let us calculate var [θ + q|θ, λ].

var [θ + q|θ, λ] = E
[
(θ + q − E [θ + q|θ, λ])2 |θ, λ

]
= E

[(
θ + q − θ

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

])2

|θ, λ

]

= E

[(
q + θ

2 (r̃ (λ)− r)
m (λ,Λ)

)2

|θ, λ

]

= E

[(
−r̃ (λ′) θ + r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
+ θ

2 (r̃ (λ)− r)
m (λ,Λ)

)2

|θ, λ

]

= E

[(
θ

[
2 (r̃ (λ)− r)
m (λ,Λ)

− r̃ (λ′)

r̃ (λ) + r̃ (λ′)

]
+

r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)

)2

|θ, λ

]

= E

[(
θ

[
2 (r̃ (λ)− r)
m (λ,Λ)

− r̃ (λ′)

r̃ (λ) + r̃ (λ′)

])2

|θ, λ

]

+ E

[(
r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)

)2

|θ, λ

]

= θ2var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

+

M∫
0

m (λ, λ′)

m (λ,Λ)
varg [θ | λ′]

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)2

ψ (λ′) dλ′,
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where the last equality follows from the definition of r̃ (λ) in Theorem 1 and the previous one

follows from the fact that Eg [θ′|λ′] = 0 for λ′ ∈ [0,M ].

The definition of r̃ (λ) in Theorem 1 implies

2 (r̃ (λ)− r)
m (λ,Λ)

=

M∫
0

m (λ, λ′)

m (λ,Λ)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′ ∈ (0, 1) ,

because r̃ (λ) ≥ r and

M∫
0

m (λ, λ′)

m (λ,Λ)
ψ(λ′)dλ′ = 1.

Calculate the derivative of this:

d

dλ

2 (r̃ (λ)− r)
m (λ,Λ)

=
2r̃′ (λ)m (λ,Λ)− 2 (r̃ (λ)− r)m1 (λ,Λ)

(m (λ,Λ))2 < 0,

which follows by taking the derivative of (17) and using the fact that r̃′ (λ) > 0.

Lastly, the definition of r̃ (λ) in Theorem 1 implies

var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

=

M∫
0

λ′

Λ

(
r̃ (λ′)

r̃ (λ) + r̃ (λ′)

)2

ψ(λ′)dλ′ −
(

2 (r̃ (λ)− r)
m (λ,Λ)

)2

∈ (0, 1) ,

because both terms on the RHS are between 0 and 1 and the first term is larger. Calculate the

derivative of this:

d

dλ
var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

= −2r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′−8 (r̃ (λ)− r) r̃′ (λ)

(m (λ,Λ))2 +
8 ((r̃ (λ)− r))2

(m (λ,Λ))2 λ

=
4r̃′ (λ)

m (λ,Λ)
− 4 (r̃ (λ)− r)

m (λ,Λ)λ
− 2r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2

r̃ (λ)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

− 8 (r̃ (λ)− r) r̃′ (λ)

(m (λ,Λ))2 +
8 ((r̃ (λ)− r))2

(m (λ,Λ))2 λ

=
4

m (λ,Λ)

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

] [
r̃′ (λ)− r̃ (λ)− r

λ

]

− 2r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2

r̃ (λ)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′ < 0,
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where the second equality follows from

2 (r̃ (λ)− r)
m (λ,Λ)λ

− 2r̃′ (λ)

m (λ,Λ)
= r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))2ψ(λ′)dλ′,

which follows by taking the derivative of (17).

Appendix C. Details of the Walrasian benchmark

I solve the stationary equilibrium of a continuous frictionless Walrasian market as a benchmark.

As is typical in models with continuous access to a trading venue but infrequent need to trade,

I start by decomposing the state space into inaction and action regions. In the inaction region,

an investor enjoys the flow utility from holding the asset. In the action region, she immediately

accesses the Walrasian market and rebalances her asset position to end up in the inaction region.

The flow Bellman equation of investors in the inaction region can be written as the following

integral equation:

u (δ, a)− rJW (δ, a) + α

δH∫
δL

[
JW (δ′, a)− JW (δ, a)

]
f(δ′)dδ′ = 0. (C.1)

The first term is the investor’s utility flow. The second term is the time discount. The last

term is the expected change in the investor’s continuation utility, conditional on switching taste

types, which occurs with Poisson intensity α.

In the action region, the value function satisfies the condition

JW (δ, a) = max
a

{
JW (δ, a)− PW (a− a)

}
, (C.2)

which basically states that it is indeed optimal for the investor to access the market, costing

her PW (a− a) units of the numéraire, where PW is the market-clearing price. In addition,

I need to make sure that staying at a given asset position level in the action region for an

infinitesimal amount of time results in a marginal utility loss. Combining with (C.1), this

means that JW (δ, a) must satisfy the following variational inequality:

u (δ, a)− rJW (δ, a) + α

δH∫
δL

[
JW (δ′, a)− JW (δ, a)

]
f(δ′)dδ′ ≤ 0.
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Collecting together, the flow Bellman equation of investors can be written as an impulse control

problem:

max {u (δ, a)− rJW (δ, a) + α

δH∫
δL

[
JW (δ′, a)− JW (δ, a)

]
f(δ′)dδ′,

JW (δ, a)−
(
JW (δ, a)− PW (a− a)

)}
= 0,

where

a = argmax
a

{
JW (δ, a)− PW (a− a)

}
.

Thanks to the absence of frictions, I conjecture (and later verify) that, given PW , the

inaction region is a measure-zero point
[
δ, â(δ;PW )

]
for investors with taste type δ, where

â(.;PW ) is a strictly monotone function. Under this conjecture, one can use (C.2) to substitute

out JW (δ′, a) in (C.1) to obtain the auxiliary HJB equation (8) of Subsection 3.2.

rJW (δ, a) = u (δ, a) + α

δH∫
δL

max
a′

{
JW (δ′, a′)− JW (δ, a)− PW (a′ − a)

}
f(δ′)dδ′.

The FOC for the asset position and the envelope condition41 are

JW2 (δ′, a′) = PW

and

rJW2 (δ, a) = u2 (δ, a) + α
(
−JW2 (δ, a) + PW

)
,

where u2 (., .) represents the partial derivative with respect to the second argument. Combining

these two conditions, I get the optimal demand of the investor with δ, which places her in the

inaction region:

â(δ;PW ) =
r

κ

(
δ

r
− PW

)
.

Appendix D. Calculation of intermediation markups

First, calculate the transaction price for the initial trade at which the investor with 0 inventory

and speed type λ provides intermediation to a counterparty with speed type λ′ by buying θ

41To write down these conditions, I assume that JW (δ, .) is strictly concave and continuously differentiable.
This assumption is also verified ex post.
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units of the asset from him. According to Equation (19) this price must be

P = Jθ (θ, λ) +
κθ

4

(
1

r̃ (λ)
− 1

r̃ (λ′)

)
.

Using the marginal valuation formula from Proposition 2,

P =
u2

(
δ, A

)
r

− κ θ

r̃ (λ)︸ ︷︷ ︸
P ihr

+
κ

4

(
1

r̃ (λ)
− 1

r̃ (λ′)

)
θ︸ ︷︷ ︸

P sp

=
u2

(
δ, A

)
r

− κθ

4

(
3

r̃ (λ)
+

1

r̃ (λ′)

)
, (D.1)

where P ihr is the post-trade marginal valuation and P sp is the speed premium.

Now, calculate the expected price the investor will receive while trying to unload this in-

ventory of θ:

E [Pq|θ, λ; η]

E [q|θ, λ; η]
.

Let us start by calculating E [q|θ, λ; η]. First, note that since δ is distributed symmetrically,

Equation (28) implies ĝλ′′ (z) = ĝλ′′ (−z), and hence, θ is distributed symmetrically conditional

on λ′′. Then, Eg [θ′′|λ′′; η] = 0 for λ′′ ∈ [0,M ]. Proposition 2 implies

E [q|θ, λ; η] = E
[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)
|θ, λ; η

]

=

M∫
0

η∫
−η

m (λ, λ′′)

m (λ,Λ)

−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

G (dθ′′, dλ′′)

Gλ′′ (η)−Gλ′′ (−η)

=

M∫
0

m (λ, λ′′)

m (λ,Λ)

−r̃ (λ′′) θ + r̃ (λ)Eg [θ′′|λ′′; η]

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′

= − θ

m (λ,Λ)

M∫
0

m (λ, λ′′)
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′

= −2 (r̃ (λ)− r)
m (λ,Λ)

θ, (D.2)

where the last equality follows from the definition of r̃ (λ) in Theorem 1 and the previous one

follows from the fact that Eg [θ′′|λ′′; η] = 0 for λ′′ ∈ [0,M ].

Now, let us calculate E [Pq|θ, λ; η]. E [Pq|θ, λ; η] will have a component due to post-trade

marginal valuation and another component due to speed premium. Call these, respectively,

Eihr [Pq|θ, λ; η] and Esp [Pq|θ, λ; η]. First, note from Proposition 2 that the transaction price

P [(θ, λ) , (θ′′, λ′′)] can be written as

u2

(
δ, A

)
r

− κ θ + θ′′

r̃ (λ) + r̃ (λ′′)︸ ︷︷ ︸
post-trade marg. val.

+
κ

4

r̃ (λ′′)− r̃ (λ)

r̃ (λ) + r̃ (λ′′)

(
− θ

r̃ (λ)
+

θ′′

r̃ (λ′′)

)
︸ ︷︷ ︸

speed premium

.
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Thus,

Eihr [Pq|θ, λ; η] = E

[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

(
u2

(
δ, A

)
r

− κ θ + θ′′

r̃ (λ) + r̃ (λ′′)

)
|θ, λ; η

]

= E

[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

u2

(
δ, A

)
r

+ κθ2 r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2 − κ (θ′′)
2 r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2 |θ, λ; η

]

= E [q|θ, λ; η]
u2

(
δ, A

)
r

+ κθ2

M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2ψ (λ′′) dλ′′

− κ
M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2Eg
[
(θ′′)

2 |λ′′; η
]
ψ (λ′′) dλ′′,

where the last equality follows from (D.2) and the previous equality follows from the fact that

Eg [θ′′|λ′′; η] = 0 for λ′′ ∈ [0,M ]. Similarly,

Esp [Pq|θ, λ; η] = E
[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

{
κ

4

r̃ (λ′′)− r̃ (λ)

r̃ (λ) + r̃ (λ′′)

(
− θ

r̃ (λ)
+

θ′′

r̃ (λ′′)

)}
|θ, λ; η

]
= E

[
κθ2

4

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

r̃ (λ′′)

r̃ (λ)
+
κ (θ′′)2

4

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

r̃ (λ)

r̃ (λ′′)
|θ, λ; η

]

=
κθ2

4

M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

r̃ (λ′′)

r̃ (λ)
ψ (λ′′) dλ′′

+
κ

4

M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

r̃ (λ)

r̃ (λ′′)
Eg
[
(θ′′)

2 |λ′′; η
]
ψ (λ′′) dλ′′.

Then, the expected price the investor will receive by unloading the inventory of θ becomes:

E [Pq|θ, λ; η]

E [q|θ, λ; η]
=

Eihr [Pq|θ, λ; η]

E [q|θ, λ; η]
+

Esp [Pq|θ, λ; η]

E [q|θ, λ; η]
, (D.3)

where

Eihr [Pq|θ, λ; η]

E [q|θ, λ; η]
=
u2

(
δ, A

)
r

− κθ
M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2ψ (λ′′) dλ′′

+
κ

θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2varg [θ′′|λ′′; η]ψ (λ′′) dλ′′
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and

Esp [Pq|θ, λ; η]

E [q|θ, λ; η]
=
κθ

4

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)− r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2

r̃ (λ′′)

r̃ (λ)
ψ (λ′′) dλ′′

+
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)− r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2

r̃ (λ)

r̃ (λ′′)
varg [θ′′|λ′′; η]ψ (λ′′) dλ′′.

Define the markup as

µ (θ, λ, λ′) ≡
E[Pq|θ,λ;η]
E[q|θ,λ;η]

− P
P

=

Eihr[Pq|θ,λ;η]
E[q|θ,λ;η]

− P ihr

P︸ ︷︷ ︸
≡µihr(θ,λ,λ′)

+

Esp[Pq|θ,λ;η]
E[q|θ,λ;η]

− P sp

P︸ ︷︷ ︸
≡µsp(θ,λ,λ′)

.

Using (D.1), (D.3), and the fact that

2 (r̃ (λ)− r) =

M∫
0

m (λ, λ′′)
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′,

one obtains (37).

Using the same equation and the fact that r̃ (λ) ≥ r for all λ ∈ [0,M ], one can also show

that the markup (37) is positive when the normalizing price (D.1) and θ are positive.

D.1 Proof of Proposition 7

Rewrite the numerator of markup:

κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

[
r̃ (λ)

r̃ (λ′′)
+ 3

]
varg [θ′′|λ′′; η]ψ (λ′′) dλ′′ + ε (λ) ,

where ε (λ) collects the terms that do not contain varg [θ′′|λ′′; η]. Take derivative w.r.t. λ:

κ

4θ

M∫
0

mλ (λ, λ′′) 2 (r̃ (λ)− r)−m (λ, λ′′) 2r̃′ (λ)

[2 (r̃ (λ)− r)]2

[r̃ (λ)]2 + 3r̃ (λ′′) r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

+
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃′ (λ) r̃ (λ′′)

3r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))3

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′ + ε′ (λ)
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=
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
[r̃ (λ)]2 + 3r̃ (λ′′) r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

1

λ

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

− κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
[r̃ (λ)]2 + 3r̃ (λ′′) r̃ (λ)

(r̃ (λ) + r̃ (λ′′))2

r̃′ (λ)

r̃ (λ)− r
1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

− κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ) r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2

r̃′ (λ)

r̃ (λ) + r̃ (λ′′)

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

+
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃′ (λ) r̃ (λ′′)

3r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))3

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′ + ε′ (λ) .

Using the fact that

r̃′ (λ)

1 +

M∫
0

m (λ, λ′′)
r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))2ψ (λ′′) dλ′′

 =
r̃ (λ)− r

λ
, (D.4)

one can show that the sum of the terms before ε′ (λ) is positive. It is easy to verify that the

denominator of markup is an increasing function of λ, and hence, it will contribute negatively to

the derivative of markup. Also, the sign of ε′ (λ) can be negative or positive. However, it is cer-

tain that the terms with varg [θ′′|λ′′; η] contribute positively to the derivative of markup. Thus,

from continuity, varg [θ′′|λ′′; η]s must be large enough for the total derivative to be positive,

which completes the part (ii) of the proposition.

To show the part (i), rewrite the numerator of markup:

κθ

4r̃ (λ′)
+

1

2

κθ

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′ + ε (λ) ,

where ε (λ) represents the terms with integral of varg [θ′′|λ′′; η].

Take the derivative w.r.t. λ:

−1

2

κθr̃′ (λ)

[r̃ (λ)]2

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′

+
1

2

κθ

r̃ (λ)

M∫
0

mλ (λ, λ′′) 2 (r̃ (λ)− r)−m (λ, λ′′) 2r̃′ (λ)

[2 (r̃ (λ)− r)]2

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′

−1

2

κθ

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
2

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)
r̃ (λ′′) r̃′ (λ)

(r̃ (λ) + r̃ (λ′′))2ψ (λ′′) dλ′′ + ε′ (λ)
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= −1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

r̃ (λ)
ψ (λ′′) dλ′′

+
1

2

κθ

r̃ (λ)

M∫
0

m (λ, λ′′) 2 (r̃ (λ)− r)−m (λ, λ′′)λ2r̃′ (λ)

[2 (r̃ (λ)− r)]2 λ

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′

−1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
2

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′ + ε′ (λ)

=
1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

λr̃′ (λ)
ψ (λ′′) dλ′′

−1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

r̃ (λ)
ψ (λ′′) dλ′′

−1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
2

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′

−1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

r̃ (λ)− r
ψ (λ′′) dλ′′ + ε′ (λ)

=
1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

[
1

λr̃′ (λ)
− 1

r̃ (λ)
− 2

r̃ (λ) + r̃ (λ′′)
− 1

r̃ (λ)− r

]
ψ (λ′′) dλ′′ + ε′ (λ) .

Again, using (D.4) and that the lower bound of the distribution of λs is 1/8, one can

show that the first term of the derivative is negative. Since ε′ (λ) is positive, from continuity,

varg [θ′′|λ′′; η]s must be small enough for the total derivative to be negative. It is easy to verify

that the denominator of markup is an increasing function of λ. Thus, the derivative of the

markup is negative when varg [θ′′|λ′′; η]s are small enough.

Appendix E. Planner’s problem

I define social welfare as the discounted sum of the utility flows of all investors,

W =

∞∫
0

e−rt


M∫
0

∞∫
−∞

δH∫
δL

u (δ, a)φt (δ, a, λ) dδdadλ

 dt. (E.1)
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Any transfer of the numéraire good from one investor to another does not enter W because of

quasi-linear preferences. The planner maximizes W with respect to controls, qt [(δ, a, λ) , (δ′, a′, λ′)],

subject to the laws of motion for the state variables, φt (δ, a, λ), and to the feasibility condition

of asset reallocation,

qt [(δ, a, λ) , (δ′, a′, λ′)] + qt [(δ′, a′, λ′) , (δ, a, λ)] = 0, (E.2)

which also results in the imposition that the solution does not depend on the identities or

“names” of investors.

Since δ, a, and λ are continuous variables, we have a continuum of control variables (and of

dynamic restrictions and co-state variables, too), corresponding to the continuum of investor

characteristics. van Imhoff (1982) describes a heuristic method of solving such problems. This

method relies on interpreting the integral (E.1) as a summation of discrete variables over inter-

vals with widths dδ, da, and dλ. An application of Lebesgue dominated convergence theorem42

guarantees the convergence of this summation to the integral (E.1) as the widths of intervals

approach 0.

Keeping in mind van Imhoff (1982)’s interpretation, the planner’s current-value Hamiltonian

can be written as

L (q|Φ) =

M∫
0

∞∫
−∞

δH∫
δL

u (δ, a) Φ (dδ, da, dλ)

+ α

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′Φ (dδ, da, dλ)

+

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)}

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {q [(δ, a, λ) , (δ′, a′, λ′)] + q [(δ′, a′, λ′) , (δ, a, λ)]}

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ) ,

where φ induces the cdf Φ; ϑ denotes the current-value co-state variable associated with φ; and

ζ is the Lagrange multiplier associated with the condition (E.2).

42See, for a reference, Hutson et al. (2005, p. 55).

103



First-order conditions. Take any optimal qe and let

ϑe (δ, a, λ) = ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ) , (E.3)

and let

q̂ [(δ, a, λ) , (δ′, a′, λ′)] = qe [(δ, a, λ) , (δ′, a′, λ′)] + εI{ϑe(δ,a,λ)>ϑe(δ′,a′,λ′)} − εI{ϑe(δ,a,λ)<ϑe(δ′,a′,λ′)}

= qe [(δ, a, λ) , (δ′, a′, λ′)] + ε∆ [(δ, a, λ) , (δ′, a′, λ′)] .

For small ε, I obtain up to second-order terms:

L (q̂|Φ)− L (qe|Φ)

= ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)ϑe2 (δ, a, λ) ∆ [(δ, a, λ) , (δ′, a′, λ′)] Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {∆ [(δ, a, λ) , (δ′, a′, λ′)] + ∆ [(δ′, a′, λ′) , (δ, a, λ)]}

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

=
ε

2

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)ϑe2 (δ, a, λ) ∆ [(δ, a, λ) , (δ′, a′, λ′)] Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+
ε

2

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)ϑe2 (δ′, a′, λ′) ∆ [(δ′, a′, λ′) , (δ, a, λ)] Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {∆ [(δ, a, λ) , (δ′, a′, λ′)] + ∆ [(δ′, a′, λ′) , (δ, a, λ)]}

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

=
ε

2

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑe2 (δ, a, λ)− ϑe2 (δ′, a′, λ′)}∆ [(δ, a, λ) , (δ′, a′, λ′)]

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {∆ [(δ, a, λ) , (δ′, a′, λ′)] + ∆ [(δ′, a′, λ′) , (δ, a, λ)]}

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)
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If qe is optimal, this must be negative. The second term is 0 by construction. Since the

integrand in the first term is positive, it must be zero everywhere. Recalling (E.2) and (E.3),

thus, the FOC becomes

ϑ2 (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ) = ϑ2 (δ′, a′ − qe [(δ, a, λ) , (δ′, a′, λ′)] , λ′) . (E.4)

ODE for co-state variables In an optimum, the co-state variables must satisfy the ODEs,

∇n(δ,a,λ)L (qe|Φ) = rϑ (δ, a, λ)−
.

ϑ (δ, a, λ) , (E.5)

where n (δ, a, λ) is the degenerate measure which puts all the probability on the type (δ, a, λ)

and ∇n denotes the Gâteaux differential in the direction of measure n:

∇nL (qe|Φ) = lim
ε→0

L (qe|Φ + εn)− L (qe|Φ)

ε
.

For small ε, I obtain up to second-order terms:

L (qe|Φ + εn)− L (qe|Φ) = ε

M∫
0

∞∫
−∞

δH∫
δL

u (δ, a)n (dδ, da, dλ)

+ εα

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′n (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

1∫
−1

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)}

Φ (dδ′, da′, dλ′)n (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)}

n (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {qe [(δ, a, λ) , (δ′, a′, λ′)] + qe [(δ′, a′, λ′) , (δ, a, λ)]}

Φ (dδ′, da′, dλ′)n (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {qe [(δ, a, λ) , (δ′, a′, λ′)] + qe [(δ′, a′, λ′) , (δ, a, λ)]}

n (dδ′, da′, dλ′) Φ (dδ, da, dλ) .
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Thus,

∇n(δ,a,λ)L (qe|Φ) = u (δ, a) + α

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)

+ϑ (δ′, a′ + qe [(δ′, a′, λ′) , (δ, a, λ)] , λ′)− ϑ (δ′, a′, λ′)}Φ (dδ′, da′, dλ′)

+

M∫
0

∞∫
−∞

δH∫
δL

{ζ [(δ, a, λ) , (δ′, a′, λ′)] + ζ [(δ′, a′, λ′) , (δ, a, λ)]}

{qe [(δ, a, λ) , (δ′, a′, λ′)] + qe [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′) .

Using (E.2), (E.5), and the FOC (E.4), the following ODE for the co-state variables obtains in

an optimum:

rϑ (δ, a, λ)−
.

ϑ (δ, a, λ) = u (δ, a) + α

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)

+ϑ (δ′, a′ − qe [(δ, a, λ) , (δ′, a′, λ′)] , λ′)− ϑ (δ′, a′, λ′)}φ (δ′, a′, λ′) dδ′da′dλ′

s.t.

ϑ2 (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ) = ϑ2 (δ′, a′ − qe [(δ, a, λ) , (δ′, a′, λ′)] , λ′) .

Checking that the planner’s optimality conditions do not coincide with the equilibrium con-

ditions is easy. More specifically, the comparison with Equation (13) reveals that the planner’s

optimality conditions and the equilibrium conditions would be identical if there was not 1/2

in front of the matching function in the equilibrium condition. This difference is because of a

composition externality typical of ex post bargaining environments, as discussed by Afonso and

Lagos (2015). An individual investor of current type (δ, a, λ) internalizes only half the surpluses

that her trades create. As a result, she does not internalize fully the social benefit that arises

from the fact that having her in the current state (δ, a, λ) increases the meeting intensity of all

other investors with an investor of type (δ, a, λ).
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The solution method for the planner’s problem is exactly the same as the solution method

I used for equilibrium. In the end, the difference between the planner’s solution and the

equilibrium solution boils down to the use of a different endogenous inventory aversion. The

inventory aversion that the benevolent social planner would assign to investors with λ solves

the functional equation (38). The quantities chosen by the planner are given by (39).

Given the socially optimal trade quantities described above, the distribution of inventories

solves the following system of Fourier transforms:

0 = − (α +m (λ,Λ)) ĝeδ,λ (z) + α

δH∫
δL

e−i2π(δ′−δ)Ce(λ)zĝeδ′,λ (z) f (δ′) dδ′ (E.6)

+

M∫
0

δH∫
δL

m (λ, λ′) ĝeδ,λ

(
z

1 + r̃e(λ′)
r̃e(λ)

)
ĝeδ′,λ′

(
z

1 + r̃e(λ′)
r̃e(λ)

)
f (δ′)ψ (λ′) dδ′dλ′

for all λ ∈ [0,M ], δ ∈ [δL, δH ] and for all z ∈ R;

ĝeδ,λ(0) = 1

for all λ ∈ [0,M ] and δ ∈ [δL, δH ]; and

M∫
0

δH∫
δL

(
ĝeδ,λ
)′

(0)f (δ)ψ (λ) dδdλ = 0,

where

Ce (λ) ≡ 1

κ

r̃e (λ)

r̃e (λ) + α
.

So far, I have shown that the distortion of investors’ decisions on the intensive margin leads

to too cautious a trading behavior relative to the constrained efficient trading behavior. Next,

I show how trade-size dependent transaction taxes/subsidies help eliminate this distortion.

Suppose trading q units of the asset incurs a tax payment of τ1(λ)(2aq+ q2)/2 + τ2(λ)
(
δ − δ

)
q

on the investor of type (δ, a, λ).43 On the regulators’ side, implementing such a policy in practice

would require measuring the transaction frequencies of market participants and monitoring

their risk exposures and asset positions. The recently implemented section of the Dodd-Frank

Act, often referred to as “the Volcker Rule,” which disallows proprietary trading by banks and

43Financial transaction taxes that are quadratic in trade size are also used in centralized market models,
such as Subrahmanyam (1998) and Dow and Rahi (2000). The benefit of this specification is that it does not
generate inaction regions in CARA-normal environments, and hence, allows for analytical and interior solution
for trading rules.
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their affiliates, also requires a similar level of monitoring. Some proprietary-trading forms are

exempted from the Volcker Rule, such as those related to market making or hedging. Thus,

regulators must monitor banks’ positions and trading behavior and calculate certain metrics

like transaction frequency or taste to determine proprietary trading unrelated to hedging or

market making.

The bargaining problem of investors in the OTC market equilibrium with taxes will be

{q [(δ, a, λ) , (δ′, a′, λ′)] , P [(δ, a, λ) , (δ′, a′, λ′)]}

= arg max
q,P

[
J(δ, a+ q, λ)− J(δ, a, λ)− Pq − 1

2
τ1(λ)(2aq + q2)− τ2(λ)

(
δ − δ

)
q

] 1
2

[
J(δ′, a′ − q, λ′)− J(δ′, a′, λ′) + Pq − 1

2
τ1(λ′)(−2a′q + q2) + τ2(λ′)

(
δ′ − δ

)
q

] 1
2

,

s.t.

J(δ, a+ q, λ)− J(δ, a, λ)− Pq − 1

2
τ1(λ)(2aq + q2)− τ2(λ)

(
δ − δ

)
q ≥ 0,

J(δ′, a′ − q, λ′)− J(δ′, a′, λ′) + Pq − 1

2
τ1(λ′)(−2a′q + q2) + τ2(λ′)

(
δ′ − δ

)
q ≥ 0.

The first-order necessary and sufficient conditions and the Kuhn-Tucker conditions imply that

the trade size, q [(δ, a, λ) , (δ′, a′, λ′)], maximizes the joint surplus net of total transaction tax;

and the transaction price, P [(δ, a, λ) , (δ′, a′, λ′)], is set so that the maximized surplus net of

total transaction tax is split equally between the bargaining parties; i.e., q [(δ, a, λ) , (δ′, a′, λ′)]

and P [(δ, a, λ) , (δ′, a′, λ′)] solve the system

J2(δ, a+ q, λ)− τ2(λ)
(
δ − δ

)
− τ1(λ)a

= J2(δ′, a′ − q, λ′) − τ2(λ′)
(
δ′ − δ

)
− τ1(λ′)a′ + [τ1(λ) + τ1(λ′)] q

P =
J(δ, a+ q, λ)− J(δ, a, λ)− (J(δ′, a′ − q, λ′)− J(δ′, a′, λ′))

2q

− 1

2

[
τ2(λ)

(
δ − δ

)
+ τ2(λ′)

(
δ′ − δ

)
+ τ1(λ)a+ τ1(λ′)a′

]
− 1

4
[τ1(λ)− τ1(λ′)] q.

Using this result, the HJB equation of investors becomes
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rJ(δ, a, λ) = u (δ, a) + T + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
1

2

[
max
q
{J(δ, a+ q, λ)− J(δ, a, λ) + J(δ′, a′ − q, λ′)− J(δ′, a′, λ′)

−
[
τ2(λ)

(
δ − δ

)
− τ2(λ′)

(
δ′ − δ

)
+ τ1(λ)a− τ1(λ′)a′

]
q

−1

2
[τ1(λ) + τ1(λ′)] q2

}]
Φ(dδ′, da′, dλ′),

where

T =

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

(
τ1(λ)

2

{
2aq [(δ, a, λ) , (δ′, a′, λ′)] + (q [(δ, a, λ) , (δ′, a′, λ′)])

2
}

+τ2(λ)
(
δ − δ

)
q [(δ, a, λ) , (δ′, a′, λ′)]

)
Φ(dδ′, da′, dλ′)Φ(dδ, da, dλ)

is the flow transfer from the government to investors.

The solution method for this problem is exactly the same as the solution method I used for

equilibrium without taxes. The trade quantities in the equilibrium with taxes turn out to be

q [(δ, a, λ) , (δ′, a′, λ′)] =

[
κ+ rτ1(λ)

r̃ (λ)
+
κ+ rτ1(λ′)

r̃ (λ′)

]−1

[
−κ− (r̃ (λ)− r) τ1(λ)

r̃ (λ)
θ(δ, a, λ) +

κ− (r̃ (λ′)− r) τ1(λ′)

r̃ (λ′)
θ(δ′, a′, λ′)

−τ1(λ)a− τ2(λ)
(
δ − δ

)
+ τ1(λ′)a′ + τ2(λ′)

(
δ′ − δ

)]
, (E.7)

where

θ(δ, a, λ) = a− A− 1− (r̃ (λ)− r) τ2(λ)

κ1 − (r̃ (λ)− r) τ1(λ)

r̃ (λ)

r̃ (λ) + α

(
δ − δ

)
(E.8)

and

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

κ−(r̃(λ)−r)τ1(λ)
r̃(λ)

κ+rτ1(λ)
r̃(λ)

+ κ+rτ1(λ′)
r̃(λ′)

ψ(λ′)dλ′. (E.9)

Given this equilibrium trading behavior under the presence of taxes, the optimal policy pre-

sented in Proposition 8 is to choose τ1(λ) and τ2(λ) so that the equilibrium trade quantities

(E.7) coincide with the constrained efficient trade quantities (39).
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The social inefficiency in the OTC market equilibrium manifests itself in two intensive

margin effects. First, investors’ marginal valuation is more sensitive to inventories than the

socially efficient marginal valuations. Thus, controlling for inventories, investors trade more

cautiously leading to a less dispersed asset position distribution than the socially efficient asset

position distribution. Second, in the calculation of (excess) inventories, investors put less weight

on their current taste, which leads to less dispersed inventories. The roles of τ1(λ) and τ2(λ)

are essentially to correct these two distortions, respectively.

Proposition 8 shows that τ1(λ) is negative. This means that it is a subsidy whenever an

investor with holding a trades in a way that her post-trade asset position is more extreme than

|a|. Similarly, it is a tax whenever the investor ends up with a post-trade position less extreme

than |a|. In short, τ1(λ) gives investors incentive to increase the dispersion of asset position

distribution. Over the lifetime of an investor, these taxes and subsidies stemming from terms

with τ1(λ) net out to zero.

In a similar fashion to τ1(λ), τ2(λ) gives investors incentive to make their inventories more

dispersed. In particular, τ2(λ) encourages an investor to sell when she has a strong taste for

holding (δ > δ) and encourages her to buy when she has a weak taste for holding (δ < δ). Over

an investor’s lifetime, these taxes and subsidies stemming from terms with τ2(λ) net out to

a payment from the investor to the government simply because investors receive idiosyncratic

taste shocks over time. During normal times, liquidity provision behavior typically leads to a

subsidy and mean reversion to target holding leads to a tax, and these cancel each other out.

However, immediately following an idiosyncratic shock, it takes the investor some time to reach

her new target position, and she pays taxes during these episodes.

E.1 Proof of Proposition 8

Using τ1 (λ) specified in the proposition, (E.9) becomes:

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

κ
r̃e(λ)

+ κ
r̃e(λ)

r̃e(λ)−r
r̃e(λ)+r

κ
r̃e(λ)

+ κ
r̃e(λ′)

ψ (λ′) dλ′,

where r̃e (λ) is the solution of the corresponding functional equation (38) for the planner. Using

(38), one notices that

r̃ (λ) =
[r̃e (λ)]2 + r2

r̃e (λ) + r
⇔ r̃e (λ) =

r̃ (λ) +
√

[r̃ (λ)]2 + 4r (r̃ (λ)− r)
2

.
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After noticing this and using τ1 (λ) and τ2 (λ) specified in the proposition, it follows from (39),

(40), (E.7), and (E.8) that

qe [(δ, a, λ) , (δ′, a′, λ′)] = q [(δ, a, λ) , (δ′, a′, λ′)]

and

θe (δ, a, λ) = θ (δ, a, λ) ,

which establishes that the specified tax scheme decentralizes the constrained efficient allocation.

Now define and calculate, τ (λ), the instantaneous average financial transaction tax collected

from investors with speed type λ:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

(
τ1 (λ)

2

{
2aqe [(δ, a, λ) , (δ′, a′, λ′)] + (qe [(δ, a, λ) , (δ′, a′, λ′)])

2
}

+τ2 (λ)
(
δ − δ

)
qe [(δ, a, λ) , (δ′, a′, λ′)]

)
Φ (dδ′, da′, dλ′) Φλ (dδ, da) ≡ τ (λ) .

The integrand has three terms: The first two are related to τ1 (λ) and the last one is related

to τ2 (λ). Let us calculate these terms one by one. The first term is:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
τ1 (λ)

2
2aqe [(δ, a, λ) , (δ′, a′, λ′)] Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= τ1 (λ)

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) a
−r̃e (λ′) θe (δ, a, λ) + r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= −τ1 (λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
aθe (δ, a, λ) Φλ (dδ, da)ψ (λ′) dλ′

= −τ1 (λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)

[
θe (δ, a, λ) + Ce (λ)

(
δ − δ

)]
θe (δ, a, λ)

Φλ (dδ, da)ψ (λ′) dλ′

= −τ1 (λ)

M∫
0

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
ψ (λ′) dλ′

∞∫
−∞

δH∫
δL

[
θe (δ, a, λ) + Ce (λ)

(
δ − δ

)]
θe (δ, a, λ) Φλ (dδ, da)

= −τ1 (λ) (r̃e (λ)− r) {var [θe|λ] + Ce (λ) cov [δ, θe|λ]} .
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The second term is:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
τ1 (λ)

2
(qe [(δ, a, λ) , (δ′, a′, λ′)])

2
Φ (dδ′, da′, dλ′) Φλ (dδ, da)

=
τ1 (λ)

2

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

(
−r̃e (λ′) θe (δ, a, λ) + r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

)2

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

=
τ1 (λ)

2

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

[(
−r̃e (λ′) θe (δ, a, λ)

r̃e (λ) + r̃e (λ′)

)2

+

(
r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

)2
]

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

=
τ1 (λ)

2

var [θe|λ]

M∫
0

m (λ, λ′)

(
r̃e (λ′)

r̃e (λ) + r̃e (λ′)

)2

ψ (λ′) dλ′

+

M∫
0

m (λ, λ′)

(
r̃e (λ)

r̃e (λ) + r̃e (λ′)

)2

var [θe|λ′]ψ (λ′) dλ′

 .

By taking the derivative of (E.6) twice and evaluating it at z = 0 in the same fashion as the

proof of Proposition 3, I obtainm (λ,Λ)−
M∫
0

m (λ, λ′)

(
r̃e (λ)

r̃e (λ) + r̃e (λ′)

)2

ψ (λ′) dλ′

 var [θe|λ]

= −2Ce (λ) cov [δ, θe|λ] +

M∫
0

m (λ, λ′)

(
r̃e (λ)

r̃e (λ) + r̃e (λ′)

)2

var [θe|λ′]ψ (λ′) dλ′.

Substituting this into the previous expression, the second term of τ (λ) becomes

τ1 (λ)

2

m (λ,Λ) var [θe|λ] + var [θe|λ]

M∫
0

m (λ, λ′)
[r̃e (λ′)]2 − [r̃e (λ)]2

[r̃e (λ) + r̃e (λ′)]2
ψ (λ′) dλ′

2 (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]]

=
τ1 (λ)

2

m (λ,Λ) var [θe|λ] + var [θe|λ]

M∫
0

m (λ, λ′)
r̃e (λ′)− r̃e (λ)

r̃e (λ) + r̃e (λ′)
ψ (λ′) dλ′

2 (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]]

=
τ1 (λ)

2
[m (λ,Λ) var [θe|λ]−m (λ,Λ) var [θe|λ] + 2 (r̃e (λ)− r) var [θe|λ]

2 (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]]

= τ1 (λ) [(r̃e (λ)− r) var [θe|λ] + (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]] .
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Now one sees that the first and second terms of τ (λ) cancel each other out. Thus, only the last

term will contribute. The last term is:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) τ2 (λ)
(
δ − δ

)
qe [(δ, a, λ) , (δ′, a′, λ′)] Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= τ2 (λ)

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
(
δ − δ

) −r̃e (λ′) θe (δ, a, λ) + r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= −τ2 (λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)

(
δ − δ

)
θe (δ, a, λ) Φλ (dδ, da)ψ (λ′) dλ′

= −τ2 (λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
ψ (λ′) dλ′cov [δ, θe|λ]

= −τ2 (λ) (r̃e (λ)− r) cov [δ, θe|λ] .

Again, taking the derivative of (E.6) and evaluating it at z = 0 in the same fashion as the proof

of Proposition 3 leads to:

cov [δ, θe|λ] =
α

α + r̃e (λ)− r
1

κ

r̃e (λ)

r̃e (λ) + α
var [δ] .

Hence,

τ (λ) = −τ2 (λ)
α (r̃e (λ)− r)
α + r̃e (λ)− r

1

κ

r̃e (λ)

r̃e (λ) + α
var [δ] .

After using τ2 (λ) defined in the proposition, the derivation of τ (λ) is complete.

Appendix F. Details of the network model

Bilateral trades. Using (41) and after simplification, (43) becomes

(qij, Pij) = arg max
q,P

(
1− e−γ[u(δi,a1−ij+qij)−u(δi,a1−ij)−qijPij]

) 1
2

(
1− e−γ[u(δj ,a1−ji−qij)−u(δj ,a1−ji)+qijPij]

) 1
2

, (F.1)

s.t.

1− e−γ[u(δi,a1−ij+qij)−u(δi,a1−ij)−qijPij] ≥ 0,

1− e−γ[u(δj ,a1−ji−qij)−u(δj ,a1−ji)+qijPij] ≥ 0,
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where a1
−ij is investor i’s post-trade asset position if she decides not to trade with investor j.

The solution (qij, Pij) of the constrained optimization problem (F.1) satisfies the system

u2

(
δi, a

1
−ij + qij

)
= u2

(
δj, a

1
−ji − qij

)
(F.2a)

Pij =
u
(
δi, a

1
−ij + qij

)
− u

(
δi, a

1
−ij
)
−
(
u
(
δj, a

1
−ji − qij

)
− u

(
δj, a

1
−ji
))

2qij
. (F.2b)

Using the definition of utility (42), the solution is

qij =
a1
−ji − a1

−ij

2
− 1

κ

ρj − ρi
2

, (F.3a)

Pij = δ − κ
(
a1
−ij + a1

−ji

2
− 1

κ

δi + δj
2

)
. (F.3b)

Using a1
−ij = a1

i − qij, (F.3a) can be written as

qij = a1
−ji − a1

i +
1

κ
(δi − δj) .

Summing qik over all counterparties, k, of investor i, except for one particular counterparty j,

one obtains Equation (44).

Equilibrium threat points. Equation (45) gives us a1
−ij as a function of a0

i , δi, qij, and λi.

The main reason why the initial endowment, a0
i , is a determinant of a1

−ij is the price impact.

The presence of price impact due to bargaining makes the investor unload her initial endowment

to her counterparties imperfectly. Naturally, a0
i enters the equation positively because even if

the investor does not trade with investor j, a higher initial endowment leads to higher asset

position for her. Secondly, the taste type, δi, enters the equation positively because higher δi

means strong taste for holding the asset, and hence, the investor expects to buy more.

Substituting (45) into (F.3a) and (F3.b), all equilibrium objects can be written as a function

of initial endowment, taste type, and number of counterparties, which leads to Proposition 9.

Comparison with the search model. Comparing (47) with (23) implies that the reciprocal

of the number of counterparties has the role of determining the weight of an investor’s inventory

in the trade quantity in both models. However, the number of counterparties enters linearly

in the network model, while it enters with a concave transformation in the search model. This

means that the marginal liquidity provision incentive from having access to one additional

counterparty stays constant in the network model, while it is decreasing in the search model.

This difference arises due to the static vs. dynamic nature of the two models. In the search
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model, the calculation of r̃ (λ) takes into account the fact that a fast investor’s post-trade

inventory in her future trades will be dictated, to a large extent, by her counterparties’ trading

needs, which creates a secondary negative impact of λ on r̃ (λ) leading to concavity. This effect

is missing in the static network model because an investor conducts all her trades simultaneously

so she coordinates directly all her trades as shown by Equation (45).

Finally, comparing (48) with (24) reveals that there is no “connectedness” premium in the

network model. As is clear from (F.2a) and (F.2b), the bargaining parties contribute equally

to the trade surplus and then split it equally by taking the threat points as given. Thus, the

speed premium term of (24) that appears in the search model does not appear in (48) of the

network model.

F.1 Proof of Proposition 9

(45) implies

a1
−ij =

1

λi
a0
i +

λi − 1

λi

[
A− qij −

1

κ

(
δ − δi

)]
(F.4)

and

a1
−ji =

1

λj
a0
j +

λj − 1

λj

[
A+ qij −

1

κ

(
δ − δj

)]
. (F.5)

Substituting these to (F.3a) and rearranging,

qij =
−a0i−A

λi
+ 1

κ
δi−δ
λi

+
a0j−A
λj
− 1

κ

δj−δ
λj

1
λi

+ 1
λj

, (F.6)

which is equal to (47).

Substituting (F.4), (F.5), and (F.6) to (F.3b) and rearranging,

Pij = −κ
a0
i + (λi − 1)A− 1

κ

(
δi + (λi − 1) δ

)
+ a0

j + (λj − 1)A− 1
κ

(
δj + (λj − 1) δ

)
λi + λj

= δ − κA− κ
a0
i − A− 1

κ

(
δi − δ

)
+ a0

j − A− 1
κ

(
δj − δ

)
λi + λj

,

which is equal to (48).

Appendix G. Micro-foundations for the quadratic utility

flow

Assume that there are two assets. One asset is riskless and pays interest at an exogenously

given rate r. This asset is traded in a continuous frictionless market. The other asset is risky,

115



traded over the counter, and is in supply denoted by A. This asset pays a cumulative dividend:

dDt = mDdt+ σDdBt,

where Bt is a standard Brownian motion.

I borrow the specification of preferences and trading motives from Duffie et al. (2007) and

Gârleanu (2009). Investors are subjective expected utility maximizers with CARA felicity

functions. Investors’ coefficient of absolute risk aversion and time preference rate are denoted

by γ and r respectively.

Investor i has cumulative income process ηi:

dηit = mηdt+ σηdB
i
t,

where

dBi
t = ρitdBt +

√
1− (ρit)

2
dZi

t .

The standard Brownian motion Zi
t is independent of Bt, and ρit captures the instantaneous

correlation between the payoff of the risky asset and the income of investor i. This correlation

is time-varying and heterogeneous across investors. Thus, this heterogeneity creates the gains

from trade. In the context of different markets, this heterogeneity can be interpreted in different

ways such as hedging demands or liquidity needs. In the case of a credit derivatives market,

for example, the correlation captures the exposure to credit risk. If a bank’s exposure to the

credit risk of a certain bond or loan is high, the correlation between the bank’s income and the

payoff of the derivative written on that specific bond or loan will be negative, implying that the

derivative provides hedging to the bank. Therefore, that bank will have a high valuation for

the derivative. Another bank with a short position in the bond will have a positive correlation

and, consequently, a low valuation for the derivative.

I assume that the correlation between an investor’s income and the payoff of risky asset

is itself stochastic. Stochastic processes that govern idiosyncratic shocks and trade are as

described in Section 2.

Let V (W, ρ, a, λ) be the maximum attainable continuation utility of investor of type (ρ, a, λ)

with current wealth W . It satisfies

V (W, ρ, a, λ) = sup
c

Et

−∞∫
t

e−r(s−t)e−γcsds | Wt = W , ρt = ρ, at = a

 ,
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s.t.

dWt = (rWt − ct)dt+ at−dDt + dηt − P [(ρt−, at−, λ) , (ρ′t, a
′
t, λ
′
t)] dat

dat =

{
q [(ρt−, at−, λ) , (ρ′t, a

′
t, λ
′
t)] if there is contact with investor (ρ′t, a

′
t, λ
′
t)

0 if no contact,

where

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]} =

arg max
q,P

[V (W−qP, ρ, a+q, λ)−V (W, ρ, a, λ)]
1
2 [V (W ′+qP, ρ′, a′−q, λ′)−V (W ′, ρ′, a′, λ′)]

1
2 ,

s.t.

V (W − qP, ρ, a+ q, λ) ≥ V (W, ρ, a, λ), (G.1)

V (W ′ + qP, ρ′, a′ − q, λ′) ≥ V (W ′, ρ′, a′, λ′).

Since investors have CARA preferences, terms of trade are independent of wealth levels as I

will show later. To eliminate Ponzi-like schemes, I impose the transversality condition

lim
T→∞

e−r(T−t)Et
[
e−rγWT

]
= 0.

To derive the optimal rules, the technique of stochastic dynamic programming is used.

Assuming sufficient differentiability and applying Ito’s lemma for jump-diffusion processes, the

investor’s value function V (W, ρ, a, λ) satisfies the HJB equation

0 = sup
c
{−e−γc + VW (W, ρ, a, λ)[rW − c+ amD +mη]

+
1

2
VWW (W, ρ, a, λ)[σ2

η + 2ρaσDση + a2σ2
D]

− rV (W, ρ, a, λ) + α

1∫
−1

[V (W, ρ′, a, λ)− V (W, ρ, a, λ)]f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′)

{V (W − q [(ρ, a, λ) , (ρ′, a′, λ′)]P [(ρ, a, λ) , (ρ′, a′, λ′)] , ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)

−V (W, ρ, a, λ)}Φ(dρ′, da′, dλ′)}. (G.2)

Following Duffie et al. (2007), I guess that V (W, ρ, a, λ) takes the form

V (W, ρ, a) = −e−rγ(W+J(ρ,a,λ)+J)
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for some function J(ρ, a), where

J =
1

r

(
mη +

log r

γ
− 1

2
rγσ2

η

)
is a constant. Replacing into (G.2), I find that the optimal consumption is

c = − log r

γ
+ r(W + J(ρ, a, λ) + J).

After plugging c back into (G.2) and dividing by rγV (W, ρ, a, λ), I find that (G.2) is satisfied

iff

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

1− e−rγ[J(ρ′,a,λ)−J(ρ,a,λ)]

rγ
f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

1− e−rγ{J(ρ,a+q[(ρ,a,λ),(ρ′,a′,λ′)],λ)−J(ρ,a,λ)−q[(ρ,a,λ),(ρ′,a′,λ′)]P [(ρ,a,λ),(ρ′,a′,λ′)]}

rγ

m (λ, λ′) Φ(dρ′, da′, dλ′). (G.3)

Terms of individual trades, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)], are determined

by a Nash bargaining game with the solution given by the optimization problem (G.1). Dividing

by V (W, ρ, a, λ)
1
2V (W ′, ρ′, a′, λ′)

1
2 , (G.1) can be written as

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= arg max
q,P

[1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ]]
1
2 [1− e−rγ[J(ρ′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ]]

1
2 ,

s.t.

1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ] ≥ 0

1− e−rγ[J(ρ′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ] ≥ 0.

As can be seen, terms of trade are independent of wealth levels. Solving this problem is

relatively straightforward: I set up the Lagrangian of this problem. Then using the first-order

and Kuhn-Tucker conditions, the trade size q [(ρ, a, λ) , (ρ′, a′, λ′)] solves Equation (10). And, the

transaction price P [(ρ, a, λ) , (ρ′, a′, λ′)] is given by Equation (12) if J2(ρ, a, λ) 6= J2(ρ′, a′, λ′);

and P = J2(ρ, a, λ) if J2(ρ, a, λ) = J2(ρ′, a′, λ′). Substituting the transaction price into (G.3), I
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get

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

1− e−rγ[J(ρ′,a,λ)−J(ρ,a,λ′)]

rγ
f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

1− e− rγ2 {J(ρ,a+q[(ρ,a,λ),(ρ′,a′,λ′)],λ)−J(ρ,a,λ)+J(ρ′,a′−q[(ρ,a,λ),(ρ′,a′,λ′)],λ′)−J(ρ′,a′,λ′)}

rγ

m (λ, λ′) Φ(dρ′, da′, dλ′), (G.4)

subject to (10).

Equation (G.4) cannot be solved in closed form. Consequently, following Gârleanu (2009),

I use the linearization 1−e−rγx
rγ

≈ x that ignores terms of order higher than 1 in [J(ρ′, a, λ) −
J(ρ, a, λ)]. The same approximation is also used by Biais (1993), Duffie et al. (2007), Vayanos

and Weill (2008), and Praz (2014). Economic meaning of this approximation is that I assume

investors are risk averse towards diffusion risks while they are risk neutral towards jump risks.

The assumption does not suppress the impact of risk aversion as investors’ preferences feature

the fundamental risk-return trade-off associated with asset holdings. It only linearizes the

preferences of investors over jumps in the continuation values created by trade or idiosyncratic

shocks. The approximation yields the following lemma.

Lemma 8. Fix parameters γ, σD and ση, and let σD = σD
√
γ/γ and ση = ση

√
γ/γ. In any

stationary equilibrium, investors’ value functions solve the following HJB equation in the limit

as γ goes to zero:

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

1

2
m (λ, λ′) {J(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J(ρ, a, λ)

+J(ρ′, a′ − q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′)− J(ρ′, a′, λ′)}Φ(dρ′, da′, dλ′),

subject to (10).

Setting κ ≡ rγ σ2
D and δ ≡ mD − rγ σDσηρ, the problem is equivalent to the one with the

reduced-form quadratic utility flow.
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Appendix H. Two-dimensional ex ante heterogeneity

In this appendix, I consider a generalization of the baseline OTC model to two-dimensional ex

ante heterogeneity: speed type, λ, and risk aversion parameter, γ:

u(ρ, a, γ) ≡ mDa−
1

2
rγ
(
σ2
Da

2 + 2σDσηρa
)
.

Let Ψ (λ, γ) denote the joint cdf of speed types and risk aversion levels on [0,M ] × [γL, γH ].

Speed types and risk aversion levels are allowed to be correlated but they are distributed

independently from the hedging need types and from all the stochastic processes in the model.

Differently from the baseline model, I assume A = 0 and ρ = 0. In the baseline model without

risk aversion heterogeneity, the result Eφ [a | λ] = A obtains for an arbitrary positive A and

an arbitrary ρ. In this extended version, investors with low risk aversion levels want to have

higher exposure to the aggregate endowment of risk, A+ ση
σD
ρ. Thus, the result Eφ [a | λ, γ] = A

and the resulting simplifications afforded by the quadratic utility obtain only when A = 0 and

ρ = 0 in the extended model.

The investors’ generalized problem (the counterpart of Equation (13)) can be written as

rJ(ρ, a, λ, γ) = u (ρ, a, γ) + α

1∫
−1

[J(ρ′, a, λ, γ)− J(ρ, a, λ, γ)]f(ρ′)dρ′

+

γH∫
γL

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′)
1

2

[
max
q
{J(ρ, a+ q, λ, γ)− J(ρ, a, λ, γ)

+J(ρ′, a′ − q, λ′, γ′)− J(ρ′, a′, λ′, γ′)}] Φ(dρ′, da′, dλ′, dγ′).

To find the marginal valuation, I differentiate this equation with respect to a, applying the

envelope theorem:

rJ2(ρ, a, λ, γ) = u2 (ρ, a, γ) + α

1∫
−1

[J2(ρ′, a, λ, γ)− J2(ρ, a, λ, γ)]f(ρ′)dρ′

+

γH∫
γL

M∫
0

∞∫
−∞

1∫
−1

1

2
m (λ, λ′) {J2(ρ, a+ q [(ρ, a, λ, γ) , (ρ′, a′, λ′)] , λ)

−J2(ρ, a, λ, γ)}Φ(dρ′, da′, dλ′, γ′),

where

u2(ρ, a, γ) = mD − rγσ2
Da− rγσDσηρ.
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Following the exact same steps in the proof of Theorem 1 and Proposition 2, the equilibrium

marginal valuation is

J2(ρ, a, λ, γ) =
mD

r
− γσ2

D

r̃ (λ, γ)
θ(ρ, a, λ, γ),

where

θ(ρ, a, λ, γ) = a+
ση
σD

r̃ (λ, γ)

r̃ (λ, γ) + α
ρ

and r̃ (λ, γ) solves the following generalized version of the functional equation (17):

r̃ (λ, γ) = r +

γH∫
γL

M∫
0

1

2
m (λ, λ′)

γ
r̃(λ,γ)

γ
r̃(λ,γ)

+ γ′

r̃(λ′,γ′)

Ψ(dλ′, dγ′). (H.1)

Here, the endogenous degree of inventory aversion of an investor is given by
γσ2
D

r̃(λ,γ)
. In the

baseline model without heterogeneity in risk aversion, λ was the only source of heterogeneity

in investors’ inventory aversion. Now, λ and γ jointly determine the inventory aversion.
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Figure 1: Inventory aversion as a function of λ and γ, when r = 0.05, σD =
√

2000,
m (λ, λ′) = 2λλ

′

Λ , λ ∼ U [5, 10], γ ∼ U [2, 5], and λ and γ are independently distributed.

Solving (H.1) numerically reveals that the inventory aversion is an increasing function of risk

aversion and a decreasing function of speed type. Thus, Figure 1 shows that upward-sloping

121



iso-inventory-aversion curves arise on the plane of risk aversion and trading speed because risk

aversion and trading speed have opposite impact on the inventory aversion of an investor.

This generalization implies that if investors differ in their exogenous risk aversion levels as

well as speed types, the main intermediaries are those with “low risk aversion and high speed

type.” Because these investors have the lowest endogenous inventory aversion, they have the

comparative advantage in providing liquidity to others. As a result, investor centrality increases

in the southeast direction of Figure 1.

Appendix I. The corporate bond market

Trade Reporting and Compliance Engine (TRACE) was launched by the National Association

of Securities Dealers (NASD) in 2002, by publicly reporting the transactions of approximately

five hundred corporate bond issues of large and good credit entities at the beginning. The

coverage expanded steadily over a few years, and by February 2005 it began disseminating 99%

of all transactions in eligible corporate debt securities. I use enhanced TRACE database in this

analysis, which includes trades that were not originally captured by standard TRACE database.

I use the data filters proposed by Dick-Nielsen (2014) in cleaning enhanced TRACE data. This

procedure eliminates potentially erroneous entries, reversals as well as canceled, corrected, and

commissioned trades.

Table 1
Distribution of trade sizes

This table presents descriptive statistics for par value volume of transactions in the corporate bond market
for the sample period from 2005 to 2014. “Sample” column specifies the subsample which statistics are based
on. “P1,” “P10,” “P50,” “P90,” and “P99” show the 1st, 10th, 50th, 90th, and 99th percentile observation of
the distribution, respectively. “Norm. SD” (normalized standard deviation) is the ratio of sample standard
deviation to sample mean.

Sample Observations P1 P10 P50 P90 P99 Mean St. dev. Norm. SD

2014
A and above 2,978,826 1,000 5,000 31,000 1,220,000 10,000,000 631,407 2,824,662 4.47
Investment grade 5,534,167 1,000 5,000 30,000 1,167,000 10,000,000 592,808 2,467,386 4.16
All bonds 8,940,678 1,000 5,000 43,000 1,410,000 10,000,000 599,189 2,523,175 4.21

2012–2014
A and above 9,871,794 1,000 5,000 29,000 1,000,000 10,000,000 570,536 2,646,328 4.64
Investment grade 18,323,485 1,000 5,000 28,000 1,000,000 10,000,000 525,109 2,293,448 4.37
All bonds 28,122,637 1,000 5,000 35,000 1,065,000 8,675,000 535,532 2,365,792 4.42

2005–2014
A and above 32,939,497 1,000 5,000 25,000 1,000,000 10,000,000 548,791 3,233,151 5.89
Investment grade 51,898,709 1,000 5,000 25,000 1,000,000 10,000,000 550,319 2,949,527 5.36
All bonds 75,245,578 1,000 5,000 25,175 1,325,000 10,000,000 586,985 3,462,783 5.90
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Fig. 2. Distribution of trade sizes
This figure presents the distribution of corporate bond transactions across rating groups over different time
periods. The sample includes all bond transactions obtained from TRACE. “q” represents the par value vol-
ume of the reported transaction. “2014,” “2012–2014,” and “2005–2014” indicate the three subsamples which
distributions of trade sizes are presented. “A and above,” “Investment grade,” and “All bonds” show the trade
size distributions of bonds with A and above credit rating, investment grade bonds, and all bonds, respectively.
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