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Abstract

Long-held intuition dictates that information-based trade without exogenous noise

is impossible. Risk seekers can resolve this conundrum. Not only do such traders

undertake gambles that risk averters prefer to avoid, but they also inject enough noise

into prices to obscure everyone’s private information. Markets are therefore inefficient

strictly due to noise in traders’ endogenous signals. Moreover, risk seekers act as utility

maximizers because, unlike noise traders, they fully internalize their impact on prices.

This behavior also implies that economies with even a few risk seekers are empirically

distinct from noise-trading models of inefficient markets.
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1 Introduction

According to long-held intuition, it is impossible for rational agents to trade with each other

based on their information (Milgrom and Stokey, 1982; Tirole, 1982). This conundrum poses

a challenge to Finance in general, and to explaining why markets are inefficient in particular.

For markets to be inefficient, we must have an equilibrium in which prices contain noise

unrelated to fundamentals. And yet, as the no-trade conundrum prescribes, this noise must

come from outside the agents’ knowledge—even if that knowledge is noisy—because only

then can the agents trade on their information, and only then can markets be partially

efficient (Grossman and Stiglitz, 1980, and others). It is thus widely believed that inefficient

markets are inconsistent with information-based trade, and that to study them we must

employ devices such as liquidity trading, random endowments, and behavioral effects.

Nevertheless, as I show in this article, it is indeed possible for rational agents to trade

on their information without exogenous noise. To generate this kind of trade, however, we

must relax our assumptions on how traders view risk; instead of assuming—as usual—that

all traders dislike risk, we can assume that some traders like risk. As I explain below, such

risk seekers are fully rational, and their presence is necessary because, as the literature has

shown, we cannot have equilibrium if everyone is risk neutral or risk averse. Even a few risk

seekers suffice, as they enable trade by taking on the risk that risk averters avoid.

By making information-based trade possible, risk seeking allows us to think of prices as

imperfect aggregators of diverse private information. What is more; risk seeking provides

all traders with incentives to acquire noisy private information, even if it is costly. Finally,

that all traders are rational also helps us distinguish risk-seeking economies from canonical

economies with noise traders, further implying that risk seeking is not merely a restatement

of noise trading. In short, to describe inefficient markets we need neither redefine rationality
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nor look beyond it; we need only expand what we currently categorize as suitable preferences.

It may appear that risk seeking is a troublesome ingredient of any rational foundation of

inefficient markets. After all, intuition from price-taking models dictates that with negative

risk aversion the traders’ demand-choice problem is not well posed. There are, however,

several reasons why risk seeking is not only rational, but also economically salient.

First, we can motivate risk seeking behavior on two fronts. We can appeal to risk seeking

as an innate preference. As I discuss in the following section, several papers in the empirical

and experimental literature suggest that a minority fraction of people are risk seekers. Al-

ternatively, we can think of negative risk aversion as a reduced-form model for institutional

traders whose reward depends on taking risk due to contracts with clients (see, for example,

Panageas and Westerfield, 2009).

Second, the risk seekers’ demand choice is well posed indeed. Assuming, as in Kyle

(1989), that traders have mean-variance preferences, their second-order condition is the sum

of their market impact and of a risk-preference term, so that—if market impact is large

enough—the traders’ optimization problem is concave in equilibrium even with negative risk

aversion. In fact, the more these risk seekers like risk, the more aggressively they trade, and

the more market impact they have. Overpowering the convexity of their preferences, their

market impact therefore acts as a self-sustaining force both of their own rationality and of

the equilibrium overall.

Third, having risk seekers in an economy also ensures that there is enough noise. Their

trading aggression amplifies the signal noise they inject into prices, enabling risk averters to

trade conservatively without precluding equilibrium. Due to a substitution effect in trading

intensity that I discuss below, prices are noisier in equilibrium when some traders like risk. As

a result, even small numbers of risk seekers can sustain enough noise to obscure fundamentals

for everyone else; without them, prices reveal so much dividend information that no rational
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individual is willing to trade. To borrow a phrase from Dow and Gorton (1997)—who, among

others, argue that noise is necessary for trade—there is “noise trade.”

To focus the discussion on the traders, I restrict the model to one trading period and one

risky asset. Opting for simplicity of exposition, I adopt a market structure based on Kyle

(1985), albeit without noise traders: there is a risk-neutral market maker and many strategic

traders with mean-variance preferences who submit orders without observing prices. This

type of market, known in the literature as a “market-order” model, allows us to abstract

away from effects of learning from prices. This happens without loss of generality for the

main message of this paper—as I show with extensions, the equilibrium with traders who do

observe prices exists if and only if one exists with traders who do not.1

I present the main intuition using a benchmark model with homogeneous risk seekers.

Setting the empirical plausibility of such preferences briefly aside, this model serves two pur-

poses. First, we can elucidate that market impact is directly related to how much the traders

like risk—this relationship becomes more opaque once we extend the model to heterogeneous

risk preferences. Second, under information acquisition, we can empirically distinguish the

economy with risk seekers from the canonical economy with noise traders: when information

becomes cheaper, liquidity always increases in the economy with risk seekers, whereas in the

one with noise traders it may decrease.

This distinction arises because, on the one hand, rational traders fully internalize their

impact on the market, scaling back their trading aggression if necessary.2 Noise traders, on

the other hand, do not respond at all to any changes in the economy. While the rational

traders always acquire more information when it becomes cheaper, the way their trading

1These extensions (Sections 2.2 and 3.5) also show that risk seeking generates incentives to use private
information, suggesting that a result of Grossman (1976)—that traders have no use for their information
because it is already incorporated in the price—is due to a joint assumption of price taking and risk aversion.

2This scaling-back effect is also present in Subrahmanyam (1991), Holden and Subrahmanyam (1992),
Foster and Viswanathan (1996), and others.
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affects the price depends on which economy they are in.

In the risk-seeking economy all traders are rational; here the incentives to compete with

others outweigh any concerns to scale back, so that when information becomes cheaper all

traders behave more aggressively, increasing liquidity. In the economy with noise traders,

however, the effect of informed trading on the price is diminished because of the exoge-

nous extra noise. Thus, even though the rational traders compete harder as information

becomes cheaper, the rate at which they put information into the price—slowed down by the

extra noise—may be overwhelmed by their concerns to scale back their aggression. When

information becomes cheaper the rational traders may thus behave less aggressively overall,

decreasing liquidity.

But what if some traders are rational, yet not risk-seeking? Do we still have equilibrium

then? To address this point we must use an economy in which risk seeking coexists with other

risk preferences. Nevertheless, by incorporating heterogeneous preferences into a standard

economy we lose the tractability required for an answer with enough generality. Since the

only thing required to maintain the spirit of the benchmark model is a residual degree of

market power, I appeal to a version of the economy with monopolistic competition based on

Kyle (1989), adapting it to exclude noise traders. The resulting model treats the market as a

large collection of small traders with residual market impact, allowing for full heterogeneity

of risk preferences and even for information acquisition.3

I characterize all possible equilibria in this model. Generalizing the results from the

homogeneous economy, I show that equilibrium exists only if an aggregate measure of risk

seeking is positive. I call this measure “risk appetite.” While it technically reduces to the

3Large economies with residual market power are well-founded. Using information sales, Garćıa and
Sangiorgi (2011) show that the monopolistic competition in Kyle (1989) arises naturally. Using endowment
shocks, Kyle and Lee (2018) show that markets can remain imperfectly competitive as the number of traders
grows if speculation is strong enough relative to hedging.
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negative of risk aversion in a homogeneous economy, it is generally a precision-weighted

version of the traders’ love for risk. It also completely determines several quantities, such as

trading intensity, liquidity, price informativeness, and volume.

By specifying a spectrum of diverse risk preferences, I construct a unique equilibrium

with trade, setting the stage for the following comparative statics.

There is a pronounced substitution effect between trading intensity and risk seeking. As

the risk seekers in the economy increase, all the traders taken together trade less aggres-

sively in response. Given that several economic measures are functions of aggregate trading

intensity, this effect has a number of consequences.

Extending the intuition we gain from the benchmark model, market impact increases in

the fraction of risk seekers. Liquidity, therefore, decreases. This property follows from gener-

alizing the result in Kyle (1985) that market impact is inversely related to trading intensity.

Kyle’s result still holds in a heterogeneous market, even if we account for competition and

arbitrary risk preferences. This property is also intuitive—risk seekers trade more aggres-

sively than risk averters, and thus a trader population with more risk seekers has a higher

market impact.

As I allude to above, the price is noisier in an equilibrium with more risk seekers. As risk

seeking increases in the aggregate, individuals trade less aggressively in response, and they

therefore contribute less information to the order flow. Consequently, the market aggregates

the information of all traders to a smaller extent, making the price an overall less accurate

signal of dividend information.

Finally, because noise, trade, and risk are interconnected through price informativeness,

the above effects of risk seeking appear in all of them. More specifically, it turns out that

price informativeness has two additional roles: it determines upper and lower bounds for

trading volume—connecting noise with trade—while its inverse acts as an implicit discount
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rate, allowing us to think of prices as discounted noisy dividends. We can thus claim that

assets with noisier prices not only trade less, but they are also riskier. It follows that—even

though we need risk seekers to get any trade at all—the more risk seekers we have, the less

information the price contains, the less everyone trades, and the riskier the asset becomes.

1.1 Literature review

“One may introduce risk-loving traders.”4 Such is the advice of Tirole (1982), who, together

with Milgrom and Stokey (1982), establish foundational results. The takeaway from these

studies is stark. To motivate trade, and therefore also equilibrium with noisy prices, we

must appeal to one of the following mechanisms: stochastic supply, such as liquidity shocks

and noise trading; more narrowly defined trading needs, such as random endowments and

hedging concerns; and relaxed rationality, which may vary from differences of opinion to

specific cognitive frictions. The literature develops largely along these three tracks.

The earliest study of noisy prices assumes that the supply of the traded asset varies exoge-

nously (Grossman, 1976). Grossman and Stiglitz (1980) and Hellwig (1980) develop this idea

further, establishing workhorse models in the information economics of financial markets. As

Dow and Gorton (2008) point out, there are two economic interpretations of stochastic sup-

ply: one which portrays variation in supply as liquidity shocks, and another, which argues

that some investors trade because of irrational—and therefore “noisy”—motives.

A number of papers propose other theories. Diamond and Verrecchia (1981) and Verrec-

chia (1982) introduce random endowments to both generate trade and avoid full revelation

of the asset’s fundamental value. As Garćıa and Urošević (2013) discuss, these endowment

models rely on noise variance which grows in the number of traders, a point also raised in

4Even though this advice appears explicitly at the bottom of p. 1167 in Tirole (1982), risk seekers are
not mentioned again therein.
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Kyle and Lee (2018). A related literature—such as Wang (1994), Dow and Gorton (1997),

Albuquerque and Miao (2014), and others—replaces endowment shocks with hedging con-

cerns, and discusses a variety of topics that require trade.5

Another approach assumes that rationality is bounded, typically due to either imperfect

learning, or overconfidence. Constraining investors’ learning capacity à la Sims (2003), Peng

and Xiong (2006) discuss how inattention affects prices. A different model of imperfect learn-

ing is explored in Vives and Yang (2018), where investors process price information subject

to receivers’ noise as in Myatt and Wallace (2012). Using overconfidence as another type of

bounded rationality, Scheinkman and Xiong (2003) discuss how it can support trade with

heterogeneous noisy beliefs, while Kyle, Obizhaeva, and Wang (2018) study overconfident

individuals who agree to disagree about the precision of each other’s information.

There are also papers that relax specific assumptions of rational expectations. One such

example is Banerjee and Green (2015), where uninformed investors are uncertain about

whether the individuals they trade against are informed traders or noise traders. Other

examples are Vives (2011) and Rostek and Weretka (2012); here, traders have correlated

asset valuations, and equilibria can be privately revealing.

Large markets with residual market impact appear in other papers.6 Section 9 of Kyle

(1989) develops one instance, albeit with noise traders and homogeneous risk aversion. I

use the same type of idiosyncratic noise for my heterogeneous market, but I represent it as

Brownian increments.7 Another large economy with residual market impact is in Rostek

5Dow and Gorton (2008) conduct a survey of the literature as of 2008. For more recent reviews, the
interested reader can consult Garćıa and Urošević (2013) and Han, Tang, and Yang (2016).

6Kyle and Lee (2018) discuss large markets with this feature in depth.
7My noise model for the heterogeneous market is a limiting version of that in Kyle (1989). The traders

are arranged on a grid, and they observe signals with signal-to-noise ratios that depend on how fine the
grid is. As the economy becomes large the grid converges to a continuum, and the signals converge to a
cross-sectional Brownian motion with drift. Without appealing to Brownian motion, Kyle (1989) draws
an analogy between this limit and monopolistic competition. In monopolistic competition, firms maintain
market power by producing slightly differentiated copies of an archetype good. In Kyle (1989) and in my
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and Weretka (2015), although in that model the valuations of the traded asset differ across

traders—in my model the valuations are the same for everyone.

There is literature on estimating risk attitudes, both empirically and experimentally,

which commonly finds that a minority fraction of people are risk seekers. Using simple

gambles, Coombs and Pruitt (1960) carry out experiments with 99 American subjects—they

find that about one third of their subjects prefer gambles with higher variance. Assuming a

representative utility-maximizing agent with objective knowledge of probabilities, and using

more than 20, 000 horse races in New York, Ali (1977) estimates that the representative race

bettor is a risk seeker.

More recently, Kachelmeier and Shehata (1992) elicit certainty equivalents for lotteries

with 80 Chinese subjects under significant monetary incentives. Their evidence suggests

that a fraction of individuals are risk seekers. Also under significant monetary incentives,

Holt and Laury (2002) measure relative risk-aversion coefficients in experiments with 175

American subjects, producing negative estimates for a small fraction of individuals. Finally,

in a German context, Dohmen et al. (2011) combine a survey of 22, 000 respondents with a

field experiment of 450 subjects. They find that the fraction of risk seekers in their German

sample is quantitatively similar to what Holt and Laury (2002) find in their American sample.

2 Risk-seeking traders

The economy unfolds in one trading period, comprising N rational informed traders—there

are no noise traders, endowment shocks, or hedging concerns. The dividend of the asset is

D ∼ N
(
0, τ−1

D

)
, and its price is P . Each informed trader n = 1, . . . , N has mean-variance

model, we have traders instead of firms, signals instead of differentiated copies, and dividend information
instead of an archetype.

8



preferences with risk-preference parameter δ. He observes the signal

sn = D + εn (1)

about the dividend, where εn, n = 1, . . . , N are independent random variables, with distri-

bution N (0, τ−1
n ), independently of D.

I derive equilibria in two markets: one in which traders observe only signals as in (1), and

another, in which they also observe the price. Given the information set Fn—which may be

either the σ-algebra of sn or that of (sn, P )—trader n’s utility is

u (πn;Fn) = E
[
πn

∣∣∣Fn]− 1

2
δVar

(
πn

∣∣∣Fn) , (2)

where πn = Xn(D − P ) is his profit.

For each market, I derive two equilibria: one in which precisions are fixed and traders

may exchange the asset, and one in which trader n faces the ex-ante precision cost

c(τn) =
τ 2
n

4ψ
, (3)

and which is followed by asset exchange. The parameter ψ > 0 is the inverse of the marginal

cost of higher precision, measuring how “easy” it is to acquire information. The number four

in the denominator is a normalization.

Definition 1 A trading equilibrium is a price function together with non-zero demand func-

tions that satisfy the traders’ first-order conditions, taking the traders’ effect on the price into

account and holding their signal precisions fixed, where either

(i) the traders do not observe the price, and the price is set by the break-even condition of

a representative market maker, or
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(ii) the traders observe the price, and the price is set by market clearing.

The equilibrium in (i) is one with market orders, while the equilibrium in (ii) is one with

limit orders. An equilibrium is rational if the second-order conditions of all traders are

satisfied. Finally, an information equilibrium is a trading equilibrium together with signal

precisions that maximize the traders’ ex-ante utility, taking the trading equilibrium as given.

2.1 A benchmark model with homogeneous risk seekers

Here I develop a market-order model as a benchmark. There is a representative market

maker who sets the price P equal to his conditional expectation of the dividend given the

aggregate order flow. Following standard conjectures, the demand strategy of trader n is

linear in his signal,

Xn = βnsn, (4a)

and the price is linear in aggregate order flow,

P = λ

(
N∑
n=1

Xn

)
. (4b)

It is well known that without exogenous noise no equilibrium exists. In particular, for a

large class of economies, Milgrom and Stokey (1982) and Tirole (1982) have shown that no

trade happens if all traders are rational, as long as these traders are (weakly) risk averse.

Nevertheless, as I show next, this result is overturned if we allow risk seeking. The proofs of

the results are in the Appendix.

Theorem 2 If δ ≥ 0, no rational trading equilibrium exists. If δ < 0, a unique symmetric
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rational trading equilibrium with the structure of (4) exists, in which

βn =
τn
−δ

(5a)

and

λ =
−δ

τD +
∑N

i=1 τi
. (5b)

In addition, a unique information equilibrium exists that supports this trading equilibrium.

Given the provisions of the trade literature, it may appear counterintuitive that an equi-

librium exists. It is important, however, to point out that risk seeking falls outside the

constraints of the traditional no-trade results. In fact, the above theorem suggests that

traders who are willing to take on risk are also willing to trade.

Several questions now arise. First, why is there an equilibrium at all? Standard intuition

from price-taking models dictates that risk seekers trade very aggressively, and may thus

attempt to hold infinite positions in the asset, thereby destroying equilibrium.8 Second, are

risk seekers rational? Can we think of them, that is, as utility-maximizing agents whose

second-order conditions not violated?

These questions are connected. Examining the optimal utility the traders,

u (πn; sn) =
1

2
β2
ns

2
n

[
2λ+ δVar

(
D − P−n

∣∣∣sn)] , (6)

together with their demand in (5a), we can see that not only they are willing to trade, but

their demands are finite and well-defined. Crucially, however, both for rationality and for

8The first-order condition of a price-taking trader with CARA utility, risk-aversion coefficient δ, informa-
tion set F , and optimal demand X is X = E

[
D − P

∣∣F] /{δVar
(
D − P

∣∣F)}. The second-order condition

is −δVar
(
D − P

∣∣F), which is violated for negative δ. Thus, under price-taking assumptions, negative risk
aversion implies that the demand does not correspond to a maximum.
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the willingness to trade, the square bracket in (6) must be positive.

We can recognize the square bracket as the negative of the traders’ second-order condition.

Similarly to Kyle (1989), it consists of two parts: market impact, and a risk-aversion term;

the second-order condition is thus satisfied if the sum of the two parts is overall positive.

Negative risk aversion is therefore admissible, as long as market impact offsets it.

To wit, as we can see in (5b), the magnitude of market impact is proportional to the

traders’ love for risk. This is intuitive, because the more the traders like risk, the more

aggressively they trade, amplifying their market impact to the extent that it overwhelms the

negative risk aversion term.

As we can further see in (5a), trading intensity is inversely related to the traders’ love for

risk, reflecting that, being strategic, the traders internalize how they affect prices. Realizing

that everyone else also trades aggressively, each individual scales back their trading. Acting

as a self-sustaining effect, this strategic response ensures that demands remain finite and

that market impact remains positive—positive enough to guarantee rationality.

2.2 Learning from prices

Here I extend the above results to a limit-order equilibrium. Traders now maximize their

utility by observing the price P in addition to their private signal in (1). There is no explicit

market maker, and I assume—in contrast to Kyle (1989)—that the aggregate demand of the

utility maximizers is zero almost surely.

More specifically, trader n conditions his demand on sn and on P−n, which stands for the

price excluding his impact. As in Kyle (1989), P−n is defined by

P = P−n + λ−nXn, (7)
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with λ−n being the slope of trader n’s residual supply curve. Following standard methodol-

ogy, I continue to assume that prices and demands are linear. Letting the demand function

of trader n be

Xn = βnsn − γnP, (8)

the price that clears the market is

P =

∑N
n=1 βn∑N
n=1 γn

[
D +

N∑
k=1

βk∑N
n=1 βn

εk

]
. (9)

This price function is similar to that in Grossman (1976), but with the difference that traders

are neither price takers nor risk averse.

Theorem 3 If δ ≥ 0, no rational trading equilibrium exists. If δ < 0, a unique rational

trading equilibrium exists for homogeneous precisions, where the demand coefficients for each

trader are

β =
τN

−δ(N − 1)
(10a)

and

γ =
τN + τD
−δ(N − 1)

. (10b)

In addition, a unique information equilibrium exists that supports this trading equilibrium.

As above, risk seeking enables an equilibrium with traders who behave as rational op-

timizers. This equilibrium not only lies outside the scope of Milgrom and Stokey (1982)

and Tirole (1982), but it also shows that the intuition in Grossman (1976)—that traders

ignore their private information because it is already in the price—is sensitive to assuming

that traders take prices as given. In contrast to Grossman (1976), if each trader recognizes

that the price contains his information only if he trades, then he also recognizes that the
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price summarizes the information of all other traders except him. The price thus becomes a

valuable source of information.

2.3 A comparison with noise trading in terms of information costs

Is it possible to distinguish the risk-seeking economy from existing models with trade? One

answer to this question is that, as we can see in Theorems 2 and 3, the precisions of each

trader can be made endogenous. This is in contrast to models with stochastic supply, random

endowments, hedging concerns, and heterogeneous priors, as those may present a bottleneck

in endogenizing noise due to its inherent assumed exogeneity.9

Another answer comes from a direct comparison of the risk-seeking economy with existing

models vis-à-vis empirically observable characteristics. While quantities such as signals and

trades may be difficult to measure in reality, quantities such as liquidity and information

costs do have empirical counterparts.

To simplify exposition, I compare the pair of risk-seeking economies in Sections 2.1 and

2.2 with two alternative economies with noise traders and risk-neutral rational traders. The

first alternative economy extends Kyle (1985) to allow for imperfect information in a manner

similar to Holden and Subrahmanyam (1992) and Foster and Viswanathan (1996). The

second alternative economy is Kyle (1989) with risk neutrality and without uninformed

traders.10

Proposition 4 Irrespective of whether we consider market orders or limit orders, in the

risk-seeking economies liquidity increases when information becomes cheaper. In the noise-

9Exceptions include Admati and Pfleiderer (1988) who use discretionary and nondiscretionary liquidity
traders, and Han, Tang, and Yang (2016) who reduce noise to a function of exogenous benefits from trading.

10In all economies, the rational traders acquire information ex-ante subject to the same specification of
information costs, and the noise in their signals is idiosyncratic. See Sections A.1 and A.2 of the Internet
Appendix for detailed derivations of the alternative economies.
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trading economies, if information is not sufficiently cheap, then liquidity decreases when

information becomes cheaper.

It is important to note that, in all economies, the rational traders acquire more information

when information becomes cheaper. Moreover, in all economies, there are two effects of

acquiring more information: one direct, and one indirect.

The direct effect makes liquidity increase. When traders acquire more information, the

price endogenously trades closer to the fundamental, reducing the market impact of indi-

vidual traders. The indirect effect, however, makes liquidity decrease. When the traders’

information is fixed, each trader internalizes the impact that he and other traders have

on the price. As in Holden and Subrahmanyam (1992) and other models, each individual

trader must scale back his trading to take everyone’s market impact into account. When the

traders acquire more information, each trader scales back their trading even more, because

everyone’s market impact is now bigger.

In the risk-seeking economies the direct effect dominates. When, however, we inject noise

traders into an economy, the relationship between liquidity and acquired precision changes.

Because the noise traders’ demand does not respond to information acquisition, the noise

that it adds to the price makes the price respond less to the rational traders increasing their

precisions. Dampening the direct effect, this exogenous behavior of the noise traders makes

the indirect effect of acquiring more information relatively more pronounced, and strong

enough to overcome the direct effect.11 Liquidity, thus, may decrease when information

becomes cheaper.

Figure 1 shows an illustration of the two pairs of economies. On the left, we have liquidity

and trading intensity in the market-order economies, with the risk-seeking economies in solid

11While the rational traders’ incentives to trade aggressively may also increase when we inject noise traders
into the economy—as more noise masks the rational traders’ information more—this is a secondary effect
which does not mitigate that the noise traders add noise to the price.
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red, and the noise-trading economies in dashed blue. On the right, we have the same objects

for the limit-order economies. The graphs are scaled to make comparing the curves easier.

Trading intensities increase in ψ because the traders acquire more information as it

becomes cheaper. Nonetheless, trading intensities are also concave in ψ because the traders

scale back their trading as they acquire more information. A similar pattern appears for

liquidity, but only in the risk-seeking economies. In the noise-trading economies, the scaling-

back behavior of the rational traders dominates their willingness to trade more aggressively

as they acquire more information, and all the more so when information is expensive, i.e.

when ψ is small.

2.4 Prices as noise-discounted dividends

In either of the equilibria described above, we can write out the price as a discounted version

of the dividend. Even though there is no explicit discount rate, there is an implicit type

of “noise-based discounting” that connects the price to dividend expectations in a manner

analogous to well-known relations in asset pricing. This discounting features the signal-to-

noise ratio of the price, which I denote by Q, as a measure of price informativeness.

Using trading intensity and liquidity for the benchmark equilibrium, it is straightforward

to show that

P =
1

1 +Q−1

(
D +

N∑
k=1

βk∑N
n=1 βn

εk

)
, (11a)

and that

1

1 +Q−1
= 1− Var(D − P )

Var(D)
, (11b)

while a similar calculation obtains for the equilibrium with price observations by assuming

homogeneous precisions.12

12System (11) follows from Q = Var (D) /Var
(∑N

k=1

(
βk/

∑N
n=1 βn

)
εk

)
= τ−1

D

∑N
n=1 τn and Var(D −
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Figure 1: Liquidity (top row) and trading intensity (bottom row) as a function of how cheap it is to acquire information in

economies with market orders (left column) and with limit orders (right column). In each panel, the solid red curves show the

risk seeking economy, with scales on the left vertical axis; the dash-dotted blue curves show the economy with noise traders,

with scales on the right vertical axis. For the plots with risk seekers the risk preference parameter is δ = −1, while for the plots

with noise traders the rational traders are risk neutral and the precision of the noise traders’ demand is τθ = 1. For all plots,

the precision of the dividend is τD = 1, and the number of rational traders is N = 10.

Equation (11a) says that the price is a noisy version of the dividend, discounted at a

net rate identical to the inverse of price informativeness. The dividend is thus discounted

more when the price contains more noise—or, equivalently by (11b), when the return is

riskier—whereas the opposite happens when the price contains more information. Because

the price is a public signal, this discounting is consistent with the intuition in Easley and

P ) = τD(Q + 1)−1. Proving (11) for generally heterogeneous precisions with observable prices is beyond
the scope of this paper; such calculations nonetheless extend tractably to full heterogeneity in the models of
Section 3 below. A relationship similar to (11a) can be drawn out in Subrahmanyam (1991).
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O’hara (2004) that stocks with more public information have a lower risk premium; such

stocks contain dividend expectations with less discounting.

2.5 What if some traders dislike risk?

One question that the above leaves open is whether it is plausible to assume that every

trader likes risk. Indeed, to fully understand whether risk seeking can support trade we

must explore what happens when risk seeking coexists with other risk preferences. Never-

theless, modeling this type of heterogeneity results in significant loss of tractability, even if

we constrain preferences to be mean-variance. In short, we need a model that is general

enough to accommodate heterogeneity, yet simple enough to analyze.13

The finance literature at large usually circumvents such issues by using continuum rep-

resentations.14 Adopting this approach here, however, comes with its own challenges, which

include fully-revealing prices due to perfect competition.15 What is thus required is a

continuum model with residual market impact—so that we can maintain rationality even

with negative risk aversion—and with the additional property that prices are noisy. The

monopolistic-competition model in section 9 of Kyle (1989)—which, as Garćıa and Sangiorgi

(2011) show, arises naturally in financial markets—fits the bill.

I present such an economy next, describing it in continuous notation; the equilibria are

the same as in Definition 1. Section G of the Internet Appendix derives this economy as a

limit of a discrete economy with notation closer to that of Kyle (1989), Garćıa and Sangiorgi

13Section B of the Internet Appendix derives an equilibrium with one risk seeker, N risk-neutral traders,
and prices set by market clearing, albeit with loss of tractability.

14See, for example, and Merton (1992) and Dumas and Luciano (2017) for how representing time as a
continuum—rather than as a discrete grid—enhances tractability in dynamic settings.

15Holden and Subrahmanyam (1992) show that the price becomes fully revealing in a large economy à la
Kyle (1985) within the first auction, even when the market contains noise traders. See O’Hara (1995) for
further discussion of the dynamic setting, and Lambert, Ostrovsky, and Panov (2018) for recent results on the
information-aggregation properties of the one-period setting. Garćıa and Urošević (2013) and Kovalenkov
and Vives (2014) address this problem by scaling the size of the noise traders.
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(2011), and Kyle and Lee (2018).

3 An economy with heterogeneous risk preferences

As in Section 2.1, there is one uninformed risk-neutral market maker, but instead of finitely

many informed traders there is now a continuum of them. The informed traders have mean-

variance preferences which allow for risk seeking, and the structure of information is slightly

different, although, as I explain in more detail below, I maintain the usual representation of

competitive trading with signals as “truth plus noise.” As in Section 2.1, there are no noise

traders, endowment shocks, or hedging concerns.

Other than that, the model is a standard economy with one trading period and one asset

with dividend D ∼ N
(
0, τ−1

D

)
. Each trader submits their demand of the asset to the market

maker, without knowing what demand quantities other agents will submit. The market

maker sees only the aggregate order flow, and cannot infer which trader demands which

quantity.

Each trader corresponds to a point in the interval [0, 1). Trader a is endowed with a

signal dza about the liquidating dividend, with

dza = D da+
√
τ(a)−1dBa, (12)

where B is a standard Brownian motion in the unit interval independently of D, dBa is

the ath Brownian increment, and τ is a continuous function on the unit interval.16 By

independence of Brownian increments, the noise dBa is independent across traders, and that

16Equation (12) is a Brownian motion with a random drift, where instead of “time”, a corresponds to an
agent in [0, 1). For a similar trick, albeit with a Brownian bridge and in a different context, the interested
reader can consult Gârleanu et al. (2015).
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its distribution is N (0, da).17

Thinking of da as the size of each infinitesimal trader—so that in the aggregate all traders

integrate to one—allows us to write everything in differential form. The demand of trader a

is dXa. The market maker sets the price P equal to what he expects the asset value to be

given the aggregate order flow, so that

P = E
[
D
∣∣∣ ∫ 1

0

dXa

]
. (13)

As in Kyle (1985) and Holden and Subrahmanyam (1992), demand strategies are linear in

signals and prices are linear in aggregate order flow; the demand conjecture is

dXa = β(a)dza, (14a)

and the price conjecture is

P = λ

∫ 1

0

dXa. (14b)

The profit for trader a is dπa = dXa(D − P ). Given his signal dza, his utility is

dua = E
[
dπa

∣∣∣dza]− 1

2
δ(a)Var

(
dπa

∣∣∣dza) , (15)

where δ(a) is his risk-aversion coefficient. I assume that δ is a continuous function, and, be-

cause we may order traders in the interval without losing generality, that δ is also increasing.

To examine implications for trade, I use the cross-sectional integral of squared realized

17The existing literature treats trader-specific noises as independent random variables whose variance does
not scale with da. This distinction, although technical, is important from a model-building perspective—in
a canonical large economy such noises vanish via the Law of Large Numbers. In my setup, however, the
trader-specific noises do not vanish; they aggregate into a stochastic integral.
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demands of all traders,

V =

∫ 1

0

(dXa)
2 , (16)

which we can think of as the diversity of demand. In analogy to Admati and Pfleiderer

(1988), V is a quadratic version of the volume of trade crossed among all the informed

traders. Of course, as Admati and Pfleiderer (1988) point out, measuring trade by looking

only at informed demands ignores that the market maker takes the opposite side of any

residual demand. A more meaningful measure of trade would therefore incorporate both

sides of trade, as in Admati and Pfleiderer (1988), Foster and Viswanathan (1993), and

others. In my economy the measure that accomplishes this is

E = max

{[∫ 1

0

(
dX+

a

)2
] 1

2

,

[∫ 1

0

(
dX−a

)2
] 1

2

}
, (17)

which we can think of as a Euclidean-norm version of the volume in Admati and Pfleiderer

(1988). As I explain in more detail in Corollary 6 below, the notation in (17) corresponds to

a measure which is not only well defined, but also bounded both above and below by linear

functions of demand diversity V . We may thus focus on V as a natural measure of trade.

3.1 Derivation of equilibrium

Because all random variables are Gaussian, the first-order condition guarantees that dXa is

a linear function of dza. This not only confirms the linear form of the conjecture (14a), but

also, as a consequence, the linear form of conjecture (14b). We may thus follow the usual

approach of matching coefficients to obtain the values of β(a) and λ. Doing so, and treating

da as an infinitesimally small quantity, yields the following.

Theorem 5 Given a precision function τ , if a trading equilibrium exists, then it must satisfy

21



β(a) =
τ(a)

2ρ+ δ(a)
(18a)

and

1

λ
=

∫ 1

0

β(s)ds+
τD
ρ
, (18b)

where ρ is the solution to

ρ =

[∫ 1

0

τ(s)

[2ρ+ δ(s)]2
ds

]−1 ∫ 1

0

τ(s)

2ρ+ δ(s)
ds, (18c)

under the restriction that ρ and
∫ 1

0
β(s)ds have the same sign. Moreover, the equilibrium is

rational if and only if δ(a) + 2ρ > 0 for all a.

As we can see in (18a) and (18b), the market-impact parameter λ depends on integrals of

the trading intensity function β, which in turn depends on ρ. As a result, every equilibrium

quantity is a function of ρ alone. Theorem 5 therefore completely characterizes the equilib-

rium, provided that we can solve (18c), and provided that we have a precision function τ in

hand.

There is a special case in which (18c) simplifies to something we can recognize immedi-

ately. If all the traders have the same risk aversion, δ(s) = δ for all s, then

ρ = −δ. (19)

If the traders have different risk aversions, then ρ is affected by their precisions. We can

thus think of ρ as a precision-weighted version of how much the traders like risk—I refer to

it as “risk appetite.”

The aggregate order flow contains a combination of noises in the form of a stochastic
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integral. Acting as an “aggregate price noise”, this integral is a well-defined random variable

with zero mean and positive variance. Inheriting the noisy character of aggregate order flow,

the price becomes—as is standard in the literature—an aggregate signal of all the traders:

combining (12), (13) and (14a) we get

P =

∫ 1

0

λβ(a)dza = λ

∫ 1

0

β(s)ds

(
D +

∫ 1

0

β(a)∫ 1

0
β(s)ds

dBa√
τ(a)

)
. (20)

Trader a’s signal, dza, carries a coefficient equal to market impact times the trader’s trading

intensity, λβ(a). Thus, as (18a) shows, signals of higher precision contribute more to the

dividend information conveyed by the price, while signals of traders who are more risk-averse

contribute less. These facts conform to intuition that traders with higher precision trade

more aggressively, and traders with higher risk aversion trade less aggressively.

Finally, using this framework we can see that, as in the homogeneous economy, prices are

noise-discounted dividend expectations. We can also recognize explicitly that, as Dow and

Gorton (1997) argue in their introduction, noise and trade are two faces of the same coin.

Corollary 6 For any equilibrium as described in Theorem 5, the dividend coefficient is

λ

∫ 1

0

β(s)ds =
1

1 +Q−1
= 1− Var(D − P )

Var(D)
, (21a)

where Q, the signal-to-noise ratio of the price, relates to demand diversity as

Q =
ρ2

τD
V . (21b)

Volume obeys the following bounds in demand diversity:

1

2
V ≤ E2 ≤ V . (21c)
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Equation (21a) shows that price informativeness continues to act as the implicit discount

rate for dividends even with heterogeneous preferences. Connecting price informativeness to

demand diversity, Equation (21b) adds that—holding risk appetite fixed—assets which are

held more diversely have less-discounted dividends. Because smaller discounting represents

less risk, riskier assets are thus not only noisier, but they are also traded less.

This connection is reinforced by the bounds in (21c), which express trading volume in

terms of demand diversity. Due to these bounds, we overall have the following duality: prices

are noisy only if rational individuals trade, and rational individuals trade only if the price

noise provides “enough cover” for their information.

3.2 Risk seeking in the heterogeneous economy

I now turn to how the traders’ risk preferences affect whether an equilibrium exists.

Proposition 7 For a given precision function τ , if δ(s) is non-negative for all s then no

rational trading equilibrium exists.

There are two lessons we can draw from Proposition 7. First, the results of Milgrom and

Stokey (1982) and Tirole (1982) extend to the heterogeneous market-order economy. There

is no equilibrium if all traders are weakly risk averse, irrespective of how diverse their risk

aversions might be. Thus, if an equilibrium exists, then having at least some risk seekers is

a necessary condition.

Second, a rational equilibrium must satisfy the traders’ second-order condition. As we

can see from Theorem 5, this happens if and only if

δ(a) + 2ρ > 0, (22)

which shows that negative risk aversion is allowed, as long as it does not exceed −2ρ.
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To summarize, we might have an equilibrium if we use risk-seeking preferences. This,

of course, leaves open the question of whether an equilibrium does exist. As we can see in

(18c), however, it is difficult to answer this question in general—the conditions involved do

not become tractable until we put some appropriate structure on δ and τ . I construct such

an example next. Some general sufficient conditions on preferences and precisions are in

Section E of the Internet Appendix.

3.2.1 An example with a linear spectrum of preferences

To obtain a tractable model, I assume that risk preferences have the structure

δ(a) = χ(a− φ), (23)

where a is in [0, 1), χ > 0, and φ < 1.18 While I do not restrict its sign, if φ is positive then

it measures how many risk seekers we have in the economy. If φ is negative, then it is merely

a parameter that determines the aggregate risk aversion in the economy. The parameter χ

measures how spread out the risk preferences are, as δ(1)− δ(0) = χ. I refer to φ, whenever

it is positive, as the “fraction of risk seekers,” and to χ as the “preference spread.”

To further simplify the analysis I assume that τ(a) = τ for all a.

Proposition 8 A rational trading equilibrium exists for the market with the risk-preference

function of (23), homogeneous precisions, and a positive fraction of risk seekers.

Here we have an example where equilibrium exists with only partial risk seeking. To gain

intuition about why, we can reexamine the price function of (20).

We can see that the amount of price noise depends on the trading intensity of different

18The specification in (23) is a line with intercept −φχ and slope χ; representing a line this way is more
convenient for exposition than using intercepts and slopes.
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traders, and that, as (18a) shows, trading intensity is inversely related to the coefficient of

risk aversion. Therefore, holding the trading intensities of all other traders fixed, the trading

intensity of a particular trader is larger when his risk aversion is smaller, and all the more so

if it is negative. We can thus conclude that equilibrium fails to exist if δ ≥ 0 because weak

risk aversion does not generate enough price noise. Even partial risk seeking, however, does.

Another way to look at why an equilibrium exists with partial risk seeking is through a

graphical interpretation. Integrating (18a), we can see that—holding exogenous quantities

fixed—the aggregate trading intensity depends only on ρ. The existence of equilibrium thus

boils down to whether (18c) has a positive solution in ρ. Interpreting (18c) as a fixed-point

mapping in ρ, an equilibrium exists if its right-hand side crosses the 45◦ line.

Figure 2 illustrates this interpretation. For each of the preference spectrums of Panel A,

Panel B shows the right-hand side of the fixed-point mapping in ρ. We can see that ρ cannot

be positive without risk seeking, but it becomes positive even with small numbers of risk

seekers—allowing δ(a) to take negative values shifts (18c) enough to the right to guarantee

a crossing.

3.3 Information acquisition

So far I have assumed that information is exogenous. Can equilibrium continue to exist if

the traders choose their own precisions? To address this question, I assume that trader a

faces a cost function analogous to (3),

c (a; τ(a)) =
τ(a)2

4ψ(a)
, (24)
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Figure 2: The risk-preference coefficient and the associated fixed-point mappings for three different settings. Panel A shows the

risk preference coefficient δ(a) as a function of trader a, for φ = −1/4 (dashed black), φ = 0 (dash-dotted blue), and φ = 1/4

(solid red). Panel B shows the right-hand side of the equilibrium condition in (18c) as a function of risk appetite ρ for each of

the risk-preference settings with exogenous and homogeneous precisions, drawn in the same styles as in Panel A. Panel C shows

the same type of picture as Panel B, but with endogenous precisions; the equilibrium condition is (27a). For an equilibrium to

exist, the curves in Panels B and C must intersect the 45◦ line, which is drawn in solid black. We do not have an equilibrium

with positive ρ for φ ≤ 0, i.e. when there are no risk seekers. For φ = 1/4 the solid red curve intersects the 45◦ line at the

point indicated by the blue circle—the corresponding equilibrium solution is ρ∗ ≈ 0.147 in Panel B and ρ∗ ≈ 0.172 in Panel C.

For Panel B the precision is τ(a) = 1 for all a, and for Panel C the inverse of the marginal cost of information is ψ(a) = 1 for

all a. For all graphs, the preference spread is χ = 1 and the precision of the dividend is τD = 1.
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where the function ψ is positive and continuous on the unit interval, and τ(a) maximizes

E [dua]− c (a; τ(a)) da. (25)

Lemma 9 In any permissible information equilibrium, the precision of trader a is

τ(a) =

[
ρ

∫ 1

0

β(s)ds+ τD

]−1
ψ(a)

δ(a) + 2ρ
. (26)

Setting the question of whether equilibrium exists aside momentarily, we can see that

the information acquisition of trader a responds to the two trader-specific parameters, δ(a)

and ψ(a), as follows. A trader with lower information costs acquires more information, and

a trader who is more risk-averse acquires less information. The risk-aversion effect may

seem counterintuitive, because acquiring more information allows each trader to resolve risk.

Nevertheless, as is standard in other frameworks with information acquisition, there is an

accompanying demand effect; a more risk-averse trader holds less of the asset, which reduces

his demand for information. The demand effect overwhelms the risk-resolution effect, and

thus a more risk-averse trader overall acquires less information.

Information acquisition responds to the two aggregate quantities,
∫ 1

0
β(s)ds and ρ, in

the same manner: holding risk appetite ρ fixed, each trader acquires less information when

aggregate trading intensity
∫ 1

0
β(s)ds increases (mutatis mutandis for when risk appetite

increases.) We thus have a certain type of substitution in information acquisition—if other

traders as a whole either trade more aggressively or have a higher risk appetite, then each

trader individually acquires less information in response.

Combining the endogenous precision function in (26) with each trader’s trading intensity

in (18a) makes it possible to close the model by deriving the integrals of precision that appear

in the equilibrium condition for ρ. The resulting equilibrium has the following structure.
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Theorem 10 If an information equilibrium exists, then it must satisfy

ρ =

[∫ 1

0

ψ(s)

[δ(s) + 2ρ]3
ds

]−1 ∫ 1

0

ψ(s)

[δ(s) + 2ρ]2
ds (27a)

and ∫ 1

0

β(s)ds =

[
ρ

∫ 1

0

β(s)ds+ τD

]−1 ∫ 1

0

ψ(s)

[δ(s) + 2ρ]2
ds, (27b)

under the restriction that ρ and
∫ 1

0
β(s)ds have the same sign.

Conditions (27a) and (27b) are a system of two equations in two unknowns, ρ and
∫ 1

0
β(s)ds,

depending only on exogenous parameters: the precision of the dividend τD, the preference-

coefficient function δ, and the inverse marginal-cost function ψ.

Returning to the question of whether equilibrium continues to exist, I first show that risk

seeking is again necessary.

Proposition 11 For a given inverse marginal-cost function ψ, if δ(a) is non-negative for

all a then no information equilibrium exists.

As we can see, the classic no-trade results continue to hold with information acquisition.

In fact, with information acquisition the conclusion of Proposition 7 becomes stronger, as

Proposition 11 excludes the possibility of equilibrium even if we allowed some traders to

violate their second-order conditions, and even if we used heterogeneous information costs.

Nevertheless, as I show next with an example, we can have equilibrium with risk seeking.

3.3.1 Information acquisition with a linear preference spectrum

For linear risk preferences and homogeneous costs (ψ(a) = ψ for all a) we obtain the following.

Proposition 12 With the risk-preference function of (23), homogeneous information costs,

and a positive fraction of risk seekers, a unique rational information equilibrium exists.
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Moreover, in this equilibrium liquidity always increases when information becomes cheaper.

In contrast, in a version of the economy where instead of risk seekers we have noise traders

and weakly risk averse rational traders, if information is not sufficiently cheap, then liquidity

decreases when information becomes cheaper.

As we can see, not only does equilibrium continue to exist with endogenous precisions, but

it is also guaranteed to be unique.19 I show this equilibrium in Panel C of Figure 2 for

the same parameters as for exogenous precisions (Panel B), but with endogenous precisions.

Similarly to Panel B, making risk aversion negative for some traders shifts the curve on the

right-hand side of (27a) enough to the right to guarantee a fixed-point.

Comparing Propositions 4 and 12 to each other, the conclusions with homogeneous risk

seeking extend to letting some of the traders dislike risk: as information becomes cheaper,

liquidity always increases. If, however, we completely replace the risk seekers with noise

traders, then we not only add noise to the price, but we also diminish how rational trading

affects the price. As this exogenous noise dampens the direct positive effect that acquiring

more information has on liquidity, the indirect negative effect that scaling back rational

trading has on liquidity becomes relatively stronger, and may even dominate. As a result,

liquidity may decrease when information becomes cheaper.

3.4 Comparative statics with respect to risk seeking

How does risk seeking affect the properties of equilibrium beyond merely enabling it? The

following comparative statics address this point.

Corollary 13 In the information equilibrium

19Under (23), it becomes possible to characterize the equilibrium with polynomials, and to appeal to well-
known results from analysis to guarantee uniqueness. For similar reasons, it is hard to guarantee uniqueness
without endogenous precisions because the equilibrium reduces to a transcendental equation.
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(i) risk appetite increases in φ and in χ,

(ii) the aggregate trading intensity
∫
β decreases in φ and in χ,

(iii) the trading intensity of every trader decreases in φ and in χ, and

(iv) liquidity, demand diversity, and price informativeness decrease in φ and in χ.

The economy changes in the same manner as we increase either the fraction of risk seekers φ

or the preference spread χ. This happens because, in intuitive terms, both φ and χ measure

the general love for risk in the trader population—φ measures how many risk seekers we

have, and χ measures how much more risk tolerant the risk seekers are in relation to the risk

averters.

That risk appetite increases in the risk-seeking characteristics φ and χ is therefore a

natural consequence of increasing the traders’ love for risk. For example, as Figure 2 confirms,

when φ increases, the curve of the fixed-point mapping shifts to the right; given that the 45◦

line remains fixed, this shift implies that risk appetite increases in equilibrium.

Aggregate trading intensity decreases in the risk-seeking characteristics due to a substi-

tution effect. If we increase the risk seeking of some traders then we increase the market

impact of every trader, because market impact is an aggregate quantity. Being forced to

accommodate the increased aggression of others, the traders whose risk seeking does not

change then respond by lowering their trading intensity so as to reveal less of their private

information.

In fact, this substitution effect is so strong that it holds for every trader in the economy,

regardless of whether they are risk-seeking or risk-averse. At least in principle, the aggregate

trading intensity could decrease even if the trading intensity of some traders increased. But

as Corollary 13 shows, the trading intensity of every trader decreases in the risk-seeking
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characteristics. This happens because the trading intensity of a specific trader is mostly

driven by adverse risk-appetite effects.

More specifically, the trading intensity of individual a is

β(a) =
ψ(a)

[δ(a) + 2ρ]2
[
ρ
∫ 1

0
β(s)ds+ τD

] . (28)

We can see that individual a trades more aggressively if everyone together trades less ag-

gressively. Holding risk appetite ρ constant, we thus expect that increasing the risk seeking

of enough traders would increase an individual’s trading intensity through its negative effect

on the aggregate trading intensity
∫ 1

0
β(s)ds. Nonetheless, an individual’s trading intensity

is inversely related to the aggregate risk appetite ρ. In addition, the magnitudes coming

from increased risk appetite dominate all other effects, making individual trading intensity

overall decrease in the risk-seeking characteristics.20

Reflecting the above intuition that market impact increases because traders behave more

aggressively, liquidity decreases in the risk-seeking characteristics. Moreover, as we can see in

Corollary 6, demand diversity is directly related to aggregate trading intensity, and inversely

related to risk appetite. That it decreases in φ and χ is therefore an immediate consequence

of first two parts of Corollary 13.

Finally, a straightforward calculation—see (85) of the Appendix for details—shows that

price informativeness increases in both risk appetite and aggregate trading intensity. This

is intuitive; prices aggregate information more accurately either whenever traders are more

aggressive, or whenever demands influence prices to a greater extent.

Herein we have two opposing effects: risk appetite increases in the risk-seeking character-

istics, but trading intensity decreases in them. Juxtaposing these two forces with intuition

20The denominator of β(a) in (28) is a function of the third power of risk appetite ρ, but it is only a linear
function of aggregate trading intensity and risk preferences.
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from noise-trading models with risk aversion (Subrahmanyam, 1991, p. 427)—and thinking

of risk seeking as the pure opposite of risk aversion—we may expect that price informa-

tiveness would increase in risk seeking. Nevertheless, price informativeness decreases in the

risk-seeking characteristics. This happens because the substitution effect that risk seeking

induces in trading intensity is so strong that it overwhelms any direct effects.

3.5 Extension to learning from prices

Here I extend the equilibrium of Section 3.1 to include learning from prices, holding all

precisions fixed exogenously to simplify exposition. There is no explicit market maker—the

market clears deterministically with zero aggregate demand.

The model can accommodate imperfect price observations similar to Vives and Yang

(2018), although here the observation noise is purely idiosyncratic. Trader a’s signals are

dza = D da+
√
τ(a)−1dBz

a (29a)

dζa = P da−
√
π(a)−1dBζ

a, (29b)

where Bz and Bζ are independent Brownian motions on [0, 1).21 The dividend signal in (29a)

is the same as before; the additional signal in (29b) has two interpretations. As in Myatt and

Wallace (2012), there is a cognitive friction in the traders’ minds that obstructs them from

fully understanding the price, even if they observe it perfectly. Alternatively, even though

the market clears, the process of clearing the market happens after demand schedules are

submitted, without the traders observing it directly. Nevertheless, the traders have an idea

of what the price is, expressed in (29b).

21The minus sign in the volatility of (29b) helps simplify notation, and is without loss of generality because
dBζa and −dBζa are equal in distribution. Perfect price observations correspond to infinite π.
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To construct the equilibrium I maintain that demand strategies are linear in signals,

dXa = β(a)dza − γ(a)dζa, (30)

which, after clearing the market, implies that

P = λ

[(∫ 1

0

β(s)ds

)
D +

∫ 1

0

β(s)
√
τ(s)−1dBz

s +

∫ 1

0

γ(s)
√
π(s)−1dBζ

s

]
, (31)

with λ being the inverse of the aggregate slope of demand on price. The equilibrium follows

by applying the method of Kyle (1989) to the signals in (29).

Theorem 14 Given precision functions τ and π, if the ratio ω(s) = π(s)
τ(s)

is constant, then

a rational trading equilibrium exists if and only if one exists with market orders, and in that

case

β(a) =
1

µ
β∗(a), (32a)

γ(a) =

(
1− 1

µ

)
ωβ∗(a), (32b)

1

λ
=

1

µλ∗
, (32c)

and

µ = 1 + ω−1

(
1 +

τD

ρ∗
∫ 1

0
β∗(a)da

)
, (32d)

where the starred variables refer to the market-order equilibrium.

If the ratio ω(s) depends on s, then no rational trading equilibrium exists unless one exists

with market orders. In that case, the equilibrium with limit orders is the solution to a system

of two equations shown in Theorem 15 of the Internet Appendix.

In the limit of fully observable prices (π → ∞) µ converges to one, ρ converges to the
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solution of (18c), and β and γ converge to finite and non-zero functions.

One takeaway from Theorem 14 is that a market-order equilibrium is necessary for a limit-

order equilibrium. And because—as I argue above—risk seeking is necessary for a market-

order equilibrium, it follows that risk seeking is also necessary for a limit-order equilibrium.

Moreover, under certain conditions, the equilibrium with limit orders is a scaled version

of the equilibrium with market orders. Interpreting ω as a proxy of the attention that traders

allocate to prices—and assuming that all traders pay proportionately the same attention to

prices—we can see that ω affects the market independently of the underlying market-order

equilibrium.

In particular, because µ is inversely related to ω, it follows that trading intensity increases

as traders pay more attention to prices. Liquidity thereby increases, reflecting that traders

have more information at their disposal. As attention to prices keeps increasing, we recover

a model in the spirit of Kyle (1989): as Figure 3 confirms, when ω becomes infinite we

converge to a well-defined limit; the economy becomes a version of that in Section 3.1 with

traders conditioning on the price explicitly. We may thus interpret the market with finite ω

as a relaxed version of the market with fully observable prices, concluding that prices become

more liquid when traders pay more attention to them.

4 Conclusion

I present a rational theory of inefficient financial markets. To have an inefficient market, no

noise is necessary other than in the traders’ signals. What is necessary, however, is that some

traders like risk, not only enabling trade, but also providing enough noise for everyone to

hide their information. Such risk seekers are rational because, even though their preferences

are convex, their market impact ensures that their demand-choice problems are concave in
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Figure 3: Demand coefficients of dividend signals (Panel A) and price signals (Panel B) for the noisy limit-order model as a

function of trader a, for the same risk preferences as in Figure 2 with φ = 1/4. The three curves correspond to equilibria where

each trader pays increasing amounts of attention to prices. The solid red curves set π(a) = τ(a) for all a, the dash-dotted blue

curves set π(a) = 4τ(a) for all a, while the dashed black curves have fully observable prices, π(a) = ∞. The precision of the

dividend is τD = 1, the dividend precision is τ(a) = 1 for all traders a, and the preference spread is χ = 1.

equilibrium.

To convey the main intuition I use an economy with homogeneous risk seekers. To explore

how risk seekers affect the economy tractably, I develop a version of the model that allows

for heterogeneous risk preferences. Using an example I show that, even though we need risk

seekers to get any trade at all, they affect several economic measures non-trivially: liquidity,

trading intensity, and price informativeness decrease, both in how many risk seekers there

are, and in how much they like risk.

As my economy has one trading period and one asset, extending it intertemporally and

to multiple assets may yield new insights. Moreover, as I follow Kyle (1985) and Kyle

(1989) in assuming that all traders value assets in the same way, it may be interesting to

study risk seeking with other valuation structures: the correlated values of Vives (2011)

and the equi-commonal values of Rostek and Weretka (2012) are such examples. Finally, in

the heterogeneous economy I model the traders’ signals as a cross-sectional process of the

simplest form—it may thus be fruitful to pursue more general signal structures. I leave such

questions for future work.

36



References

Admati, A. R. and P. Pfleiderer (1988). A theory of intraday patterns: Volume and price

variability. Review of Financial Studies 1 (1), 3–40.

Albuquerque, R. and J. Miao (2014). Advance information and asset prices. Journal of

Economic Theory 149 (0), 236–275.

Ali, M. M. (1977). Probability and utility estimates for racetrack bettors. Journal of Political

Economy (4), 803.

Banerjee, S. and B. Green (2015). Signal or noise? Uncertainty and learning about whether

other traders are informed. Journal of Financial Economics 117 (2), 398 – 423.

Coombs, C. H. and D. G. Pruitt (1960). Components of risk in decision making: Probability

and variance preferences. Journal of Experimental Psychology 60 (5), 265.

Diamond, D. W. and R. E. Verrecchia (1981). Information aggregation in a noisy rational

expectations economy. Journal of Financial Economics 9 (3), 221–235.

Dohmen, T., D. Huffman, J. Schupp, A. Falk, U. Sunde, and G. G. Wagner (2011). Individual

risk attitudes: Measurement, determinants, and behavioral consequences. Journal of the

European Economic Association (3), 522.

Dow, J. and G. Gorton (1997). Noise trading, delegated portfolio management, and economic

welfare. Journal of Political Economy 105 (5), 1024–1050.

Dow, J. and G. Gorton (2008). Noise traders. In S. N. Durlauf and L. E. Blume (Eds.), The

New Palgrave Dictionary of Economics. Basingstoke: Palgrave Macmillan.

37



Dumas, B. and E. Luciano (2017). The Economics of Continuous-Time Finance. The MIT

Press.

Easley, D. and M. O’hara (2004). Information and the cost of capital. The Journal of

Finance 59 (4), 1553–1583.

Foster, F. D. and S. Viswanathan (1990). A theory of the interday variations in volume,

variance, and trading costs in securities markets. The Review of Financial Studies 3 (4),

593–624.

Foster, F. D. and S. Viswanathan (1993). The effect of public information and competition

on trading volume and price volatility. The Review of Financial Studies 6 (1), 23–56.

Foster, F. D. and S. Viswanathan (1996). Strategic trading when agents forecast the forecasts

of others. The Journal of Finance 51 (4), 1437–1478.
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I Appendix

Proof of Theorem 2. The first-order condition implies

Xn =
E
[
D − P−n

∣∣sn]
2λ+ δVar

(
D − P−n

∣∣sn) , (33)
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where P−n = λ
∑N

i=1
i 6=n

Xi is the price excluding the demand of trader n. From (4b) we obtain

λ =
τ−1
D

∑N
i=1 βi

τ−1
D

(∑N
i=1 βi

)2

+
∑N

i=1 β
2
i τ
−1
i

. (34)

By writing out the conditional moments in (33) and matching coefficients with (4a) we obtain

βn =

τn

(
1− λ

∑N
i=1
i 6=n

βi

)
2λ(τD + τn) + δ

[(
1− λ

∑N
i=1
i 6=n

βi

)2

+ (τD + τn)λ2
∑N

i=1
i 6=n

β2
i τ
−1
i

] . (35)

I conjecture that (5a) holds; using it in (34) gives (5b), and thus (5b) holds as long as (5a)

holds. Rearranging (35) we have

βn =
τn

(
1− λ

∑N
i=1 βi

)
2λτD + λτn + δ

[(
1− λ

∑N
i=1
i 6=n

βi

)2

+ (τD + τn)λ2
∑N

i=1
i 6=n

β2
i τ
−1
i

] . (36)

From (5a) and (5b) we obtain the auxiliary relations

1− λ
N∑
i=1

βi =
τD

τD +
∑N

i=1 τi
, (37a)

and

λ2

N∑
i=1

β2
i τ
−1
i =

∑N
i=1 τi(

τD +
∑N

i=1 τi

)2 . (37b)

By expanding the square and using (37), the denominator of (36) simplifies to
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λ (2τD + τn) + δ

(
1− λ

N∑
i=1

βi + λβn

)2

+ δ(τD + τn)λ2

(
N∑
i=1

β2
i τ
−1
i − β2

nτ
−1
n

)
=

= δ
−τD

τD +
∑N

i=1 τi
. (38)

Using (37a) and (38) in (36) verifies the conjecture in (5a). The second-order condition is

2λ+ δVar
(
D − P−n

∣∣sn) > 0, (39)

which holds because, by (5a) and (5b),

2λ+ δVar
(
D − P−n

∣∣∣sn) = 2λ+ δ

1− λ
N∑
i=1
i 6=n

βi


2

Var
(
D
∣∣∣sn)+ δλ2

N∑
i=1
i 6=n

β2
i

τi

= δ

 −2

τD +
∑N

i=1 τi
+

τD + τn(
τD +

∑N
i=1 τi

)2 +

∑N
i=1
i 6=n

τi(
τD +

∑N
i=1 τi

)2

 =
−δ

τD +
∑N

i=1 τi
> 0. (40)

The information-acquisition problem of trader n is

max
τn

E [u (πn; sn)]− c(τn). (41)

Equations (2) and (33) together imply

E [u (πn; sn)] =
1

2
E
[
X2
n

] [
2λ+ δVar

(
D − P−n

∣∣∣sn)] . (42)

Using the optimal demand function, we can write the expected utility of trader n as

E [u (πn; sn)] =
1

2

τ 2
n

δ2

(
1

τD
+

1

τn

)[
2λ+ δVar

(
D − P−n

∣∣∣sn)] =
1

−2δτD

τn (τn + τD)

τD +
∑N

i=1 τi
(43)

43



where the second equality is due to (40). If δ > 0, then the traders are strictly better off

without trading; if δ = 0 no equilibrium exists because the traders’ utility and their trading

intensity diverges.

Taking the first order condition of trader n’s information acquisition problem while hold-

ing every other trader’s choice fixed we obtain

1

−δτD

(τD + τn)2 + (τD + 2τn)
∑N

i=1
i 6=n

τi(
τD + τn +

∑N
i=1
i 6=n

τi

)2 =
τn
ψ
, (44)

and setting τi = τ for all i we get

δτD
ψ
N2τ 3 +

(
2
δτ 2
D

ψ
N + 2N − 1

)
τ 2 +

(
δτ 2
D

ψ
+N + 1

)
τDτ + τ 2

D = 0. (45)

Equation (45) has a unique solution by Descartes’ rule of signs. In particular, because δ < 0

and τD > 0, the only possibility for a multiple positive root requires that the coefficient of

τ 2 is positive and that the coefficient of τ is negative, but it is straightforward to show that

this contradicts that N is positive.

Proof of Theorem 3. The profit of trader n is πn = Xn(D − P ), and his utility is

u (πn; sn, P−n) = XnE
[
D − P−n

∣∣∣sn, P−n]− λ−nX2
n −

1

2
δX2

nVar
(
D
∣∣∣sn, P−n) . (46)

The market clears deterministically,

N∑
n=1

Xn = 0, (47)
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from which we obtain

P = λ

(
D

N∑
n=1

βn +
N∑
k=1

βkεk

)
(48)

where λ =
[∑N

n=1 γn

]−1

. Following Kyle (1989), it is straightforward to show that

Xn =
E
[
D
∣∣sn, P−n]− P−n

2λ−n + δVar
(
D
∣∣sn, P−n) , (49)

where λ−n is

λ−n =
1∑N
k=1
k 6=n

γk
, (50)

and P−n can be written as

P−n = λ−n

D N∑
k=1
k 6=n

βk +
N∑
k=1
k 6=n

βkεk

 . (51)

It is important to calculate expectations for each trader excluding their impact on the

price (we otherwise get back to the conundrums in Grossman (1976), which rests on traders

being price takers.) By the projection theorem we have

E
[
D
∣∣sn, P−n] = bnsn + cnP−n (52)

where

bn = τn

τD + τn +

(∑N
k=1
k 6=n

βk

)2

∑N
k=1
k 6=n

β2
k

τk


−1

, (53a)
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cn =
N∑
k=1
k 6=n

γk

∑N
k=1
k 6=n

βk∑N
k=1
k 6=n

β2
k

τk

τD + τn +

(∑N
k=1
k 6=n

βk

)2

∑N
k=1
k 6=n

β2
k

τk


−1

, (53b)

and

Var
(
D
∣∣sn, P−n) =

τD + τn +

(∑N
k=1
k 6=n

βk

)2

∑N
k=1
k 6=n

β2
k

τk


−1

. (53c)

Combining (49), (7), and (52) we get

Xn =
bnsn + (cn − 1) (P − λ−nXn)

2λ−n + δVar
(
D
∣∣sn, P−n) ⇒ Xn =

bnsn − (1− cn)P

λ−n (1 + cn) + δVar
(
D
∣∣sn, P−n) . (54)

Matching coefficients in (8) and (54) we obtain

βn =
bn

λ−n (1 + cn) + δVar
(
D
∣∣sn, P−n) (55a)

and

γn =
(1− cn)

λ−n (1 + cn) + δVar
(
D
∣∣sn, P−n) . (55b)

Under homogeneous precisions (τn = τ for all n), using (53) and (50) in (55a) yields

β =
τ

Nτ + τD

1

1
(N−1)γ

[
1 + (N−1)τ

β
γ

(Nτ+τD)

]
+ δ 1

Nτ+τD

⇒ γ =
τN + τD
−δ(N − 1)

, (56)

which establishes (10b), while using (53) and (50) in (55b) yields

γ =
1− (N−1)τ

β
γ

(Nτ+τD)

1
(N−1)γ

[
1 + (N−1)τ

β
γ

(Nτ+τD)

]
+ δ 1

Nτ+τD

⇒ β

γ
=

τN

τN + τD
, (57)
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which, after using (56), establishes (10a). The coefficients β and γ are both positive if and

only if δ < 0; moreover, the (negative of the) traders’ second-order condition is

2λ−n + δVar
(
D
∣∣sn, P−n) =

2

(N − 1)γ
+ δ

1

Nτ + τD
= −δ 1

Nτ + τD
> 0, (58)

which holds if and only if δ < 0. Moreover, the ex-ante utility of each trader is

E [u (πn; sn, P−n)] = E
[
XnE

[
D − P−n

∣∣∣sn, P−n]− λ−nX2
n −

1

2
δX2

nVar
(
D
∣∣∣sn, P−n)]

=
1

2
E
[
X2
n

] [
2λ−n + δVar

(
D
∣∣sn, P−n)] =

1

−δ(N − 1)

τN

τN + τD
, (59)

by the law of iterated expectations, the first-order condition, Equation (58), and because

E
[
X2
n

]
= E

[
β2s2

n − 2βγsnP + γ2P 2
]

= β2N − 1

τN
=

τN

δ2(N − 1)
. (60)

Equation (59) shows that the agents trade profitably only if δ < 0; with δ = 0 the equilibrium

does not exist because β and γ diverge, and if δ > 0 everyone is strictly better off not trading.

The case of heterogeneous precisions with δ ≥ 0 is covered by Tirole (1982).

To justify the equilibrium with homogeneous precisions, suppose that each trader n faces

the information cost function in (3). His ex-ante utility is

E [u (πn; sn, P−n)] =
1

2
E
[
X2
n

] [
2λ−n + δVar

(
D
∣∣sn, P−n)]

=
1

2

β
2
n

(
1

τn
+

1

τD

)
− 2βnγn

βn+
∑N
k=1
k 6=n

βk

τD
+ βn

τn(∑N
k=1
k 6=n

γk + γn

) + γ2
n

βn+
∑N
k=1
k 6=n

βk

2

τD
+ β2

n

τn
+
∑N

k=1
k 6=n

β2
k

τk(∑N
k=1
k 6=n

γk + γn

)2


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×


2∑N
k=1
k 6=n

γk
+ δ

τD + τn +

(∑N
k=1
k 6=n

βk

)2

∑N
k=1
k 6=n

β2
k

τk


−1 (61)

Because each trader k commits to βk and γk after choosing τk, it follows by inspection of

(53) and (55), that if we fix (βk, γk, τk) for k 6= n, changes in the utility in (61) happen only

through τn (with βn and γn as functions of τn.) We may thus take the first-order condition

of (61) holding (βk, γk, τk) for k 6= n as constants. Doing so we get

τn
2ψ

=
dE [u (πn; sn, P−n)]

dτn
=

1

2τD


∑N

k=1
k 6=n

β2
k

τk

2

(∑N
k=1
k 6=n

βk

)2

+
∑N

k=1
k 6=n

β2
k

τk

[
δ
∑N

k=1
k 6=n

γk + 2 (τn + τD)

]


2

×

δ

 N∑

k=1
k 6=n

βk −
N∑
k=1
k 6=n

γk


2

+ τD

N∑
k=1
k 6=n

β2
k

τk

+ 2τD

N∑
k=1
k 6=n

γk

 (62)

and setting τk = τ and rearranging we get

δN2(N − 1)τ 3 + 2δN(N − 1)τDτ
2 +
[
δ(N − 1)τ 2

D + ψN(N − 2)
]
τ + ψ(N − 1)τD = 0. (63)

Because δ < 0, the coefficients of the polynomial in (63) switch signs only once, either

between the quadratic and the linear term, or between the linear and constant terms. In

either case, by Descartes’s rule of signs, (63) has a unique positive solution for τ .

Proof of Proposition 4. Here I prove the comparative statics for the risk-seeking

economies. Because the economies with noise traders are standard, I relegate their proofs to

Section A of the Internet Appendix.
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Unobservable prices and competitive market makers: Let F (τ, ψ) denote the left-

hand side of (45). F (τ, ψ) decreases in τ in equilibrium because τ is the unique positive

solution of a cubic polynomial with a negative leading coefficient (δ < 0.) By the implicit

function theorem we obtain

dτ

dψ
= −

∂
∂ψ
F

∂
∂τ
F

=
δτDτ (τD +Nτ)2

ψ2 ∂
∂τ
F

> 0. (64)

By (5b) we get that 1/λ depends on ψ only through τ , and thus by inspection it follows that

liquidity increases in ψ.

Section A.1 of the Internet Appendix shows that a unique equilibrium with information

acquisition exists if instead of risk seekers we have risk-neutral rational traders and noise

traders. In this equilibrium, dτ/dψ > 0, but liquidity decreases in ψ if ψ is sufficiently low.

Observable prices and imperfect competition: Let Fp(τ, ψ) denote the left-hand side

of (63). As with F (τ, ψ), Fp(τ, ψ) decreases in τ in equilibrium because τ is the unique

positive solution of a cubic polynomial with a negative leading coefficient. By the implicit

function theorem we obtain

dτ

dψ
= −

∂
∂ψ
Fp

∂
∂τ
Fp

= −N(N − 2)τ + (N − 1)τD
∂
∂τ
Fp

> 0, (65)

as long as N > 1 (which is met without loss of generality because no trade happens with

only one trader). By (10b), 1/λ = Nγ increases in τ , and thus liquidity increases in ψ.

Section A.2 of the Internet Appendix extends the results of Section A.1 to observable

prices—if we replace the risk seekers with risk-neutral rational traders and noise traders,

then dτ/dψ > 0 but d(1/λ)/dψ < 0 if ψ is sufficiently low.
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Proof of Theorem 5. Given the price conjecture in (14b), the utility of trader a is

dua = dXa

(
E
[
D − P−a

∣∣∣dza]− λ dXa

)
− 1

2
δ(a) (dXa)

2 Var
(
D − P−a

∣∣∣dza) , (66)

where P−a = λ
∫
s 6=a dXs is the price function without the impact of trader a. The first-order

condition over dXa gives

dXa =
E
[
D − P−a

∣∣∣dza]
2λ+ δ(a)Var

(
D − P−a

∣∣∣dza) , (67)

and thus, by the projection theorem and (14a), it follows that

β(a) =

Cov(D−P−a,dza)
Var(dza)

2λ+ δ(a)
[
Var (D − P−a)− Cov2(D−P−a,dza)

Var(dza)

] . (68)

The signal structure in (12) gives

Var (dza) = τ−1
D (da)2 + τ(a)−1da =

[
τ(a)−1 +O(da)

]
da. (69)

Let I{·} stand for the indicator function; I{s 6=a} equals one if s 6= a and zero if s = a. The

price function without the impact of trader a is

P−a = λ

∫ 1

0

I{s 6=a}dXs. (70)

Moreover, due to (14a), (14b) implies

P−a =

(
λ

∫ 1

0

I{s 6=a}β(s)ds

)
D + λ

∫ 1

0

I{s 6=a}β(s)
√
τ(s)−1dBs, (71)
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which further implies

Cov (D − P−a, dza) = τ−1
D

(
1− λ

∫ 1

0

β(s)ds+O(ds)

)
da (72)

and

Var (D − P−a) = τ−1
D

(
1− λ

∫ 1

0

β(s)ds

)2

+ λ2

∫ 1

0

β2(s)τ(s)−1ds+O(ds). (73)

Equation (68) now becomes

β(a) =
τ−1
D

(
1− λ

∫ 1

0
β(s)ds+O(ds)

)
{

2λ+ δ(a)

[
τ−1
D

(
1− λ

∫ 1

0
β(s)ds

)2

+ λ2
∫ 1

0
β2(s)τ(s)−1ds

]}
τ(a)−1 +O(da)

. (74)

Sending ds and da to zero thus yields

β(a) =
τ(a)

2ρ+ δ(a)
[
1− λ

∫ 1

0
β(s)ds+ τD

λ2
∫ 1
0 β

2(s)τ(s)−1ds

1−λ
∫ 1
0 β(s)ds

] , (75)

where the auxiliary term ρ is

ρ =
λτD

1− λ
∫ 1

0
β(s)ds

. (76)

From (13) and (14b) it follows that

λ =
Cov

(
D,
∫ 1

0
dXs

)
Var

(∫ 1

0
dXs

) =

∫ 1

0
β(s)ds(∫ 1

0
β(s)ds

)2

+ τD
∫ 1

0
β2(s)
τ(s)

ds
, (77)

and thus

1− λ
∫ 1

0

β(s)ds =
τD
∫ 1

0
β2(s)
τ(s)

ds(∫ 1

0
β(s)ds

)2

+ τD
∫ 1

0
β2(s)
τ(s)

ds
, (78)

51



which, together with (77), gives

τD
λ2
∫ 1

0
β2(s)τ(s)−1ds

1− λ
∫ 1

0
β(s)ds

= λ

∫ 1

0

β(s)ds. (79)

Using (79) in (75) proves (18a). Equation (18b) follows directly from (76). Substituting (77)

and (79) into (76) yields

ρ =

∫ 1

0
β(s)ds∫ 1

0
β2(s)τ(s)−1ds

. (80)

Using (18a) to express the integrals in (80) proves (18c). From (80) it also follows that ρ

and
∫ 1

0
β(s)ds must have the same sign. Finally, the second-order condition of trader a is

−
[
2λ+ δ(a)Var

(
D − P−a

∣∣∣dza)] = −

 2λ

Var
(
D − P−a

∣∣∣dza) + δ(a)

Var
(
D − P−a

∣∣∣dza)
(81)

The second-order condition of trader a is thus satisfied if and only if

2λ

Var
(
D − P−a

∣∣∣dza) + δ(a) > 0. (82)

Using the moments in (69), (72), and (73) to calculate the conditional variance shows, after

some algebra, that

lim
da→0

λ

Var
(
D − P−a

∣∣∣dza) = ρ, (83)

and thus as da→ 0 the left-hand side of (82) equals 2ρ+ δ(a).

Lemma I.1

1

τD

(
1− λ

∫ 1

0

β(s)ds

)
=
λ

ρ
=

1

ρ
∫ 1

0
β(s)ds+ τD

. (84)

Proof. The result follows by combining (78) and (80).
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Proof of Corollary 6. By (20) and (80), the signal-to-noise ratio is

Q =
Var

(
D
∫ 1

0
β(a)da

)
Var

(∫ 1

0
β(a)

√
τ(a)−1dBa

) =

(∫ 1

0
β(a)da

)2

τD
∫ 1

0
β2(s)τ(s)−1ds

=
ρ
∫ 1

0
β(a)da

τD
, (85)

which, together with (18b), proves the first equality in (21a). The second equality in (21a)

follows because

Var (D − P ) = τ−1
D

(
1− λ

∫ 1

0

β(s)ds

)2

+ λ2

∫ 1

0

β2(s)τ(s)−1ds =
1

τD (1 +Q)
(86)

due to Lemma I.1 and Equation (85). By Equation (80), the demand diversity is

V =

∫ 1

0

(dXa)
2 =

∫ 1

0

β2(a)

τ(a)
da =

∫ 1

0
β(a)da

ρ
, (87)

which, together with (85), proves (21b). Finally, by an embedded Random-Walk argument

and elementary properties of random variables it can be shown that

E2 = max

{∫ 1

0

(
dX+

a

)2
,

∫ 1

0

(
dX−a

)2
}

=
1

2

∫ 1

0

(dXa)
2 +

1

2

∣∣∣∣∫ 1

0

|dXa|dXa

∣∣∣∣ . (88)

(See Section G, and Theorem 18 in particular, for details.) The lower bound in (21c) follows

immediately, and the upper bound in (21c) follows by the triangle inequality.

Proof of Proposition 7. Assume, in contradiction, that the second-order condition of all

traders is strictly satisfied. There are three cases to consider.

(i) ρ < 0: Because τ > 0, Equation (18c) implies that the second-order condition for a set

of traders of positive measure must be violated.
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(ii) ρ = 0: If δ(a) = 0 for at least some traders a of non-zero measure, then the second-

order condition is weakly violated for those traders. If, instead, δ(a) > 0 for all a, Equation

(18c) implies that

0 =

∫ 1

0

τ(a)

δ(a)
da, (89)

which is not possible.

(iii) ρ > 0: We have two distinct cases, δ(a) = 0 for all a, and δ(a) ≥ 0 with δ(a) > 0 for

at least some a of non-zero measure. If δ(a) = 0 for all a, then (18c) implies

ρ =

∫ 1
0 τ(a)da

2ρ∫ 1
0 τ(a)da

4ρ2

= 2ρ, (90)

which is a contradiction. If δ(a) ≥ 0, then by ρ > 0 it follows that 0 < ρ/ [2ρ+ δ(a)] ≤ 1,

and thus

0 < ρ
τ(a)

[2ρ+ δ(a)]2
≤ τ(a)

2ρ+ δ(a)
. (91)

Integrating both sides we obtain, because the inequality in (91) is strict for at least some a

of non-zero measure, that

ρ

∫ 1

0

τ(a)

[2ρ+ δ(a)]2
da <

∫ 1

0

τ(a)

2ρ+ δ(a)
da, (92)

which contradicts (18c).

Proof of Proposition 8. For a constant precision function, Equation (18c) gives

ρ =
2ρ− χφ

χ
[2ρ+ χ (1− φ)] log

(
1 +

χ

2ρ− χφ

)
. (93)

The second-order condition of the most risk-seeking traders is satisfied if 2ρ − χφ > 0, or,

equivalently, if ρ > χφ/2. Because 2ρ + χ (1− φ) > 2ρ − χφ, if ρ > χφ/2 holds then the
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logarithm on the right-hand side of (93) is well defined. Thus, to prove that (93) has a

solution which strictly satisfies the second-order condition of all traders, it suffices to look

for a root in (χφ/2,∞).

Equation (93) is a fixed-point mapping in ρ. The left-hand side of (93) is a 45◦ degree

line; I prove that the right-hand side crosses the 45◦ degree line at least once from below.

At ρ = χφ/2 the right-hand side of (93) lies below its left-hand side because

lim
ρ→χφ

2

2ρ− χφ
χ

[2ρ+ χ (1− φ)] log

(
1 +

χ

2ρ− χφ

)
= 0 <

χφ

2
. (94)

At ρ = χφ the right-hand side of (93) lies above its left-hand side because

2ρ− χφ
χ

[2ρ+ χ (1− φ)] log

(
1 +

χ

2ρ− χφ

)∣∣∣∣∣
ρ=χφ

= χφ (1 + φ) log

(
1 +

1

φ

)
> χφ, (95)

due to the fundamental inequality log (1 + φ−1) > (1 + φ)−1. The right-hand side of (93)

thus crosses its left-hand side somewhere in the interval (χφ/2, χφ).

Proof of Lemma 9. Combining (66) with (67) gives

du (πa; dza) =
1

2
E
[
D − P−a

∣∣∣dza] dXa. (96)

For s 6= a

E
[
dXs

∣∣∣dza] = E
[
D
∣∣∣dza] β(s)ds, (97)

and therefore

du (πa; dza) =
1

2

(
1− λ

∫ 1

0

I{s 6=a}β(s)ds

)
E
[
D
∣∣∣dza] dXa. (98)
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Taking expectations thus implies

E [du (πa; dza)] =
1

2

(
1− λ

∫ 1

0

I{s 6=a}β(s)ds

)
β(a)E

[
E
[
D
∣∣∣dza] dza]

=
1

2

(
1− λ

∫ 1

0

I{s 6=a}β(s)ds

)
β(a)

τ(a)

τ(a)da+ τD
E
[
(dza)

2
]

(99)

Ignoring terms of order da2 and higher, the first-order condition of (25) becomes

1

2τD

(
1− λ

∫ 1

0

β(s)ds

)
1

δ(a) + 2ρ
da =

τ(a)

2ψ(a)
da. (100)

Substituting (84) into (100) proves (26). The problem in (25) is convex, and the indirect

utility is positive; thus every trader is strictly better off acquiring information.

Proof of Theorem 10. Equations (27a) and (27b) and the restriction on the sign of ρ

and
∫ 1

0
β(s)ds follow from Theorem 5 and Lemma 9.

Proof of Proposition 11. As in the proof of Proposition 7, I show by contradiction that

no equilibrium exists if δ(a) is non-negative for all a. There are three cases to consider.

(i) ρ < 0: Writing (27b) as a quadratic polynomial of
∫ 1

0
β(s)ds then implies that there are

two strictly positive solutions for
∫ 1

0
β(s)ds, which contradicts the restriction of Theorem 10

that
∫ 1

0
β(s)ds and ρ must have the same sign.

(ii) ρ = 0: This implies that (27a) becomes

0 =

∫ 1

0

ψ(s)

[δ(s)]2
ds, (101)

which is not possible.

(iii) ρ > 0: After using (26) for τ(a), this case is the same as case (iii) of the proof of

Proposition 7, mutatis mutandis; the contradiction is with (27a).
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Proof of Proposition 12. By using (23), integrating, and carrying out the algebra, the

equilibrium conditions (27a) and (27b) reduce to

2ρ2 − 3

(
φ− 1

2

)
χρ− φ(1− φ)χ2 = 0 (102a)

and

ρ

(∫ 1

0

β(s)ds

)2

+ τD

(∫ 1

0

β(s)ds

)
− ψ

[2ρ− φχ] [2ρ+ (1− φ)χ]
= 0. (102b)

Let G
(
ρ,
∫ 1

0
β(s)ds;φ

)
stand for the left-hand side of (102a) and J

(
ρ,
∫ 1

0
β(s)ds;φ

)
stand

for the left-hand side of (102b).

If φ ≥ 1/2, the sequence of signs of the coefficients of (102a) is positive, nonpositive,

and negative. If φ < 1/2, the sequence of signs of the coefficients of (102a) is positive,

positive, and negative. In either case, Equation (102a) has a unique positive solution for

ρ by Descartes’s rule of signs. Let ρ? denote this root. Because the leading coefficient in

(102a) is positive, this further implies that φχ/2 < ρ?, if and only if

G

(
φχ

2
;φ

)
< 0. (103)

We have

G

(
φχ

2
;φ

)
= −φχ

2

4
, (104)

which proves (103), and thus 2ρ? − φχ > 0. This proves that the second-order condition

is satisfied for the traders with the most negative risk aversion. It now follows that the

second-order condition is satisfied for every trader.

Given the unique solution ρ? of (102a), condition (102b) is a quadratic polynomial in∫ 1

0
β(s)ds, with positive coefficients for the quadratic term and the linear term. The constant

term in is negative due to that 2ρ? − φχ > 0, which also implies that 2ρ? + (1− φ)χ > 0. It
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follows by Descartes’s rule of signs that (102b) has a unique positive solution. This proves

that a unique equilibrium exists.

By (102a), ρ is not affected by ψ. Applying the Implicit Function Theorem on (102b) we

obtain that
∫ 1

0
β(s)ds increases in ψ, and thus by (18b) of Theorem 5 so does λ−1.

For the proof of the remainder of the claim see Section F of the Internet Appedix.

A note on the proof of Corollary 13. The proof is a straightforward, but laborious,

application of the two-dimensional version of the Implicit Function Theorem. The complete

proof is in Section C of the internet Appendix.

Summary of extension to noisy limit orders. Similarly to Kyle (1989), we can write

the price function by separating out the impact of a given trader a, as

P = P−a + λ−adXa (105)

so that λ−a is the slope and P−a is the intercept of a residual supply curve. (See Section D

of the Internet Appendix for details.) The utility of trader a is the same as in Section 3.1,

with the only difference that there is now an extra signal. The first-order condition gives,

after using the residual demand schedule, that

dXa =
E
[
D − P

∣∣∣dza, dζa]
λ−a + δ(a)Var

(
D − P−a

∣∣∣dza, dζa) . (106)

Writing out the conditional moments, comparing the resulting expression to the demand

strategy in (30), and treating each trader as small (da→ 0) yields the equilibrium in Theorem

14. A detailed proof is in Section D of the Internet Appendix.
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Internet Appendix

A note on the contents

This Internet Appendix provides supplementary material for the main paper. It has seven

sections, which are ordered to reflect the order of presentation in the main text.

Section A derives the noise-trading models used in the comparison in Proposition 4.

Section B solves an equilibrium with one risk seeker, many risk-neutral traders, and

observable prices. This is similar to Kyle (1989), but without noise traders. This model is

meant as a robustness check, exhibiting the loss of tractability associated with heterogeneous

versions of the finite limit-order market, while maintaining the main results.

Section C contains detailed proofs of the comparative statics in Section 3.4.

Section D contains detailed proofs for the model in Section 3.5.

Section E derives sufficient conditions for existence and uniqueness of equilibrium with

risk preferences which are non-linear functions of the traders’ location in the unit interval.

Section F derives a model with noise traders and homogeneous risk aversion. This section

is meant to show two things. First, that noise traders can be readily accommodated in a large-

market similar to that of Section 3. Second, that the empirical distinction in Proposition 4

continues to hold between the heterogeneous market with partial risk seeking and a market

where the risk seekers are replaced by noise traders, irrespective of risk aversion.

Section G derives the heterogeneous market as a monopolistic-competition limit of a finite

economy. Alternatively, this section can be thought of as a proof that the continuum model

“embeds” a finite economy with imperfect competition. Related work by the author, titled

“Risk Seeking As Noise Provision,” used this limit for exposition of the results.
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A Models with noise traders, risk-neutral traders, and

information acquisition (Proposition 4)

A.1 Unobservable prices and competitive market makers

The model is the same as that in Section 2.1, with two differences: first, the rational traders

are risk-neutral, and second, there are noise traders. The aggregate demand of the noise

traders is θ ∼ N (0, τθ), and it is independent of D and εn, n = 1, . . . , N .

The demand conjecture for the rational traders is the same as in (4a), but the market

maker’s pricing rule is now

P = E

[
D
∣∣∣ N∑
n=1

Xn + θ

]
, (A.1a)

and the price conjecture is

P = λ

(
N∑
n=1

Xn + θ

)
. (A.1b)

The profit for rational trader n is πn = Xn(D−P ), and his utility is E
[
πn

∣∣∣sn]. This implies

that trader n’s optimal demand is

Xn =
E
[
D − P−n

∣∣sn]
2λ

. (A.2)

Comparing (4a) with (A.2) we obtain

2λβn =
τn

τn + τD

1− λ
N∑
i=1
i 6=n

βi

 , (A.3)
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from which it follows that

λβn =
τn

τn + 2τD

(
1−

N∑
i=1

λβi

)
, (A.4)

and that
N∑
n=1

λβn =

(
N∑
n=1

τn
τn + 2τD

)(
1−

N∑
i=1

λβi

)
. (A.5)

Solving (A.5) we get

N∑
n=1

λβn =

(
N∑
n=1

τn
τn + 2τD

)(
1 +

N∑
n=1

τn
τn + 2τD

)−1

, (A.6)

and plugging into (A.4) we obtain

λβn =
τn

τn + 2τD

(
1 +

N∑
i=1

τi
τi + 2τD

)−1

. (A.7)

By (A.1) we have

λ =
Cov

(
D,
∑N

i=1Xi + θ
)

Var
(∑N

i=1 Xi + θ
) =

1
τD

∑N
i=1 βi

1
τD

(∑N
i=1 βi

)2

+
∑N

i=1
β2
i

τi
+ 1

τθ

, (A.8)

which implies

λ2 = τθ

 1

τD

N∑
i=1

λβi −
1

τD

(
N∑
i=1

λβi

)2

−
N∑
i=1

(λβi)
2

τi

 . (A.9)

Using (A.7) yields

λ2 = τθ

∑N
i=1

τi(τi+τD)

τD(τi+2τD)2(
1 +

∑N
i=1

τi
τi+2τD

)2 . (A.10)
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By the law of iterated expectations, (A.1b), (A.2) and (A.10) it follows that

E [πn] = λE
[
X2
n

]
=

(λβn)2

λ

τn + τD
τnτD

=

τn(τn+τD)

τD(τn+2τD)2

√
τθ
√∑N

i=1
τi(τi+τD)

τD(τi+2τD)2

(
1 +

N∑
i=1

τi
τi + 2τD

)−1

.

(A.11)

With the same cost function as for Theorem 2, taking the first-order condition with respect

to τn and then setting τn = τ gives, after squaring both sides, that

τθN
3τ 3 (τ + τD) (τ + 2τD)2 [(N + 1)τ + 2τD]4

− ψ2τD
[(

6N2 −N − 3
)
τ 2 + 2

(
2N2 + 5N − 4

)
τDτ + 4(2N − 1)τ 2

D

]2
= 0 (A.12)

Condition (A.12) is the equilibrium condition for information acquisition with symmetric

precisions. It is a tenth-order polynomial in τ , and it can be shown that is has a unique root

by Descartes’ rule of signs. (By inspection, the positive term contributes positive powers

in descending orders of ten to three. The negative term contributes negative powers in

descending orders of four to zero. In particular, the constant is always negative, which

guarantees existence, and the polynomial contains powers from both of the two terms only

for powers four and three. If N is large enough, those powers are both positive, while if ψ

is large enough, those powers are both negative. The owers of orders two, one and zero are

always negative, and thus we have a unique positive solution.)

Let H(τ, ψ) denote the left-hand side of (A.12). Noting that H(τ, ψ) is increasing in τ

in equilibrium (the equilibrium condition in (A.12) has a unique positive root in τ , and

because its leading coefficient is positive it must cross zero from below), we obtain

dτ

dψ
= −

∂H
∂ψ

∂H
∂τ

=
2ψτD [(6N2 −N − 3) τ 2 + 2 (2N2 + 5N − 4) τDτ + 4(2N − 1)τ 2

D]
2

∂H
∂τ

> 0.

(A.13)
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From (A.10) we have that in equilibrium

1

λ2
=

τD
τθN

[(N + 1)τ + 2τD]2

τ (τ + τD)
. (A.14)

and therefore liquidity depends on ψ only though its effect on τ , so that

d

dψ

(
1

λ2

)
=

d

dτ

(
1

λ2

)
dτ

dψ
(A.15)

where by (A.14), we have

d

dτ

(
1

λ2

)
=

τ 2
D

τθN

[(N + 1)τ + 2τD]

τ (τ + τD)
[(N − 3)τ − 2τD] . (A.16)

If N ≤ 3, the above is always negative and thus liquidity decreases in ψ. If N > 3, whether

liquidity is increasing or decreasing in ψ thus boils down to the sign of

(N − 3)τ − 2τD (A.17)

in equilibrium.

Let τc be the value of τ for which (A.17) is zero, that is, τc = 2τD/(N − 3). It suffices to

derive conditions for τ < τc, because then

(N − 3)τ − 2τD < 0, (A.18)

which implies that liquidity decreases in τ (and thus liquidity also decreases in ψ.) To wit,

because the equilibrium condition in (A.12) has a unique positive root in τ , it suffices to
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check when H(τc, ψ) > 0, which implies that τc > τ in equilibrium. We have

H(τc, ψ) =
256τ 5

DN
2(N − 1)4

(N − 3)10

[
32τθτ

5
DN(N − 1)(N − 2)2 − (N − 3)6ψ2

]
, (A.19)

which is positive for small enough ψ.

A.2 Observable prices and imperfect competition

The model is the same as in Section 2.2, but now the traders are risk neutral (δ = 0) and

there are noise traders, whose aggregate demand is θ ∼ N (0, τθ), independently of D and

εn, n = 1, . . . , N .

The derivation follows along the lines of the proof of Theorem 3; I thus highlight the

differences. The market clears stochastically,

N∑
n=1

Xn + θ = 0, (A.20)

from which we obtain

P = λ

(
D

N∑
n=1

βn +
N∑
k=1

βkεk + θ

)
. (A.21)

The definitions of λ and λ−n are algebraically the same as before. Following Kyle (1989),

P−n can be written as

P−n = λ−n

D N∑
k=1
k 6=n

βk +
N∑
k=1
k 6=n

βkεk + θ

 . (A.22)
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As before, by the projection theorem

E
[
D
∣∣sn, P−n] = bnsn + cnP−n (A.23)

but now

bn =
τn

τD + τn +

∑N
k=1
k 6=n

βk

2

∑N
k=1
k 6=n

β2
k
τk

+ 1
τθ

, (A.24a)

cn =
N∑
k=1
k 6=n

γk

∑N
k=1
k 6=n

βk

∑N
k=1
k 6=n

β2
k
τk

+ 1
τθ

τD + τn +

∑N
k=1
k 6=n

βk

2

∑N
k=1
k 6=n

β2
k
τk

+ 1
τθ

, (A.24b)

and

Var
(
D
∣∣sn, P−n) =

1

τD + τn +

∑N
k=1
k 6=n

βk

2

∑N
k=1
k 6=n

β2
k
τk

+ 1
τθ

(A.24c)

Matching coefficients in the demand conjecture and the demand functions implied by the

equilibrium we obtain

βn =
bn

λ−n (1 + cn)
(A.25a)

and

γn =
(1− cn)

λ−n (1 + cn)
. (A.25b)

IA.7



Under homogeneous precisions (τn = τ for all n) we get

β =
√
τ

√
N − 2

τθN(N − 1)
(A.26)

and

γ =
Nτ + 2τD
N
√
τ

√
N − 2

τθN(N − 1)
. (A.27)

To justify the equilibrium with homogeneous precisions, suppose that each trader n faces

the information cost function in (3). His ex-ante utility is

E [u (πn; sn, P−n)] = E
[
X2
n

]
λ−n

=

β
2
n

(
1

τn
+

1

τD

)
− 2βnγn

βn+
∑N
k=1
k 6=n

βk

τD
+ βn

τn(∑N
k=1
k 6=n

γk + γn

) + γ2
n

βn+
∑N
k=1
k 6=n

βk

2

τD
+ β2

n

τn
+
∑N

k=1
k 6=n

β2
k

τk
+ 1

τθ(∑N
k=1
k 6=n

γk + γn

)2


×

 1∑N
k=1
k 6=n

γk

 (A.28)

Because each trader k commits to βk and γk after choosing τk, it follows by inspection of

(A.24) and (A.25), that if we fix (βk, γk, τk) for k 6= n, changes in the utility in (A.28)

happen only through τn (with βn and γn as functions of τn.) We may thus take the first-

order condition of (A.28) holding (βk, γk, τk) for k 6= n as constants. Doing so, and setting

τk = τ we get

√
N − 2

N
√
τθN(N − 1)

N(N − 3) (
√
τ)

2
+ 2(N − 1)τD

√
τ
(
N (
√
τ)

2
+ 2τD

)2 =
(
√
τ)

2

2ψ
. (A.29)
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Rearranging (A.29) we have

√
τθN7(N − 1)

(√
τ
)7

+ 4
√
τθN5(N − 1)τD

(√
τ
)5

+ 4
√
τθN3(N − 1)τ 2

D

(√
τ
)3

− 2ψN(N − 3)
√
N − 2

(√
τ
)2 − 4ψτD

√
N − 2 = 0. (A.30)

By inspection it follows that the coefficients of the polynomial in (A.30) switch signs only

once, between the cubic and the quadratic term and thus, by Descartes’s rule of signs, (A.30)

has a unique positive solution for
√
τ . (Note that equilibrium exists only if N > 3.)

Let Hp(
√
τ , ψ) denote the left-hand side of (A.30). Noting that Hp(

√
τ , ψ) is increasing

in
√
τ in equilibrium (the equilibrium condition in (A.30) has a unique positive root in

√
τ ,

and because its leading coefficient is positive it must cross zero from below), we obtain

d
√
τ

dψ
= −

∂Hp
∂ψ

∂Hp
∂
√
τ

=
2
√
N − 2

(
N(N − 3) (

√
τ)

2
+ 2τD(N − 1)

)
∂Hp
∂τ

> 0, (A.31)

because N > 3. By the chain rule, and because λ−1 = Nγ,

dλ−1

dψ
=
dλ−1

d
√
τ

d
√
τ

dψ
=

√
N − 2

τθN(N − 1)

Nτ − 2τD
τ

d
√
τ

dψ
, (A.32)

so that dλ−1/dψ < 0 if and only if

Nτ − 2τD (A.33)

is negative in equilibrium. Let τpc be the value of τ for which (A.17) is zero, that is,

τpc = 2τD/N . Because the equilibrium condition in (A.30) has a unique positive root in
√
τ

and it crosses zero from below, it suffices to show that Hp

(√
τpc, ψ

)
> 0, which implies that
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τ < τpc in equilibrium. We have

Hp(
√
τpc, ψ) = 8τD

[
4
√

2(N − 1)τθτ 5
D −

√
(N − 2)3ψ

]
, (A.34)

which is positive for small enough ψ and negative for large enough ψ. This implies that

dλ−1/dψ < 0 for small enough ψ, and dλ−1/dψ > 0 for large enough ψ.
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B One risk seeking trader, finite risk-neutral traders,

observable prices, and imperfect competition

The model I present here is similar to Kyle (1989), but without noise traders. There are

N + 1 traders in total. Every trader n = 1, . . . , N + 1, observes the price and a signal as in

(1), under the simplifying assumption that τn is the same for all n. The utility of trader n is

u (πn; sn) = E
[
πn

∣∣∣sn]− 1

2
δnVar

(
πn

∣∣∣sn) , (B.1)

where, as in the main text, the profit for trader n is πn = Xn(D − P ). The first N traders

are risk neutral (so that δn = 0, n = 1, . . . , N) and the Nth trader likes risk (δn = δ < 0).

I assume that the price function is linear, and that the demand function of trader n is

Xn = βnsn − γnP. (B.2)

The market clears deterministically. We have, in particular, that

N+1∑
n=1

Xn = 0, (B.3)

which implies that

P = λ

[(
N+1∑
n=1

βn

)
D +

N+1∑
n=1

βnεn

]
, (B.4)

where

λ =

(
N+1∑
k=1

γk

)−1

. (B.5)
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Moreover, following Kyle (1989), it is straightforward to show that

Xn =
E
[
D − P

∣∣sn, P ]
λ−n + δnVar

(
D − P

∣∣sn, P) , (B.6)

where λ−n is the slope of the residual supply curve for trader n, given as

λ−n =

N+1∑
k=1
k 6=n

γk


−1

. (B.7)

Let the demand coefficients of the risk-neutral traders be βRN and γRN , and the demand

coefficients of the risk seeker be βRS and γRS. Moreover, let

τ̄D = (N + 1)τ + τD. (B.8)

Deriving the conditional moments in (B.6) and matching coefficients with (B.2), gives, after

some algebra, the following equations:

βRS = NβRN
τγRN

βRN τ̄D +NγRN(τ + δβRN)
(B.9)

and

γRS = NγRN
βRN τ̄D −NτγRN

βRN τ̄D +NγRN(τ + δβRN)
, (B.10)

where the coefficients of the risk-neutral traders are given as the solution to the system

β3
RN [δγRNN + τ̄D]3 (N − 1) (τ̄D − τ) + β2

RNγRN [δγRNN + τ̄D]2 (N − 1)Nτ(3τ̄D − τ)

+ βRNγ
2
RN [δγRNN + τ̄D]

[
δγRNN(N − 1) +

(
3N2 − 1

)
τ̄D
]
Nτ 2

+ γ3
RN

[
−δγRNN + (N2 − 1)τ̄D

]
N2τ 3 = 0, (B.11a)
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and

β3
RN (δγRNN + τ̄D)2 [δγRNN(N − 2) + 2 (N − 1) τ̄D] (N − 1) (τ̄D − τ)

−β2
RNγRN (δγRNN + τ̄D)

{
δ2γ2

RNN
2(N − 1) + δγRNN [(2N + 3)τ̄D − 2τ ] + 2τ̄D (2τ̄D − τ)

}
(N−1)Nτ

− βRNγ2
RN (δγRNN + τ̄D)

[
δγRNN(N − 1)2 + 2

(
N2 +N − 1

)
τ̄D
]
N2τ 2

+ δγ4
RNN

5τ 3 = 0. (B.11b)

The second-order condition of each trader is satisfied if and only if

2λ−n + δnVar
(
D − P

∣∣sn, P) . (B.12)

For the risk-neutral traders this is equivalent to

(N − 1)γRN + γRS > 0, (B.13)

while for the risk seeker it is equivalent to

2

NγRN
+

δ

τ̄D
> 0. (B.14)

Figure 4 shows the only equilibrium for which the second-order conditions of all traders are

satisfied, under the values τD = 1, τ = 1, 2 ≤ N ≤ 30, with δ = −1 and δ = −2.
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F: Second-order condition of the risk seeker
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Figure 4: Solution of equilibrium with one risk seeker and N risk-neutral traders and observable prices. The dashed blue curves

show demand coefficients, the slope of the market supply curve (λ), and the risk seeker’s second-order condition with risk

aversion set to δ = −1 , while the solid red curves show the same quantities with risk aversion set to δ = −2. The precision of

the dividend is τD = 1, and the precision of the signal noise is τ = 1 for all traders.
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C Detailed proofs of the comparative statics with re-

spect to risk seeking

Figure 5 shows an illustration of the results of Corollary 13 below, while Figure 6 shows how

Proof of Corollary 13. The proof of uses the two-dimensional version of the Implicit

Function Theorem. We have

dρ

dφ
= −

∣∣∣∣∣∣
∂
∂φ
G ∂

∂
∫
β
G

∂
∂φ
J ∂

∂
∫
β
J

∣∣∣∣∣∣∣∣∣∣∣∣
∂
∂ρ
G ∂

∂
∫
β
G

∂
∂ρ
J ∂

∂
∫
β
J

∣∣∣∣∣∣
;

dρ

dχ
= −

∣∣∣∣∣∣
∂
∂χ
G ∂

∂
∫
β
G

∂
∂χ
J ∂

∂
∫
β
J

∣∣∣∣∣∣∣∣∣∣∣∣
∂
∂ρ
G ∂

∂
∫
β
G

∂
∂ρ
J ∂

∂
∫
β
J

∣∣∣∣∣∣
(C.1a)

and

d
∫
β

dφ
= −

∣∣∣∣∣∣
∂
∂φ
G ∂

∂ρ
G

∂
∂φ
J ∂

∂ρ
J

∣∣∣∣∣∣∣∣∣∣∣∣
∂

∂
∫
β
G ∂

∂ρ
G

∂
∂
∫
β
J ∂

∂ρ
J

∣∣∣∣∣∣
;

d
∫
β

dχ
= −

∣∣∣∣∣∣
∂
∂χ
G ∂

∂ρ
G

∂
∂χ
J ∂

∂ρ
J

∣∣∣∣∣∣∣∣∣∣∣∣
∂

∂
∫
β
G ∂

∂ρ
G

∂
∂
∫
β
J ∂

∂ρ
J

∣∣∣∣∣∣
, (C.1b)

where, by system (102),

∂

∂ρ
G = 4ρ− 3

(
φ− 1

2

)
χ, (C.2a)

∂

∂
∫
β
G = 0, (C.2b)

∂

∂φ
G = −

[
3χρ+ (1− 2φ)χ2

]
= −χ [3ρ+ (1− 2φ)χ] , (C.2c)

∂

∂χ
G = 3

(
1

2
− φ
)
ρ+ 2φ(φ− 1)χ = − 1

χ

[
3

(
φ− 1

2

)
χρ+ 2φ(1− φ)χ2

]
, (C.2d)
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and

∂

∂ρ
J =

(∫ 1

0

β(s)ds

)2

+ 2
ψ

[2ρ− φχ]2 [2ρ+ (1− φ)χ]2
[4ρ+ (1− 2φ)χ] , (C.3a)

∂

∂
∫
β
J = 2ρ

∫ 1

0

β(s)ds+ τD, (C.3b)

∂

∂φ
J = −χ ψ

[2ρ− φχ]2 [2ρ+ (1− φ)χ]2
[4ρ+ (1− 2φ)χ] , (C.3c)

∂

∂χ
J = 2ψ

ρ(1− 2φ) + φ(φ− 1)χ

[2ρ− φχ]2 [2ρ+ (1− φ)χ]2
. (C.3d)

I note that in equilibrium

3ρ+ (1− 2φ)χ > 0, (C.4a)

∂

∂ρ
G = 4ρ− 3

(
φ− 1

2

)
χ > 0, (C.4b)

3

(
φ− 1

2

)
χρ+ 2φ(1− φ)χ2 = 2ρ2 + φ(1− φ)χ2 > 0, (C.4c)

and

(3− 2φ)χφ+ 2ρ(2φ− 1) = 3χφ− 2χφ2 + 4ρ

(
φ− 1

2

)
= 3χφ− 2χφ2 +

8ρ2

3χ
− 4

3
φ(1− φ)χ =

1

3

[
χφ (5− 2φ) +

8ρ2

χ

]
> 0. (C.4d)

The inequality in (C.4a) holds in equilibrium, because at the root for ρ we have 3ρ + (1 −

2φ)χ = 2ρ − φχ + ρ + (1 − 2φ)χ > 2ρ − φχ > 0 (the latter inequality is established in the

proof of Proposition 12.) The inequality in (C.4b) holds in equilibrium because it is the

slope of a quadratic polynomial with positive leading coefficient at its largest root ρ, which

is a positive quantity. The equality in (C.4c) holds because of (102a), and the inequality
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in (C.4c) follows because ρ, χ > 0 and 0 < φ < 1. The first and third equalities in (C.4d)

follow by algebra, the second equality in (C.4d) holds because of (102a), and the inequality

in (C.4d) holds in equilibrium because χ > 0 and 0 < φ < 1.

Proof of (i). From the above we get that

dρ

dφ
= −

∂
∂φ
G

∂
∂ρ
G

=
3ρ+ (1− 2φ)χ

∂
∂ρ
G

χ. (C.5)

The numerator of (C.5) is positive by (C.4a), and the denominator is positive by (C.4b).

This proves that dρ/dφ > 0 in equilibrium.

We also get that

dρ

dχ
= −

∂
∂χ
G

∂
∂ρ
G

=
1

χ

3
(
φ− 1

2

)
χρ+ 2φ(1− φ)χ2

∂
∂ρ
G

. (C.6)

The numerator of (C.6) is positive by (C.4c), and the denominator is positive by (C.4b).

This proves that dρ/dχ > 0 in equilibrium.

Proof of (ii). We have that

d
∫
β

dφ
=

∂
∂φ
G ∂
∂ρ
J − ∂

∂ρ
G ∂
∂φ
J

∂
∂ρ
G ∂
∂
∫
β
J

= −χ
[3ρ+ (1− 2φ)χ]

(∫ 1

0
β(s)ds

)2

+ 2ψ
[2ρ+( 1

2
−φ)χ]

2

[2ρ−φχ]2[2ρ+(1−φ)χ]2

∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

] . (C.7)

Similarly to above, the numerator of (C.7) is positive by (C.4a), and the denominator of

(C.7) is positive by (C.4b). It follows that d
∫ 1

0
β(s)ds/dφ < 0.
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In addition,

d
∫
β

dχ
=

∂
∂χ
G ∂
∂ρ
J − ∂

∂ρ
G ∂
∂χ
J

∂
∂ρ
G ∂
∂
∫
β
J

=
− 1
χ

[
3
(
φ− 1

2

)
χρ+ 2φ(1− φ)χ2

] (∫ 1

0
β(s)ds

)2

− ψ χ2φ+(2ρ−φχ)[(3−2φ)χφ+2ρ(2φ−1)]

[2ρ−φχ]2[2ρ+(1−φ)χ]2

∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

] . (C.8)

The first term in the numerator is negative by (C.4c), and the second term in the nu-

merator is negative by (C.4d). The denominator is positive by (C.4b). This proves that

d
∫ 1

0
β(s)ds/dχ < 0.

Proof of (iii). By Lemma 9 and Theorem 10, the trading intensity of trader a is

β(a) =

ψ(a)

[δ(a)+2ρ]2∫ 1

0
ψ(s)

[δ(s)+2ρ]3
ds

∫ 1

0
β(s)ds

ρ
. (C.9)

Let

B(a) =

ψ(a)

[δ(a)+2ρ]2∫ 1

0
ψ(s)

[δ(s)+2ρ]3
ds
. (C.10)

By (i) and (ii) of this Corollary, it suffices to prove that B(a) is a decreasing function of φ

for every a. By specification (23) we obtain

B(a) =
2 [2ρ− φχ]2 [2ρ+ (1− φ)χ]2

[4ρ+ (1− 2φ)χ] [2ρ+ (a− φ)χ]2
, (C.11)

which implies that

d

dφ
B(a) = − 4χ [2ρ− φχ] [2ρ+ (1− φ)χ]

[4ρ+ (1− 2φ)χ]2 [2ρ+ (a− φ)χ]3
·
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{
(2ρ− φχ)3 + aχ

[
12ρ2 + 6(1− 2φ)χρ− 3φ(1− φ)χ2 + χ2

]}
(C.12)

By Proposition 8, we have 2ρ+(a−φ)χ > 0 for every a ∈ [0, 1], and by (C.4a), we have that

4ρ+ (1− 2φ)χ > 3ρ+ (1− 2φ)χ > 0. (C.13)

Because χ > 0 by assumption, it suffices to prove that

12ρ2 + 6(1− 2φ)χρ− 3φ(1− φ)χ2 + χ2 > 0. (C.14)

Substituting the equilibrium condition (102a) into the above we obtain

12ρ2 + 6(1− 2φ)χρ− 3φ(1− φ)χ2 + χ2 =
3

2
[4ρ+ (1− 2φ)χ] ρ+ χ2 > 0, (C.15)

where the inequality follows from (C.13).

By (C.9), we can also write the trading intensity of trader a as

β(a) = B̃(a)

∫ 1

0

β(s)ds, (C.16)

where

B̃(a) =

ψ(a)

[δ(a)+2ρ]2

ρ
∫ 1

0
ψ(s)

[δ(s)+2ρ]3
ds
. (C.17)

By specification (23) we obtain

B̃(a) =
2 [2ρ− φχ]2 [2ρ+ (1− φ)χ]2

ρ [4ρ+ (1− 2φ)χ] [2ρ+ (a− φ)χ]2
=

2
[
2 ρ
χ
− φ
]2 [

2 ρ
χ

+ (1− φ)
]2

ρ
χ

[
4 ρ
χ

+ (1− 2φ)
] [

2 ρ
χ

+ (a− φ)
]2 . (C.18)

IA.19



In addition, from the equilibrium condition (102a) we get that

2

(
ρ

χ

)2

− 3

(
φ− 1

2

)
ρ

χ
− φ(1− φ) = 0. (C.19)

This proves that the solution for ρ/χ does not depend on χ, because (C.19) is a quadratic

polynomial in ρ/χ where the coefficients do not depend on χ. It follows that B̃(a) does not

depend on χ either. By (ii) of this Corollary, it follows that β(a) decreases in χ for all a.

Proof of (iv). Liquidity λ−1 decreases in φ and χ by Equation (18b) and (i) and (ii) of

this Corollary. V decreases in φ and χ due to (87) and Corollary 13.

Next, by (C.5) and (C.7), Equation (85) gives

τD
d

dφ
Q = ρ

d

dφ

(∫ 1

0

β(s)ds

)
+

(∫ 1

0

β(s)ds

)
d

dφ
ρ

= χ

[3ρ+ (1− 2φ)χ]

[
ρ
(∫ 1

0
β(s)ds

)2

+ τD
∫ 1

0
β(s)ds

]
− 2ψ

[2ρ+( 1
2
−φ)χ]

2

[2ρ−φχ]2[2ρ+(1−φ)χ]2

∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

]
= χψ

[3ρ+ (1− 2φ)χ] [2ρ− φχ] [2ρ+ (1− φ)χ]− 2
[
2ρ+ (1

2
− φ)χ

]2
∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

]
[2ρ− φχ]2 [2ρ+ (1− φ)χ]2

. (C.20)

The second equality is due to the equilibrium condition (102b). By (102a) we obtain that

ρ

[
2ρ+

(
1

2
− φ
)
χ

]
= [2ρ− φχ] [2ρ+ (1− φ)χ] , (C.21)

and substituting this into (C.20) we get

τD
d

dφ
Q = χψ

− [3ρ+ (1− 2φ)χ]2
[
2ρ+ (1

2
− φ)χ

]
∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

]
[2ρ− φχ]2 [2ρ+ (1− φ)χ]2

< 0, (C.22)
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because

2ρ+

(
1

2
− φ
)
χ = 2ρ− φχ+

1

2
χ > 0 (C.23)

in equilibrium. It follows that Q is a decreasing function of φ.

A similar argument shows that

τD
d

dχ
Q = ρ

d

dχ

(∫ 1

0

β(s)ds

)
+

(∫ 1

0

β(s)ds

)
d

dχ
ρ

=
ψ

∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

]
[2ρ− φχ]2 [2ρ+ (1− φ)χ]2{[

3

(
φ− 1

2

)
ρ+ 2φ(1− φ)χ

]
[2ρ− φχ] [2ρ+ (1− φ)χ]

− ρ
{
χ2φ+ (2ρ− φχ) [(3− 2φ)χφ+ 2ρ(2φ− 1)]

}}
=

ψ

∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

]
[2ρ− φχ]2 [2ρ+ (1− φ)χ]2

ρ

{[
3

(
φ− 1

2

)
ρ+ 2φ(1− φ)χ

] [
2ρ+

(
1

2
− φ
)
χ

]

−
{
χ2φ+ (2ρ− φχ) [(3− 2φ)χφ+ 2ρ(2φ− 1)]

}}

= − ψρ(1− φ) [2 (3ρ− φχ) + 4φχρ]

4 ∂
∂ρ
G
[
2ρ
∫ 1

0
β(s)ds+ τD

]
[2ρ− φχ]2 [2ρ+ (1− φ)χ]2

, (C.24)

where the first equality follows from (C.6), (C.8) and equilibrium condition (102b), the second

equality follows from (C.21), and the third equality follows from (102a). The numerator in

(C.24) is positive because φ, χ, ρ > 0, and 3ρ − φχ > 2ρ − φχ > 0 in equilibrium. It now

follows that Q is a decreasing function of χ.
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Figure 5: An illustration of the results in Corollary 13. Risk appetite ρ on the left (Panels A and C) and aggregate trading

intensity
∫
β on the right (Panels B and D) as a function of the fraction of risk seekers φ and the preference spread χ. The

dashed blue curves show the equilibrium with exogenous homogeneous precisions set to τ(a) = 1 for all traders a, while the

solid red curves show the equilibrium with endogenous precisions. The precision of the dividend is τD = 1 and the inverse of

the marginal cost of information is ψ(a) = 1 for all a. In Panels A and B the preference spread is χ = 1 and in Panels C and

D the fraction of risk seekers is φ = 1/4.
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A: Precision τ(a) vs a and φ from above

trader a

risk seekers φ

B: Precision τ(a) vs a and φ from below

trader a

risk seekers φ

C: Precision τ(a) vs a and χ from above

trader a

pref. spread χ

D: Precision τ(a) vs a and χ from below

trader a
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Figure 6: An illustration of comparative statics for the endogenous precision of the traders. Precision τ(a) as a function of

trader a and the fraction of risk seekers φ in the top row (Panels A and B) and as a function of trader a and the preference

spread χ in the bottom row (Panels C and D). Each row shows the same surface from two different vantage points (Panels A

and C from above, Panels B and D from below). The precision of the dividend is τD = 1 and the inverse of the marginal cost

of information is ψ(a) = 1 for all a. In Panels A and B the preference spread is χ = 1 and in Panels C and D the fraction of

risk seekers is φ = 1/4.
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D Detailed proofs for the heterogeneous market with

price observations and imperfect competition (Sec-

tion 3.5)

Theorem 15 Given precision functions τ and π, if a trading equilibrium exists, then it must

satisfy

β(a) =
τ(a)

2ρ+ µδ(a)
, (D.1a)

γ(a) =
π(a)

2ρ+ µδ(a)
(µ− 1), (D.1b)

and

1

λ
=

∫ 1

0

β(s)ds+
τD
ρ
, (D.1c)

where, with ρ∗ = ρ/µ, ρ∗ and µ are the solution to the system

ρ∗ =

{∫ 1

0

τ(s)

[2ρ∗ + δ(s)]2
ds+ (µ− 1)2

∫ 1

0

π(s)

[2ρ∗ + δ(s)]2
ds

}−1

·[∫ 1

0

τ(s)

2ρ∗ + δ(s)
ds+ (µ− 1)2

∫ 1

0

π(s)

2ρ∗ + δ(s)
ds

]
, (D.1d)

and

µ = 1 +

[∫ 1

0

π(s)

2ρ∗ + δ(s)
ds

]−1 [
τD
ρ∗

+

∫ 1

0

τ(s)

2ρ∗ + δ(s)
ds

]
. (D.1e)

under the restriction that ρ∗ and λ have the same sign. Moreover, such an equilibrium is

rational if and only if 2ρ∗ + δ(a) > 0 for all a.

Proof. The market-clearing condition is

∫ 1

0

dXs = 0, (D.2)
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from which we obtain (31), with

λ =

[∫ 1

0

γ(s)ds

]−1

. (D.3)

Following the methodology of Kyle (1989), we can write

λ−a =
λ

1− λγ(a)da
(D.4)

and

P−a = λ−a

(
D

∫ 1

0

I{s 6=a}β(s)ds

+

∫ 1

0

I{s 6=a}β(s)
√
τ(s)−1dBz

s +

∫ 1

0

I{s 6=a}γ(s)
√
π(s)−1dBζ

s

)
. (D.5)

Conditional on the signals dza and dζa, the utility that trader a gets from his profit

πa = dXa(D − P ) is

du (πa; dza) = E
[
πa

∣∣∣dza, dζa]− 1

2
δ(a)Var

(
πa

∣∣∣dza, dζa)
= dXa

(
E
[
D − P−a

∣∣∣dza, dζa]− λ dXa

)
− 1

2
δ(a) (dXa)

2 Var
(
D − P−a

∣∣∣dza, dζa) . (D.6)

The first-order condition of maximizing utility over dXa gives

dXa =
E
[
D − P−a

∣∣∣dza, dζa]
2λ−a + δ(a)Var

(
D − P−a

∣∣∣dza, dζa) . (D.7)

Combining this expression with (105) we get (106).
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I conjecture that

lim
da→0

λ (D.8a)

is finite, and that for each a

lim
da→0

γ(a) (D.8b)

is also finite. These conjectures imply that

lim
da→0

λ−a = λ (D.9)

for all a.

Deriving the conditional expectation of D−P−a we get an expression for dXa as a linear

combination of dza and dζa. Matching its coefficients with β(a) and −γ(a) and sending da

to zero under the conjectures in (D.8), we obtain

β(a) =
1

λ+ δ(a)Var
(
D − P−a

∣∣∣dza, dζa)
[
−λβ(a) +

τ(a)

τD

(
1− λ

∫ 1

0

β(s)ds

)]
(D.10a)

and

− γ(a) =
1

λ+ δ(a)Var
(
D − P−a

∣∣∣dza, dζa)[
λγ(a) +

π(a)

τD
λ

∫ 1

0

β(s)ds

(
1− λ

∫ 1

0

β(s)ds

)
− π(a)λ2

∫ 1

0

(
β2(s)

τ(s)
+
γ2(s)

π(s)

)
ds

]
(D.10b)

Solving (D.10a) for β(a) we get (D.1a) and solving (D.10b) for γ(a) we get (D.1b), where

the auxiliary quantities ρ and µ are

ρ =
λτD

1− λ
∫ 1

0
β(s)ds

(D.11a)
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and

µ = lim
da→0

τDVar
(
D − P−a

∣∣∣dza, dζa)
1− λ

∫ 1

0
β(s)ds

= 1−λ
∫ 1

0

β(s)ds+τD
λ2
∫ 1

0

(
β2(s)
τ(s)

+ γ2(s)
π(s)

)
ds

1− λ
∫ 1

0
β(s)ds

. (D.11b)

Equation (D.11a) implies (D.1c).

Because (D.3) must hold in equilibrium, it follows that the function γ is finite everywhere

if an equilibrium exists. Thus the conjectures in (D.8) hold as long as an equilibrium exists,

which implies that (D.1a) and (D.1b) also hold as long as an equilibrium exists.

From (D.11a) and (D.3) we get

ρ =
τD∫ 1

0
γ(s)ds−

∫ 1

0
β(s)ds

=
τD

(µ− 1)
∫ 1

0
π(s)

2ρ+µδ(s)
ds−

∫ 1

0
τ(s)

2ρ+µδ(s)
ds

(D.12)

Rearranging this expression gives (D.1e), with ρ∗ defined as ρ scaled by µ.

Substituting (D.11a) and (D.3) into (D.11b) we get

ρ =

∫ 1

0
β(s)ds+ (µ− 1)

∫ 1

0
γ(s)ds∫ 1

0

(
β2(s)
τ(s)

+ γ2(s)
π(s)

)
ds

. (D.13)

Using (D.1a) and (D.1b) to write out the integrals that appear in the above expression

we obtain

ρ =

{∫ 1

0

τ(s)

[2ρ+ µδ(s)]2
ds+ (µ− 1)2

∫ 1

0

π(s)

[2ρ+ µδ(s)]2
ds

}−1

·[∫ 1

0

τ(s)

2ρ+ µδ(s)
ds+ (µ− 1)2

∫ 1

0

π(s)

2ρ+ µδ(s)
ds

]
, (D.14)

and scaling (D.14) by µ we get (D.1d).

Dividing (D.11a) and (D.11b) implies that λ > 0 if and only if ρ and µ have the same
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sign, which shows that λ and ρ∗ have the same sign.

Finally, because µ ≥ 1 the second-order condition of trader a is satisfied if and only if

2ρ∗ + δ(a) > 0.

Proof of Theorem 14. If the ratio π(s)
τ(s)

depends on s, then the equilibrium is described

by Theorem 15.

If the ratio π(s)
τ(s)

is constant and equal to ω, then (D.1d) reduces to (18c) with ρ∗ = ρ
µ

in

the place of ρ. After scaling by µ and using π(s)
τ(s)

= ω (D.1a) gives (32a), (D.1b) gives (32b),

(D.1c) gives (32c), and (D.1e) gives (32d).

If prices are fully observable, then π =∞. Letting π(s) = π for all s and sending π →∞

in (D.1e) shows that µ→ 1, and that

lim
π→∞

(µ− 1)π = lim
π→∞

[∫ 1

0

1

2ρ∗ + δ(s)
ds

]−1 [
τD
ρ∗

+

∫ 1

0

τ(s)

2ρ∗ + δ(s)
ds

]
. (D.15)

I conjecture that this limit exists. Because µ → 1, (D.1d) implies that ρ∗ converges to the

solution of

ρ∗ =

{∫ 1

0

τ(s)

[2ρ∗ + δ(s)]2
ds

}−1 [∫ 1

0

τ(s)

2ρ∗ + δ(s)
ds

]
, (D.16)

that is, ρ∗ converges to the ρ of Theorem 5. Thus the limit in (D.15) exists if an equilibrium

in Theorem 5 exists. The claims for β and γ follow immediately.

There is also a direct extension of Proposition 7.

Theorem 16 For given precisions functions τ and π, if δ(a) is non-negative for all a then

no rational trading equilibrium exists.

Proof. The proof is by contradiction; it follows a similar method to that for Proposition 7.

Suppose that ρ∗ < 0. Because τ > 0 and π > 0, Equation (D.1d) implies that the

second-order condition for a set of traders of positive measure must be violated.
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Suppose that ρ∗ = 0. If δ(a) = 0 for at least some traders a of non-zero measure, then

the second-order condition is weakly violated for those traders. If, instead, δ(a) > 0 for all

a, Equation (D.1d) implies that

0 =

∫ 1

0

τ(s)

δ(s)
ds+ (µ− 1)2

∫ 1

0

π(s)

δ(s)
ds, (D.17)

which is not possible because τ > 0 and π > 0.

Suppose that ρ∗ > 0. If δ(a) = 0 for all a, then (D.1d) implies

ρ∗ =

1
2ρ∗
1

4ρ2
∗

= 2ρ∗, (D.18)

which is a contradiction. If δ(a) ≥ 0, then because ρ∗ > 0 we get that

0 <
ρ∗

2ρ∗ + δ(a)
≤ 1. (D.19)

It follows that

0 < ρ∗
τ(a)

[2ρ∗ + δ(a)]2
≤ τ(a)

2ρ∗ + δ(a)
. (D.20a)

and

0 < ρ∗
(µ− 1)2π(a)

[2ρ∗ + δ(a)]2
≤ (µ− 1)2π(a)

2ρ∗ + δ(a)
. (D.20b)

Integrating both sides on each inequality in (D.20a) and (D.20b) and summing the resulting

inequalities we obtain, because each inequality is strict for at least some a of non-zero

measure, that

ρ∗

{∫ 1

0

τ(s)

[2ρ∗ + δ(s)]2
ds+ (µ− 1)2

∫ 1

0

π(s)

[2ρ∗ + δ(s)]2
ds

}
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<

∫ 1

0

τ(s)

2ρ∗ + δ(s)
ds+ (µ− 1)

∫ 1

0

π(s)

2ρ∗ + δ(s)
ds (D.21)

which contradicts (D.1d).
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E Sufficient conditions on non-linear heterogeneity in

risk preferences

Theorem 17 Suppose that δ(s) crosses zero from below in (0, 1) and it increases strictly.

(i) For a given precision function τ , a unique rational trading equilibrium with positive ρ

exists if

τ ′(s)

τ(s)
<
δ′′ (s)

δ′ (s)
(E.1)

for all s.

(ii) For a given inverse marginal-cost function ψ, a unique rational information equilibrium

with positive ρ exists if

1

3

ψ′′(s)
ψ(s)
− δ′′′(s)

δ′(s)

ψ′(s)
ψ(s)
− δ′′(s)

δ′(s)

<
δ′′ (s)

δ′ (s)
(E.2)

for all s.

Proof. The proofs of both parts of the theorem use a similar method—I thus present an

expanded version for (i) and an abridged version for (ii). Suppose that s∗ is the root of δ in

[0, 1]. This root is unique by assumption.

Proof of (i). At ρ = 0, the left-hand side of (18c) is zero, but its right-hand side equals

∫ 1

0
τ(s)
δ(s)

ds∫ 1

0
τ(s)

[δ(s)]2
ds

=

∫ δ(1)−δ(0)

0

τ(δ−1(u+δ(0)))
u+δ(0)

(δ−1)
′
(u+ δ(0)) du∫ δ(1)−δ(0)

0
τ(δ−1(u+δ(0)))

[u+δ(0)]2
(δ−1)′ (u+ δ(0)) du

=
τ (δ−1 (0)) (δ−1)

′
(0)(

τ (δ−1 (0)) (δ−1)′ (0)
)′

=
τ (δ−1 (0)) (δ−1)

′
(0)

τ ′ (δ−1 (0))
[
(δ−1)′ (0)

]2
+ τ (δ−1 (0)) (δ−1)′′ (0)

= δ′ (s∗)

(
τ ′ (s∗)

τ (s∗)
− δ′′ (s∗)

δ′ (s∗)

)−1

. (E.3)
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The first equality follows by change of variables, the second by Cauchy’s integral formula,

the third by standard formulas due to the inverse function theorem, and the fourth because

s∗ is the root of δ. By (E.1) it follows that at ρ = 0 the right-hand side of (18c) is strictly

below its left-hand side. Moreover, the derivative of the left-hand side of (18c) is one, while

the derivative of the right-hand side of (18c) is

2

[
2

(∫ 1

0

τ(s)

[2ρ+ δ(s)]2
ds

)−2 ∫ 1

0

τ(s)

2ρ+ δ(s)
ds

∫ 1

0

τ(s)

[2ρ+ δ(s)]3
ds− 1

]
≥ 2 > 1. (E.4)

The first inequality follows because

(∫ 1

0

τ(s)

[2ρ+ δ(s)]2
ds

)2

=

(∫ 1

0

(
τ(s)

2ρ+ δ(s)

) 1
2
(

τ(s)

[2ρ+ δ(s)]3

) 1
2

)2

ds

≤
∫ 1

0

τ(s)

2ρ+ δ(s)
ds

∫ 1

0

τ(s)

[2ρ+ δ(s)]3
ds (E.5)

by the Hölder inequality (by the complex version of the Hölder inequality, (E.5) holds even

if the integrands are negative). Inequality (E.4) shows that the right-hand side of (18c)

increases at a higher rate in ρ than its left-hand side for every ρ > 0, and thus there must

be a crossing for some ρ > 0. This crossing is also unique because by (E.4) the right-hand

side of (18c) increases strictly faster in ρ than its left-hand side.

Let ρ0 > 0 denote the crossing in ρ. Assume, in contradiction, that in equilibrium

there exists some s ∈ [0, 1] such that 2ρ0 + δ(s) ≤ 0. Let s0 denote the largest such s;

s0 = δ−1 (−2ρ0), and it exists because δ is increasing and continuous. By change of variables,

Cauchy’s integral formula, the inverse function theorem, and (18c) it follows that

ρ0 =

∫ 1

0
τ(s)

2ρ0+δ(s)
ds∫ 1

0
τ(s)

[2ρ0+δ(s)]2
ds

=

∫ δ(1)

δ(0)

τ(δ−1(u))
2ρ0+u

(δ−1)
′
(u)du∫ δ(1)

δ(0)
τ(δ−1(u))

[2ρ0+u]2
(δ−1)′ (u)du

=
τ (δ−1 (−2ρ0)) (δ−1)

′
(−2ρ0)(

τ (δ−1 (−2ρ0)) (δ−1)′ (−2ρ0)
)′
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= δ′ (s0)

(
τ ′ (s0)

τ (s0)
− δ′′ (s0)

δ′ (s0)

)−1

. (E.6)

By condition (E.1) this is negative, which contradicts that ρ0 > 0.

Proof of (ii). By Descartes’ rule of signs, it suffices for (27a) to have a positive solution

for (27b) to have a positive solution. We may thus focus on conditions for (27a) to have a

positive solution.

At ρ = 0, the left-hand side of (27a) is zero, but its right-hand side equals

∫ 1

0
ψ(s)

[δ(s)]2
ds∫ 1

0
ψ(s)

[δ(s)]3
ds

=

∫ δ(1)−δ(0)

0

ψ(δ−1(u+δ(0)))
[u+δ(0)]2

(δ−1)
′
(u+ δ(0)) du∫ δ(1)−δ(0)

0
ψ(δ−1(u+δ(0)))

[u+δ(0)]3
(δ−1)′ (u+ δ(0)) du

=

(
ψ (δ−1 (0)) (δ−1)

′
(0)
)′(

ψ (δ−1 (0)) (δ−1)′ (0)
)′′

= δ′ (s∗)

[ ψ′′(s∗)
ψ(s∗)

− δ′′′(s∗)
δ′(s∗)

ψ′(s∗)
ψ(s∗)

− δ′′(s∗)
δ′(s∗)

− 3
δ′′ (s∗)

δ′ (s∗)

]−1

< 0, (E.7)

and thus at ρ = 0 the right-hand side of (27a) is strictly below its left-hand side. In addition,

the derivative of the left-hand side of (27a) is one, while the derivative of the right-hand side

of (27a) is

2

[
3

(∫ 1

0

ψ(s)

[2ρ+ δ(s)]3
ds

)−2 ∫ 1

0

ψ(s)

[2ρ+ δ(s)]2
ds

∫ 1

0

ψ(s)

[2ρ+ δ(s)]4
ds− 2

]
≥ 2 > 1. (E.8)

because, by the Hölder inequality,

(∫ 1

0

ψ(s)

[2ρ+ δ(s)]3
ds

)2

=

(∫ 1

0

(
ψ(s)

[2ρ+ δ(s)]2

) 1
2
(

ψ(s)

[2ρ+ δ(s)]4

) 1
2

)2

ds

≤
∫ 1

0

ψ(s)

[2ρ+ δ(s)]2
ds

∫ 1

0

ψ(s)

[2ρ+ δ(s)]4
ds. (E.9)
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This shows that there must be a unique crossing for some ρ > 0. Let ρ† > 0 denote this

crossing in ρ and s† = δ−1 (−2ρ†) ∈ [0, 1]. A similar argument as above shows that we have

a contradiction, because by (E.2)

ρ† = δ′ (s†)

 ψ′′(s†)

ψ(s†)
− δ′′′(s†)

δ′(s†)

ψ′(s†)

ψ(s†)
− δ′′(s†)

δ′(s†)

− 3
δ′′ (s†)

δ′ (s†)


−1

< 0. (E.10)
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F A large market with noise traders

Here I introduce pure noise traders of measure ν. For a in [1, 1 + ν), let the demand of pure

noise trader a be

dXa = Θ da+ τ
−1/2
ξ dBξ

a, (F.1)

where Θ is N
(
0, τ−1

Θ

)
, and Bξ is a Brownian Motion in [1, 1 + ν], independent of Θ, D, and

B. I use θ to denote the aggregate demand coming from noise traders. By integrating it

follows that

θ =

∫ 1+ν

1

dXa = νΘ + τ
−1/2
ξ

∫ 1+ν

1

dBξ
a, (F.2)

and thus θ is a Normal random variable with mean zero and variance

τ−1
θ = ν2τ−1

Θ + ντ−1
ξ . (F.3)

If the precision τξ is infinite for every noise trader then there is only systematic noise, while

if the precision τΘ is infinite there is only idiosyncratic noise. The case of no noise traders

corresponds to ν = 0. It is straightforward to extend this model to heterogeneous precisions

of idiosyncratic noise, but given that the only thing that matters is the aggregate variance

of stochastic supply, the model above is without loss of generality.22

The derivation of the economy with noise traders is very similar to that without them.

The demand conjecture for each informed trader a in [0, 1) remains as in (14a), the price

conjecture, which now includes the noise traders, becomes

P = λ

∫ 1+ν

0

dXa, (F.4)

22For example, if dXa = Θ da +
√
τξ(a)−1 dBξa, for a trader-specific amount τξ(a), then τ−1

θ = ν2τ−1
Θ +∫ 1+ν

1
τξ(a)−1da.
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and the market maker’s pricing rule becomes

P = E
[
D
∣∣∣ ∫ 1+ν

0

dXa

]
. (F.5)

The following theorem summarizes the equilibrium in the financial market.

Corollary F.1 With homogeneous risk aversion and pure noise traders (18a) and (18b)

continue to hold. Moreover, there exists a unique rational information equilibrium, in which

(i) risk appetite ρ decreases in ν, and

(ii) aggregate trading intensity
∫
β increases in ν.

In this equilibrium, liquidity decreases when information becomes cheaper, as long as the

marginal cost of information is sufficiently low. The range of information costs for which

this happens becomes larger with higher risk aversion.

F.1 Detailed proofs

Theorem F.2 Given a precision function τ for the informed traders, Theorem 5 continues

to hold with pure noise traders, with the only difference that Equation (18c) becomes

ρ =

[∫ 1

0

τ(s)

[2ρ+ δ(s)]2
ds+

1

τθ

]−1 ∫ 1

0

τ(s)

2ρ+ δ(s)
ds, (F.6)

and that the price is as in (F.4).

Proof. Equation (69) remains the same. The price function withouttrader a’s impact is

P−a = λ

∫ 1

0

I{s 6=a}dXs + λθ

IA.36



=

(
λ

∫ 1

0

I{s 6=a}β(s)ds

)
D + λ

∫ 1

0

I{s 6=a}β(s)
√
τ(s)−1dBs + λθ. (F.7)

which implies that (72) still holds by independence of θ from D and B, and that

Var (D − P−a) = τ−1
D

(
1− λ

∫ 1

0

β(s)ds

)2

+ λ2

∫ 1

0

β2(s)τ(s)−1ds+ λ2τ−1
θ +O(ds). (F.8)

In Equation (74), the only term that changes is Var (D − P−a), which is now given by (F.8).

Sending ds and da to zero thus yields

β(a) =
τ(a)

2ρ+ δ(a)
[
1− λ

∫ 1

0
β(s)ds+ τDλ2

∫ 1
0 β

2(s)τ(s)−1ds+τ−1
θ

1−λ
∫ 1
0 β(s)ds

] , (F.9)

where ρ remains as in (76), and thus (18b) continues to hold. From (F.5) we now obtain

λ =
Cov

(
D,
∫ 1+ν

0
dXs

)
Var

(∫ 1+ν

0
dXs

) =

∫ 1

0
β(s)ds(∫ 1

0
β(s)ds

)2

+ τD

(∫ 1

0
β2(s)
τ(s)

ds+ 1
τθ

) , (F.10)

from which it follows that

1− λ
∫ 1

0

β(s)ds =
τD

(∫ 1

0
β2(s)
τ(s)

ds+ 1
τθ

)
(∫ 1

0
β(s)ds

)2

+ τD

(∫ 1

0
β2(s)
τ(s)

ds+ 1
τθ

) . (F.11)

Equations (F.11) and (F.10) together give

τDλ
2

∫ 1

0
β2(s)τ(s)−1ds+ τ−1

θ

1− λ
∫ 1

0
β(s)ds

= λ

∫ 1

0

β(s)ds, (F.12)
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which implies that (F.9) reduces to (18a). Substituting (F.10) and (F.12) into (76) yields

ρ =

∫ 1

0
β(s)ds∫ 1

0
β2(s)τ(s)−1ds+ τ−1

θ

. (F.13)

Using (18a) to express the integrals in (F.13) proves (F.6). From (F.13) it also follows that ρ

and
∫ 1

0
β(s)ds must have the same sign. Finally, the second-order condition of trader a is still

satisfied if and only if (82) holds. Using the moments in (69), (72), and (F.8) to calculate

the conditional variance shows, after some algebra, that (83) continues to hold, and thus as

da→ 0 the the second-order condition of trader a is satisfied if and only if 2ρ+ δ(a) > 0.

Theorem F.3 Theorem 10 continues to hold with pure noise traders, with the only difference

that Equation (27a) becomes

ρ =

[∫ 1

0

ψ(s)

[δ(s) + 2ρ]3
ds+

1

τθ

(
ρ

∫ 1

0

β(s)ds+ τD

)]−1 ∫ 1

0

ψ(s)

[δ(s) + 2ρ]2
ds. (F.14)

and that the price is as in (F.4).

Proof. Lemma 9 continues to hold with pure noise traders because dza and θ are inde-

pendent. Theorem F.3 follows by combining (F.6) of Theorem F.2 with (26) of Lemma 9.

Proof of Corollary F.1 . By Theorem F.3, with homogeneous risk aversion, δ(s) = δ > 0

for all s, the equilibrium is

ρ

[∫ 1

0

ψ(s)ds+ τ−1
θ

(
ρ

∫ 1

0

β(s)ds+ τD

)
(δ + 2ρ)3

]
− (δ + 2ρ)

∫ 1

0

ψ(s)ds = 0, (F.15a)

and ∫ 1

0

β(s)ds

[
ρ

∫ 1

0

β(s)ds+ τD

]
(δ + 2ρ)2 −

∫ 1

0

ψ(s)ds = 0. (F.15b)
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Solving (F.15a) for
∫ 1

0
β(s)ds, and substituting the result into (F.15b) gives two equations,

which after some algebra can be simplified to

∫ 1

0

β(s)ds = τ−1
θ ρ

δ + 2ρ

δ + ρ
, (F.16a)

and

ρ (δ + 2ρ)3 τ−1
θ

[
τD (δ + ρ) + τ−1

θ ρ2 (δ + 2ρ)
]
− (δ + ρ)2

∫ 1

0

ψ(s)ds = 0. (F.16b)

By inspection it follows that Equation (F.16b) is a seventh order polynomial in ρ, in which

the coefficients of orders seven through three are all positive. The signs of coefficients of

orders two, one, and zero are as in the following table.

term ρ2 ρ1 ρ0

coefficient
7δ3τDτ

−1
θ δ4τDτ

−1
θ

−
∫ 1

0
ψ(s)ds −2δ

∫ 1

0
ψ(s)ds −δ2

∫ 1

0
ψ(s)ds

if δ3τDτ
−1
θ < 1

7

∫ 1

0
ψ(s)ds − − −

if 1
7

∫ 1

0
ψ(s)ds < δ3τDτ

−1
θ < 2

∫ 1

0
ψ(s)ds + − −

if 2
∫ 1

0
ψ(s)ds < δ3τDτ

−1
θ + + −

It follows that there is always a unique sign switch in the coefficients of ρ in descending

order, and thus, by Descartes’ rule of signs, there exists a unique positive solution for ρ. By

(F.16a) we also get that exists a unique positive solution for
∫ 1

0
β(s)ds, and thus there exists

a unique equilibrium.
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Next, by applying the implicit function theorem on (F.16b) we obtain

dρ

dτ−1
θ

= −
τθρ (δ + ρ) (δ + 2ρ)

[
τD (δ + ρ) + 2τ−1

θ ρ2 (δ + 2ρ)
]

τD (δ + ρ) (6ρ2 + 8δρ+ δ2) + 2τ−1
θ ρ2 (δ + 2ρ) (10ρ2 + 15δρ+ 3δ2)

, (F.17)

which is negative because δ > 0 and ρ > 0 in equilibrium. Because ν affects ρ only through

τ−1
θ , it now follows by the chain rule that ρ is decreasing in ν. Finally, from (F.16a) we

obtain ∫ 1

0
β(s)ds

dτ−1
θ

= ρ
δ + 2ρ

δ + ρ
+ τ−1

θ

2ρ2 + 4δρ+ δ2

(δ + ρ)2 > 0, (F.18)

and thus by the chain rule it follows that
∫ 1

0
β(s)ds is increasing in ν.

By (18b) and (F.16a),

d

dψ

(
1

λ

)
=
τD
ρ2

[
ρ2 (δ2 + 4δρ+ 2ρ2)

τDτθ (δ + ρ)2 − 1

]
dρ

dψ
(F.19)

By the Implicit Function Theorem and the equilibrium condition in (F.16b) it can be shown

that dρ
dψ

> 0, and thus whether liquidity increases in ψ or not depends on the sign of the

square-bracketed term on the right-hand side of (F.19). In particular, when δ = 0 the sign

of d
dψ

(
1
λ

)
is the same as that of

2
ρ2

τDτθ
− 1. (F.20)

Solving (F.20) for ρ and substituting the result into the equilibrium condition in (F.16b)

provides a sign for (F.20). Because (F.16b) is increasing in ρ at its only positive root,

(F.20) is negative in equilibrium if and only if the root of (F.20) in ρ is to the right of the

equilibrium solution for ρ, i.e. if evaluating (F.16b) at ρ2 = τDτθ
2

is positive. Equivalently,

(F.20) is negative if and only if

ψ <
√

2τθτ 5
D. (F.21)
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It can further be shown that dρ
dδ
< 0, and that in equilibrium the square-bracketed term in

(F.19) decreases in δ (by the Implicit Function Theorem on (F.16b) to obtain dρ
dδ

, and by total

differentiation.) Consequently, the equilibrium root for ρ moves to the left as δ increases,

and, because the square-bracketed term in (F.19) becomes more negative as δ increases if it

is already negative for δ = 0, (F.21) is a sufficient condition for (F.19) to be negative. Thus

(F.19) can be negative for some values of ψ strictly higher than what satisfies (F.21), and

even more so for higher δ.
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G The continuum model as a limit

Here I derive the large economy as a limit of a finite economy. I set up the finite economy

with a finite number of traders, which I then send to infinity, obtaining the economy of

Section 3.

There are N informed competitive rational traders and one representative market maker.

For each n = 1, . . . , N , trader n corresponds to point an−1, where an−1, n = 1, . . . , N , are

points that partition the interval [0, 1) such that 0 = a0 < a1 < a2 < . . . < aN−1 < aN = 1,

with ∆an = an − an−1. As the partition becomes finer and finer by increasing N , it will

eventually converge to a continuum of traders in the interval [0, 1). To simplify the exposition

I make the points equidistant, that is, ∆an = an − an−1 = ∆a = 1/N for each n.

I note that the double-subscript notation of an−1—rather than n—is not superfluous; it is

rather a technical necessity so that the limit asN →∞ yields well-defined stochastic integrals

in the sense of Itô (see, for example, Øksendahl (2003) p. 24, for details.) Nevertheless, where

it is clear enough to do so, I use n as an index instead of an−1.

Trader n is endowed with a signal ∆zan about the liquidating dividend, where

∆zan = D∆a+
√
τ−1
an−1

∆Ban . (G.1)

Here, B is a standard Brownian motion in the interval [0, 1], independent of D, and ∆Ban

is the nth Brownian increment,

∆Ban = Ban −Ban−1 . (G.2)

By independence of Brownian increments it follows that the signal noise of a particular trader

is independent of the signal noise of all other traders.
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The demand of trader n is Xan−1 . The market maker sets the price P equal to his

conditional expectation of the dividend given the aggregate order flow,

P = E

[
D
∣∣∣ N∑
i=1

Xai−1

]
. (G.3)

I conjecture that demand strategies are linear in signals

Xan−1 = βan−1∆zan , (G.4)

and that the price is linear in aggregate order flow,

P = λ
N∑
i=1

Xai−1
. (G.5)

The profit for trader n is πn = Xan−1(D − P ), and his utility is

u (πn; ∆zan) = E
[
πn

∣∣∣∆zan]− δan−1

2
Var

(
πn

∣∣∣∆zan) , (G.6)

where δan−1 is his risk-preference coefficient.

Demand diversity is the discrete analogue of Equation (16), that is

VN =
N∑
i=1

X2
ai−1

. (G.7)

To relate trading volume in my economy to the volume in Admati and Pfleiderer (1988)

and Foster and Viswanathan (1990), I define

EN = max


[

N∑
i=1

(
X+
ai−1

)2
] 1

2

,

[
N∑
i=1

(
X−ai−1

)2
] 1

2

 , (G.8)
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which I call “Euclidean volume”. Echoing the relation in Admati and Pfleiderer (1988), EN

is the maximum of the total orders on either side of the market, where instead of using the

sums of the positive and negative parts of traders demands we use a metric based on the

two-norm.23

It is straightforward to show that

Xan−1 =
E
[
D − P−n

∣∣∆zan]
2λ+ δan−1Var

(
D − P−n

∣∣∆zan) , (G.9)

where P−n = λ
∑N

i=1
i 6=n

Xai−1
is the price excluding the demand of trader n. This demand

function, which is the discrete analogue of (67), follows the intuition that each strategic

trader sets his demand by responding to the aggregation of strategies of other traders.

As the number of traders becomes large, the price without the impact of trader n, P−n,

converges to the price P .24 If, in addition, λ converges to zero, then the optimal demand

of each trader approaches that of a price-taker. In such a case, negative risk aversion is

troublesome, because the second-order condition with respect to demand is violated. It thus

becomes important that there is a residual degree of market impact with a large number of

traders, which following the intuition in Kyle (1989), we may describe as an information-

based version of monopolistic competition.

Writing out the price function with the signal in (G.1) I get

P = D
N∑
i=1

λβan−1∆a+
N∑
i=1

λβan−1

√
τ−1
an−1

∆Ban . (G.10)

23We can think of the volume in Admati and Pfleiderer (1988) as using the taxicab norm to measure
positive and negative orders (the positive and negative parts of a function are the same as the absolute
values of the negative and positive parts.) In this light, we can think of the expression in (G.8) as using the
Euclidean norm to measure positive and negative orders.

24More precisely, the difference between the P and P−n becomes infinitesimally small.
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As we can see in (G.10), the price contains two different kinds of summation, with different

limiting behaviors. As the number of agents becomes large, the partition an−1, n = 1, . . . , N

of the interval [0, 1) converges to a continuum. Therefore, the sequence τan−1 , n = 1, . . . , N

converges to a continuous function τ(a) on [0, 1), and similarly, the sequence βan−1 , n =

1, . . . , N converges to a continuous function β(a) on [0, 1). These facts imply that the

summation in the coefficient of the dividend D in (G.10) converges to

∫ 1

0

λβ(a)da, (G.11)

in the sense of Riemann. The second summation in (G.10) is proportional to the aggregate

price noise, and as we make the number of traders large it converges to

∫ 1

0

λβ(a)
√
τ(a)−1dBa. (G.12)

Due to the presence of this aggregate noise, the impact that the aggregate order has on

the price is larger than in models where the aggregated idiosycratic noises vanish in the

limit. Recalling that market impact is zero in models where aggregated idiosyncratic noises

vanish, we expect that in this model the market-impact parameter is positive. Of course,

this property by itself is but the first step for a noisy equilibrium with large numbers of

traders. Nevertheless, as the next result shows, there is a formal connection with this model

and the continuum model, which we know is able to generate noisy prices.

Theorem 18 As the number of traders becomes large, the above economy converges to the

economy of Section 3. In particular, the market-impact parameter and the trading intensity

converge to the quantities that solve the system in Theorem 5, and the price converges to that

in (20). Moreover, the demand diversity converges to V, and the Euclidean volume converges
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to a deterministic limit E, which satisfies

1

2
V ≤ E2 ≤ V . (G.13)

Theorem 18 says that we can think of the model in this section as a discretized version of

the continuum economy. Moreover, the economy of Section 3 has very different implications

for market impact than several microstructure models with competition. It is well known

that the information structure employed by extant models of competition in the Kyle (1985)

framework implies that in the large limit the market-impact parameter converges to zero,

and the price converges to the dividend. In contrast, as we can see above, the market-impact

parameter in my model converges to a positive constant.

I next elaborate on the connection with the monopolistic-competition limit in section

9 of Kyle (1989). It is nevertheless important to stress that Kyle (1989)’s monopolistic

competition has solid theoretic justifications. As Garćıa and Sangiorgi (2011) show in detail,

that model arises endogenously under information sales.

Lemma 19 Let ε̆n, n = 1, . . . , N , be a collection of independent random variables, where ε̆n

has distribution N (0, τ̆−1
n ) and is independent of D. The economy with the signals in (G.1)

is equivalent to an economy in which, for n = 1, . . . , N , the signals are

z̆n = D + ε̆n, (G.14)

with τ̆n = τan−1∆a, and the demand coefficients are β̆n with β̆n = βan−1∆a. For either signal

representation, traders’ demands, the aggregate signal, the price, and the market-impact

parameter are identical.

The two signals in (G.1) and (G.14) appear to be quite different, because the former uses
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the cross-sectional partition size ∆a, whereas the latter is the standard way of representing

a signal in the existing literature. Nevertheless, both signals represent exactly the same

economy.25 Before I explain why in more detail, I note that representation (G.1) has the

advantage of being similar to an Itô process; we might as well call it an “Itô signal.” As

Lemma 19 shows, the signals in (G.1) and (G.14) are equivalent. This happens because they

are different ways of writing the same thing:

β̆n (D + εn) = Xn = βan−1 (D + εn) ∆a. (G.15)

This fact allows us to cast (G.14), the usual way of representing signals, in the form of (G.1).

We can therefore think of the economy herein as in the same class of economies as Holden and

Subrahmanyam (1992), with the one-period version of Holden and Subrahmanyam (1992)

being a special case of the Itô-signal economy for which every trader is risk-neutral and has

infinite signal precision.

To summarize, no matter which representation we choose for the agent signal, the demand

is always as in (G.15), where we can see that there is a ∆a incorporated into the demand

coefficient. This, of course, is no accident. After all, ∆a = 1/N , which says that the

demand coefficient in (G.15) is inversely related to the number of agents in the economy.

This is a straightforward effect of competition. As the number of agents increases, each

agent has to trade less aggressively so as not to reveal too much to the market maker, which

naturally decreases the magnitude of his demand. Another way to frame this effect comes

from the standard intuition that competition erodes profits. Because profits are proportional

to squared demands, increasing the number of traders decreases the magnitude of demand

of any given trader.

25A summary intuition for this fact is that the two signal representations have the same signal-to-noise
ratio, which is free of ∆a.
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In this light, what the signal representation of (G.1) achieves is to bake the scale of

competition, 1/N , directly into the agent signal. This now provides the mathematical rep-

resentation of signals with ∆a in them with a solid economic justification. As I have proved

above, in order to have aggregate noise in the large-economy limit, it suffices that the scale

of the variance of individuals’ noises is of order ∆a. This is in fact the defining characteristic

of Brownian motion. The economic takeaway is that in order to have aggregate price noise

in a large market, the variance of the individuals’ noises must scale directly with the scale

of competition, similarly to a point made in Garćıa and Urošević (2013).

G.1 Proofs

G.1.1 Auxiliary results

Lemma G.1 The optimal demand is

Xan−1 =
E
[
D − P−n

∣∣∣∆zan]
2λ+ δan−1Var

(
D − P−n

∣∣∣∆zan) , (G.16a)

and the second-order condition of trader n is satisfied if and only if

δan−1 +
2λ

Var
(
D − P−n

∣∣∣∆zan) > 0. (G.16b)

Moreover, the utility of the optimal profit is

u (πn; ∆zan) =
1

2
Xan−1E

[
D − P−n

∣∣∣∆zan] , (G.16c)
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and the market-impact parameter is

λ =
Cov

(
D,
∑N

i=1Xai−1

)
Var

(∑N
i=1 Xai−1

) . (G.16d)

Proof. Due to assumptions (G.4) and (G.5) I can write the utility function as

u (πn; ∆zan) = Xan−1

{
E
[
D − P−n

∣∣∣∆zan]− λXan−1

}
−
δan−1

2
X2
an−1

Var
(
D − P−n

∣∣∣∆zan) .
(G.17)

The first-order condition with respect to demand proves (G.16a). The second-order condition

with respect to demand is

−
[
2λ+ δan−1Var

(
D − P−n

∣∣∣∆zan)] . (G.18)

Because Var
(
D − P−n

∣∣∆zan) > 0, the second-order condition is negative if and only if

(G.16b) holds. Combining (G.16a) with (G.17) proves (G.16c). Finally, from (G.3) we get

P = E

[
D
∣∣∣ N∑
i=1

Xai−1

]
=

Cov
(
D,
∑N

i=1 Xai−1

)
Var

(∑N
i=1 Xai−1

) N∑
i=1

Xai−1
. (G.19)

Matching the coefficient of aggregate demand in (G.19) with that in conjecture (G.5) we

obtain (G.16d).

Proposition G.2 For the economy of section G, (G.4) and (G.5) hold with

λ =
1
τD

∑N
i=1 βai−1

∆a

1
τD

(∑N
i=1 βai−1

∆a
)2

+
∑N

i=1

β2
ai−1

τai−1
∆a

, (G.20a)
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and

βan−1 =
τan−1

δan−1 + 2λτD
1−λ

∑N
i=1 βai−1∆a

+ A
(
λ, τan−1 , βa0 , . . . , βan−1

)
λ∆a

, (G.20b)

where

A
(
λ, τan−1 , βa0 , . . . , βan−1

)
= δan−1

(
2βan−1 +

τan−1

τD

N∑
i=1

βai−1
∆a

)

+
τan−1 − δan−1λβ

2
an−1

τD
τan−1

1− λ
∑N

i=1 βai−1
∆a

. (G.20c)

Proof. By Lemma G.1, conjectures (G.4) and (G.5), and due to that

E
[
Xai−1

∣∣∣∆zan] = E
[
D
∣∣∣∆zan] βai−1

∆a (G.21)

because ∆zan is independent of ∆Bai for i 6= n, it follows that

Xan−1 =

(
1− λ

∑N
i=1
i 6=n

βai−1
∆a

)
E
[
D
∣∣∣∆zan]

2λ+ δan−1

[(
1− λ

∑N
i=1
i 6=n

βai−1
∆a

)2

Var
(
D
∣∣∣∆zan)+ λ2

(∑N
i=1
i 6=n

β2
ai−1

τai−1
∆a

)] .
(G.22)

The projection theorem implies

E
[
D
∣∣∣∆zan] =

Cov (D,∆zan)

Var (∆zan)
∆zan =

τan−1

τan−1∆a+ τD
∆zan , (G.23)

and

Var
(
D
∣∣∣∆zan) = Var (D)− Cov (D,∆zan)2

Var (∆zan)
=

1

τan−1∆a+ τD
. (G.24)

Substituting (G.23) and (G.24) into (G.22) and matching with our conjecture about linear
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demands gives

βan−1 =
τan−1

τan−1∆a+ τD

1− λ
∑N

i=1
i 6=n

βai−1
∆a

2λ+ δan−1

[(
1− λ

∑N
i=1
i 6=n

βai−1
∆a

)2
1

τan−1∆a+τD
+ λ2

(∑N
i=1
i 6=n

β2
ai−1

τai−1
∆a

)]

=
τan−1

(
1− λ

∑N
i=1 βai−1

∆a+ λβan−1∆a
)

2λ
(
τan−1∆a+ τD

)
+ δan−1

[(
1− λ

∑N
i=1
i 6=n

βai−1
∆a

)2

+ λ2

(∑N
i=1
i 6=n

β2
ai−1

τai−1
∆a

)(
τan−1∆a+ τD

)] ,
(G.25)

and rearranging yields

βan−1 =

τan−1

(
1− λ

∑N
i=1 βai−1

∆a
)

λ
(
τan−1∆a+ 2τD

)
+ δan−1

[(
1− λ

∑N
i=1
i 6=n

βai−1
∆a

)2

+ λ2

(∑N
i=1
i 6=n

β2
ai−1

τai−1
∆a

)(
τan−1∆a+ τD

)] .
(G.26)

Substituting (G.4) into (G.16d) gives

λ =
Cov

(
D,
∑N

i=1Xai−1

)
Var

(∑N
i=1Xai−1

) =
1
τD

∑N
i=1 βai−1

∆a

1
τD

(∑N
i=1 βai−1

∆a
)2

+
∑N

i=1

β2
ai−1

τai−1
∆a

, (G.27)
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which establishes (G.20a). From this equation we also get

λ2

(
N∑
i=1

β2
ai−1

τai−1

∆a

)
= λ

1

τD

N∑
i=1

βai−1
∆a− λ2 1

τD

(
N∑
i=1

βai−1
∆a

)2

. (G.28)

Using Equation (G.28) we can rewrite the term multiplying δan−1 in the denominator of

(G.26) as

(
1− λ

N∑
i=1

βai−1
∆a+ λβan−1∆a

)2

+ λ2

(
−
β2
an−1

τan−1

∆a+
N∑
i=1

β2
ai−1

τai−1

∆a

)(
τan−1∆a+ τD

)
=

(
1− λ

N∑
i=1

βai−1
∆a

)2

+ 2

(
1− λ

N∑
i=1

βai−1
∆a

)(
λβan−1∆a

)
+
(
λβan−1∆a

)2

− λ2
β2
an−1

τan−1

∆a
(
τan−1∆a+ τD

)
+ λ2

(
N∑
i=1

β2
ai−1

τai−1

∆a

)(
τan−1∆a+ τD

)
= 1− λ

N∑
i=1

βai−1
∆a

+

[
λ

(
1− λ

N∑
i=1

βai−1
∆a

)(
2βan−1 +

τan−1

τD

N∑
i=1

βai−1
∆a

)
− λ2β2

an−1

τD
τan−1

]
∆a, (G.29)

and therefore (G.26) becomes

βan−1 = τan−1

(
1− λ

N∑
i=1

βai−1
∆a

)
·{

2λτD + δan−1

(
1− λ

N∑
i=1

βai−1
∆a

)
+ λ

[
τan−1 − δan−1λβ

2
an−1

τD
τan−1

+ δan−1

(
1− λ

N∑
i=1

βai−1
∆a

)(
2βan−1 +

τan−1

τD

N∑
i=1

βai−1
∆a

)]
∆a

}−1

. (G.30)

This proves (G.20b) and (G.20c).
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Lemma G.3

1

2

N∑
i=1

X2
ai−1
≤ E2

N ≤
N∑
i=1

X2
ai−1

. (G.31)

Proof. For any positive numbers Y and Z we have

(
max

{√
Y ,
√
Z
})2

= max {Y, Z} . (G.32)

Moreover, for any random variable X we have

(
X+
)2

=

[
1

2
(|X|+X)

]2

=
1

4

(
|X|2 +X2 + 2|X|X

)
=

1

2
X2 +

1

2
|X|X, (G.33a)

and

(
X−
)2

=

[
1

2
(|X| −X)

]2

=
1

4

(
|X|2 +X2 − 2|X|X

)
=

1

2
X2 − 1

2
|X|X. (G.33b)

Applying (G.32) to definition (G.8) with

Y =
N∑
i=1

(
X+
ai−1

)2

(G.34)

and

Z =
N∑
i=1

(
X−ai−1

)2

, (G.35)

we get

E2
N = max

{
N∑
i=1

(
X+
ai−1

)2

,
N∑
i=1

(
X−ai−1

)2
}

=
1

2
max

{
N∑
i=1

X2
ai−1

+
N∑
i=1

|Xai−1
|Xai−1

,

N∑
i=1

X2
ai−1
−

N∑
i=1

|Xai−1
|Xai−1

}
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=
1

2

N∑
i=1

X2
ai−1

+
1

2
max

{
N∑
i=1

|Xai−1
|Xai−1

,−
N∑
i=1

|Xai−1
|Xai−1

}

=
1

2

N∑
i=1

X2
ai−1

+
1

2

∣∣∣∣∣
N∑
i=1

|Xai−1
|Xai−1

∣∣∣∣∣ , (G.36)

where the second equality follows by the properties in (G.33). Relation (G.31) now follows.

In particular, the upper bound follows by the triangle inequality, and the lower bound follows

because the absolute value in (G.36) is bounded below by zero.

G.1.2 Main proofs for the continuum as a limit

Proof of Theorem 18. As N → ∞, the partition an−1, n = 1, . . . , N of the interval

[0, 1) converges to a continuum. Therefore, the sequence τan−1 , n = 1, . . . , N converges to a

continuous function τ(a) on [0, 1), and similarly, the sequence δan−1 , n = 1, . . . , N converges

to a continuous function δ(a) on [0, 1). Similarly, βan−1 , n = 1, . . . , N also converges to a

continuous function on [0, 1). Let β? denote this limit. In addition, let λ? denote the limit

of λ.

By inspection of (G.20a) and (G.20b) of Proposition G.2, as N →∞ we obtain

λ? =

∫ 1

0
β?(s)ds(∫ 1

0
β?(s)ds

)2

+ τD

(∫ 1

0
β2
?(s)
τ(s)

ds
) (G.37)

and

β?(a) =
τ(a)

δ(a) + 2 λ?τD
1−λ?

∫ 1
0 β?(s)ds

. (G.38)

Letting

ρ? =
λ?τD

1− λ?
∫ 1

0
β?(s)ds

(G.39)

shows that if ρ? as defined in (G.39) is the solution to (18c), then β? is the function β in
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(18a), and that λ? is λ in (18b). To wit, substituting (G.37) and (G.38) into (G.39) gives

ρ? =

[∫ 1

0

τ(s)

[2ρ? + δ(s)]2
ds

]−1 ∫ 1

0

τ(s)

2ρ? + δ(s)
ds, (G.40)

and thus ρ? is the solution to (18c).

Writing out the price function in (G.5) with the signal in (G.1) gives

P = Dλ

N∑
i=1

βan−1∆a+ λ
N∑
i=1

βan−1

√
τ−1
an−1

∆Ban . (G.41)

We have that

lim
N→∞

N∑
i=1

βan−1∆a =

∫ 1

0

β(a)da (G.42)

in the sense of Riemann. By standard results in stochastic calculus (see, e.g., Øksendahl,

2003, ch. 3) we obtain that

lim
N→∞

N∑
i=1

βan−1

√
τ−1
an−1

∆Ban =

∫ 1

0

β(a)
√
τ(a)−1dBa (G.43)

in the sense of Itô, and thus the price in (G.41) converges to the price in (20).

Given that the limit price is as in the continuum, the aggregate price noise A and the

signal-to-noise ratio Q are identical to those for the continuum model.

For finite N , the demand diversity is

VN =
N∑
n=1

X2
an−1

=
N∑
n=1

β2
an−1

(∆zan)2

=
N∑
n=1

β2
an−1

(
D2∆a2 + 2D∆a

√
τ−1
an−1

∆Ban + τ−1
an−1

∆B2
an

)
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= ∆aD2

N∑
n=1

β2
an−1

∆a+ 2∆aD
N∑
n=1

β2
an−1

√
τ−1
an−1

∆Ban +
N∑
n=1

β2
an−1

τ−1
an−1

∆B2
an . (G.44)

The sum
N∑
n=1

β2
an−1

∆a (G.45)

converges to the Riemann integral ∫ 1

0

β2(a)da. (G.46)

The sum
N∑
n=1

β2
an−1

√
τ−1
an−1

∆Ban (G.47)

converges to the stochastic integral

∫ 1

0

β2(a)√
τ(a)

dBa. (G.48)

The sum
N∑
n=1

β2
an−1

τ−1
an−1

∆B2
an (G.49)

is a quadratic variation sum, so it converges to the Riemann integral

∫ 1

0

β2(a)

τ(a)
da. (G.50)

Taking the limit in (G.44) therefore yields

lim
N→∞

VN =
(

lim
N→∞

∆a
)
D2

∫ 1

0

β2(a)da+ 2
(

lim
N→∞

∆a
)
D

∫ 1

0

β2(a)√
τ(a)

dBa +

∫ 1

0

β2(a)

τ(a)
da

=

∫ 1

0

β2(a)

τ(a)
da = V . (G.51)

IA.56



By Lemma G.1 and Equation (G.21) for i 6= n, the utility of trader n is

u (πn; ∆zan) =
1

2

1− λ
N∑
i=1
i 6=n

βai−1
∆a

Xan−1E
[
D
∣∣∣∆zan] . (G.52)

This together with (G.4) implies that the ex-ante expectation of the utility is

E [u (πn; ∆zan)] =
1

2

1− λ
N∑
i=1
i 6=n

βai−1
∆a

 βan−1E
[
∆zanE

[
D
∣∣∣∆zan]]

=
1

2

1− λ
N∑
i=1
i 6=n

βai−1
∆a

 βan−1

τan−1

τan−1∆a+ τD
E
[
∆z2

an

]

=
βan−1

2τD

1− λ
N∑
i=1
i 6=n

βai−1
∆a

∆a

=

(
1− λ

N∑
i=1

βai−1
∆a

)
βan−1

2τD
∆a+ λ

β2
an−1

2τD
(∆a)2 → O(da) (G.53)

This shows that in the limit the utility of each trader is of the order da, and that we need

to adopt a differential notation for it, as in (66).

By Lemma G.3 and Jensen’s inequality we obtain

E4
N ≤

(
N∑
i=1

X2
ai−1

)2

≤
N∑
i=1

X4
ai−1

. (G.54)

By inspection of the demand function Xai−1
, it follows that the sum

∑N
i=1X

4
ai−1

is of order

∆a (the lowest order in ∆a of each term in the sum is ∆B4
ai

, which is of order (∆a)2.) By
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taking expectations in (G.54) we get

E
[
E4
N

]
≤ E

[
N∑
i=1

X4
ai−1

]
, (G.55)

and, because the right-hand converges to zero as N →∞, it follows that the fourth moment

of trading volume converges to zero. This proves that trading volume has a deterministic

limit. Finally, the bounds in (G.13) follow from Lemma G.3 and from that, as established

above,

lim
N→∞

N∑
n=1

X2
an−1

= V . (G.56)

Proof of Lemma 19. By inspection of Proposition G.2, the system (G.20) is the same as

the system

λ =
1
τD

∑N
i=1 βai−1

∆a

1
τD

(∑N
i=1 βai−1

∆a
)2

+
∑N

i=1

(βai−1∆a)
2

τai−1∆a

, (G.57a)

and

βan−1∆a =
τan−1∆a

δan−1 + 2λτD
1−λ

∑N
i=1 βai−1∆a

+ Ă
(
λ, τan−1∆a, βa0∆a, . . . , βan−1∆a

)
λ
, (G.57b)

where

Ă
(
λ, τan−1∆a, βa0∆a, . . . , βan−1∆a

)
= δan−1

(
2βan−1∆a+

τan−1∆a

τD

N∑
i=1

βai−1
∆a

)

+
τan−1∆a− δan−1λ

(
βai−1

∆a
)2 τD

τan−1∆a

1− λ
∑N

i=1 βai−1
∆a

. (G.57c)

Let τ̆n = τan−1∆a and β̆n = βan−1∆a for each n. This change of variables does not affect sys-
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tem (G.57). The market impact, in particular, remains the same. To prove that everything

else in the economy remains the same it suffices to show that β̆n is the demand coefficient

and τ̆n is the precision in the representation with signal (G.14). Writing out the demand

function in the two representations we get

βan−1

(
D∆a+

1
√
τan−1

∆Ban

)
= Xan−1 = β̆n (D + ε̆n) ⇔

βan−1∆a

(
D +

∆Ban

∆a
√
τan−1

)
= Xan−1 = β̆n (D + ε̆n) . (G.58)

By matching coefficients of the dividend and noise we get that β̆n is the demand coefficient,

and that

Var

(
∆Ban

∆a
√
τan−1

)
=
(
τan−1∆a

)−1
= Var (ε̆n) , (G.59)

which shows that τ̆n = τan−1∆a.
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