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ABSTRACT 

We characterize equilibrium leverage dynamics in a tradeoff model when the firm can continuously adjust 

leverage and cannot commit to a policy ex ante. While the leverage ratchet effect leads shareholders to issue 

debt gradually over time, asset growth and debt maturity cause leverage to mean revert slowly towards a 

target. Investors anticipate future debt issuance and raise credit spreads, fully offsetting the tax benefits 

from new debt. Shareholders are consequently indifferent toward the debt maturity structure, even though 

their choice may have a significant effect on credit spreads, leverage levels, the speed of adjustment, future 

investment and growth.  
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Understanding the determinants of a firm’s capital structure and how its leverage is likely to evolve 

over time is one of the central questions in corporate finance. Leverage and its expected dynamics 

are crucial to valuing the firm, assessing its credit risk, and pricing its financial claims.  Forecasting 

the optimal response of leverage to shocks, such as the 2007–2008 financial crisis, is necessary to 

anticipate the likely consequences of a crisis and its aftermath, and to evaluate alternative policy 

responses. 

 Despite its importance, a fully satisfactory theory of leverage dynamics has yet to be found.  

Many models assume the absolute level of debt is fixed; for example, in the traditional framework 

of Merton (1974), as well as Leland (1994, 1998), the firm is committed not to change its 

outstanding debt before maturity, irrespective of the evolution of the firm’s fundamentals. As a 

result, the dynamics of firm leverage is driven solely by the stochastic growth in value of the firm’s 

assets-in-place. More recent work that allows the firm to restructure its debt over time typically 

assumes that all existing debt must be retired (at a cost) before any new debt can be put in place.1 

These assumptions are neither innocuous, as the constraints on leverage generally bind in the 

model, nor are they consistent with practice, where firms often borrow incrementally over time.  

See, for example, Figure 1, which shows how debt levels for American and United Airlines 

changed over time in response to fluctuations in their enterprise values (market value of equity 

plus book value of debt). 

 In this paper, we study a model in which equity holders lack the ability to commit to their 

future leverage choices and can issue or buy back debt at the prevailing market price at any time.  

Aside from corporate taxes and default costs, there are no other frictions or transactions costs in 

our model.  Because debt can be freely adjusted over time, the firm could increase debt to exploit 

tax shields when cash flows are high and also reduce debt to avoid distress costs when cash flows 

fall, thereby avoiding the standard leverage “tradeoff.” But although such an ideal policy is 

feasible, it is not time consistent. As emphasized by Admati et al. (2018), the desire of equity 

holders to maximize the current share price leads to a “leverage ratchet effect” in which equity 

holders are never willing to voluntarily reduce leverage, but always have an incentive to borrow 

more—even if current leverage is excessive and even if new debt must be junior to existing claims.  

                                                           
1  See e.g., Fischer, Heinkel, Zechner (1989), Titman and Tsyplakov (2007), Goldstein, Ju, and Leland (2001), 

Strebulaev (2007), and Dangl and Zechner (2016).    
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In this paper we solve for the equilibrium leverage dynamics that emerge when the firm 

cannot commit to a future leverage policy.  We show that as a result of the leverage ratchet effect: 

(i) the firm issues debt smoothly, and leverage adjust slowly to changes in firm profitability; (ii) 

although shareholders never repurchase debt, leverage mean-reverts to a target due to asset growth 

and debt maturity; (iii) even though the interest tax shield motivates debt issuance, in equilibrium 

credit spreads rise to the point that the firm is unable to capture these tax shields; (iv) default costs 

and investment distortions fully offset the benefits of leverage, so that the firm is indifferent to its 

future debt maturity structure. 

Solving dynamic leverage models is complicated by the interdependence between current 

debt prices and the firm’s future leverage and default decisions. We develop a methodology to 

characterize the no-commitment equilibrium in a general setting that allows for finite maturity 

debt, asset growth, investment, and both Brownian and Poisson shocks. In equilibrium, equity 

holders issue debt gradually over time, at a rate which depends on the current profitability of the 

firm.  Equity holders find it optimal to issue new debt to exploit tax benefits even after the firm’s 

leverage passes above the “optimal” level with commitment, leading to excessive inefficient 

Figure 1. Time-series of outstanding book debt and enterprise value for American and United Airlines, for 

fifteen years before their bankruptcies in 2011 and 2002, respectively. Book debt is calculated as the sum of “long-

term debt” and “debt in current liabilities,” and market equity is calculated as the product of “stock price” and 

“common shares outstanding.” Data source: WRDS.    
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default.2  Firms never actively reduce leverage, but do allow it to decline passively via debt 

maturity or asset growth.  Creditors anticipate the devaluation associated with future over-

borrowing and consequently lower the price they are willing to pay for the debt today.  Higher 

credit spreads offset the tax advantage of leverage, which slows the rate of issuance to the point 

that, on the margin, equity holders are indifferent to leverage increases. We show that this effect 

is so strong that equity holders obtain the same value in equilibrium as if they committed not to 

issue any debt in the future. In other words, the extra tax shield benefits that tempt shareholders 

are exactly dissipated by the bankruptcy costs caused by excessive leverage.  

The result that all gains from trade are dissipated in equilibrium is closely related to the 

Coase’s (1972) conjecture regarding durable goods monopoly.  In this context, the firm is a 

monopoly supplier of its own debt, and creditors’ valuation of the debt depends on the total 

quantity supplied.  In our model, as Coase conjectured, the equilibrium debt price falls to the 

marginal (after-tax) cost to shareholders, and shareholders are thus unable to capture the gains 

from trade.3 

We apply our methodology to the special case of geometric Brownian motion (as in Leland 

1994) and solve in closed form for the debt price and issuance policy in the unique Markov perfect 

equilibrium (MPE). Debt accumulates over time at a rate that increases with profitability, but if 

profits decline sufficiently, new issuance drops below the rate of debt maturity and hence the debt 

level falls. Leverage is thus path dependent, and the firm’s outstanding debt at any point of time 

can be explicitly expressed in terms of a weighted-average of the firm’s past earnings. The firm’s 

interest coverage ratio mean reverts gradually, with the speed of adjustment decreasing with debt 

maturity and asset volatility. Our model thus provides a theoretical foundation for partial 

adjustment models (e.g., Jalilvand and Harris 1984; Leary and Roberts 2005; and more recently, 

Frank and Shen 2019) that are widely used in the empirical capital structure literature. Importantly, 

these dynamics differ from the abrupt adjustment to a “target” leverage level implied by models 

                                                           
2 This result holds even when there is no dilution motive to issue debt (either because there is zero recovery value in 

bankruptcy, or debt is prioritized so that newly issued debt must be junior to all existing debt). However, even without 

a direct dilution effect, there is an indirect “dilution” or devaluation effect associated with new debt issuance, as 

additional leverage raises the probability of default for all debt holders. 
3 Though note that, unlike in Coase’s setting, marginal cost (which is the equilibrium debt price) is endogenous in our 

model, and investors share a common valuation for the asset. Similar results can be found in DeMarzo and Uroševic 

(2006) in the context of trading by a large shareholder, and Daley and Green (2018) in which a monopolistic buyer 

makes frequent offers to a privately informed seller. 
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with an exogenous adjustment cost (for instance, Fischer, Heinkel, Zechner 1989; Goldstein, Ju, 

Leland 2001; and Strebulaev 2007). 

We compare our model without commitment to the benchmark in which shareholders 

commit to never issue debt in the future. We show that equity prices coincide in both settings, 

whereas bond investors’ anticipation of future borrowing causes credit spreads to be much larger 

in the setting without commitment.  For a firm that is initially unlevered, we show that this high 

cost of debt might dissuade it from borrowing altogether, and thus help explain the zero-leverage 

puzzle (Strebulaev and Yang 2013). 

We also study the optimal debt maturity structure. Our model without commitment 

provides a fresh perspective on this question. We show that at every point in time, shareholders 

are indifferent to the maturity choice for future debt issuance. Short maturity debt leads to higher 

leverage on average, as shareholders issue debt more aggressively knowing leverage can be 

reversed more quickly when the short-term debt matures. Nevertheless, the gain from additional 

tax shields is offset by increased default costs. Thus, the agency costs associated with the leverage 

ratchet effect are bounded away from zero even as debt maturity becomes arbitrarily short.   

Although firms are indifferent to the debt maturity choice, alternative maturity structures 

produce very different leverage dynamics. Thus, small perturbations or frictions that lead firms to 

select a particular initial maturity structure can lead over time to dramatically different leverage 

outcomes.4 In addition, because leverage mean reverts slowly, even firms with the same debt 

maturity may have persistent differences in leverage resulting from past shocks. These results 

provide a potential explanation for findings such as those by Lemmon, Roberts, and Zender (2008) 

that much of the cross-sectional variation in firms’ capital structure is persistent and largely 

unexplained by observable firm characteristics.  

Finally, we consider the interaction of the firm’s leverage and investment policies.  When 

the firm cannot commit to its investment policy, leverage distorts investment due to debt overhang.  

                                                           
4 The choice of debt maturity structure does affect the value of equity if the firm is forced to borrow a fixed amount 

up front. Indeed, this question has been studied in the Leland (1998) setting, and often long-term debt, which 

minimizes rollover risk, is preferred (He and Xiong 2012; Diamond and He 2014). In contrast, we show that without 

commitment firms prefer short-term debt for any positive targeted debt financing. Short-term debt has lower price 

impact because it allows the firm to quickly reduce leverage through maturity. (Another possible force favoring short-

term debt is investors’ liquidity preference, which is modeled in He and Milbradt (2014).) On the other hand, if the 

firm is not forced to issue debt initially, we show that long-term debt is preferred from a social perspective because 

the firm will accumulate its debt more slowly, reducing the expected deadweight losses from default.  
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The firm tends to issue new debt more slowly, and targets a lower level of leverage in the presence 

of debt overhang. Near default, however, shareholders raise current cash flows by cutting 

investment inefficiently and issuing debt more aggressively than if investment were fixed. In 

equilibrium, under-investment costs substitute for default costs, again to the point that expected 

future tax benefits are exactly offset. As a result, the ability to commit to an investment policy 

does not improve the ex ante value of the firm, in contrast to standard tradeoff models. 5  

Furthermore, tax policies or other subsidies designed to promote investment by lowering the cost 

of debt may instead reduce investment in equilibrium (see also Crouzet and Tourre (2020)).      

Our paper is most closely related to Admati et al. (2018).  They demonstrate the leverage 

ratchet effect in the context of a one-time leverage adjustment and then numerically evaluate a 

dynamic equilibrium in a stationary model with regime shocks and perpetual debt. Our paper 

studies leverage dynamics in a richer continuous-time framework that allows for both asset growth 

and debt maturity, as well as both Brownian and Poisson shocks. As one of the main contributions 

of the paper, we develop a general methodology to solve for an important class of equilibria. For 

the standard workhorse model of Leland (1994), we not only solve for the equilibrium in closed 

form that allows for deeper analysis, but also establish the uniqueness of this equilibrium. 

In Dangl and Zechner (2016), the firm can choose how much maturing debt to roll over, 

but covenants prevent the firm from increasing the total face value of debt outstanding without 

first repurchasing all existing debt (at par plus a call premium and a proportional transaction cost).  

Rolling over debt not only maintains the firm’s tax shields, as in our model, but also directly dilutes 

current creditors given their setting with a strictly positive recovery rate and pari passu debt (which 

we analyze in Section II.D). They show that when debt maturity is long, equity holders will roll 

over existing debt fully as it comes due, except for when leverage is so low that recapitalization to 

a higher face value of debt is imminent (in which case it is not worthwhile to issue debt that is 

likely to be replaced soon, at a cost).  If debt maturity is sufficiently short, however, then when 

facing high leverage, shareholders may roll over only a portion of the maturing debt so that the 

total face value of debt gradually declines. This behavior abruptly reverses when the firm 

approaches default as shareholders maximize dilution (and minimize equity injections) by again 

                                                           
5 In other words, solving the commitment problem regarding the firm’s leverage policy is necessary for the firm to 

benefit from being able to commit to an investment policy. 



6 

 

rolling over debt fully.6  Importantly, they show that firm value is not monotonic in debt maturity; 

depending on the parameters, an interior optimal maturity may exist that trades off the transactions 

costs of debt rollover (which favors long maturities) with the benefit from debt reductions given 

high leverage (which favors short maturities).7 As in our model, the choice of debt maturity 

becomes an important commitment device that allows for future debt reductions in the face of 

negative shocks. 

Benzoni et al. (2020) study the role of commitment when the firm faces a fixed transaction 

cost when issuing new debt. They consider the class of “s-S” capital restructuring policies as in 

Goldstein, Ju, and Leland (2001) and compare outcomes when the firm can commit to the 

restructuring boundary to those when it cannot. Naturally, commitment leads to a strictly higher 

equity value. They also argue that when fixed costs are small and the debt maturity is sufficiently 

short, equity values without commitment to the restructuring boundaries are close to the outcome 

with commitment.        

In the literature of endogenous debt dynamics in the presence of real investment 

opportunities, Hennessy and Whited (2005) study one-period short-term debt and highlight the 

importance of a dynamic framework in testing tradeoff theories empirically. Abel (2016) considers 

a continuous-time model with investment in which firms adjust leverage by issuing debt with 

instantaneous maturity.  Abel assumes i.i.d. regime shocks to profitability and shows that in 

response to a shock, shareholders never reduce the amount of debt and only firms that are 

borrowing constrained (i.e., firms that have borrowed an amount equal to 100% of firm value) 

choose to increase debt.   

Our results in this paper highlight the fact that some form of commitment is necessary to 

capture the potential gains from leverage. DeMarzo (2019) extends our model to incorporate 

collateral and related commitment mechanisms. Collateral is valuable because it resolves the non-

exclusivity problem underlying the leverage ratchet effect, making the value of secured debt 

insensitive to total leverage.  Collateral lowers the cost of capital, and the optimal leverage jumps 

                                                           
6 In the extension of our model in which we allow for direct dilution, because there is no constraint on the rate of 

issuance, we show that the debt issuance rate increases only at the moment of default. 
7 The same tradeoff would apply in our model if we were to adopt the same assumption on transaction costs. A similar 

tradeoff exists in Brunnermeier and Yogo (2009), who stress the advantage of short-term debt in providing the firm 

with flexibility to adjust debt quickly in the face of shocks to firm value, while long-term debt is more effective at 

reducing costs from rollover risk. 
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discretely whenever new collateralizable assets are acquired. The model thus reconciles the 

empirical evidence regarding the persistence and slow adjustment of capital structure with the 

strong predictive power of collateral. DeMarzo (2019) also discusses the role and importance of 

other forms of commitment mechanisms, and the resulting ex-post rigidity of capital structure, to 

enhance firm value.  

Our paper proceeds as follows.  In Section I we introduce a general continuous-time model 

of the firm and develop our methodology for solving for an equilibrium in which shareholders 

adjust debt continuously.  Section II applies our general results to the special case when cash flows 

are lognormal with possible jumps and derives a closed-form solution for security prices and debt 

issuance. We also consider the case of positive recovery and alternative default regimes with pari 

passu debt.  Section III analyzes debt dynamics and shows that the firm gradually adjusts leverage 

towards a target level.  We then evaluate the firm’s choice of debt maturity and on the share price 

and social welfare, and also relate our results to empirical puzzles regarding low leverage firms.  

Section IV extends the model to include agency costs of investment, and Section V concludes. 

I. A General Model 

We consider a firm whose cash flows follow a general jump-diffusion process that encompasses 

typical settings used in the literature, and include both corporate taxes and bankruptcy costs as in 

a standard tradeoff model.  We depart from the existing literature by assuming that the firm cannot 

commit to its future capital structure choices, but instead is free to issue or repurchase debt at any 

time to maximize the current share value. We analyze the equilibrium no-commitment leverage 

policy in this setting. 

 In general, the optimal leverage policy depends on equilibrium debt prices, but debt prices 

depend on the firm’s anticipated future leverage choices, which determine the likelihood of default. 

Although this interdependence complicates the determination of an equilibrium, we show 

conditions for which we can construct and characterize the equilibrium leverage policy directly, 

and demonstrate that the rate of debt issuance is determined by the ratio of the tax benefits from 

new debt to its price sensitivity to new issues.  Surprisingly, despite the issuance of new debt to 

exploit available tax shields, we show that shareholders do not benefit from this activity: the 

equilibrium share price is the same as if the firm committed not to issue any new debt in the future. 
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A. The Firm and Its Securities 

All agents are risk neutral with an exogenous discount rate of 0r  .8 The firm’s assets-in-place 

generate operating cash flow (EBIT) at the rate of tY , which evolves according to 

        t t t t t tdY Y dt Y dZ Y dN     , (1) 

where the drift  tY  and the volatility  tY  are general functions that satisfy standard regularity 

conditions; tdZ  is the increment of a standard Brownian motion; tdN  is an independent Poisson 

increment with intensity   0tY  ; and  tY   is the jump size given the Poisson event.9     

Denote by tF  the aggregate face value of outstanding debt. The debt has a constant coupon 

rate of 0c  , so that over  ,t t dt  debt holders receive coupon payments of tcF dt .10 The firm 

pays corporate taxes equal to ( )t tY cF dt  , where     is a strictly increasing function of the 

firm’s profit net of interest.11  Hence the net after-tax cost to the firm of the marginal coupon 

payment is only 1 1  (with “prime” indicating derivative), reflecting the debt tax shield 

subsidy.    

For simplicity, we assume that debt takes the form of exponentially maturing coupon bonds 

with a constant amortization rate 0  . More specifically, at each instant, there are tF dt  units of 

required principal repayments from maturing bonds, corresponding to an average bond maturity 

of 1 .  Debt retirement in this fashion is similar to a sinking fund that continuously buys back debt 

at par. Thus, combining interest and principal, equity holders are required to pay debt holders a 

total flow payment of   tc F dt   in order to avoid default.  

                                                           
8 Alternatively, we can interpret the model as written under a fixed risk-neutral measure that is independent of the 

firm’s capital structure decision. 
9 We have simplified the notation by assuming the jump size  tY conditional on cash flow

tY  is deterministic. We 

can easily generalize the model to allow a random jump size  tY , as long as the law of  tY depends on 
tY  only.   

10 The coupon rate c is exogenously given in our model, so newly issued debt might not be issued at par. In practice, 

there may be limits/adjustments to the tax deductibility of the coupon if it is far from the par coupon rate. For 

simplicity, we ignore the tax consequences of non-par debt issuance for this paper. 
11 Throughout, we use the terms “increasing” and “decreasing” in the weak sense, and add “strictly” as appropriate. 
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In the main analysis, we assume investors recover zero value from the assets-in-place when 

equity holders default. The key implication of this assumption, which will simplify our analysis, 

is that debt seniority becomes irrelevant. Because there are no claims to divide in default, old debt 

holders are not directly diluted by new debt holders, where “direct dilution” refers to a decrease in 

the share of any bankruptcy proceeds going to prior creditors. 

We make the zero recovery value assumption to emphasize that our results are not driven 

by the direct dilution that arises when issuing pari passu debt (see, for example, Brunnermeier and 

Oehmke 2014 and Dangl and Zechner 2016).  Instead, there is an “indirect dilution” effect in our 

model because the value of existing debt is adversely affected by the increased likelihood of default 

once new debt is issued. This indirect dilution effect is a form of debt overhang: shareholders 

exercise their default option earlier if the firm is more indebted. This effect arises even if debt is 

fully prioritized, with new debt always strictly junior to existing debt.12 Nevertheless, in Section 

II.D we will consider the case with a positive recovery value in which the firm can issue new pari 

passu debt.   

Equity holders control the outstanding debt tF  through an endogenous issuance/repurchase 

policy td , where t  represents the cumulative debt issuance over time (which is a right-

continuous-left-limit process and measurable with respect to the filtration generated by 

 : 0sY s t  ).13 Given our debt maturity assumption, the evolution of the outstanding face value 

of debt tF  is given by 

   tt tdF d F dt   . (2) 

                                                           
12 Indeed, our qualitative results still hold with a positive recovery rate when new debt must be junior to existing 

claims. Extending the model in this way adds significant complexity, however, as debt securities issued at different 

times have distinct prices. In contrast, given zero recovery or pari passu debt, all debt is identical independent of the 

timing of issuance.  
13 To rule out Ponzi schemes in which the firm avoids default by perpetually rolling over all debt, we must impose 

some upper bound ( )
t t

F F Y  on debt, where the bound ( )
t

F Y  exceeds the pre-tax unlevered value of the firm.  This 

constraint will not bind in equilibrium and plays no role in the analysis.  
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Thus, the face value of debt will grow if the rate of issuance more than offsets the contractual 

retirement rate. To highlight the economic forces at play and in contrast to much of the literature, 

we assume zero transaction costs in issuing or repurchasing debt.14         

Given the equity holders’ expected issuance/repurchase policy, debt holders price the 

newly issued or repurchased debt in a competitive market. Denote by tp  the endogenous debt 

price per unit of promised face value. The debt price tp  reflect the information available up to 

date t , including the current debt issuance td , and hence incorporates the price impact of new 

borrowing. Importantly, in equilibrium, tp  also reflects creditors’ expectations regarding future 

leverage decisions. Then over the time interval dt , the net cash flows to equity holders are  

   
operating cash flow debt issuance/repurchasetax payment debt interest & principal

( )t t tt ttY c F dt p dY cF

 
     



  
 


. (3) 

The firm continues to operate until the operating cash flow tY  drops low enough, relative 

to the outstanding debt level tF , that equity holders find it optimal to default on their contractual 

obligation to debtholders. As in Leland (1994, 1998), shareholders cannot commit to a certain 

default policy, but instead default strategically. Again, for now we assume all investors receive 

zero cash flows post-default and consider alternative default payoffs in Section II.D. 

B. Smooth Equilibrium 

We focus on Markov perfect equilibria (MPE) in which the two payoff-relevant state variables are 

the firm’s exogenous operating cash flow, tY , and the outstanding aggregate debt face value, tF , 

which is an endogenous state variable. We will analyze the value function  ,t tV Y F  for equity and 

the debt price  ,t tp Y F . Denote by b  the equilibrium default time; that is, the first time that the 

state  ,t tY F  falls into the endogenous default region. We assume, for now, that all investors 

receive a payoff of zero if the firm defaults. 

                                                           
14 It is common in the dynamic capital structure literature, such as Fischer, Heinkel, and Zechner (1989) and Leland, 

Goldstein, and Ju (2000), to assume that firms must buy back all of their existing debt in order to issue new debt, and 

that there is a positive adjustment cost associated with this transaction. This behavior does not correspond to general 

practice, and we eliminate this constraint to highlight equity holders’ intrinsic incentives to adjust leverage.  
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 We begin by analyzing some general properties that must hold for any equilibrium.  In 

particular, we show that shareholders never choose to repurchase debt, even if leverage is excessive 

from the perspective of total firm value. This result is a consequence of the leverage ratchet effect 

(Admati et al. 2018).  In addition, the debt price is decreasing in the amount of debt outstanding, 

so that debt issuance negatively impacts the debt price. 

PROPOSITION I (LEVERAGE RATCHET AND PRICE IMPACT). In any MPE in ( , )Y F , the 

firm never repurchases debt, and thus the issuance policy t  is a monotonically increasing 

process. The equity value function ( , )V Y F  is convex and decreasing in F , with the debt 

price as a subgradient: 

   ( , ) ( , )Fp Y F V Y F . 

Hence, the debt price is decreasing in F .    

Proof:  To see the convexity of ( , )V Y F  in F , note that given any debt level F , equity holders 

have the option to adjust debt to F  by issuing F F   (buying back if this quantity is negative) at 

the price of  ,p Y F .  Therefore, the value of the firm given F  must be at least as high as the 

value that equity would obtain by changing the debt level to F : 

   ( , ) ( , ) ( , )( ) ( , ) ( , )( )V Y F V Y F p Y F F F V Y F p Y F F F        , (4) 

establishing that the (negative) debt price is a subgradient of V . As a result, V  is convex in F  

and debt price is decreasing in F . Because 0p  , V  is also decreasing in F . 

To see why shareholders would not benefit from a debt buyback, consider postponing a 

planned buyback by dt . Shareholders would save cost of the buyback (the debt price) today, but 

then continue to pay the after-tax coupons and principal until they repurchase the debt at time 

t dt .  Because the debt price today is equal to the present value of the pre-tax coupons, principal 

payments, and future debt price, shareholders profit from the delay by the amount of the tax shield. 

In addition, if they delay repurchasing the debt, they also maintain the option to default rather than 

repurchase.  See the appendix for a formal proof.   

 Note that the negative impact of debt issuance on the debt price (i.e., the debt is traded at 

( , )p Y F  with F being the post-trade debt obligation) will deter shareholders from issuing a large 
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amount of debt at once.  Indeed, if the value function is strictly convex (hence the debt price is 

strictly decreasing) in F , it would be optimal for the firm to adjust debt in a continuous manner. 

LEMMA (CONTINUOUS ADJUSTMENT). If the equity value function ( , )V Y F  is strictly 

convex in F , then the debt price is strictly decreasing in F  and the optimal issuance policy 

t  is continuous in t .  

Proof: With strict concavity, the inequality in (4) becomes strict.  Hence, any discrete issuance 

with 0F F    would be suboptimal for shareholders.   

This result motivates us to consider a special class of equilibria in which equity holders 

find it optimal to adjust the firm’s outstanding debt smoothly, with t td G dt  , where tG  specifies 

the rate of issuance. From now on, we call this equilibrium a “smooth” equilibrium, and call tG  

the equity holders’ issuance policy (which must be nonnegative by PROPOSITION I).15  

DEFINITION (SMOOTH EQUILIBRIUM). A smooth equilibrium is a Markov perfect 

equilibrium in which the issuance policy is given by t td G dt  for some adapted process 

tG .  

In the remainder of this section, we develop a methodology to construct and characterize 

smooth equilibria.  Later, in Section II, we consider a specific setting and rule out the existence of 

non-smooth equilibria. 

C. Security Valuation 

In a smooth equilibrium, given the debt price ( , )p Y F , the firm’s issuance policy G  and default 

time b  maximize the market value of equity: 

 
   

,
( , ) max ( ) , .

b

b r s t

t s s
tG

s s s s t tV Y F e Y Y cF c F G p ds Y Y F F
  



              
   (5) 

Because debt holders receive both coupon and principal payments until the firm defaults, and the 

firm recovery upon default is assumed to be zero, the equilibrium market price of debt must satisfy  

                                                           
15 Technically, there is also the possibility that the issuance policy might include a singular component, so that the 

sample path of   is continuous, but not absolutely continuous.  We rule out such policies in our uniqueness proof in 

Section II.  
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    ( , ) ,

b r s t

t t t
t

p Y F e c ds Y Y F F
         

   , (6) 

where the expectation in (6) is under the evolution of F  implied by G . 

C.1 An Optimality Condition  

Recall that we are interested in an equilibrium when there is no commitment by equity holders to 

future leverage policies. Thus, at any point in time, the issuance policy sG  for s t  has to be 

optimal in solving the equity holders’ instantaneous maximization problem at time s , given 

equity’s value function and equilibrium debt prices. 

In this section we consider the necessary and sufficient conditions for the optimality of the 

debt issuance policy tG . The Hamilton-Jacobi-Bellman (HJB) equation for equity holders is 

   

       

     2

after-tax cash flowrequired return coupon & principal payment new debt issuance evolution of 

, max ( ) , ( ) ,

1
( ) , ( ) ,

2

F
G

Y YY

dF

rV Y F Y cF c F Gp Y F G F V Y F

Y V Y F Y V Y F Y

Y         


  

 
 

 

      

evolution of 

.

dY

V Y Y V Y    

 (7) 

In the first line, the objective is linear in G with a coefficient of    , ,Fp Y F V Y F , which 

represents the (endogenous) marginal benefit of the revenue from a debt sale net of the marginal 

cost of the future debt burden on shareholders. If shareholders find it optimal to adjust debt 

smoothly, then it must be that this coefficient equals zero, or equivalently,16 

      , ,F Fp Y F V Y  . (8) 

C.2 No Trade Valuation 

The first-order condition (8) is a necessary condition for a smooth equilibrium. While 

straightforward, it has deep implications for the equilibrium value of equity in any smooth 

                                                           
16 While (7) implies (8) in the non-default region, it is also true in default, as for a defaulted firm the debt price 0p 

and   ( ,, 0)FV Y YV FF   . (We extend the model to the case with positive recovery in Section II.D.) Also, the debt 

price for 0F  is relevant only if the firm were to buy back all of its debt (which is off-equilibrium according to 

PROPOSITION I), and hence setting ( ,0) ( ,0)Fp Y V Y   is sufficient for optimality. 
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equilibrium. Plugging condition (8) into the equity HJB equation (7), we have the following 

revised HJB equation for equity: 

  
       

        21
2

.

, , ,( ) ( )

( ) , ,,

Y F

YY

r Y FV Y Y cF c F Y V FV

Y Y V Y Y

Y F Y F

V Y F F V Y F

      

      
 (9) 

This equation says that in the no-commitment equilibrium, the equity value can be solved as if 

there is no debt adjustment 0G   (except for the natural retirement at rate  ).  

Note that when 0G  , the value of equity is independent of the debt price, and thus is the 

solution to a standard optimal stopping problem in which tY  follows (1) and .t tdF F dt    These 

problems are well studied in the literature, as are conditions ensuring the uniqueness and 

smoothness of the solution.17  We denote the corresponding no trade equity value function by 

0 ( , )V Y F ; here, “no trade” simply means shareholders do not participate in the debt market. In 

other words, 0V  satisfies (9) and is the solution to (5) when G  is constrained to be zero. The 

preceding argument then implies that the equity value must equal this no trade value in any smooth 

equilibrium:   

PROPOSITION II (NO TRADE EQUITY VALUATION).  In any smooth equilibrium, the value 

of equity is equal to the no trade valuation: 0 )( ,, ()V F V YY F . 

Proof: Because equity holders can always choose not to trade, 0( , ) ( , )V Y F V Y F  for any 

equilibrium.  Next, given any smooth equilibrium with value function V , (7) and (8) imply (9), 

and as a result setting the issuance policy to 0G   does not change the equity value V . Hence, 

the value V under this equilibrium could be obtained with no trade. But because 0V  is the optimal 

value with no trade (with a potentially superior default policy), 0( , ) ( , )V Y F V Y F . Combining 

both, we have
0( , ) ( , )V Y F V Y F .  

Intuitively, because equity holders gain no marginal surplus from adjusting the debt level, 

their equilibrium payoff must be the same as if they were to never issue/repurchase any debt.  This 

result, while perhaps striking at first, is analogous to the Coase (1972) conjecture for durable goods 

                                                           
17 See, for example, chapter 10 of Oksendal (2013), which analyzes a case with a finite-dimensional diffusion. 

Recently, Ishikawa (2011) offers an analysis covering the case of jump-diffusion processes. We assume that the 

appropriate technical conditions hold throughout the paper. 
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monopoly—the firm is a monopolist issuer of its own debt. When a monopolist is unable to commit 

to restricting its future sales, it cannot resist the temptation to sell aggressively, so much so that 

the endogenous price falls to marginal cost and any surplus from trading gets dissipated in 

equilibrium.18  

C.3 Optimal Debt Issuance    

PROPOSITION II implies that if a smooth equilibrium exists, we may compute the equity value 

function as if there were no further trade and the firm gradually retires its existing debt. Given the 

equity value V , we can then invoke the first-order condition in (8) to obtain the equilibrium debt 

price    , ,Fp Y F V Y F  .   

The question remains, however, whether this debt price is consistent with a smooth 

issuance policy G  that is also optimal for shareholders.  It is straightforward to show that 0G   

cannot be an equilibrium, as in that case the debt price would exceed its marginal cost to 

shareholders due to the interest tax shield, and so shareholders would find 0G   optimal.19  But 

as the rate of issuance increases, the likelihood of default will increase and the price of debt will 

fall to the point that (8) holds.   

 To determine the equilibrium debt issuance policy, which we denote by *G , we see from 

(6) the debt price must satisfy the standard HJB equation,  

 

      

          2

*

21

coupon
required return evolution of debt debt retirement

evolution of cash flow 

(

, 1 ,

,

)

() ,) ,

( ,

,

F

Y YY

dF

dY

F pr

Y

p Y F c p Y F

Y

G Y F

Y F Y p Y FY p Y p F p Y F

   



  

  



     .
 (10) 

 

Next, starting with the HJB equation (9) for  ,V Y F , if we differentiate by F and use the 

optimality condition Fp V  , we obtain 

                                                           
18 A closely related result appears in DeMarzo and Uroševic (2006) in a model of trade by a large shareholder trading 

off diversification benefits and price impact due to reduced incentives. In equilibrium, share prices are identical to 

those implied by a model with no trade. Similarly, the monopolist buyer in Daley and Green (2018) who cannot 

commit to their future strategy gains nothing from their ability to screen buyers over time. 
19 With no future debt issuance, the marginal cost to shareholders of an extra $1 of debt is the present value of the 

after-tax debt payments until default (noting that the effect of any change in the timing of default is second order 

thanks to the envelope theorem), whereas the debt price is the present value of the pre-tax payments.  
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       

          21
2

( )

( ) ( ) , , .

,, ,

, ,

F

Y YY

rp Y cF c c p Fp

Y p

Y F Y F Y F

Y F p Y FY Y p Y Y F p Y F

           

       

 (11) 

Although equation (11) is written in terms of the debt price p , we emphasize that it follows 

mechanically from the equity valuation equation (9), together with the first-order condition (8) for 

the optimal issuance policy.  Finally, adding (11) to (10), we obtain the following result on how to 

construct a smooth equilibrium and characterize the equilibrium debt issuance policy: 

PROPOSITION III (EQUILIBRIUM CONSTRUCTION AND OPTIMAL ISSUANCE).  Suppose the 

no trade value 0 ( , )V Y F  is twice-continuously differentiable and strictly convex in F

(outside the default region). 20  Then 0V V  is the unique smooth equilibrium value 

function, with debt issuance policy  

    
   

* ( ) ( )
,

, ,F FF

Y cF c Y cF c
G Y F

Y Y Fp F V

   






 
 . (12) 

Under this policy, the debt price given by (6) satisfies Fp V  . 

Proof:  Given a smooth policy, (7) and (8) imply (11), which combined with (12) implies that FV  

satisfies (10). Because further 0Fp V    at the default boundary, we have that Fp V   satisfies 

(6). Finally, the global optimality of the issuance policy follows from Fp V   and the strict 

concavity of V .   

While this result provides sufficient conditions for the existence of a smooth equilibrium 

and provides its characterization, it does not rule out non-smooth equilibria.  We shall give 

conditions for the smooth equilibrium to be the unique MPE in Section II. 

We can interpret the equilibrium debt issuance policy (12) as follows.  The rate of issuance 

of debt is such that the rate of devaluation of the debt induced by new issuances just offsets the 

marginal tax benefit associated with the coupon payments: 

                                                           
20 We note that a simple sufficient condition for convexity in F  is a constant marginal tax rate (for a more general 

proof including investment see the proof of PROPOSITION XI. For the “smoothness” condition of the no-trade value 

function
0
( , )V Y F , which is typically twice-continuously differentiable in the interior (and continuously differentiable 

on the boundary), see discussion in footnote 17. 
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        * , ,FG p Y cF cY F Y F     .  (13) 

Note that the debt issuance is strictly positive given the strictly positive marginal tax rate. Again, 

this result is consistent with the leverage ratchet effect of Admati et al. (2018)—even if the firm’s 

current leverage is excessive, equity holders never actively reduce debt but always have an 

incentive to increase debt when it provides a marginal tax benefit. 

C.4 Discrete Optimization    

In equilibrium, because Fp V  , the value of equity is the same for any smooth issuance policy 

G . The equilibrium policy *G  is then uniquely determined so that the resulting debt price makes 

shareholders indifferent.  In a sense, our characterization of *G  is analogous to that of a mixed 

strategy equilibrium in which each player is indifferent to her choice of action, yet equilibrium 

strategies are uniquely determined to maintain that indifference. 

Shareholder indifference regarding the issuance policy is, however, an artifact of the 

continuous-time limit.  If we were to compute the equilibrium as the limit of a discrete-time model, 

the optimal policy *G  would arise as the result of a strict optimization by shareholders. To see this 

result heuristically, suppose that the firm issues debt   which is fixed over the next dt  instant, 

and let p  and V  be the end-of-period debt price and equity value functions, respectively. The 

firm would then pay additional interest of cdt , and thus its earnings would decline by 

  1 Y cF cdt     on an after-tax basis.21  Because the bonds trade for a cum-coupon price of 

( , )cdt p Y F   , shareholders would choose   to solve:22 

       
debt proceedsafter-tax interest payment

max 1 ( , ) ( , ) .Y cF cdt cdt p Y F V Y F           (14) 

This maximization has the first-order condition 

                                                           
21 Here we are ignoring terms of order dt2 or higher, which would arise if the marginal tax rate is not locally constant.  
22 Recall that p is the end-of-period bond price. If sold earlier it will trade for a higher price that includes the initial 

coupons. Also, we assume the new debt issuance occurs after the current period’s default decision and principal 

repayments; changing the timing would introduce terms of order dt2 without altering the conclusion. 
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     

zero by equilibrium 
condition (8)

F

F F

Y cF cdt p V Y cF c
dt

p p

     
  

 
, (15) 

which exactly coincides with (12). Hence, we can interpret *G  as the strictly optimal issuance rate 

when the firm has “infinitesimal” commitment power over  ,t t dt   in a discrete-time setting.23  

C.5 Summary  

In sum, for the general model without commitment in which equity holders are free to issue or 

repurchase any amount of debt at the prevailing market price, one can solve for the smooth 

equilibrium as follows:24 

(i) Use (9) to solve for the equity holder’s value function   0 ( , ),V F V YY F  by setting 

0G   (i.e., as if equity holders commit not to issue any future debt). 

(ii) Set the debt price    , ,F Fp Y F V Y  . 

(iii) Check for global optimality by verifying that, up to the point of default, the debt price

 ,p Y F is strictly decreasing in F  (equivalently, V  is strictly convex in F ). 

(iv) Given  ,p Y F  solve for the equilibrium issuance policy  * ,G Y F  from (12). 

In the remainder of the paper we will use this methodology to analyze several standard settings 

and consider the consequence for debt valuation and leverage dynamics.  We will also show that 

we can rule out any non-smooth Markov equilibria.  

                                                           
23 See also DeMarzo (2019) for additional discussion of the convergence from discrete to continuous time.  Intuitively, 

if 
F

p V  is ( )o dt , then the per period gain from trade in (14) is 
2

( )o dt , and thus the gains do not aggregate in the 

limit. 
24 This general approach also applies to the case where shareholders make endogenous investment decisions along 

with leverage decisions, as shown in Section IV and explored further in the NBER working paper version 

https://www.nber.org/papers/w22799. 
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II. An Explicit Solution 

We now apply the general methodology developed in the previous section to the widely used 

framework of a lognormal cash flow process and derive an explicit solution.25  The results from 

Section I allow us to fully characterize an equilibrium in closed form and evaluate the 

corresponding leverage dynamics.  We further extend the model to allow for jumps to cash flows, 

show that the solution is qualitatively unchanged, and establish the uniqueness of the Markov 

equilibrium in this setting. Finally, Section D studies the case of a positive recovery value; 

shareholders’ ability to restructure the debt to their advantage using the threat of dilution makes 

the debt price more sensitive to new issuance, thereby reducing the equilibrium level of debt.  

A. Lognormal Cash Flows 

In the special case of lognormal operating cash flow, tY  follows a geometric Brownian motion:   

       and t t t tY Y Y Y      , with r  . (16) 

To maintain homogeneity, we also assume a constant tax rate 0   so that26 

   ( ) ( )t t t tY cF Y cF     .  (17) 

Given the scale invariance of the firm in this setting, the economically relevant measure of 

leverage is operating cash flow scaled by the outstanding face value of debt,  

   tt ty Y F , (18) 

which is proportional to the firm’s interest coverage ratio—that is, the ratio of operating income 

tY  to total interest expense tcF —a widely used measure of leverage and financial soundness. (An 

alternative, equivalent characterization is given in terms of the debt-to-income ratio 

1t t t tf F Y y  .) Because all subgames with the same initial leverage ty  are strategically 

                                                           
25 This setting is consistent with, for instance, Merton (1974), Fischer et al. (1989), Leland (1994), and Leland and 

Toft (1996), and follows the development of starting from cash flows rather than firm value as in Goldstein et al. 

(2001). 
26 As with the existing literature, our model adopts an idealized version of the tax code.  In practice, the debt tax shield 

is not strictly tied to the coupon rate, but includes an adjustment for any discount or premium at the time of issuance. 

In addition, tax shields may be deferred when earnings are negative.   
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equivalent, we will look for a MPE in this uni-dimensional state variable, and show that it must be 

a smooth equilibrium.27 That is, with this restriction, the smooth equilibrium is the unique MPE.  

 In this setting with scale-invariance, the equity value function  ,V Y F  and debt price 

 ,p Y F  satisfy  

     , ,1
Y

V Y F V F v y F
F

 
  

 
 and    , ,1

Y
p Y F p p y

F

 
   

 
. (19) 

We will solve for the (scaled) equity value function  v y  and debt price  p y  in closed form.  

Given the evolution of our state variables tY  and tF :   

    ,  and t t t t t t tdY Y dt Y dZ dF G F dt     , (20) 

the scaled cash flows evolve as 

    t
t t

t

dy
g dt dZ

y
   ,  where t t tg G F . (21) 

As (21) shows, because the debt tF  grows in a locally deterministic way, the scaled cash flow 

grows with the same volatility as the total cash flow. The growth rate, however, is increased by 

the rate of debt amortization rate,  , net of the endogenous issuance rate, t t tg G F . The higher 

the rate of debt issuance, the slower the growth rate of the scaled cash flow.   

When the scaled cash flow ty  falls below some endogenous default boundary by , equity 

holders are no longer willing to service the debt, and therefore choose to strategically default. In 

that event, we assume for now that both equity and debt holders receive zero liquidation value. 

B. Model Solution 

Recall from Section I that we can solve for the equilibrium equity value as if 0tg   and hence 

equity holders do not actively adjust the firm’s debt, even though they will do so in equilibrium.  

Using the fact that 

                                                           
27 Here we follow Maskin and Tirole (2001), who argue for defining MPE in terms of the coarsest partition such that 

equivalent subgames are “strategically equivalent.” A sufficient condition for strategic equivalence is that the payoffs 

are equivalent up to an affine transformation (as is the case here).  
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      ,YV Y F v y ,      ,FV Y F v y yv y   , and  YYFV v y , (22) 

we can rewrite (9) with lognormal cash flows in terms of scaled cash flow y  as follows: 

            2 21
( ) ' ''

2
( )r v y y c yv y y v yy c          . (23) 

Note that if the firm could not default, then the cash flows and debt payments could be 

evaluated as growing perpetuities.  Thus, the no default value of equity would be 

    

tax shieldunlevered ass  bond uet v ealu  ale v

( )
1 c

y
r r r

c
v y y

 


  
  




   
   , (24) 

where 
1

r

 
 


 is the unlevered valuation multiple for the firm, and 

(1 )c

r

   
 

 
 is the after-

tax cost to the firm of a riskless bond.28 To compute the no trade equity value, we must add to v  

the value of the default option. The next result characterizes the resulting value function, and 

establishes that this equilibrium is unique (smooth or otherwise).  

PROPOSITION IV (EQUILIBRIUM WITH LOGNORMAL CASH FLOWS).   Given lognormal 

cash flows with constant tax rate , let  

   
     

2
2 2 2

2

0.5 0.5 2
0

r       


  . (25) 

Then the unique Markov perfect equilibrium in y  is the smooth equilibrium, with the 

equity value function and optimal default boundary given by 

    

no default value default option value > 0

( )
b

b

y
v

y
y yy



    
 

  
 

 and 
1

by



 




. (26) 

Proof: Given shareholders’ option to default and receive zero, the no trade value function equals 

    ( )0

default option value

)( ) ( ) 0 (br

bv v y E e v yy
      , (27) 

                                                           
28 The value v  is a particular solution to (23) that ignores the default boundary condition. 
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where 0E  denotes the expectation given 0g  . The discount factor ( )0( ) br
h y E e

       must 

solve the homogeneous version of (23), 

    2 21
2

( ) ( ) ( ) ( ) ( )r h y yh y y yh       ,  

with boundary conditions ( ) 1bh y   and ( ) 0h   , which is solved by ( ) ( / )bh y y y  . The 

optimal default boundary by  maximizes the value of the default option and is determined by 

smooth-pasting,   0bv y  . Because v  is smooth and strictly convex (prior to default), 

PROPOSITION III implies that v  is the equity value function in the smooth equilibrium with trade. 

We prove in the appendix that there does not exist any non-smooth MPE in y .    

PROPOSITION IV establishes the unique equilibrium value function within the class of 

MPE given the firm’s interest coverage ratio (or debt-income ratio) measured by y . While it is 

possible to construct other, non-smooth equilibria if we allow the firm and investors to condition 

on non-strategically relevant variables (such as the firm’s absolute size or age), our equilibrium 

conforms with standard metrics used in practice to evaluate leverage and credit spreads.29  

Having solved for the value of equity, recall that we can determine the debt price from the 

first-order conditions (8).  Using (22) and (26), we have 

         1F

b

y
p y V yv y v y

y

  
       
 


 
  

. (28) 

Note that the debt price is strictly increasing in y , and therefore strictly decreasing in F , as 

required in PROPOSITION III, which we can now apply (12) to derive the equilibrium debt issuance 

policy. As shown in the next proposition, the rate of debt issuance  *g y is strictly positive, and 

increasing in the scaled cash flow y.30  

                                                           
29 Including additional state variables allows investors to “punish” the firm discontinuously—via a discrete jump in 

credit spreads that depends on variables other than leverage—for even minor deviations from a proposed equilibrium 

path. Restricting debt prices to be continuous in firm leverage would be an alternative means to rule out such equilibria. 

See Maskin and Tirole (2001) for a formalization of the idea that MPE embody the principle that “minor causes should 

have minor effects.”  (See also footnote 27 as well as our concluding comments.) 
30 Note that *g  represents the issuance rate as a proportion of the current debt level F ; that is, total issuance is 

 * *G Fg y . And although  *g y   as 0F  , in Section III.A we will derive the debt dynamics explicitly 
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PROPOSITION V (EQUILIBRIUM DEBT ISSUANCE).  Given lognormal cash flows with 

constant tax rate  , the no commitment debt price is given by (28), and the equilibrium 

rate of debt issuance is 

    
     

*
*

2,F b

G c c c c y
g y

F Y F yp y y vF yp y



 
      







  

    
. (29) 

Thus, with lognormal cash flows, we can fully characterize equilibrium debt dynamics and 

security pricing in closed form. The equity value equals the value without future trade, implying 

that shareholders do not benefit from their ability to issue debt in the future. Without commitment, 

creditors anticipate future debt issuance at the rate given by (29), which depresses the current debt 

price.  Indeed, as the following result demonstrates, the debt price falls by the value of the interest 

tax shield. 

PROPOSITION VI (COMMITMENT VS. NO COMMITMENT DEBT PRICE).  Let 0 ( )p y  be the 

debt price if the firm committed not to issue future debt ( 0g  ). Then 

    
0

debt tax shield value

( ) ( ) 1
b

c y
p p y

r
y

y

  
     

    



 

. (30) 

 Proof: Because the equity value is unchanged, so is the default boundary by .  Thus,  

  

default-free value expec

( )

ted loss in defau

0

l

0

t

( ) 1br

b

c c c y
p y

r r r
E e

y



 
    
     
     

  
 


 



 

 




. 

The result follows from comparison with (28).    

Based on the equilibrium values for both equity and debt, total firm value (or total 

enterprise value, TEV) can be expressed as a multiple of the firm’s cash flow (i.e., TEV to EBIT): 

   

1

(
( , ) ( , ) ( ) ( )

1) ,
b

y
V Y F p Y F F v y p y y

v
Y y y

   
     
 


 

    (31) 

                                                           

starting from 0F   and show that under the optimal policy the firm’s outstanding debt follows a continuous sample 

path with no jumps. 
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where the second equality follows from the equilibrium condition for the debt price, and the last 

equality uses the solution for by  from (26).  

The firm’s TEV multiple is strictly increasing with the scaled cash flow y , and thus, total 

firm value decreases with leverage. Although there are tax benefits associated with debt, the firm 

issues debt aggressively enough that the cost of debt rises to offset the tax benefits. In equilibrium, 

the tax benefits of leverage are fully dissipated by the increase in expected default costs due to 

continued borrowing. This result is in stark contrast to standard tradeoff theory models, such as 

Leland (1994), in which it is optimal for the firm to issue a large block of debt immediately. In 

these models, the firm is able to capture a tax benefit only because of its assumed commitment not 

to issue additional debt.   

C. Cash Flow Jumps 

In the no commitment equilibrium, the firm’s debt level evolves continuously according to (29).  

Ostensibly, the smooth issuance policy might seem to depend on the continuity of cash flows and 

asset values in the diffusion setting. In this section, however, we extend our model to allow the 

firm’s cash flows to jump discontinuously, for example in response to new product development, 

and show that our prior solution, in which shareholders issue debt smoothly, is essentially 

unchanged. 

 Consider a jump-diffusion model in which cash flows occasionally jump from tY  to tY  

for some constant 1  .31 Specifically, 

    ˆ 1t t t t t tdY Y dt Y dZ Y dN    , (32) 

where ̂ is a constant and tdN  is a Poisson process with constant intensity 0  . In this extension, 

due to upward jumps, the effective expected asset growth rate becomes  

    1ˆ    , (33)  

                                                           
31 While we focus on upward jumps with a fixed size, allowing the upward jump to be stochastic is straightforward. 

Downward jumps ( 1  ) introduce an extra complication due to jump-triggered default, in addition to diffusion-

triggered default. The analysis in Chen and Kou (2009) suggests that one can still solve for the equity valuation in 

closed form under certain conditions. In any case, our qualitative result hold as long as the equity value function 

remains convex. 
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and we continue to assume r to ensure that the unlevered firm value is bounded. Our later 

comparative static analysis in jump parameters holds the effective growth rate  fixed.   

As before, we can solve for the equity value as if shareholders commit not to issue any new 

debt. Because (32) still maintains scale invariance,    ,V Y F F v y   continues to hold, and the 

HJB equation for the equity value becomes  

                2 21
1 ' '' ( ) .

2
ˆr v y yv y y v y v y v yy c                (34) 

The last term in equation (34) captures upward jumps. The usual boundary conditions apply:  when 

y   and thus leverage is negligible, default risk disappears and    v y v y ; while at the 

point of default, we have value-matching   0bv y   and smooth-pasting  ' 0bv y  .   

Our next result shows that even with jumps, equilibrium security prices and debt dynamics 

have exactly the same functional form we derived in the diffusion-only case, and that this smooth 

equilibrium is the unique MPE in state variable y : 

PROPOSITION VII (EQUILIBRIUM WITH CASH FLOW JUMPS).  Suppose cash flows evolve 

as a lognormal diffusion with upward jumps as in (32), with ˆ ( 1)      from (33).  

Then there exists a unique MPE in y , for which the equity value,  debt price, and issuance 

policy are given by (26), (28), and (29) respectively, with   the unique positive root of 

       2 21 1
2 2

2 1( ) 0W r                      .  (35) 

Given parameters ( , , , , , )r     , the solution   is increasing in ( , , )r   and decreasing 

in ( , , )   . Holding the growth rate   fixed, the reduction in   from an increase in  

( , , )    raises the value of equity via the default option.  

Proof: See the Appendix.  

 Thus, an increase in jump frequency or size changes the value of equity similarly to an 

increase in volatility.  Surprisingly, however, even if the firm’s profitability tY  jumps discretely, 

the equilibrium debt issuance policy (29) continues to hold and debt issuance remains smooth (that 

is, of order dt ). Thus, in response to a jump in profits, leverage falls discretely before gradually 
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mean-reverting due to a higher speed of issuance. This property holds even if 2 0   so that the 

firm’s cash flows grow only with discrete jumps.32  

D. Positive Recovery with Pari Passu Debt 

Thus far we have assumed that in the event of default the liquidation value of the firm is zero.  

Under this assumption, there is no difference between junior and senior debt, which rules out any 

direct dilution motive for issuing debt. Existing creditors are nonetheless harmed by the issuance 

of new debt due to its effect on the timing of default.   

 In this section we restrict attention to pari passu debt and consider the possibility that the 

firm may have a strictly positive liquidation value in default.33 While the firm’s current creditors 

might hope to recover these liquidation proceeds, shareholders have an incentive to dilute their 

claim by issuing new debt prior to default. Indeed, given current debt F , shareholders could 

capture the fraction / ( )F   of any recovery value by issuing new debt with a face value of  

and equal priority just prior to default and then using the proceeds to pay a dividend. Thus, by 

issuing an arbitrarily large block of debt just prior to default, shareholders could obtain the entire 

liquidation value, leaving existing creditors with zero recovery if they have no ability to restrict 

issuance.34   

 In practice, creditors will naturally try to block such extreme dilution by attempting to seize 

assets, block shareholder payouts, and disrupt operations. Shareholders, in turn, may choose to 

liquidate assets to fund ongoing operations, or engage in asset substitution, in order to gamble for 

resurrection. Shareholder-creditor conflicts throughout this process are likely to sacrifice 

efficiency and reduce the ultimate recovery value that can be achieved.35  Often, the resolution of 

                                                           

32 When 
2

0 , we assume ˆ 0     so that, between jumps, cash flows decline faster than debt matures. Absent 

this assumption, the firm can sustain 100% debt financing without risking default, and the first-best can be obtained. 

See DeMarzo (2019) for further details. 
33 See DeMarzo (2019) for an analysis including senior secured debt. In that case, the firm can capture tax benefits 

associated with its collateralized debt.  
34 In other words, there would be a complete violation of absolute priority so that equity holders receive the entire 

recovery value of the firm (while debt holders recover nothing). Moreover, this dilution can be accomplished at the 

moment of default—there is no need for the firm to issue debt for the purpose of dilution beforehand.  In contrast, 

Dangl and Zechner (2016) consider pari passu debt with positive recovery, but constrain the rate of debt issuance. 

Because of this constraint, shareholders issue debt at the maximum speed possible for some period prior to default.  
35  In Section IV we consider endogenous investment/disinvestment, which introduces an additional source of 

shareholder-creditor conflict. 
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default or distress is a restructuring in which both creditors and shareholders retain some value. 

Rather than model this complexity directly, in this section we adopt a stylized reduced-form 

approach which can be calibrated to empirical data to allow for a tradeoff between creditor 

recovery and efficiency.   

Suppose there are alternative bankruptcy or restructuring regimes shareholders may adopt, 

indexed by j J , which differ in terms of creditors’ expected recovery rate, 0j  , and expected 

efficiency, measured by the fraction of the firm’s unlevered value 0j   that is preserved.  That 

is, in regime j , creditors receive a total expected payoff of 
j F  , while shareholders capture the 

expected residual value of the firm net of the creditors payoff, 
j jY F    .36  We assume that 

one possible outcome (regime 0) is that, as in Section A, shareholders and creditors refuse to agree 

until all surplus is destroyed ( 0 0 0    ).37   Alternative regimes—such as renegotiating or 

restructuring the debt prior to default, or Chapter 11 versus Chapter 7 bankruptcy proceedings—

may differ in terms of their efficiency and degree of creditor protections. More generally, the 

parameters ( , )   capture in reduced form the consequences of some subgame in which 

shareholders and creditors adapt their behavior in response to leverage (e.g., in Section III we will 

endogenize these parameters in a setting with underinvestment due to debt overhang; we could 

also consider a setting in which shareholders inefficiently continue the firm and gamble for 

resurrection).  

Given the available alternatives, shareholders choose the default or restructuring regime to 

maximize their payoff, 

   ( ) maxB

j j
j J

v y y


     . (36) 

Compared to our initial setting, shareholders now choose both the timing and the mode of default. 

The existence of restructuring regimes which retain some firm value provides shareholders with 

                                                           

36 We normalize the face value of debt by 
(1 )c

r

 




 



 to account for the fact that the initial debt price (even 

with zero leverage) may differ from par.  This normalization simplifies expressions but is not otherwise consequential. 
37 We have already seen that by threatening to dilute existing creditors, shareholders can drive down their recovery 

rate (
0

 ) to zero.  The assumption 
0

0   presumes creditors can also block payouts to shareholders. When 0
j

   

shareholders may receive something from the restructuring. 
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an additional strategic option, and this potentially enhances shareholder value and changes the cash 

flow threshold at which default will occur. 

PROPOSITION VIII (EQUILIBRIUM WITH RECOVERY).   In the unique MPE in y , 

shareholders will choose the default regime *j  that solves 

   

1(1 )
max 1

(1 )

j

J j J

j



 


  


. (37) 

The equity value function and optimal default boundary are  

    

default option value

( )J

J b

b

y
v y

y
y y



 
 

  
 

     and  
*

*

1

1

jJ

b b b

j

y y y


 


. (38) 

The equilibrium debt price and rate of debt issuance are given by 

     1J

b

J

y
p y

y

  
    
  








  and   *

J b

c y
g y

y



 
 






 
. (39) 

Proof: See the Appendix.    

PROPOSITION VIII demonstrates the tradeoff between efficiency and debt recovery in 

restructuring as a function of the parameter  , which depends on the firm’s volatility, growth rate, 

and debt maturity according to (25) (or, in the case with jumps, (35)).  The endogenous parameter 

1J  , which takes the value of 1 for the baseline case 0 0 0    , fully characterizes the impact 

of this decision on the equity and debt values. The existence of restructuring regimes with 1J   

increases efficiency and raises the value of equity. On the other hand, the threat of dilution makes 

the debt price (and total firm value) more sensitive to leverage, causing the equilibrium rate of debt 

issuance to decline proportionally with J . 
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The option to restructure will raise the default threshold to 
J

b by y .  If 
J

by  is high enough, 

the firm may restructure even before cash flows become negative.38 In that case, in equilibrium 

the firm never requires access to equity capital (as it does in the standard Leland (1994) model).  

III. Debt Dynamics 

Now that we have solved for the equilibrium debt issuance policy and security pricing, we can 

analyze the implications for observed debt dynamics. Although lack of commitment leads the firm 

to always have a positive rate of debt issuance, the countervailing effects of debt maturity and asset 

growth cause leverage to mean-revert gradually towards a target.  We begin by characterizing this 

target as well as the speed of adjustment. We then consider the implications of alternative debt 

maturities.  While the firm’s target leverage and rate of adjustment are greatly affected by maturity, 

we show that shareholders are indifferent to any maturity structure for future debt issuance. Thus, 

similar firms that are both maximizing shareholder value may nonetheless display very different 

debt dynamics. We conclude by considering welfare implications of debt maturity, as well as 

several low-leverage puzzles. 

A. Target Leverage and Adjustment Speed 

As shown in Section II, the equilibrium debt issuance rate *( )g y  is faster when cash flows are 

high, and slows as the firm approaches default.  Because the mapping is monotonic, there is a 

unique level of scaled cash flow 
*y  such that the equilibrium issuance rate will equal the rate of 

debt maturity: 

   
* * )(yg   . (40) 

                                                           

38 The firm will have positive earnings at the time of restructuring if 
*

*

1 1

1

j

j

r

r

    


   

  
  
  

. Even if this condition 

is not met, the firm may have positive cash flows once the debt proceeds 
*

*
( )

J

b j
g y    are included.  
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We can also interpret 
* *1/f y   as the firm’s leverage “target,” the ratio of debt to earnings at 

which new issuance exactly balances the retirement of existing debt, leaving the firm’s total 

indebtedness unchanged. Over time, leverage will mean-revert towards this target level.39 

Figure 2 illustrates the net rate of debt issuance, given different debt maturities and asset 

volatilities, as a function of the firm’s debt-to-value ratio.  Shorter debt maturity increases the 

speed of mean reversion, but has a non-monotonic impact on the target level of leverage.  Lower 

volatility, on the other hand, raises both the target level of leverage and the speed of adjustment.   

 

Figure 2: Net Debt Issuance versus Firm Leverage for Different Maturities and Volatilities 

Baseline Parameters: 2%, 40%, 30%, (1 ) 5%, 20%, 0, 1
J

c r                

In our model the firm’s debt is path dependent, with the current level of debt equal to the 

firm’s cumulative past issuance net of its debt retirement.  Because the issuance rate varies with 

                                                           

39 Note that if the debt is perpetual or its maturity is very long so that 0  , then 
*

b
y y

 . In that case the firm’s total 

indebtedness 
t

F  will strictly increase over time (prior to default). 
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the level of cash flows, this path dependence can be quite complex.  Somewhat surprisingly, we 

can derive the evolution of the firm’s debt explicitly as a function of the firm’s initial debt position 

and its earnings history, as shown next. 

PROPOSITION IX (DEBT EVOLUTION).  Let 
* *1f y   be the firm’s target ratio of debt to 

earnings. Given the debt issuance policy *g  and any initial debt face value 0 0F  , the 

firm’s debt on date t  given the cash-flow history  : 0sY s t   is 

    
   

0

1/
*

0

st tt

t sF e e f YF ds


  


 
  

   .       (41) 

Equivalently, for 0dt  ,  

   
*( ) ( (1 ))t dt t tdtF f Y F dt  

      . (42) 

Proof: Recall from (39) and (40) that 
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Then (41) and (42) are equivalent to 
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. 

This evolution of debt matches (20) with 
*( )t t tG g y F .  

Equation (41) implies that the firm’s debt today is a type of “discounted moving average” 

of the firm’s initial debt and a target multiple 
*f  of the firm’s intervening cash flows. This point 

becomes transparent in the special case of an initially unlevered firm. Setting 0 0F   in (41), we 

have  

    0

1/
* ( )s

t
t

t s dsF f e Y


  

   .  (43) 
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Because ( )

0
1t

t
tse tds e         for small t , debt grows gradually with order 

/t 
for an 

initially unlevered firm, while the firm’s long-run debt level depends on the weighted average of 

its historical earnings.40  

In the equilibrium debt dynamics, the weight put on recent cash flows relative to more 

distant ones is an increasing function of the product  . Equivalently, as (42) makes clear, the 

product   determines the speed of adjustment toward the target level. Intuitively, shorter debt 

maturity (higher  ) implies faster repayment of debt principal, allowing leverage to shrink more 

quickly in the face of declining cash flows. From (35),   increases with shorter maturity, higher 

growth, or lower volatility, making the firm more aggressive in adding leverage in response to 

positive cash flows news. Finally, note from (39) that the only impact of the tax rate   or the 

default regime (via 1J  ) is on the target debt-to-income level 
*f .41  

 PROPOSITION IX demonstrates that once the firm is free to adjust leverage over time, 

equilibrium debt dynamics depart strongly from the predictions of the standard dynamic tradeoff 

theory literature. In particular, our result that debt slowly but continuously adjusts towards a target 

leverage level differs from the models in which debt levels are fixed initially (say, Leland 1994, 

1998), or jump periodically due to fixed adjustment costs (say, Goldstein, Ju, and Leland, 2001).   

Figure 3 simulates the evolution of debt of different maturities for an initially unlevered firm. In 

each case in this ten-year sample path, the shocks to earnings, and therefore the unlevered value 

of the firm, are the same. 

The top panel of Figure 3 shows that the initial impact of these alternative debt maturities 

on total enterprise value is slight, with differences only emerging later when leverage becomes 

high. The slow adjustment of total debt in the middle panel highlights the long persistence and 

hysteresis in debt levels. This speed of adjustment declines with the debt maturity. Finally, the 

                                                           

40 This continuous debt increment at 0 0F   is consistent with the infinite growth rate of  *
g y  as y  .   

41 Indeed, the target debt level decreases with 
J

 , as the increase in the value of the shareholders’ default option 

comes at creditors’ expense, lowering the debt price. The target debt ratio 
*

f


 increases with the tax rate if the debt 

maturity is long ( 0 ).  But if the debt maturity is short and tax rates are high, a tax increase may raise the default 

boundary 
b

y  sufficiently to cause the target debt-to-income ratio to fall. 
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bottom panel it makes clear that the primary driver of market leverage in the short term is due to 

fluctuation in the stock price.   

 

Figure 3: Simulation of Debt Evolution 

Evolution of firm value and debt level for different debt maturities. Top panel shows TEV. Middle panel shows debt 

level versus unlevered value 
U

V Y  .  Bottom panel shows market leverage (with legend indicating target). Note 

that two-year debt defaults in year 5.   
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These features resemble the evolution of debt most commonly observed in practice.42 Our 

model hence provides a theoretical foundation for partial adjustment models (Jalilvand and Harris, 

1984; Leary and Roberts, 2005; etc.) that are widely used in the empirical capital structure 

literature. Gradual “under-adjustment” also leads to the well-documented negative relation 

between leverage and profitability, even for frequent issuers of debt (see Frank and Goyal 2014 

and Eckbo and Kisser 2018). 

Consider, for example the case of five-year debt.  While the target level of market leverage 

is 42%, the firm does not issue this amount immediately.  Debt increases quickly at first, but is 

soon outpaced by increases in firm value.  When firm value declines after year four, leverage 

overshoots the target, as the firm can reduce leverage no faster than its debt matures.  On the other 

hand, with two-year debt, the firm adjusts quickly to a target leverage ratio of 53%, and increases 

leverage significantly as firm value grows.  But when firm value declines sharply in year five, the 

firm is unable to reduce leverage quickly enough and the firm defaults. Finally, with twenty-year 

debt, although the target leverage ratio is 60%, the speed of adjustment is very slow, and the firm 

gradually increases debt over the entire ten-year period. 

B. Debt Maturity Indifference 

Our model considers a constant maturity structure in which all debt has an expected maturity of

1  . This assumption is common in much of the dynamic capital structure literature which treats 

the debt maturity structure as a parameter.43 While it is beyond the scope of this paper to allow the 

firm full flexibility over maturity structures, we show that absent commitment, shareholders are 

indifferent to the maturity structure of the firm’s future debt issuance. While different maturity 

choices will lead to different future leverage levels, any increase in tax benefits is offset by an 

increase in default costs, and the firm’s current share price is unaffected.   

                                                           
42 For example, Welch (2004) reports that market leverage changes primarily due to stock price fluctuations, and 

Baker and Wurgler (2002) document that the firm’s current leverage depends on its equity price over the past decade 

or more. Graham and Leary (2011) survey a number of studies which suggest an annual speed of adjustment towards 

a target leverage ratio of between 10% and 40%. Frank and Shen (2019) report that allowing for heterogeneity in the 

determination of leverage targets leads to much faster estimates of the mean-reverting adjustment speed. 
43 Debt retirement in this fashion is similar to a sinking fund that continuously buys back debt at par; see Leland 

(1998), Leland and Toft (1996), He and Xiong (2012), and Diamond and He (2014). See, however, Brunnermeir and 

Oehmke (2013) and He and Milbradt (2016) for analysis of the firm’s decision to lengthen or shorten its debt maturity. 
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Recall from PROPOSITION II that we can compute the current value of equity as though 

the firm will not issue or repurchase debt in the future and will just repay its existing debt as it 

matures. This result immediately implies that for an initially unlevered firm ( 0 0F  ), firm value 

does not depend on the choice of debt maturity structure  . This irrelevance result can be 

generalized further. Consider the following thought experiment, in which shareholders—facing 

the current cash flows and debt structure  , ,t tY F  —have a one-time opportunity to choose an 

alternative maturity '  for the firm’s future debt. That is, the firm’s existing debt continue to retire 

at the old speed  , but the newly issued debt retires at the new speed ' . We have the following 

proposition.  

PROPOSITION X (MATURITY INDIFFERENCE).  In a no-commitment equilibrium with 

smooth debt issuance, the firm’s current equity value is independent of the maturity '  of 

new debt.  

Proof: See the Appendix.    

The intuition for the proof is straightforward. We can consider the implied future liabilities 

from the firm’s existing debt as a modification of the cash flow process for the firm and then apply 

our general methodology as in Section I. For equilibria with smooth debt issuance polices, equity 

holders obtain zero profit by issuing future debt, and so the equity value would be the same as if 

the firm could not issue future debt. As a result, the current equity value only depends on the 

maturity structure   of existing debt, but not on the maturity structure ' of future debt. This logic 

and hence the indifference result can be further generalized to a setting in which the firm is free to 

choose any maturity structure for its newly issued debt any time. Again, the equity value will only 

depend on the maturity structure of the firm’s existing debt. 

The indifference result can also be seen in Figure 3.  Although the debt maturity choice 

leads to large differences in the evolution of debt and market leverage over time, the initial 

enterprise value of the firm is the same, and is equal to the unlevered firm value in all four cases.  

Figure 3 also provides a potential explanation for the finding in Lemmon, Roberts, and 

Zender (2008) that much of the cross-sectional variation in firms’ capital structure is persistent 

and largely unexplained by observable characteristics. From the perspective of our model, small 

perturbations or frictions that may lead firms to pick different initial maturity structures will lead 
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over time to dramatically different leverage outcomes. See also DeMarzo (2019) for further 

discussion of this point together with the potential role of collateral. 

C. Optimal Maturity: Price Impact and Welfare  

In the previous section, we demonstrated that the firm’s shareholders are indifferent to the choice 

of debt maturity when debt issuance is unconstrained. This indifference result regarding debt 

maturity runs counter to the standard intuition that shareholder-creditor conflicts are ameliorated 

with short-term debt. While this intuition would hold if shareholders could commit ex-ante to 

maintain a given leverage policy,44 our analysis shows that without commitment this intuition is 

not correct: the use of short-term debt induces the firm to lever more aggressively, and the agency 

costs resulting from the leverage ratchet effect do not disappear. Indeed, as maturity shortens to 

zero ( ), the firm’s target leverage 
*y  converges to the default boundary by , increasing the 

firm’s tax shields while solvent but keeping the firm ever closer to default.   Intuitively, as long as 

opportunities to trade are sufficiently frequent relative to the maturity of the debt, leverage ratchet 

dynamics will emerge to reduce the gains from trade.45 

In this section, we show that a benefit of short-term debt reemerges if the firm is 

constrained to raise a fixed amount of initial debt. But although short-term debt may be privately 

optimal, it may be inefficient from the perspective of social welfare. 

C.1 Constrained Borrowing 

We have assumed throughout that the firm has frictionless access to both debt and equity markets, 

and shown that debt issuance will occur gradually over time.  Suppose instead the firm is forced 

to raise a fixed amount of capital using debt.46 In that case, which choice of debt maturity would 

shareholders prefer? 

                                                           
44 See Tserlukevich (2008) for further elaboration of this point with commitment. The flexibility offered by short-term 

debt is also studied in a recent paper by Geelen (2017). 
45 Given any fixed maturity 1 0  with continuous trading, there is always the opportunity to issue new debt before 

the existing debt matures.  The same issues arise even in a discrete time model, as long as new debt can be issued on 

the same date as the original debt; Bizer and DeMarzo (1992) demonstrate the agency cost associated with sequential 

rounds of simultaneous borrowing even in a one period model. 
46 For example, suppose the firm requires capital to launch, and is restricted from using all equity financing due to 

governance concerns, illiquidity, or other temporary costs outside the model. 
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As we have already shown, the convexity of the equity value function in F  implies that 

issuing a large block of debt is costly to shareholders.  This cost arises because the firm faces a 

downward-sloping demand (i.e., 0Fp  ) for its debt.  The price sensitivity of the debt, however, 

increases with the debt’s maturity; because the initial debt issuance will not be actively unwound 

(due to the leverage ratchet effect), long maturity debt with a slower passive retirement speed will 

be more subject to future dilution. We confirm this result in Figure 4, which shows the drop in 

total firm value (TEV) for a given initial amount borrowed as a fraction d  of the firm’s unlevered 

value: 

   0 0

0 0

( / ) ( )p Y F F p y
d

Y y
 

 
. 

Not only does short-term debt reduce the cost to firm value, it also increases the firm’s debt 

capacity—the maximum amount it is able to borrow—which is restricted because at a high level 

of debt, the negative price impact from raising the face value more than offsets the increase in 

quantity.47  

 

Figure 4: Debt and Firm Value with Differing Maturities.  
If the firm must borrow a fixed amount, using short-term debt raises its debt capacity and reduces the cost to firm 

value.  Parameters are 2% , 40% , 30% , (1 ) 5%c r   . 

 

                                                           
47 See the NBER working paper version https://www.nber.org/papers/w22799 where we formally establish this result 

and show that the debt capacity approaches 100% as    . Of course, we have ignored other potential costs 

associated with short-term debt, such as rollover risk (see e.g., He and Xiong, 2012).   
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C.2 Maturity and Welfare 

The result that shareholders are indifferent regarding debt maturity given smooth issuance must 

imply that the expected tax benefits of new debt are exactly offset by the increase in default costs 

borne by shareholders.  But from a social planner’s perspective, tax shields represent transfers, 

while bankruptcy costs reflect dead-weight losses which directly hurt welfare. Therefore, even if 

shareholders are indifferent to maturity, there will be a clear ranking in terms of expected welfare: 

choices that lead to higher expected tax benefits also imply higher expected default costs, and 

hence lower welfare. 

 We can use our model to calculate the expected future bankruptcy costs as a fraction of the 

current unlevered firm value, which we denote by ( )BC y . Starting with initial debt 0F , debt 

evolves according to   t t tdF g y F dt   and default occurs at b  with 
b bbY y F  , with a loss 

equal to the firm’s unlevered value at that time. Thus,  

      0 0

0

0 0
0

1
, exp

b
b

b

r b
t

y
BC y e Y Y yF F g y r dt y y

Y y


 



      
   

 
  .  

 

 

Figure 5. Expected Bankruptcy Costs BC (as a Fraction of Unlevered Firm Value).  
For an initially unlevered firm ( 0d  ), expected bankruptcy costs decrease with both maturity and volatility, due to a 

slower issuance rate. But if the firm must borrow 40% of its unlevered value upfront ( ( ) / ( ) 0.4),d p y y    then 

welfare is maximized for an intermediate debt maturity. Parameters are   5%1r c    , 2%  , 30%  . 
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We compute ( )BC y  for alternative debt maturities in Figure 5.48 For an initially unlevered 

firm, expected bankruptcy costs are higher if the debt maturity is shorter (i.e., both red curves 

decline with debt maturity).  The intuition for this result is that, as we saw in Figure 3, with short-

term debt the firm takes on debt more quickly and maintains higher leverage over time, taking 

greater advantage of interest tax shields but also leading to a higher risk of default. Interestingly, 

as the figure also shows, lower firm volatility also gives rise to greater expected bankruptcy costs 

(i.e., the dashed lines sit below the solid lines). The key to this counterintuitive result is the 

endogenous debt issuance policy. Shareholders in a firm with lower volatility are more aggressive 

in levering up, so much so that we have greater expected bankruptcy costs. 

Figure 5 also reveals that if the firm is constrained to borrow an initial fraction  0,1d   

of its unlevered value, then an intermediate debt-maturity will maximize welfare (i.e., the green 

curves are minimized at an interior point). This is because in the case of constrained initial 

borrowing, Figure 4 shows that given an initial borrowing requirement, longer-term debt leads to 

a larger initial welfare loss even for shareholders (that is, expected bankruptcy costs exceed tax 

benefits), and shareholders prefer to issue short-term debt. The social planner, however, only cares 

about bankruptcy costs. Intermediate maturity debt minimizes default costs by starting the firm 

further away from default than longer-term debt (given a fixed initial amount raised, as shown in 

Figure 4), while at the same time reducing the aggressiveness with which it will issue debt in the 

future compared to short-term debt.  

D. Low Leverage Puzzles 

Two important empirical observations associated with leverage are the credit-spread puzzle and 

the zero-leverage puzzle. As we discuss below, the implications of our model for debt dynamics 

and pricing can help to resolve both of these apparent anomalies. 

                                                           
48 We compute BC numerically by defining ( ) ( )H y y BC y  , and noting that H satisfied the ODE,   

            2 2
0.5r g y H y g y yH y y H y           , 

with boundary conditions   1
b

BC y   and  BC y k  when y   for some constant (0,1)k  . 
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D.1 The Credit-Spread Puzzle 

As Huang and Huang (2012) and others have observed, firms with low leverage often have much 

higher credit spreads than would be predicted by a standard structural models.  In the context of 

our model, large credit spreads arise even for firms with low leverage because the debt is priced 

in anticipation of future debt issuance.   

To see this effect, define the credit spread ( )y  as the yield spread required to match the 

bond’s price absent default: 

  ( )
( )

c
p y

r y

 


   
, or equivalently, 

(1 ( ))
( )

( )

c p y
y r

p y

  
   . (44) 

As a comparison, we can also define the credit spread 0 ( )y  that would apply in a model in which 

the firm commits not to issue more debt, by replacing ( )p y  with 0 ( )p y  from (30) in the above 

definition. 

It is easy to see that as leverage falls ( y  increases), both credit spreads decline. But as we 

approach zero leverage ( y  ), the credit spread with commitment vanishes ( 0 ( ) 0y  ), 

whereas in the no commitment case, 

    lim 0y y
c

  



 . (45) 

In other words, even with very low leverage, we should expect significant credit spreads in our 

model. The reason, of course, is that even when the firm’s current debt level is very low, the future 

debt level is likely to be much higher given the mean-reverting leverage dynamics.  

D.2 The Zero-Leverage Puzzle 

Another significant empirical puzzle for the standard tradeoff theory is that despite the tax benefits 

of debt, there exist a larger number of firms with zero leverage, as documented by Strebulaev and 

Yang (2013).  

At first glance, this fact would also appear to contradict our model, in which firms issue 

debt repeatedly.  However, our equilibrium dynamics and the uniqueness result of Section II only 

apply in the range /y Y F   , and therefore 0F  . When 0F  , there are actually two 
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possible Markov perfect equilibrium outcomes: the firm can begin issuing debt, as in our model, 

or the firm can remain with zero-leverage.  In either case, the payoff to shareholders is the same – 

they receive the unlevered value of the firm. 

The zero-leverage equilibrium can exist because without commitment the firm is unable to 

capture the tax shield benefits of debt.  As equation (45) shows, the initial credit spread on the debt 

is sufficient to offset the tax benefits.  But, this no trade equilibrium disappears once debt is in 

place.  The reason is that, in order for the price of the firm’s outstanding debt to be consistent with 

equilibrium, the firm must be expected to continue to issue debt.  This equilibrium constraint does 

not apply when 0F  , as there is no outstanding debt price. 

 

IV. Endogenous Investment and Debt Overhang 

We now extend our model by adding an endogenous investment decision also under the 

control of shareholders. Including investment allows us to explore the interaction of shareholder-

creditor conflicts over investment and leverage choices.  

We adjust our model so that investment is efficient and leads to the same cash flow 

dynamics as in the baseline setting.  But if shareholders have the option to cut investment, debt 

overhang will induce them to do so when leverage is high, as in Myers (1977). Relative to the case 

without investment options, anticipated agency costs lower the debt price and reduce the rate of 

debt issuance when the leverage is low. But when leverage is high, the option to cut investment 

delays default and ultimately raises the debt price and rate of issuance. In the end, the tax benefits 

of debt are dissipated by the combined costs of underinvestment and default, so that the share price 

is again equal to the no trade value. Hence, because agency costs effectively substitute for default 

costs, in our model the ex ante value of equity is not diminished by the introduction of debt 

overhang, in stark contrast to standard tradeoff models. On the other hand, our results imply that 

tax subsidies intended to lower the cost of debt and thereby boost investment may instead have the 

opposite result. 
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While these insights are general, for ease of illustration we consider a simple linear 

investment decision.49 Specifically, given an investment decision 0[ , ]ti    , the firm’s rate of 

earnings before interest and taxes (EBIT), tY , evolves according to  

   t t tt tdY i Y dt Y dZ  . 

Hence, when ti   , the firm invests optimally and grows at rate   as before.  But shareholders 

now have the option to cut investment and choose ti   .  If they cut investment, the firm’s free 

cash flow between ( , )t t dt increases, and is given by 

    1 ( )tt tY dt i Y dt     , 

where the parameter 0   reflects the after-tax cost of investment (i.e., investing an extra $  

today generates a permanent increase to tY  of $1). We assume the investment cost 
1

,
r

 
   


 

so it is always positive NPV for an unlevered firm to invest.  (The decision not to invest can also 

be interpreted as a decision to liquidate some existing capital and sacrifice growth.)  

Our model with investment thus matches the setting in Section II except for the fact that 

shareholders now have the option to cut investment. We consider an MPE with the same state 

variable /t t ty Y F . As before, shareholders will default when y drops to an endogenous default 

threshold
inv

by .  In addition, there will exist an endogenous investment threshold 
inv

iy  such that if 

inv

iy y , leverage is sufficiently low so that shareholders will invest efficiently (and cash flows 

will evolve as in the baseline case).  The new feature is that now, in the “distressed” region

 ,inv inv

b iy y y , debt overhang is severe enough so that shareholders do not find it worthwhile to 

invest, but are not yet willing to default.   

We solve this extension in closed form in Appendix VI.D, where we show that the no trade 

value remains strictly convex and thus can be used to characterize the smooth equilibrium. We 

demonstrate the interaction between investment and debt issuance in Figure 6 by comparing the 

case with endogenous investment (black dotted line) to the baseline setting in which investment is 

                                                           
49 See the NBER working paper version https://www.nber.org/papers/w22799 for a model with continuous investment 

and convex adjustment costs. 
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always fixed at first best (blue solid line). We plot the equity value invv , debt price invp , enterprise 

value inv invv p , and debt issuance rate in Panels A–D, respectively. The dashed vertical lines 

show the default boundaries for the two settings, whereas the solid vertical line shows the 

investment boundary when investment is endogenous.  

 

 

Figure 6 Endogenous Investment and Debt Issuance Policies.  
The comparison between the extension with investment options and the baseline model: equity value v (Panel A), 

debt price p (Panel B), enterprise value v p (Panel C), and debt issuance polices 
*

g  (Panel D). In the extension 

with investment options, the firm invests when 
inv

i
y y , does not invest when  ,

inv inv

b i
y y y , and defaults when y

hits
inv

b
y . In the baseline model, the firm defaults earlier i.e.

inv

b b
y y . Parameters are  1 5%,r c   

10%, 2%, 0.01, 22        , and 0 0  . 

Compared to the baseline case, the option to cut investment and raise the firm’s current 

free cash flow increases the value of equity and lowers the default boundary ( invv v  and

)inv

b by y  as shown in Panel A. In contrast, the option to cut investment lowers the debt price and 
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enterprise value when leverage is low, as creditors anticipate the cost of future underinvestment, 

but raises them when leverage is high, by delaying default, as shown in Panels B and C.  

We plot debt issuance policies in both cases in Panel D. In the investment region
inv

iy y , 

shareholders invest in both cases, but issue debt more slowly when there is the option to cut 

investment in the future. This slower debt issuance is a consequence of the greater sensitivity of 

the debt price to leverage increases when creditors anticipate that debt overhang will distort future 

investment. In the “distressed” region  ,inv inv

b iy y y , because shareholders can cut investment to 

boost the firm’s current cash flow, the issuance rate declines more slowly as y  falls; ultimately,  

close to default, the debt issuance speed without investment exceeds the baseline case.  We 

summarize the key results below: 

PROPOSITION XI (UNDERINVESTMENT).  While the unlevered equity value is unchanged, 

for a given y  the option to cut investment (or liquidate assets) inefficiently results in a 

higher equity value than in the case with fixed investment. Shareholders cut investment 

when y  falls below 
inv

i by y , and default is delayed to 
inv

b by y . When 
inv

iy y , the firm 

invests optimally, and the value of equity satisfies 

    ( )I

I b

b

y
v y

y
y y



 
    

 
 , (46) 

with 1I  . In this region, the rate of debt issuance is proportionally lower, and the credit 

spread is higher, than in the fixed investment case. 

Proof: See the Appendix. The intuition is as follows.  First, we establish that for an arbitrary 

investment technology, the no trade value function remains convex, so that the characterization of 

the smooth equilibrium in Section I can be applied.  Given a linear investment cost, the investment 

decision is “bang-bang” so that 0{ , }ti    . When ty  is large, ( )Iv y      and investment is 

efficient ( ti   ).  When ty  falls, shareholders will cut investment 0( )ti    whenever debt 

overhang becomes severe enough that ( )I

tv y   , which occurs at the threshold defined by 

( )I inv

iv y   . Recall that with zero recovery, ( ) 0bv y  , so the option to cut investment is strictly 

profitable prior to default, hence 
inv

b by y . We can solve in closed form for the value function Iv  
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in the investment region as in Section II, with the optimal boundary 
inv

iy  determined by the usual 

smooth-pasting condition.  The decision to cut investment is similar to a restructuring decision (as 

in Section II.D), with the parameters ( , )   determined endogenously from the value function NIv

in the no investment region. Because the value of equity in such a “restructuring” is positive, it 

will be exercised earlier than when shareholders only had the option to default and receive zero; 

thus,
inv

i by y . We show in the appendix that, as with our analysis in Section II.D, this 

disinvestment/restructuring option also implies >1I .   

 In conclusion, we have shown that when shareholders cannot commit to a leverage policy, 

additional shareholder-creditor conflicts over investment policy have no incremental impact on the 

firm’s initial unlevered value.  Instead, the anticipation of investment distortions widens initial 

credit spreads and slows the initial rate of debt issuance. Ultimately, the cost of the resulting 

investment distortions substitutes for default costs in fully offsetting the funding cost advantages 

of debt.     

V. Conclusions 

When the firm cannot commit ex ante to future leverage choices, shareholders will adjust the level 

of debt to maximize the firm’s current share price. We develop a general methodology to solve for 

equilibrium debt dynamics in this setting, including endogenous investment. When earnings 

evolve as geometric Brownian motion (including possible upward jumps), we show the uniqueness 

of our Markov perfect equilibrium, and explicitly solve for the firm’s debt as a slowly adjusting 

weighted average of past earnings. The endogenous rate of debt issuance decreases with debt 

maturity and volatility. The firm slows down its rate of debt issuance as it approaches default, so 

that the firm’s equilibrium leverage is ultimately mean-reverting. 

Because creditors expect the firm to issue new debt in the future, credit spreads are wider 

in our model than in standard models with fixed debt and remain wide even when leverage is close 

to zero. Lower debt prices dissipate the tax shield benefits of leverage, so that the equity value is 

identical to the case without no future debt issuance.  This inability to capture tax benefits of 

leverage may provide a possible resolution for the zero-leverage puzzle (Strebulaev and Yang, 
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2013), as the potential tax benefit from leverage is offset by the high credit spread even for initial 

debt. 

Finally, although shortening the maturity of debt raises the average level of leverage as 

well as its speed of adjustment, the increase in expected tax benefits is again offset by an increase 

in investment distortions and default costs. As a result, even “instantaneous” debt does not resolve 

the commitment problem, and shareholders have no incentive to adjust the firm’s debt maturity 

structure. Moreover, because debt adjusts gradually, similar firms may have very different leverage 

given their exposure to past shocks. These observations offer a potential explanation for findings 

such as those by Lemmon, Roberts, and Zender (2008) that much of the cross-sectional variation 

in firms’ capital structures is persistent and largely unexplained by firm characteristics.     

There are many further extensions of our model worth considering. DeMarzo (2019) allows 

for a different funding costs across equity and debt markets, perhaps due to different investor level 

taxes, or a “moneyness” premium associated with debt.  DeMarzo, He, and Tourre (2019) consider 

risk-averse creditors in the context of sovereign debt.  As long as debt has a net funding advantage, 

all of the key results in our model continue to apply. The same holds true if we allow for 

proportional transactions costs associated with debt issuance (which can be interpreted as an 

additional wedge in the cost of capital across markets). 

We have focused on Markov perfect equilibria in our analysis, in which debt pricing 

depends only on firm fundamentals. As in the folk theorem literature, if we relax this constraint, 

additional equilibria can be supported using “grim trigger” punishments in response to any 

deviation.  Indeed, because our equilibrium produces the lowest possible equilibrium payoff for 

shareholders (Markov or not), all non-MPE equilibria can be supported by using our equilibrium 

off the equilibrium path. (See, for example, Benzoni et al. (2020) and Malenko and Tsoy (2020) 

who use our results to support non-Markov strategies in which the firm is “punished” for exceeding 

a target leverage ratio by reverting to our MPE.) 

Naturally, we expect that firms will try to reduce the agency costs resulting from the 

leverage ratchet effect and capture some of the funding advantages of debt by using alternative 

commitment mechanisms such as collateral or covenants that restrict future debt issuance. Our 

results here imply that commitments to a leverage policy are more important to enhancing firm 

value than commitments regarding investment policy.  DeMarzo (2019) discusses alternatives and 
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demonstrates that collateral allows the firm to capture the funding advantages of debt because it 

can be exclusively promised to a single creditor.  Other important commitment mechanisms in 

practice include regulations, restrictions on the tax-deductibility of leverage by corporations, and 

trading frictions (for example, Benzoni et al. (2020) argue that fixed costs of debt issuance can act 

as a commitment mechanism allowing the firm to capture tax benefits of debt).  Finally, equity 

market imperfections may prompt the firm to actively manage its internal liquidity (cash) position 

(as in Hennessy and Whited, 2005; Bolton, Chen, and Wang (2014) and Bolton, Wang, Yang 

(2020)).  We leave for future work an exploration of the leverage dynamics that arise from the 

interaction of these additional forces with the leverage ratchet effects explored here.  
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VI. Appendix 

A. Remaining Proofs from the Main Text 

PROOF OF PROPOSITION VII.  Note that the HJB equation (34) has the linear solution  

    v y y   . (47) 

The homogenous delayed differential equation 

    
2 21

2
ˆ( ) ( ) ( ) ( ) ( ) ( )r f y yf y y f y f y           

has solutions of the form 
ˆ

y  where ̂  solves the characteristic equation (35). In (35),  because W 

is convex,    W W     ,   0 0W r    , and   ˆ1 0W r    ; W has a unique 

positive real root (as well a unique negative real root ˆ 1   that can be ruled out by the upper 

boundary condition). The remainder of the analysis follows exactly as in Section II.A. (See also 

Section B for an alternative proof in terms of /f F Y ). For the comparative statics, note by 

convexity and the fact that   is the largest root, ( ) 0W    .  Hence, for a given parameter x , 

sign sign ( )
x x

W 
 
    , where 

     22 21 1
2 2

( ) ( 1) 0W r                   . 

So, for example, because 1   and 0  , 

   
(1 ) 0( )W  


     , 

we have that   is strictly decreasing in  .    

PROOF OF PROPOSITION VIII. As in the proof of PROPOSITION IV, the equity value function 

given no trade is given by 

   

 

 

 

ˆ

,

ˆ

ˆ

,

ˆ ˆ( ) ( )
ˆ

ˆ ˆ( ) ( )
ˆ

ˆ ˆ(

( ) max

max

min )1 (1 .)

b

b

b

J B

b b
y

b

j b j b
y

b

b j b j
j y

j

y v y y
y

y y y

y
v y

y

y

y

y yy





 

    

        

 
  

 
  

 

 
 

     


 






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From the first-order condition for ˆ
by , 

    
(1 ) 1

ˆ
(1 ) (1 ) 1

j j

b b

j j

y y
  

 
    

.  

Hence, 

  

 

 

 

ˆ )( ) min (1

max (1
1

.

1
)

J

b j b

j

b j

b

J

j j

b

b

j

y y y

y y

y

v y y

y

y

y
y

y











 
     

 

 
     

 
 

 

 

  
        

 
  

 
  

 

The remaining results follow from PROPOSITION III as in Section II.A.    

PROOF OF PROPOSITION X:  The result follows from a straightforward extension of the 

methodology in Section I.  Let ( , )o nF F F  be a vector showing the quantity of old and new debt, 

respectively. Let ( , )o nc c c  and ( , )o n     be the corresponding coupon and amortization rates. 

Given ( , )Y F  the firm generates cash at rate ( , ) ( ) ( )u Y F Y Y c F c F        .  Let ( , )np Y F  

be the price of the new debt and ( , )V Y F  be the value of equity. Then the equity value function 

satisfies the HJB,   

2

required return new debt issuance evolution of 
evolution of 

1
max ( , ) ( ) ( ) ( )

2n o

n

n n F F Y YY
G

o o

dF
dY

rV u Y F Gp G F V F V Y V Y V



       


 
 
 
 

. 

As before, if a smooth issuance policy is optimal it must be that 
n

n

Fp V . Thus the HJB becomes  

21
( , ) ( ) ( )

2n oo on n F F Y YYrV u Y F F V F V Y V Y V      , 

equivalent to the case with no future trade. Note that before the firm issues new debt, 0nF  , and 

hence the value of equity ( , ( ,0)) ( , )o oV Y F V Y F  is independent of coupon rate or maturity 
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( , )n nc   of the new debt. Finally, following the same approach as in Section I, we can solve for the 

optimal *G  as before: 

   *
( , )

n

n n

n nF n

n n

F F

u Y F c

p

c
G

p




 


 


 . 

Thus, the smooth equilibrium will exist under the same conditions as before (differentiability and 

strict convexity with respect to the debt face value).   

B. Solving the Model in Terms of f  

In some cases it is more convenient to solve the model in terms of the state variable 

/ 1/f F Y y  , especially when considering an initially unlevered firm ( 0F  ). Let ˆ( )v f  be 

the value function in terms of f ; that is, ˆ( ) (1, ) ( , ) /v f V f V Y F Y  . Note the given a jump, the 

value becomes ˆ( , ) / ( / )V Y F Y v f    .  Hence, the HJB equation for ˆ( )v f  given no trade is 

        21
2

2ˆ ˆ ˆ ˆ ˆ ˆ( ) (ˆ ( ) 1 )1 ) (
f

v fr f cf f fv f v f v v f
  

               
  

. (48) 

Recall we have defined  ˆ 1 r      .  According to Liu (2018) Theorem 2.2, the 

general solution of (48) is of the form  

   
ˆ ˆ

1 2( )ˆ f f Av f A f      , (49) 

with 1A and 2A as coefficients to be determined. The two power functions of 
ˆ

f  and 
ˆ

f  are 

derived as follows. The characteristic equation of the homogeneous part is  

      1 2 2 2ˆ ˆ ˆ0.5 0.5 0xW x x x r             . 

Because    
21 2ˆ ln 0xW x       ,   Ŵ x  is convex. In addition, because 

ˆ ˆ( ) ( )W W     and both    ˆ ˆ0 0W r     and  ˆ 1 0W r   , we have two real 

roots ˆ 1   and ˆ 0  for the equation  ˆ 0W x  . It is easy to check that ˆ 1     from (35). 

 Because ˆ(0)v  is bounded we must have 2 0A   and ˆ(0)v   .  Then, 1A  is determined from 

the boundary condition ˆ ˆ( ) ( ) 0b bv f v f  , which implies 
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    

ˆ

ˆ( )
b

b

f
v f f f

f



 
    





    with 

ˆ

ˆ 1
bf

 

  

. 

It is straightforward to check that 1/b bf y  and ˆ( ) ( ) /v f v y y . 

C. Equilibrium Uniqueness 

We prove that the smooth equilibrium constructed in Section II is the unique equilibrium in the 

class of Markov perfect equilibria with the uni-dimensional state variable being /y Y F . There 

are five steps in our proof strategy.  

1) The equity value  v y  is weakly convex, continuously differentiable 1C , and debt price 

function  p y  is continuous and increasing.50  

These regularity conditions are satisfied by the equity value and debt price in any 

equilibrium; most of them are straightforward implications of Proposition 1, but utilize the 

strength of having only a single state variable y  to rule out discontinuities in the debt price. 

2) There will be no buybacks in any Markov equilibria with Markov state  ,Y F . 

We show that by deferring any planned buybacks, the firm will benefit from tax shields 

and its default option. This step is crucial, as it will allow us to focus on monotone issuance 

polices. It also does not depend on the assumption that the equilibrium is Markov in y . 

3) The state variable ty  is a smooth process, plus some singular non-increasing process. 

Following on step 2, we use the Lebesgue decomposition which says a monotone process 

can be decomposed to an absolutely continuous part and a singular part. 

4) There are no gains from trade for an initially unlevered firm. 

Here we show that in any equilibrium, ( ,0)V Y Y  , and thus there are no gains from trade 

for an initially unlevered firm. 

5) The equilibrium issuance policy is absolutely continuous. 

                                                           
50 Recall that we use the term “increasing” in the weak sense throughout the paper (see footnote 11). 
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Having shown that the equilibrium payoff for an unlevered firm is unchanged, the last step 

is to rule out the possibility of singular strategies in equilibrium. 

Together, these steps verify that our constructed equilibrium—in which the debt issuance policy 

is absolute continuous in time (i.e., smooth)—is the unique MPE in y . 

C.1 Convexity and Differentiability of the Equity Value 

We first prove some regularity properties for the scaled equity value function ( ) ( , ) /v y V Y F F . 

Denote by  as the default policy in any equilibrium, which, with a slight abuse of notation, could 

differ from no trade default boundary 
0

by  (in our constructed equilibrium, they coincide as in 

equation  (26)).  

Lemma A.1. We have the following properties. 

a) There exists a default boundary by  so that shareholders continue whenever by y

with
0

b by y ; 

b) ( )v y is increasing, weakly convex, continuously differentiable 1C , and the debt 

price function ( ) ( ) ( )p y yv y v y   is continuous and increasing over the region

[ , )by y  ; 

c) When v  is linear in some interval, ( )p y  is a constant and positive in that interval.   

Proof: To start, because 0( ) ( ) 0v y v y   for
0

by y , we know that it is optimal to continue for

0

by y , and implying that
0

b by y . The optimality of the proposed threshold strategy follows from 

the monotonicity and convexity established in b).  

For b), the monotonicity of ( )v y  comes from ( , )V Y F  being decreasing in F  shown in 

Proposition 1. And,   

  
ˆ( ) ( ) 1ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( )
ˆ ˆ

1v y v y
V Y F V Y F

y
F F p Y F p y

y y y

 
     

 
    

Define 
( ) ( )

( ) 0
v y p y

q y
y


  ; then the above inequality is equivalent to 
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    ˆ ˆ ˆ( ) ( ) ( )v y v y y y q y   , 

implying v  is weakly convex in y  and q  is a subgradient.   

Next, the value function must be smooth (continuously differentiable) in Y ; otherwise at 

a kink there would be an infinite expected rate of gain given the Brownian motion in Y  (note, 

shareholders have the option to issue no debt and hence reap this infinite gain, if it exists). As a 

result, v  is 1C  in y , which implies that v q  , and p yv v   follows. Since Proposition 1 

shows that ( , )p Y F  is decreasing in F , it follows that in our MPE ( )p y is increasing in y .  

For c), in any interval  1 2,y y with
2 1 by y y  , if       1 1 1'v y v y v y y y   for

 1 2,y y y , then in this interval the debt price ( ) ( ) ( )p y yv y v y   must be equal to

        1 1 1 1 1 1 1( ) ' 'yv y v y v y y y y v y v y     , a constant independent of y . Finally,  p   is 

positive because in equilibrium default occurs immediately if and only if 0p  .    

C.2 No Buybacks   

As mentioned in PROPOSITION I, the result of no debt buyback generally holds for any Markov 

equilibrium, with the Markov states being exogenous cash flow Y and endogenous debt face value

F . Hence this constitutes the formal proof for the first result in PROPOSITION I.   

The key idea behind the proof is as follows. Given a potential equilibrium debt issuance 

policy with buybacks, we show that equity holders can strictly improve their value by following 

an alternative strategy without buybacks taking the price function ( , )p Y F  as given. For example, 

consider a strategy in which the firm buys back $1 (face value) of debt at date t  and then issues 

$3 of debt at date 1t  .  Shareholders would strictly gain by postponing the buyback at t  and 

issuing only $2 at 1t  —the final debt level and debt price (by the Markov assumption) are the 

same, but the firm earns the incremental tax shield from $1 of debt between date t  and 1t  . In 

addition, shareholders retain the option to default on the additional $1 of debt, further enhancing 

their payoff. 
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Formally, suppose there exists an equilibrium starting from 0 0F   and with 

t t tdF F dt d    , or equivalently, 
 

0
0

.
t s tt

t sF e F e d
     The associated bond valuation 

equation implies that the bond price ,( )tt tp p Y F  satisfies  

          1t t t t t t tr p dt c dt E dp E rp dt dp cdt p dt            . (50) 

Consider an alternative policy without buybacks defined by 

    ( )ˆ sup t s

t s t
s t

F e F F 



  ; 

because ˆ ˆˆ
t t td dF F dt    , one can show that 

       0

ˆ ,ˆ ˆmax 0, max 0, 0
t s t

t st t std F d e d dF
 




         (51) 

which features no buybacks. Intuitively, this policy postpones any buybacks, issuing debt only as 

needed to prevent the new debt level ˆ
tF  from ever falling below the original debt level tF .  We 

will show that if the original policy has debt buybacks, then shareholders would gain by deviating 

to this new policy, and so the policy with buybacks cannot be an equilibrium. 

Shareholders take the debt price function ( , )p Y F  as given, and so anticipate a debt price 

of ˆˆ ( , )t t tp p Y F  under the new debt policy. Let ˆ
t t td d d     be the deviation of the issuance 

policy, and ˆ
t t tF F F    be the deviation of the debt path, which equals the cumulative deviation 

of debt issuances: 

   
     

0 0 0

ˆ
t t ts t s t s t

t s s sF e d e d e d
              . (52) 

As a result, we have 

   t t t t t tdF d F dt d dF F dt            . (53) 

Note that if shareholders deviate to F̂ , they may also reoptimize their default policy 

accordingly. Doing so can only further improve the payoff from deviating.  Hence, to show the 

deviation is profitable, it is sufficient to show that the non-negative issuance policy ˆd  dominates 
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d , given the default timing b , as a function of cash-flow history  tY , under the original 

issuance policy. We establish this below. 

Lemma A.2. We have 

   0tF    for  0, bt   , with 0 0F   , and (54) 

    ˆ ˆˆ .t t t t t t t t tp d p d p d d p d           (55) 

Proof: The claim in (54) is obvious. Because issuance only occurs under the new policy in order 

to keep  ˆ
tF  from falling below tF , we have ˆ 0td    ˆ

t tF F   ˆ
t tp p , where the final 

implication follows from the Markov property that the debt price depends on Y  and F  only (and 

not their history). Although the debt price may differ when ˆ 0td  , the total issuance proceeds 

are not affected, and hence ˆ ˆˆ
t t t tp d p d   , proving (55).     

Now we are ready to show the gain from postponing buybacks (fixing the timing of 

default). Define  

   ˆ( ) ( ) 0t t t t tY cF Y cF       , 

and note that, because   is strictly decreasing and ˆ
t tF F , t

  is strictly negative whenever 

ˆ
t tF F . The change in the value of equity can then be expressed as 
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  

  

  

0 0 0
0

Eq (54)

0

Eq (52)

0

0

ˆ( ) (ˆ ˆ ˆˆ)

1

b

b

b

b

rt rt

t t t t t t

rt rt

t t t

rt rt

t t t t

rt rt

t t t t

t t t t

t

t

V V V E e c F F dt e p d p d

E e p d e c F dt

E e p dF F dt e c F dt

E e p

Y c

p dF E e

F

F

F Y c

c


  


   


  






 





          

  

  



 

   
 

          









  







 0 0
.

b b r

t

tdt E e dt
 

   

 

Integration by parts for the first term 
0

b rt

t tE e p dF


 

 gives  
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Eq. (49)
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Plugging in this result back into our calculation of 0V 
, and using (54) together with the fact that 

0
b

p   under the original policy, we have  
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where the inequality is strict unless ˆ
t tF F  and the original policy had no buybacks.  Otherwise, 

shareholders strictly gain by capturing the debt tax shield on any deferred buybacks. This 

completes the proof that there are no buybacks in equilibrium. 

C.3 Smooth versus Singular Issuance 

The important no buyback result implies that the equilibrium issuance policy t  must be non-

decreasing over time. By Lesbesgue's decomposition for monotonic functions (cf. Proposition 

5.4.5, Bogachev, 2013), we can decompose t  into a smooth and singular process 

   a.c. c.s. jump

singular

t t t t

t

      (56) 

Here, 
a.c.

t  is an absolutely continuous process, so that there exists some positive process tG  so 

that
a.c.

t td G dt  . The component 
c.s.

t  captures continuous but singular increases that occur at 

isolated points on the state space (e.g., a “devil’s staircase”); and 
jump

td  captures discrete jumps. 

We aim to rule out both 
c.s.

t  and 
jump

t , which we call 
singular

t , in any equilibrium, and thereby 

establish the desired result. 

Under our assumption that tY  evolves according to a geometric Brownian motion and that 

the equilibrium is Markov perfect in y , the decomposition in (56) implies that we can write  
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       singular1ˆt
t t t t t t t t

t

Y
dy d y g y dt y dZ y dN dL

F


 
       

 
   

for some singular increasing process 
singular c.s. jump 0t t tL L L   . Here 

c.s.

tL ( 
jump

tL ) occurs if and only 

if 
c.s.

t (
jump

t ) occurs.   

We now show that the existence of a non-zero singular component to the optimal strategy 

implies the existence of ˆ
by y  such that ˆ( ) 0v y  . There are two cases to consider. 

 First, consider 
jump

tL . By LEMMA “CONTINUOUS ADJUSTMENT” in Section I.B, the optimal 

issuance strategy can jump only in an interval for which ( , )V Y F  is linear in F  and therefore, by 

PROPOSITION I, the debt price is constant.  In our homogenous setting, 
2 ( ) FFy v y FV  , and so a 

jump can only occur in an interval for which ( )v y  is linear. Let ŷ  be the lower bound of this 

linear segment.  Because it is not optimal to jump to default, we can assume ˆ
by y . Note that 

ˆ( ) 0p y
  , and therefore 0ˆ( )p y

   as otherwise the debt price would have an infinite expected 

loss rate at ŷ , violating no arbitrage. Thus, ˆ ˆ( ) ( ) 0p y v y   .  

 Second, consider an isolated singular point ŷ  for which 
c.s. 0tL   (note 

c.s. c.s.0 0t tL   

and 
c.s. c.s.0 0t tL    ; see the discussion at the end of Step 3). Based on the study of “skew 

Brownian motion” in Harrison and Shepp (1981), if ˆ ( )y

yl t  is the local time that the process  ty  

spends at ˆ
ty y , then we have for some positive constant (0,1] , 

   
c.s.

ˆ ( )y

t yL l t   . (57) 

The speed of change is proportional to local time (continuous in time but faster than dt , as it is 

not absolutely continuous in time). As a result, the excursions of the state variable are asymmetric, 

with probability 1
2

(1 )   to the left and with probability 1
2

(1 )  to the right. The no arbitrage 

condition for bond investors requires that the expected local gain at ŷ  is zero, therefore 

      1 1
2 2

1 ( ) 1 ( )ˆ ˆy yp p 
      . (58) 
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Because the singular point ŷ  must be isolated, there is an open ball  ,ˆ ˆB y y      so that 

singular 0tdL   on ˆ\B y . Because v  and v  are continuous, and since the HJB equation for v  holds 

and is identical on the left-hand and right-hand sides of ŷ , we must have v  continuous at ŷ , and 

therefore 0ˆ ˆ( ) ( ) ˆ( )y yp p v y 
    .    

C.4 No Gains from Trade 

Next we prove that in any equilibrium an initially unlevered firm achieves no gains from trade and 

thus has value Y .  Specifically,   

   
0

( ,0) ( , ) ( )
lim lim lim ( )
F y y

V Y V Y F v y
v y

Y Y y  
      . (59) 

We must consider three cases regarding the trading strategy for the unlevered firm: (i) 

trading is smooth in a neighborhood of 0F  , (ii) the firm immediately issues debt 0F  , or (iii) 

trading is singular in any neighborhood of 0F  . 

Case (i): Trading is smooth in a neighborhood of 0F  . 

In this case, we can use the fact that ˆ( ,0) (0)V Y v Y  and apply the results of Section B.  

Because trading is smooth, the HJB equation (48) applies in a neighborhood of 0f   and has 

solution of the form (49).  Because ( ,0)V Y  is bounded, 2 0A  , and therefore ˆ(0)v   . 

Case (ii): The firm immediately issues debt 0F  . 

For a jump to be optimal, there exists some largest ŷ  such that ( )v y  is linear for ˆy y .  

Differentiating the HJB equation (34) and using linearity plus the fact that ˆ( ) 0v y   and therefore 

ˆ( ) 0v y
   from Step 3,  

               
 

 

           

21
2

0 0 ˆ'

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2

ˆ ˆ ˆ ˆ111

v y

r v y y v y v y y v y yv y v y v y

v y v y v y



 

    
                        
           

    

 

           

 

Therefore, 
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    
1

ˆv y
r

 
   


. (60) 

But because ( ,0)V Y Y   since the firm always has the option not to trade, we must have ( )v y    

for ˆy y . 

Case (iii): Trading is singular in any neighborhood of 0F  . 

In this case, using the results of Step 3, there exists an increasing sequence of points 

 ˆ
ny   such that ˆ( ) 0nv y   and ˆ( ) 0v y

  . Differentiating the HJB equation (34) as in Case 

(ii), but without assuming linearity in the jump region, 

 
                

        

ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ

1

ˆ1

i i i i i

i i i

r v y v y v y v y v y

v y v y v y

             





        
 

Taking the limit as ˆ
iy  , and because lim ( )

y
v y


  converges monotonically (from convexity and 

the fact that ( ,0)V Y  is bounded in (59)), we get 

   lim ( )
1

y
v

r
y



 
  


. 

Again, because the firm has the option not to trade, we must have lim ( )
y

v y


   . 

C.5 Smooth Issuance 

Now that we have established there are no gains from trade, we complete the proof that the smooth 

equilibrium is the unique MPE by showing that the equilibrium trading strategy does not involve 

singularities.   

We begin with a result that bounds the potential gain from a cash flow jump:   

LEMMA A.3 (GAINS FROM CASH FLOW JUMPS). For 1   and any two points y and 1y so 

that 1 by y y  , we have  

           ( ) 1 1v y v y v y y v y y        (61) 

              1 11v y v y v y v y v yy y y y           (62) 
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Proof: In both cases, the first inequality follows from convexity, and the second from the fact that 

v  is monotonically increasing and, from Step 4, bounded by  .    

 Next, suppose there exist a singular component to the optimal trading strategy.  From Step 

3, there exists ŷ  with ˆ( ) 0v y  , and for which trading is smooth (and the HJB holds) in the 

neighborhood just below ŷ .  Evaluating the HJB of  v   at ŷ , 
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 

 
 
 
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where the inequality follows from (61). Now because any equilibrium must be at least as good as 

no trade, 0( ) ( )v y v y y    , and so the above implies 

       ˆ ˆ 0v y    . (63) 

Note from Step 4, ( )v y   , and therefore (63) implies an immediate contradiction if 

ˆ 0   .  We have not restricted the sign of ̂   , however, and so we argue next that at a 

singular point ˆ( )v y   .  Then, combined with Step 4, ˆ( )v y   , and thus (63) cannot be satisfied. 

There are three cases to consider. 

Case (i): The firm immediately issues debt 0F  . 

In this case,       ˆ ˆ ˆv y v y v y y y    for ˆy y . Then, 

   0 ˆ ˆ ˆ ˆ0 ( ) ( ) ( ) ( ) ( ( ) ) ( ) ( )v y v y v y y v y y v y v y y              . 

Letting y  , the above implies ˆ( )v y   . 

Case (ii): Interior jump. 
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 Suppose there is an interior interval 1
ˆ[ , ]y y  on which y  is linear (and strictly convex at 

each end). Taking the difference between the HJB equations at ŷ  and 1y , 
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and using the fact that 1 1
ˆ ˆ ˆ( ) ( ) ( )( )v y v y v y y y    and    1 0 ˆv y v y    , 
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where the second inequality follows from (62).  Dividing both sides by 1
ˆ( )( )r y y   we have 

ˆ( )v y   . 

Case (iii): Isolated singular point. 

 From Step 3, we know that  ˆ 0v y  . Since it is isolated, the HJB holds on both sides of

ŷ . By taking the derivative of the HJB and looking at the right-hand side of ŷ , since   0v y  at

ŷ  , we have  ˆ 0v y
  and hence 
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 
       

 
       
 
 

  

 

which implies that ˆ( )v y   . This completes the proof of uniqueness.    

D. Endogenous Investment 

We begin with a general proof that with a constant marginal tax rate, the no trade value function 

is convex in F .   
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LEMMA A.4 (CONVEXITY OF NO TRADE VALUE FUNCTION WITH INVESTMENT).  Suppose 

the tax rate is constant and let ˆ i

tY  be any after-tax cash flow process given some investment 

policy ( , )t t ti i Y F .  Then the no trade value function is convex in F . 

Proof: Given initial debt levels 0 1( , )F F  with maturity  , define 

       1 0

1 01 1s

s

s

s sF F F Fe eF         . 

Let ˆ (1 )c c      be the total after-tax debt burden per unit debt face value, and let ˆ i

tY  be the 

after-tax cash flow process given investment policy ( , )ti i Y F  so that the firm generates ˆ i

tY dt over 

the period of  ,t t dt . Then the no trade value function, given the optimal investment ( , )i Y F  and 

default ( , )Y F  policies, satisfies 

 

      
    
       
   

1 0
0,

1 0

0,

1 0

0 0,

1

0,

ˆ, 1 max

ˆmax 1

ˆ ˆmax (1

ˆm

ˆ

ˆ

ˆ ˆ)

ˆax

r s t i

s s
i

r s t i

s s s
i

r s t r s ti i

s s s s
i

r s t i

s s
i

V Y F F E e Y F ds

E e Y F F ds

E e Y F ds E e Y F ds

E e Y F ds

c

c

c c

c









  

  

 



  

  

     
  

         

        
      

  
 








 


   

     

0

1

0,

0

ˆ(1 max

, 1

ˆ

, ,

)
r s t i

s s
i

E e Y F ds

V Y F V Y F

c
 



   
  

   

 

 

establishing the convexity of the no trade value function with investment.   

With an endogenous investment choice  0 ,ti    , the firm’s profitability (EBIT) evolves 

as t t tt tdY i Y dt Y dZ  . The firm is generating free cash flows of   ˆ )1 (i

t t ttdt Y dt dtY i Y      

over the period of  ,t t dt , and the normalized no trade value function  v̂   satisfies the HJB, 

           
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  
                . 

Investment is therefore optimal if and only if ˆ ( )v y   . Convexity of the value function together 

with     therefore implies it is optimal to invest whenever y  exceeds some threshold
inv

iy .  

Because at default ˆ ( ) 0inv

bv y    , the option to stop investing is valuable and hence 
inv

b by y . 
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 To characterize v̂ , it is easiest to consider separately the value functions ( , )I NIv v  in the 

investment and no investment regions, respectively. The value function Iv  can be solved for using 

the methods of Section II; now, shareholders have the option to stop investing rather than to 

default.  

Recall 
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value function  NIv   with ( ) 0NI

bv y   (because 
inv

b by y ),  
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where ( )v y  is the value function from Section II without the investment option. Therefore, 

  ( )I

I b

b

y
v y

y
y y




 

   

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 

 
ˆ
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ma
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i i i
y

I

b b

y v y y

y y





 


  . 

Note that 1I   implies ( ) ( ) 0Iv y v y       for
inv

iy y . Because ( ) 0bv y  , we therefore must 

have 
inv

i by y . 

We now solve for NIv  explicitly as follows. The HJB in the no investment region implies  

     +d dNI

d d dv y y A y B y
 

   , 

where 0( )1
d

r

   



 , and 

21 2 1d d

       with 
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2
2 2 2
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0d

r         


  . 

To solve the model, note that smooth-pasting and the optimality condition for investment imply 

   ( ) )(I inv in

i

NI v

iv y v y  and    I inv NI inv

i iv y v y    . 
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Combined with the usual default boundary conditions,  

   ( ) ( ) 0NI inv NI inv

b bv yv y    ,  

we have five equations to solve for five unknowns  , , , ,inv inv

I d d i bA B y y . The solution to this 

system can be characterized as follows. The default boundary 
inv

by  can be solved from the 

following uni-dimensional nonlinear equation: 
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Once we obtain
inv

by , the remaining unknowns are 
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Given the solution for ( , )I NIv v , we can then calculate the equilibrium debt price p yv v   and 

issuance rate 
*

2

c
g

y v





 as in the baseline model. 
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