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Abstract

We demonstrate that increasing trading fees at a decentralized exchange (DEX) can increase
DEX trading volume. This result arises due to the fact that higher DEX fees can endogenously
reduce the price impact of trading at the DEX, thereby reducing the overall DEX trading cost
and driving trading activity to the DEX from competing exchanges. The referenced relationship
between fees and price impacts arises because DEXs employ a mechanical pricing rule whereby
price impacts reduce with the DEX inventory level, and DEXs acquire inventory by offering
DEX fee revenue in exchange for capital from investors used to finance the DEX inventory.
When fees are sufficiently low, increases in the DEX fee level lead to higher DEX fee revenue
and higher DEX investment returns, thereby increasing DEX inventory; in turn, price impacts
decline and so too do overall trading costs, resulting in an increase in DEX trading volume.
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1 Introduction

We provide an economic model of a decentralized exchange (DEX) with the aim of understanding

the role that DEX fees play in the adoption of the DEX as a trading platform. Our main finding is

that an increase in DEX trading fees can increase the equilibrium DEX trading volume and therefore

the use of the DEX. This result is particularly noteworthy because it highlights an important

distinction between a DEX and a centralized exchange (CEX); more precisely, an increase in CEX

trading fees would increase CEX trading costs and thereby unambiguously reduce CEX trading

volume. In contrast, our results highlight that such an unambiguously negative relationship between

trading fees and trading volume does not arise for a DEX.

We derive our main finding, that increases in DEX trading fees can increase DEX trading

volume, by showing that an increase in DEX trading fees can reduce overall DEX trading costs,

thereby driving trading activity from competing exchanges to the DEX. In order to understand

why this result holds, first note that DEXs employ a mechanical pricing rule which imposes an

automatic price impact on any trade with the DEX. Therefore, the cost of trading with the DEX

not only arises from the trading fee, but also from the price impact of the trade. We then show

that due to the form of the mechanical pricing rule, the price impact of DEX trading is strictly

decreasing in the DEX inventory level which is the amount of funds provided by outside investors

that are used as liquidity to facilitate trades. Therefore, whenever increases in the DEX fee level

lead to increases in the DEX inventory then the traders will always be guaranteed a lower price

impact for trading with the DEX. Importantly, DEXs acquire inventory by offering a pro-rata share

of DEX trading fees to the investors who provide such inventory. This implies that, in equilibrium,

an increase in the DEX fee level can result in an increase in the overall DEX fee revenue, increasing

the investor return from financing DEX inventory. Whenever this is the case, an increase in DEX

fees will lead to a higher level of equilibrium DEX inventory, lower price impacts, and therefore

higher equilibrium DEX trading volume.

Formally, we model a one-period setting consisting of two types of agents, investors and traders,

and two types of trading exchanges, a DEX and a CEX. A unit measure of investors arrive at the

beginning of the period, each who possess a unit of capital which they decide to invest either in

the DEX (i.e. to provide inventory) or to invest in an alternative investment opportunity which
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generates an exogenous and known return. Subsequently, liquidity traders with heterogeneous

demand arrive according to a Poisson Process and trade at either the DEX or the CEX, selecting

whichever exchange offers the lower trading cost. Finally, at the end of the period, each investor

who invested in the DEX receives a pro-rata share of all DEX trading fees, whereas each investor

who invested in her alternative investment opportunity receives their known exogenous return.

Our model entails two sources of trading costs: trading fees and price impacts. Trading fees

arise because we assume that each exchange charges an exogenous proportional fee on any volume

traded, whereas price impacts arise whenever the size of a trade affects the execution price of that

trade. To model the CEX we follow Glosten and Milgrom (1985) while abstracting from asymmetric

information, implying that the CEX always offers execution at fair value (i.e., no price impact). In

contrast, as per John et al. (2022a), we assume that the DEX employs a mechanical pricing rule

so that the execution price at the DEX approaches fair value for arbitrarily small trade sizes but

diverges from fair value as the trade size diverges from zero (i.e., non-zero price impact).

Our main result, Proposition 3.1, establishes that an increase in the DEX fee level generates

an increase in the DEX trading volume so long as the initial DEX fee level is sufficiently small.

This result arises because the referenced increase in the DEX fee level reduces the price impact of

DEX trading to such an extent that the overall DEX trading cost falls for the marginal trader who

would be indifferent between the DEX and the CEX in the absence of a DEX fee level increase. In

turn, since traders select between the DEX and the CEX on the basis of whichever provides the

lower trading cost, the referenced increase in the DEX fee level drives traders to the DEX from the

CEX after which the marginal trader will have a strictly higher volume trade demand, implying an

increase in the equilibrium DEX trading volume. We establish the described channel that generates

our main result via Propositions 3.2 and 3.3. More specifically, Proposition 3.2 establishes that an

increase in the DEX fee level reduces trading costs for marginal traders so long as the initial DEX

fee level is sufficiently small, whereas Proposition 3.3 establishes that an increase in the DEX fee

level reduces the price impact of DEX trading so long as the initial DEX fee level is sufficiently

small.

The result of Proposition 3.3, that an increase in the DEX fee level reduces the DEX price impact

when the DEX fee level is initially sufficiently small, arises because the DEX’s mechanical pricing

rule embeds a negative relationship between the DEX price impact and the DEX inventory level and
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the DEX inventory level is increasing in the DEX fee when it is sufficiently small. More explicitly,

the DEX acquires inventory by offering a pro-rata share of DEX trading fee revenues to investors

in exchange for financing the capital which is used as DEX inventory. Therefore, an increase in

the DEX fee level can increase overall DEX fee revenues and thus the return on investment from

financing the DEX inventory. Then, given that investors select the investment that generates the

highest expected return, the referenced increase in the DEX fee level endogenously increases DEX

investment which increases DEX inventory and, as mentioned above, reduces the price impact of

DEX trading. We formally establish the referenced relationships in Propositions 3.4 - 3.6. In

particular, we demonstrate that increases in the DEX investment level monotonically reduce the

price impact of DEX trading in Proposition 3.4, whereas we establish that, for a sufficiently small

initial DEX fee level, an increase in the DEX fee level increases the DEX investment return and

also the DEX investment level in Propositions 3.5 and 3.6.

Our paper contributes to the literature on the economics of blockchain and cryptoassets. John

et al. (2022b) and John et al. (2022a) provide surveys of that literature. Some notable papers ex-

amining the economics of blockchain include Biais et al. (2019), Easley et al. (2019), Makarov and

Schoar (2019), Huberman et al. (2021), Saleh (2021) and Biais et al. (2022). Within the economics

of blockchain literature, our paper specifically contributes to the literature that examines Decen-

tralized Finance (DeFi) applications and DEXs in particular. Prominent papers that examine DeFi

blockchains include Cong et al. (2021), Cong et al. (2022) and Mayer (2022), whereas prominent

papers studying DEXs include Barbon and Ranaldo (2021), Capponi and Jia (2021), Lehar and

Parlour (2021) and Park (2021). Our paper differs from others papers that examine DEXs in that

we focus upon the theoretical implications of varying DEX fee levels.

2 Model

We model a setting in which time is indexed by t P r0, 1s and in which there are two types of

agents: investors and traders. A unit measure of investors arrive at t “ 0 and each possesses a unit

of capital. Upon arrival, each investor decides whether to provide her capital to a decentralized

exchange (DEX) or to invest in an alternative investment instead. Thereafter, from t “ 0 to t “ 1,

traders arrive sequentially and decide whether to trade at the DEX or to trade at a centralized
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exchange (CEX). At t “ 1, all investors realize pay-offs.

2.1 Exchanges

We model two exchanges, one CEX and one DEX, each of which offers trading of a single cryptoasset

against a USD-equivalent token. Hereafter, for exposition, we refer to the single asset as ETH and

to the USD-equivalent token as USD.1

In general, trading ETH entails two costs: a direct cost arising from the price of the ETH

and an indirect cost arising from fees charged on the trading of ETH. More explicitly, we denote

by Pipδq ě 0 the per unit ETH price (in USD) for a trade of δ ETH at exchange i (defined

precisely below) so that a trade of δ P R ETH entails a direct cost of δ ˆ Pipδq USD at exchange

i P tCEX,DEXu. When δ ą 0 the trade corresponds to a buy of |δ| ETH, whereas when δ ă 0

the trade refers to a sell of |δ| ETH; note that a sale of ETH entails a negative direct cost (i.e.,

δ ˆ Pipδq ă 0 whenever δ ă 0) because the sale generates proceeds for the seller rather than an

expense. In addition to the referenced direct cost, trading with an exchange also entails an indirect

cost arising from the trading fee charged by the exchange which is proportional to the size of the

trade. More formally, we denote by V ě 0 the fair value of ETH (in USD) and by fi P r0, f s

the proportional fee charged at exchange i P tCEX,DEXu.2 Then, a trade of δ ETH entails a

proportional fee of fi ˆ |δ| (denominated in ETH) at exchange i so that the overall fee for a trade

of δ ETH equals fi ˆ |δ| ˆ V in USD. Formally, the overall cost of trading δ ETH at exchange i,

which we denote by Ψipδq, is given as follows:

Ψipδq
loomoon

Total Trading Cost

“ Pipδq ˆ δ
loooomoooon

Execution Price Cost

` fi ˆ |δ| ˆ V
loooooomoooooon

Trading Fees Cost

(1)

The key difference between a CEX and a DEX arises in the specification of the execution price

(i.e., Pipδq). Specifically, we assume that market-makers at the CEX price ETH according to

Glosten and Milgrom (1985). Our model abstracts from asymmetric information which thereby

implies that the CEX always prices ETH at its known fair value V :

1Formally, the reader should consider the trading as being ETH against a stablecoin pegged to USD. Such pairs
(e.g., ETH-USDC, ETH-USDT) are offered by both centralized and decentralized exchanges.

2We assume f ď 25% and V ě 1
2
. These assumptions simplify our equilibrium solution but are not necessary.
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PCEXpδq “ V (2)

In contrast, ETH pricing at the DEX is mechanical and determined according to an exogenous

function known as an Automated Market Maker (AMM) function. The referenced mechanical

function determines a price as a function of not only the trade size, δ, but also the DEX inventory

levels for ETH and USD. We assume the DEX employs the most common AMM function used in

practice, the Constant Product Automated Market Maker (CPAMM) function, which implies the

following pricing function (see John et al. 2022a):

PDEXpδq :“ ΞpIUSD, IETH , δq ”

$

’

’

&

’

’

%

IUSD
IETH´δ if δ ă IETH

8 if δ ě IETH

(3)

where IUSD and IETH denote the USD and ETH inventory levels at the DEX respectively and

ΞpIUSD, IETH , δq is the functional form of the CPAMM pricing function. We follow the specification

of UniSwap V2 and require that investors who provide liquidity do so by adding both ETH and

USD to the inventory in a fixed proportion (see John et al. 2022a for details). Moreover, we ensure

the absence of arbitrage across the DEX and CEX by requiring that this fixed proportion is such

that the marginal ETH price at the DEX is initially aligned with the ETH price at the CEX:

lim
δÑ0`

PDEXpδq “ V “ PCEXpδq (4)

2.2 Traders

We assume that there exist two types of traders: liquidity traders and opportunistic traders. Liq-

uidity traders possess an exogenous trading demand and must satisfy their demand either at the

CEX or at the DEX. In contrast, opportunistic traders exploit the trading of liquidity traders. In

more detail, the DEX pricing function (see Equation 3) mechanically implies that the ETH price at

the DEX moves in the direction of a trade (i.e., a buy increases ETH prices, whereas a sell decreases

ETH prices) so that, even though DEX and CEX marginal prices are initially aligned, a liquidity

trade in one direction produces an opportunity to trade in the opposite direction at a price which

is favorable relative to fair value. We assume that such opportunities are seized upon immediately
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so that any movement in the marginal ETH price at the DEX away from fair value is subsequently

traded away by traders who wait opportunistically for such price movements before executing their

trade to benefit from lower trading costs. We refer to such traders that seize favorable trading

opportunities as opportunistic traders, and note that such traders can be interpreted as a type of

liquidity trader that is sufficiently time insensitive so that they can wait for the price to move in a

favorable direction before executing a trade without incurring a large opportunity cost.

Formally, we assume liquidity traders arrive randomly over time t P r0, 1s according to a Poisson

Process with unit intensity. We index liquidity traders by j P t1, ..., Nu where N „ Poissonp1q

represents the random number of arriving liquidity traders. Liquidity Trader j possesses trading

demand δj „ U r´1, 1s where δj ą 0 represents the need to buy |δj | ETH, while δj ă 0 represents

the need to sell |δj | ETH.

Each liquidity trader decides whether to trade at the DEX or at the CEX by selecting the

exchange that minimizes her cost of trading as follows:

ipjq “ argmin
iPtCEX,DEXu

Ψipδjq (5)

In turn, we define D as the random set of liquidity traders who optimally trade at the DEX,

stated explicitly as follows:

D “ tj : ipjq “ DEXu (6)

As discussed, we assume that opportunistic traders arrive immediately after liquidity traders to

seize favorable trading opportunities until their trading realigns the marginal DEX price with the

CEX price which is equal to the ETH fair value. Due to the mechanical pricing rule at a DEX, this

re-alignment occurs only after the DEX has experienced trading of an equal magnitude but opposite

direction as the liquidity trade that generated the opportunity. Whether such trading occurs

across multiple opportunistic trades or a single opportunistic trade is without loss of generality, so

we assume that the re-alignment occurs through a single trade for exposition; more formally, we

assume that every liquidity trade of size δj made at the DEX is instantly reversed by an equivalent

opportunistic trade of size ´δj .
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2.3 Investors

We assume that there exists a unit measure of investors indexed by k P r0, 1s. Each Investor

k possesses a unit of capital and may invest that capital in either the DEX or an alternative

investment. We assume that the alternative investment for Investor k provides her a net expected

return of ρk „ Gr0, 1s where Gpρq “ ρ
1
θ with θ ą 1 denotes the cumulative distribution function of

investor returns. In contrast, investing in the DEX entitles an investor to an endogenous expected

return equal to the pro-rata share of fees generated by the DEX. We denote the expected return

from investing in the DEX by rDEX , which is given explicitly as follows:3

rDEX “
Total Expected Fees

Total Invested Capital
“

2 ˆ Er
ř

j:jPD

fDEX ˆ |δj | ˆ V s

I
(7)

where I corresponds to the total DEX investment (in USD) and Er
ř

j:jPD

fDEX ˆ|δj |ˆV s corresponds

to the expected fee revenue from liquidity traders. The multiplicative factor of 2 in the numerator

of Equation (7) reflects the fact that any fee paid by a liquidity trader at the DEX is duplicated

by fees from opportunistic trading that returns the DEX price back to its fundamental value; all

our results hold even without this factor of 2.

We assume that each investor is risk neutral and therefore invests in the investment opportunity

that provides her the highest expected return. Consequently, Investor k invests in the DEX if and

only if rDEX ě ρk. Therefore, the equilibrium DEX investment must satisfy the following equation:

I “ GprDEXq “ prDEXq
1
θ (8)

2.4 Model Solution

Formally, an equilibrium is a DEX investment return r‹
DEX , a DEX investment level I‹, a DEX

USD inventory level I‹
USD, a DEX ETH inventory level I‹

ETH , a DEX pricing function P ‹
DEXpδq :“

ΞpI‹
USD, I

‹
ETH , δq, and a set of traders that trade at the DEX D‹ such that each trader optimally

selects the exchange at which she trades and each investor invests in the DEX iff it is optimal.

More explicitly, an equilibrium is defined by the requirement that Equations (1) - (8) must all hold

3We follow prior literature (e.g., Capponi and Jia 2021 and Lehar and Parlour 2021) and assume that DEX fee
revenues are held in a separate account than DEX inventory, being distributed directly from that account to investors.
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simultaneously with the equilibrium solutions replacing the associated endogenous object in each

equation.

Our main focus is on examining the implications of the DEX fee level, fDEX , upon equilibrium

objects. As such, we explicitly state the dependence of all equilibrium objects on the DEX fee level.

Moreover, we omit discussion regarding the trivial case of fDEX ą fCEX and restrict ourselves

to fDEX P r0, fCEXs given that fDEX ą fCEX trivially implies that DEX trading costs exceed

CEX trading costs for all traders so that no trading occurs at the DEX in equilibrium unless

fDEX ď fCEX .

Turning to our equilibrium solution, we solve for a symmetric equilibrium in that we require

that all liquidity traders of the same size must trade at the same exchange. Explicitly, we require

that the set of liquidity traders trading at the DEX, D‹, is of the following form:

D‹ “ tj : δj P ∆‹u (9)

where ∆‹ Ď r´1, 1s denotes the range of trade sizes such that a liquidity trader trades at the DEX

with r´1, 1s being the support for the distribution that generates trade sizes.

As an intermediate step to solving for an equilibrium, we begin with the following result that

derives the optimal behaviour of the liquidity traders while taking as given the investment level of

the DEX, I‹pfDEXq:

Proposition 2.1. Optimal Trading Strategy

Denote by I‹pfDEXq the equilibrium DEX investment level. The optimal strategy for Liquidity

Trader j is:

i‹pjq “

$

’

’

&

’

’

%

DEX if δj P ∆‹pfDEXq

CEX Otherwise

(10)

where ∆‹pfDEXq :“ rδ‹
´pfDEXq, δ‹

`pfDEXqs with the bounds δ‹
´pfDEXq ă 0 and δ‹

`pfDEXq ą 0

given explicitly as:

δ‹
´pfDEXq “ ´

pfCEX ´ fDEXq

1 ´ pfCEX ´ fDEXq
¨
I‹pfDEXq

2V
(11)
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and

δ‹
`pfDEXq “

fCEX ´ fDEX

1 ` pfCEX ´ fDEXq
¨
I‹pfDEXq

2V
(12)

The endogenous quantities given by Equations (11) and (12), δ‹
`pfDEXq and δ‹

´pfDEXq, deter-

mine the equilibrium buy and sell cut-off sizes respectively in that traders with an ETH buy order

(i.e., δ ą 0) trade at the DEX if and only if δ ď δ‹
`pfDEXq, whereas traders with an ETH sell order

(i.e., δ ă 0) trade at the DEX if and only if δ ě δ‹
´pfDEXq. This derived structure, characterized by

cut-offs, implies that traders with larger trade sizes (in absolute magnitude) prefer trading at the

CEX relative to the DEX, which is a necessary feature of any symmetric equilibrium. In particular,

the DEX ETH price is increasing in trade size (i.e., dPDEXpδq

dδ ą 0), whereas the CEX ETH price is

always equal to fair value (i.e., PCEXpδq “ V and thus dPCEXpδq

dδ “ 0) so that the DEX entails an

increasing average cost of trading (i.e., ΨDEXpδq

|δ|
increases in |δ|) while the CEX entails a constant

average cost of trading (i.e., ΨCEXpδq

|δ|
is constant in |δ|). Hence, the DEX necessarily will only be

optimal for smaller trade sizes (i.e., ∆‹pfDEXq must be of the form rδ‹
´pfDEXq, δ‹

`pfDEXqs).

Our next result builds upon Proposition 2.1, deriving a unique equilibrium:4

Proposition 2.2. Unique Equilibrium

There exists a unique non-trivial symmetric equilibrium which is given as follows:

• Equilibrium Investment Return at the DEX

The equilibrium expected return from investing in the DEX is:

r‹
DEXpfDEXq “

ˆ

fDEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
θ

θ´1

(13)

• Equilibrium Investment Level at the DEX

4As a technical aside, Proposition 2.2 establishes a unique non-trivial equilibrium where a non-trivial equilibrium
is defined as an equilibrium that features non-zero DEX trading volume. Note that there always exists a trivial
equilibrium with zero DEX trading volume. In particular, if the DEX were to possess no investment, then trading costs
would be infinite, no trading would occur at the DEX, and therefore investment returns would be zero, supporting
the optimality of zero investment and ensuring that such a trivial equilibrium always exists. We omit discussion
regarding this trivial equilibrium because its properties are straight-forward and well-known in the more general
context of settings with positive network effects.
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The equilibrium DEX investment level is:

I‹pfDEXq “

ˆ

fDEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
1

θ´1

(14)

• Equilibrium Inventory Levels at DEX

Equilibrium inventory of ETH and USD are functions of DEX investment as follows:

I‹
USDpIq “

I

2
, I‹

ETHpIq “
I

2V
(15)

so that applying the equilibrium investment level from Equation (14) to Equation (15) yields

the explicit equilibrium inventory solutions:

I‹
ETHpfDEXq “

1

2V

ˆ

fDEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
1

θ´1

(16)

and

I‹
USDpfDEXq “

1

2

ˆ

fDEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
1

θ´1

(17)

• Equilibrium Pricing Function at DEX

The equilibrium DEX pricing function depends upon DEX investment as follows:

PDEXpI, δq “ ΞpI‹
USDpIq, I‹

ETHpIq, δq (18)

where Ξp¨, ¨, ¨q, I‹
USDpIq and I‹

ETHpIq are given by Equations (3) and (15).

In turn, applying the equilibrium investment level from Equation (14) to Equation (18) yields

the equilibrium DEX pricing function:

P ‹
DEXpfDEX , δq :“ PDEXpI‹pfDEXq, δq “ Ξp

1

2
I‹pfDEXq,

1

2V
I‹pfDEXq, δq (19)

Since our primary object of interest is the equilibrium trading volume, we provide the following

corollary which derives the equilibrium trading volume, T ‹pfDEXq:

10



Corollary 2.3. Equilibrium Trading Volume

The equilibrium expected trading volume pin USDq, T ‹pfDEXq, is given as follows:

T ‹pfDEXq “
V

2
¨ pδ‹

`pfDEXq2 ` δ‹
´pfDEXq2q (20)

with δ‹
´pfDEXq and δ‹

`pfDEXq being given in Equations (11) and (12) respectively.

3 Results

We begin with our main result, Proposition 3.1, which establishes that increases in fees charged to

traders at the DEX can increase the equilibrium DEX trading volume:

Proposition 3.1. DEX Trading Volume Can Increase in DEX fees

The equilibrium expected trading volume, T ‹pfDEXq, first increases and then decreases in the DEX

fee level, fDEX . More formally, there exists f̃ P p0, fCEXq such that dT ‹

dfDEX
ą 0 for fDEX P p0, f̃q,

whereas dT ‹

dfDEX
ă 0 for fDEX P pf̃ , fCEXq.

This result is notable because it highlights a significant economic distinction between a DEX

and a CEX. In more detail, an increase in trading fees at a CEX would unambiguously reduce

trading volume at that CEX, and Proposition 3.1 thereby distinguishes a DEX from a CEX by

demonstrating that the referenced unambiguous negative relationship between trading fees and

trading volume does not apply for a DEX. Explicitly, Proposition 3.1 establishes that there exists a

non-zero fee level, f̃ , such that increases in the DEX fee level up to f̃ will always lead to increases

in the DEX trading volume.

Proposition 3.1 arises because an increase in the DEX fee level can decrease the overall cost

of trading at the DEX. In turn, since a trader optimally trades at the exchange that charges her

the lowest trading cost (see Equation 5), an increase in the DEX fee level can generate increases

in trading volume as per Proposition 3.1 specifically because such DEX fee increases reduce DEX

trading costs. We formalize this point with our next result:

Proposition 3.2. DEX Trading Costs Can Decrease in DEX Fees

Let Ψ‹
DEXpfDEX , δq denote the equilibrium DEX trading cost for a trader with trade size δ, given
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explicitly as:

Ψ‹
DEXpfDEX , δq “ P ‹

DEXpfDEX , δq ˆ δ ` fDEX ˆ |δ| ˆ V (21)

where P ‹
DEXpfDEX , δq is given by Equation (19).

Then, the following results hold:

1.q There exists f̂` P p0, fCEXq such that cost of trading with the DEX for the marginal buy

trader pi.e., the trader with size δ‹
`pfDEXq ą 0q is decreasing in fDEX when fDEX P p0, f̂`q and

increasing in fDEX when fDEX P pf̂`, fCEXq. In particular,
BΨ‹

DEX
BfDEX

|pfDEX ,δq“pfDEX ,δ‹
`pfDEXqq ă 0

when fDEX P p0, f̂`q and
BΨ‹

DEX
BfDEX

|pfDEX ,δq“pfDEX ,δ‹
`pfDEXqq ą 0 when fDEX P pf̂`, fCEXq.

2.q There exists f̂´ P p0, fCEXq such that cost of trading with the DEX for the marginal sell

trader pi.e., the trader with size δ‹
´pfDEXq ă 0q is decreasing in fDEX when fDEX P p0, f̂´q and

increasing in fDEX when fDEX P pf̂´, fCEXq. In particular,
BΨ‹

DEX
BfDEX

|pfDEX ,δq“pfDEX ,δ‹
´pfDEXqq ă 0

when fDEX P p0, f̂´q and
BΨ‹

DEX
BfDEX

|pfDEX ,δq“pfDEX ,δ‹
´pfDEXqq ą 0 when fDEX P pf̂´, fCEXq.

Proposition 3.2 establishes that an increase in the DEX fee level can reduce the overall DEX

trading cost for a trader who would have been indifferent between trading at the DEX and trading

at the CEX in the absence of such a DEX fee level increase. This result focuses upon traders who

would have been indifferent between the DEX and the CEX in the absence of the DEX fee level

change because changes in the trading costs of such marginal traders directly imply changes in our

primary object of interest, the DEX trading volume. More specifically, if the DEX trading cost falls

for a trader who would have been indifferent between the DEX and the CEX in the absence of the

DEX fee level increase, then that trader strictly prefers to trade at the DEX as opposed to the CEX

after the DEX fee level increases. When this is the case, the trade size of the marginal trader (in

absolute magnitude) must increase in response to an increase in DEX fees. In turn, an increase in

the DEX fee level can generate an increase in DEX trading volume as per Proposition 3.1 precisely

because the increase in the DEX fee level decreases DEX trading costs as per Proposition 3.2.

To understand Proposition 3.2, we reiterate that fees are not the only cost associated with

trading at a DEX. In particular, Equation (1) highlights that the overall trading cost depends not

only on the fee fDEX but also on the price at which the cryptoasset is being traded P ‹
DEXpfDEX , δq.

Therefore, if an increase in the DEX fee level leads to a lower price impact (i.e., if
BP ‹

DEX
Bδ decreases

in fDEX), then an increase in the DEX fee level will reduce the overall DEX trading cost provided

12



that the cost of paying a higher fee can be offset by the decrease in the trading cost due to trading

at a price that is more favorable (i.e., a lower price impact). Our next result formally establishes

such a channel whereby an increase in the DEX fee level reduces the DEX price impact so long as

DEX fees are initially not too large:

Proposition 3.3. DEX Price Impacts Can Decrease in DEX fees

The equilibrium price impact at the DEX first decreases and then increases in the DEX fee level.

More formally, letting

λ‹pfDEX , δq “
BP ‹

DEXpfDEX , δq

Bδ
(22)

denote the equilibrium price impact at the DEX. Then, there exists f̃ P p0, fCEXq such that Bλ‹

BfDEX
ă

0 for fDEX P p0, f̃q and Bλ‹

BfDEX
ą 0 for fDEX P pf̃ , fCEXq. This f̃ applies uniformly for all feasible

trade sizes pi.e., for δ ă I‹
ETHq.

Proposition 3.3 defines equilibrium DEX price impact as the sensitivity of the DEX price to

trade size (see Equation 22), and then establishes that the DEX price impact is decreasing in the

DEX fee level whenever the initial DEX fee level is sufficiently small (i.e., Bλ‹

BfDEX
ă 0 for f P p0, f̃q).

The relationship between DEX fee levels and price impact is important because it affects the

overall DEX trading cost which in turn affects our main object of interest, DEX trading volume.

In particular, DEX trading prices mechanically move in the direction of a trade (see Equation 3)

so that a larger price impact (i.e., a larger λ‹) entails that a given buy order (i.e., δ ą 0) would

involve a higher price and also entails that a given sell order (i.e., δ ă 0) would involve a lower

price. As the trading cost is increasing in the price for a buy order but decreasing in the price

for a sell order (see Equation 1), a larger price impact entails a higher cost for all traders. Thus,

the result of Proposition 3.3, that price impacts decline for DEX fee levels up to a point (i.e.,

Bλ‹

BfDEX
ă 0 for f P p0, f̃q), clarifies that increases in the DEX fee level can reduce the execution

price component of the DEX trading cost. This is precisely the mechanism whereby increases in

the DEX fee level can reduce overall DEX trading costs (Proposition 3.2) and also increase DEX

trading volume (Proposition 3.1).

The relationship that Proposition 3.3 establishes between the DEX fee level and the DEX

price impact arises due to two intermediate relationships. First, the mechanical pricing rule of

a DEX (i.e., Equation 3) implies that an increase in total DEX investment always reduces DEX

13



price impacts. Second, all DEX fee revenues are paid to investors which creates the incentive for

investors to provide DEX investment (see Equation 7) so that increases in the DEX fee level can

lead to increases in overall DEX investment. Then, putting the two aforementioned relationships

together, an increase in the DEX fee level can generate increases in total DEX investment which,

in turn, reduces DEX price impacts (Proposition 3.3) and therefore promotes higher DEX trading

volume (Proposition 3.1). We proceed by formalizing the referenced intermediate relationships with

Proposition 3.4 demonstrating the first relationship that increases in DEX investment decrease DEX

price impacts, and Propositions 3.5 - 3.6 establishing the second relationship that increases in the

DEX fee level can increase DEX investment.

Proposition 3.4. DEX Price Impacts Always Decrease in DEX Investment

The price impact is monotonically decreasing in the DEX investment level for all feasible trade

sizes. More explicitly, BλpI,δq

BI ă 0 for all investment levels, I, and for all feasible trade sizes,

δ ă I‹
ETHpIq “ I

2V , where λpI, δq denotes the price impact given an arbitrary investment level,

I ą 0:

λpI, δq “
BPDEXpI, δq

Bδ

with PDEXpI, δq being defined in Equation (18).

Proposition 3.4 establishes that an increase in the DEX investment level unambiguously reduces

the DEX price impact (i.e., Bλ
BI ă 0). This result arises due to the mechanical pricing function of the

DEX (see Equation 3). To clarify this point, note that PDEXpI, δq, which is defined in Equation

(18), can be derived explicitly from Equations (3) and (15) as follows:

PDEXpI, δq “ ΞpI‹
USDpIq, I‹

ETHpIq, δq “
I ¨ V

I ´ 2 ¨ V ¨ δ
(23)

In turn, the price impact, λpI, δq, as a function of DEX investment, I, and trade size, δ, is given

as follows:

λpI, δq “
BPDEXpI, δq

Bδ
“

2 ¨ I ¨ V 2

pI ´ 2 ¨ V ¨ δq2
(24)

so that direct verification reveals that the DEX price impact monotonically decreases in in-
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vestment (i.e., Bλ
BI ă 0) whenever the trade size is feasible (i.e., when δ ă I‹

ETHpIq “ I
2V ) as per

Proposition 3.4. We ignore δ ą I‹
ETHpIq “ I

2V and label such trade sizes as infeasible because in

such a case there is insufficient inventory for the trade size and the price is consequently infinite

(see Equation 3), which ensures that the DEX would not allow a trade of such size.

Having established that increases in DEX investment decrease DEX price impacts (Proposition

3.4), we turn to demonstrating that increases in the DEX fee level can increase DEX investment:

Proposition 3.5. DEX Investment Can Increase in DEX Fee Levels

The equilibrium DEX investment, I‹pfDEXq, first increases and then decreases in the DEX fee

level, fDEX . More formally, there exists f̃ P p0, fCEXq such that dI‹

dfDEX
ą 0 for fDEX P p0, f̃q,

whereas dI‹

dfDEX
ă 0 for fDEX P pf̃ , fCEXq with I‹pfDEXq being given in Equation (14).

Proposition 3.5 establishes that increases in the DEX fee level can increase DEX investment up

to some fee level f̃ (i.e., dI‹

dfDEX
ą 0 for fDEX P p0, f̃q). This result arises because DEXs acquire

investment by offering investors a pro-rata share of all trading fees from the DEX in exchange

for those investments (see Equation 7); in particular, for f ă f̃ , an increase in the DEX fee level

increases DEX investment by increasing the DEX investment return through an increase in the

overall trading fee revenue generated by the DEX. We formalize the point that such increases in

the DEX fee level generate an increase in the DEX investment return with our final result:

Proposition 3.6. DEX Investment Returns Can Increase in DEX Fee Levels

The equilibrium DEX investment return, r‹
DEXpfDEXq, first increases and then decreases in the

DEX fee level. More formally, there exists f̃ P p0, fCEXq such that
dr‹

DEX
dfDEX

ą 0 for fDEX P p0, f̃q,

whereas
dr‹

DEX
dfDEX

ă 0 for fDEX P pf̃ , fCEXq.

Collectively, our results establish an important distinguishing feature between a DEX and a

CEX; more precisely, we demonstrate that an increase in fees at a DEX can increase trading

volume at the DEX, whereas an increase in fees at a CEX would necessarily reduce trading volume

at the CEX. Our main result, Proposition 3.1, establishes this finding, whereas our remaining

results clarify the associated economic channel. In more detail, an increase in the DEX fee level

can increase DEX investment returns (Proposition 3.6) and thereby DEX investment (Proposition

3.5), which generates a reduction in the DEX price impact (Propositions 3.3 and 3.4) and thereby
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a reduction in DEX trading costs (Proposition 3.2). In turn, the reduction in DEX trading costs

drives trading activity from the CEX to the DEX, leading to an increase in equilibrium DEX

trading volume as per Proposition 3.1.

4 Conclusion

We provide an economic model of a DEX. Our model is specifically aimed at clarifying the

implications of varying DEX fee levels upon equilibrium quantities such as DEX trading volume

and DEX trading costs. Of particular note, we demonstrate that increases in DEX fee levels can

reduce DEX trading costs and thereby increase DEX trading volume. The referenced result is

especially notable because it does not arise for a CEX and thereby highlights a novel economic

channel which distinguishes DEXs from traditional exchanges.
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Appendices

A Supplementary Results

Lemma A.1.

Let δ : p0, fCEXq ÞÑ R denote any non-zero continuously differentiable function that satisfies:

Ψ‹
DEXpfDEX , δpfDEXqq “ β ˆ δpfDEXq (A.1)

for all fDEX P p0, fCEXq and for any β P R where Ψ‹
DEX refers to Ψ‹

DEXpfDEX , δq which is given

by Equation (21). Then, the following result holds:

BΨ‹
DEX

BfDEX
“ ´δpfDEXq ˆ

BP ‹
DEXpfDEX , δq

Bδ
ˆ

dδ

dfDEX

for all fDEX P p0, fCEXq where Ψ‹
DEX and P ‹

DEX are each evaluated at pfDEX , δpfDEXqq.

Proof. We begin by taking the total derivative in Equation (A.1) with respect to fDEX which

yields:

BΨ‹
DEX

BfDEX
`

BΨ‹
DEX

Bδ
ˆ

dδ

dfDEX
“ β ˆ

dδ

dfDEX
(A.2)
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and further implies:

BΨ‹
DEX

BfDEX
“

´

β ´
BΨ‹

DEX

Bδ

¯

ˆ
dδ

dfDEX
(A.3)

By explicit calculation, Equation (21) yields:

BΨ‹
DEX

Bδ
“

´

P ‹
DEXpfDEX , δpfDEXqq ` fDEX ˆ V

¯

` δpfDEXq ˆ
BP ‹

DEX

Bδ
(A.4)

whereas Equation (A.1) is equivalent to:

P ‹
DEXpfDEX , δpfDEXqq ` fDEX ˆ V “ β (A.5)

so that applying Equation (A.5) to Equation (A.4) and then applying the result to Equation (A.3)

yields:

BΨ‹
DEX

BfDEX
“ ´δpfDEXq ˆ

BP ‹
DEX

Bδ
ˆ

dδ

dfDEX
(A.6)

thereby completing the proof.

B Proofs

B.1 Proof of Proposition 2.1

A liquidity trader with trade size δ P R trades with the DEX if and only if the cost of doing so is

less than the cost of trading with the CEX. This is the case if and only if

P ‹
DEXpδq ¨ δ ` fDEX ¨ |δ| ¨ V ď V ¨ δ ` fCEX ¨ |δ| ¨ V

Therefore, δ‹
´pfDEXq ă 0 is the trade size of a liquidity trader that wishes to sell ETH and is

indifferent between trading at the DEX and CEX, given by:

IUSD

IETH ´ δ‹
´pfDEXq

¨ δ‹
´pfDEXq ´ fDEX ¨ δ‹

´pfDEXq ¨ V “ V ¨ δ‹
´pfDEXq ´ fCEX ¨ δ‹

´pfDEXq ¨ V

which after solving for δ‹
´pfDEXq using the fact that I‹

USD “ V ¨ I‹
ETH and I‹

ETH “
I‹pfDEXq

2¨V yields

our expression for δ‹
´pfDEXq.
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Similarly, δ‹
`pfDEXq ą 0 is the trade size of a liquidity trader that wishes to buy ETH and is

indifferent between trading at the DEX and CEX, given by:

IUSD

IETH ´ δ‹
`pfDEXq

¨ δ‹
`pfDEXq ` fDEX ¨ δ‹

`pfDEXq ¨ V “ V ¨ δ‹
`pfDEXq ` fCEX ¨ δ‹

`pfDEXq ¨ V

which again after substituting and rearranging and using the fact that I‹
USD “ V ¨ I‹

ETH and

I‹
ETH “

I‹pfDEXq

2¨V yields our expression for δ‹
`pfDEXq.

B.2 Proof of Proposition 2.2

Proof. To solve for the equilibrium return r‹
DEXpfDEXq we start by rearranging (7) to obtain

rDEX “
2 ¨ V ¨ fDEX

GprDEXq
¨ Er

ÿ

jPD
|δj |s

Then, noting that D “ tj : δj P rδ̄´, δ̄`su and N „ Poissonp1q implies that the expected number

of trades are Prpδj P rδ‹
´, δ

‹
`sq and therefore

Er
ÿ

jPD
|δj |s “ Prpδj P rδ‹

´, δ
‹
`sq ¨ Er|δj | | δj P rδ‹

´, δ
‹
`ss “

pδ‹
`q2 ` pδ‹

´q2

4

Therefore, using the fact that

pδ‹
`q2 ` pδ‹

´q2 “ p
pfCEX ´ fDEXq2

p1 ` pfCEX ´ fDEXqq2
`

pfCEX ´ fDEXq2

p1 ´ pfCEX ´ fDEXqq2
q ¨ p

I‹pfDEXq

2V
q2

then implies

rDEX “
2 ¨ V ¨ fDEX

GprDEXq
¨
1

4
p

pfCEX ´ fDEXq2

p1 ` pfCEX ´ fDEXqq2
`

pfCEX ´ fDEXq2

p1 ´ pfCEX ´ fDEXqq2
q ¨ p

I‹pfDEXq

2V
q2

and using I‹pfDEXq “ Gpr‹
DEXq “ pr‹

DEXq
1
θ , then after rearranging we obtain

r‹
DEX “

ˆ

fDEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
θ

θ´1

20



Finally, substituting r‹
DEX into I‹pfDEXq “ pr‹

DEXq
1
θ yields

I‹pfDEXq “

ˆ

fDEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
1

θ´1

Finally, note that (4) implies that inventory must be deposited in the ratio of 1 USD per 1
V

ETH and given that each investor is born with a unit of USD capital then they must split that by

providing 1
2 USD and 1

V ETH to the DEX. Therefore, I‹
ETH “ 1

2V I‹pfDEXq and I‹
USD

1
2I

‹pfDEXq.

B.3 Proof of Proposition 3.1

Proof. First note that

T ‹pfDEXq “
Gpr‹

DEXq

fDEX
¨ r‹

DEX “

ˆ

fα
DEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

8V pp1 ´ pfCEX ´ fDEXq2q2

˙
θ`1
θ´1

where α “ 2
θ`1 ă 1. Next, denote by gpfDEXq the following function

gpfDEXq :“
fα
DEXpfCEX ´ fDEXq2p1 ` pfCEX ´ fDEXq2q

pp1 ´ pfCEX ´ fDEXq2q2

Note that gpfDEXq ą 0 for fDEX P p0, fCEXq and gp0q “ gpfCEXq “ 0. Therefore, proving the

result only requires showing that gpfDEXq has a unique local maximum on r0, fCEXs. In order to

do so, we will show that logpgpfDEXqq has a unique local maximum on p0, fCEXq which implies

that gpfDEXq must have a unique local maximum on p0, fCEXq. In particular, we will do this by

showing that logpgpfDEXqq is strictly concave (i.e. B2

Bf2
DEX

logpgpfDEXqq ă 0). First, note that

logpgpfDEXqq “ αlogpfDEXq`2logpfCEX´fDEXq`logp1`pfCEX´fDEXq2q´2logp1´pfCEX´fDEXq2q

so that

B

BfDEX
logpgpfDEXqq “

α

fDEX
´

2

fCEX ´ fDEX
´

2pfCEX ´ fDEXq

1 ` pfCEX ´ fDEXq2
´

4pfCEX ´ fDEXq

1 ´ pfCEX ´ fDEXq2
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and therefore

B2

Bf2
DEX

logpgpfDEXqq “ ´
α

f2
DEX

´
2

pfCEX ´ fDEXq2
`
2p1 ´ pfCEX ´ fDEXq2q

p1 ` pfCEX ´ fDEXq2q2
`
4p1 ` pfCEX ´ fDEXq2q

p1 ´ pfCEX ´ fDEXq2q2

Finally, note that ´ α
f2
DEX

ď 0 and pfCEX ´ fDEXq2 ď f
2
, thereby implying:

B2

Bf2
DEX

logpgpfDEXqq ď sup
z:zPr0,f

2
s

´

´
2

z
`

2p1 ´ zq

p1 ` zq2
`

4p1 ` zq

p1 ´ zq2

¯

ă 0 (A.7)

where the last inequality follows from direct verification by using f “ 25%.

B.4 Proof of Proposition 3.2

Proof. In order to prove this result, we will prove that both δ‹
`pfDEXq and ´δ‹

´pfDEXq each have

a unique local maximum. In order to do so, we will prove that logpδ‹
`pfDEXqq and logp´δ‹

´pfDEXqq

are concave and therefore each have a unique local maximum, implying that δ‹
`pfDEXq and ´δ‹

´pfDEXq

each have a unique local maximum. In order to do so, first note that

logpδ‹
`pfDEXqq “ logp

fCEX ´ fDEX

1 ` fCEX ´ fDEX
q ` logpI‹pfDEXqq ´ logp2V q

and

logp´δ‹
´pfDEXqq “ logp

fCEX ´ fDEX

1 ´ pfCEX ´ fDEXq
q ` logpI‹pfDEXqq ´ logp2V q

Next, we note that

B

BfDEX
logp

fCEX ´ fDEX

1 ` fCEX ´ fDEX
q “

´1

fCEX ´ fDEX
`

1

1 ` fCEX ´ fDEX

B2

Bf2
DEX

logp
fCEX ´ fDEX

1 ` fCEX ´ fDEX
q “

´1

pfCEX ´ fDEXq2
`

1

p1 ` fCEX ´ fDEXq2
ă 0

B

BfDEX
logp

fCEX ´ fDEX

1 ´ pfCEX ´ fDEXq
q “

´1

fCEX ´ fDEX
´

1

1 ´ pfCEX ´ fDEXq

B2

Bf2
DEX

logp
fCEX ´ fDEX

1 ´ pfCEX ´ fDEXq
q “

´1

pfCEX ´ fDEXq2
`

1

p1 ´ pfCEX ´ fDEXqq2
ă 0
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where the last inequality holds whenever fCEX ´fDEX ă .5 which is guaranteed to hold given that

we have assumed that fCEX ă f̄ ď .25.

Next, using (14) we can see that

B

BfDEX
logpI‹pfDEXqq “ p

1

θ ´ 1
qp

1

fDEX
´

2

fCEX ´ fDEX
´

2pfCEX ´ fDEXq

1 ` pfCEX ´ fDEXq2
´

4pfCEX ´ fDEXq

1 ´ pfCEX ´ fDEXq2
q

and therefore

B2

Bf2
DEX

logpI‹pfDEXqq “ p
1

θ ´ 1
qp´

1

f2
DEX

´
2

pfCEX ´ fDEXq2
`
2p1 ´ pfCEX ´ fDEXq2q

p1 ` pfCEX ´ fDEXq2q2
`
4p1 ` pfCEX ´ fDEXq2q

p1 ´ pfCEX ´ fDEXq2q2
q

Finally, ote that ´ 1
f2
DEX

ď 0 and pfCEX ´ fDEXq2 ď f
2
, thereby implying:

B2

Bf2
DEX

logpI‹pfDEXqq ď
1

θ ´ 1
sup

z:zPr0,f
2

s

´

´
2

z
`

2p1 ´ zq

p1 ` zq2
`

4p1 ` zq

p1 ´ zq2

¯

ă 0

where the last inequality follows from direct verification by using f “ 25%.

What we have shown is that there exists f̃` and f̃´ such that δ‹
`pfDEXq is increasing in fDEX

for fDEX P r0, f̃`q and decreasing in fDEX for fDEX P pf̃`, fCEXs while δ‹
´pfCEXq is decreasing

for fDEX P r0, f̃´q and increasing for fDEX P pf̃´, fCEXs.

In order to conclude the proof, we apply Lemma A.1 to δ‹
`pfq for β “ V ˆ p1 ` fCEXq and

apply Lemma A.1 to δ‹
´pfq for β “ V ˆ p1 ´ fCEXq which yields:

BΨ‹
DEX

BfDEX
“ ´δ‹

`pfDEXq
BP ‹

DEXpfDEX , δq

Bδ

dδ‹
`

dfDEX
,

BΨ‹
DEX

BfDEX
“ ´δ‹

´pfDEXq
BP ‹

DEXpfDEX , δq

Bδ

dδ‹
´

dfDEX

Finally, we note that
BP ‹

DEXpfDEX ,δq

Bδ ą 0 coupled with δ‹
`pfDEXq ą 0 when combined with the

aforementioned result on the sign of
dδ‹

`

dfDEX
implies that

BΨ‹
DEX

BfDEX
|pfDEX ,δq“pfDEX ,δ‹

`pfDEXqq ă 0 for

all fDEX P p0, f̂`q and
BΨ‹

DEX
BfDEX

|pfDEX ,δq“pfDEX ,δ‹
`pfDEXqq ą 0 for all fDEX P pf̂`, fCEXq. Similarly,

BP ‹
DEXpfDEX ,δq

Bδ ą 0 coupled with δ‹
´pfDEXq ă 0 when combined with the aforementioned result

on the sign of
dδ‹

`

dfDEX
implies that

BΨ‹
DEX

BfDEX
|pfDEX ,δq“pfDEX ,δ‹

´pfDEXqq ă 0 for all fDEX P p0, f̂´q and

BΨ‹
DEX

BfDEX
|pfDEX ,δq“pfDEX ,δ‹

´pfDEXqq ą 0 for all fDEX P pf̂´, fCEXq.
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B.5 Proof of Proposition 3.3

Proof. We first note that

P ‹
DEXpδq “

V I‹pfq

I‹pfq ´ 2V δ

and therefore

λ‹pf, δq “ 2V 2 ¨
I‹pfq

pI‹pfq ´ 2V δq2

Next, note that

d

df
λ‹pf, δq “ ´2V 2 ¨

I‹pfq ` 2V δ

pI‹pfq ´ 2V δq3
¨

BI‹pfq

Bf

Finally, we note that I‹pfq`2V δ
pI‹pfq´2V δq3

ą 0 for all feasible trades as δ ă I‹
ETH implies 2V δ ă I‹pfDEXq.

Further, we have shown in the proof of Proposition 3.3 that

B2

Bf2
logpI‹pfqq ă 0

and therefore I‹pfq has a unique local maximum, which combined with the fact that I‹pfq ě 0

for all f P r0, fCEXs and I‹p0q “ I‹pfCEXq “ 0, implies that there exists f̃ P p0, fCEXq such that

BI‹pfq

Bf ą 0 whenever f ă f̃ and BI‹pfq

Bf ă 0 whenever f ą f̃ . Hence, d
df λ

‹pf, δq ă 0 for all f P p0, f̃q

and d
df λ

‹pf, δq ą 0 for all f P pf̃ , fCEXq.

B.6 Proof of Proposition 3.4

Proof. First, we note that

λ‹pI, δq “ 2V 2 I

I ´ 2V δ

thus,

dλ‹pI, δq

dI
“ ´2V 2 I ` 2V δ

pI ´ 2V δq3
ă 0

for all possible inventory levels I and feasible trades δ ă IETH “ 1
2V I.

B.7 Proof of Proposition 3.5

Proof. We have shown in the proof of Proposition 3.2 that B2

Bf2 logpI‹pfqq ă 0 for all f P p0, fCEXq

and therefore there is a unique critical point of I‹pfq over the interval p0, fCEXq. Combining this
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with the fact that I‹pfq ą 0 for all f P p0, fCEXq and I‹p0q “ I‹pfCEXq “ 0 then implies that

there must exists f̃ such that f P p0, f̃q implies BI‹

BfDEX
ą 0 for fDEX P p0, f̃q and BI‹

BfDEX
ă 0 for all

fDEX P pf̃ , fCEXq.

B.8 Proof of Proposition 3.6

Proof. In order to prove this result, we simply note that r‹
DEXpfDEXq “ I‹pfDEXqθ. Therefore,

dr‹
DEX

dfDEX
“ θpI‹pfDEXqqθ´1 dI‹

dfDEX
and we know from Proposition 3.5 that there exists f̃ P p0, fCEXq

such that dI‹

dfDEX
ą 0 when f P p0, f̃q while dI‹

dfDEX
ă 0 when f P pf̃ , fCEXq. Therefore, given that

I‹pfq ą 0 for all f P p0, fCEXq it must be the case that
dr‹

DEX
dfDEX

ą 0 for all f P p0, f̃q and
dr‹

DEX
dfDEX

ă 0

for all f P pf̃ , fCEXq.
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