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ABSTRACT

In a dynamic model of large traders who manage inventory risk, we show that a daily market

closure coordinates liquidity. Some length of closure is welfare-improving relative to 24/7

trade since the coordination of liquidity improves allocative efficiency, which can fully offset

the costs of the closure. A long closure is optimal in small markets, while large markets

would benefit from extending trading hours to near 24/7. Our results are robust to allowing

for information asymmetry. Our findings support recent proposals to extend trading hours

of large equity exchanges and suggest that exchanges yet to consider extensions should do

so.
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I. Introduction

Trading hours have historically aligned with the conventional workday due to the ne-

cessity of human involvement in both the submission and execution of trades. However,

technological advancements have significantly reduced the need for human involvement, en-

abling many markets—such as futures, foreign exchange, and cryptocurrencies—to operate

nearly continuously, often closing for only brief maintenance windows. Furthermore, the

increased globalization of firms and the financial sector has generated new demand from

market participants to respond to firm-relevant news as it emerges around the clock, often

outside the firm’s domestic trading hours.1 In response, some major equity exchanges will

soon extend their trading hours beyond the traditional 6.5-hour window, moving towards

23-hour trading days.2 We analyze how changes in trading hours affect market liquidity and

trader welfare.

We study a dynamic model of large traders managing risky inventory positions of a traded

asset who rationally anticipate how their orders affect prices. Gains from trade are a result

of both inventory cost sharing and reallocation across agents with stochastic private values.

Traders optimally balance the benefits of eliminating undesired inventory against the costs

of incurring price impact. We quantify the allocative efficiency of the market in equilibria

of two market designs: one with a daily closure for a fixed fraction of the day and another

without any—24/7 trading. A daily closure is costly because it eliminates traders’ ability to

manage their inventory when the market is closed, leading traders to arrive at the start of

the next day in positions that may be far from desirable.

Is there any benefit to daily market closures? If there is a closure, traders rationally

anticipate being unable to directly manage their inventory positions during the closure,

which incentivizes them to trade more aggressively towards a desirable position at the end

of the trading day. In turn, this aggressive trade increases liquidity at the end of the day,

which lowers the cost of trade and further incentivizes aggressive trade at the market closure.

Therefore, liquidity is coordinated, and “liquidity begets liquidity,” resulting in very low price

impact and very efficient trade at the close.

1Alternative trading systems (ATSs) have emerged to meet this demand, facilitating trading for certain
exchange-traded products from 8:00 PM to 4:00 AM Eastern Standard Time. Eaton et al. (2025) document
that 80% of the volume during these hours originates from the Asia-Pacific region.

2For example, 24X received SEC approval in November 2024 to launch the first registered 23/7 U.S.
equity exchange. The New York Stock Exchange polled market participants about 24/7 trading in April
2024 and is moving their Arca exchange’s trading hours to 22/5. The Nasdaq and CBOE EDGX equities
exchanges are similarly extending their trading sessions to 24/5. Robinhood and Interactive Brokers already
offer 24/5 access to selected equities and ETFs through ATSs such as Blue Ocean and EOS, respectively.
However, the other ten U.S. registered equity exchanges and popular international exchanges, such as the
London and Tokyo Stock Exchanges, currently do not have public plans to extend trading hours.
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Aware that liquidity will be coordinated in the final trading session of the day, traders

have a strategic incentive to delay trade until price impact is low in the last session of the

day. This incentive to postpone trade within the day can be sufficiently large that there is an

endogenous halt in trade in the sessions just preceding the final trading session, consistent

with empirical evidence that trade at closing auctions is highly concentrated, potentially at

the expense of preceding sessions (e.g., AMF (2019)). The incentive to postpone trade is

largest in markets with few traders, where liquidity is spread relatively thin, and in markets

in which the payment of the asset’s liquidating dividend is unlikely to occur before the

next trading opportunity, which makes the cost of postponing trade relatively small. To

summarize, although a daily closure has a natural cost by restricting traders’ ability to

respond to shocks, it has the benefit of coordinating trade at the closure. That benefit is

also partially offset by the socially costly strategic delay of trade within the day.

The mechanisms of the model with closure are summarized through the behavior of intra-

day trade volume. We decompose trade into two components varying over time: a component

that determines the gap a trader faces between their current and desired inventory and a

component that determines how aggressively a trader trades to eliminate the gap. Within

the trading day, trade aggressiveness increases in liquidity. At the start of the day, traders

face large gaps between their current and desired inventory since shocks to their desired

inventory position arrive during the closure that traders are not able to respond to. This

generates a large volume at the start of the day despite relatively low trade aggressiveness.

At the end of the day, traders trade very aggressively to close any gap that remains. So, even

though trade earlier in the day shrinks the gap between current and desired inventory, this

aggressive trade at the liquid closing session results in large volume. In the middle of the

day, traders’ gaps between desired and current inventories are not very large, and trade is

not particularly aggressive, resulting in low volume relative to other parts of the day. Thus,

as in the data (e.g., Chan et al. (1996), Jain and Joh (1988)), intraday volume is U-shaped.

When trade is 24/7, there is no equilibrium in which traders coordinate trade. Since

traders rationally anticipate how their demand affects prices and future inventory positions,

they break up their orders over time to minimize execution costs, leading to socially ineffi-

cient excess inventory costs (Du and Zhu, 2017, Rostek and Weretka, 2015, Vayanos, 1999).

Liquidity is spread out, and price impact further increases, further incentivizing traders to

break up their orders. With 24/7 trade, liquidity is spread thinly throughout the trading

day. A market closure can potentially benefit traders by coordinating liquidity.

We quantify trader welfare in various market designs. There is always a length of closure

that is better than having trade 24/7. The optimal closure may be short. We find the

optimal length of closure is longer in smaller markets, that is, markets where the number of
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traders and the rate of shocks to private values are small. In markets with a large number

of traders, liquidity is already substantial, minimizing the relative benefits of coordinating

trade. In markets in which shocks to private valuations are frequent, the costs of restricting

traders’ ability to respond to these shocks are high, implying a short closure is optimal.

We calibrate our model to four different equity exchanges—NYSE, Nasdaq, CBOE EDGX,

and NYSE Arca—to assess the policy implications of likely changes to the current U.S. eq-

uity market structure.3 We chose these four exchanges because the NYSE is the largest

registered U.S. equity exchange, and the Nasdaq, CBOE EDGX, and NYSE Arca have an-

nounced plans to extend to 24/5, 24/5, and 22/5 trading days, respectively. We calibrate

the model to match the model-implied intraday volume to the empirical intraday volume.

The calibration implies that, for the exchanges we consider, the proposed changes in trading

hours will be good for traders, and a very short closure on the order of 2 to 7 minutes is

optimal. Our results imply the NYSE should follow suit and extend their trading hours, as

should other large equity exchanges, such as the London or Tokyo stock exchanges, which

currently have no plans to extend trading hours. In the presence of unmodeled benefits

of closure, such as exchange maintenance and closing price setting to compute daily asset

values of funds, a closure of an hour or two may be preferable to 24/7 trade or the opti-

mal closure length since calibrated welfare gains relative to the current market structure are

similar across counterfactuals with 23/7 trade, 24/7 trade, and the optimal closure.

Our main results are robust to allowing traders to observe heterogeneous signals about

fundamental asset values through noisy private signals. Heterogeneity tends to reduce the

aggressiveness of trade overall, as it introduces a price impact resulting from information

asymmetry. Yet, closure still coordinates liquidity, allowing traders to trade very aggressively

at the end of the day with minimal price impact and improving welfare, especially in small

markets or markets with infrequent shocks to private and fundamental values.

There is extensive literature empirically documenting intraday and overnight patterns

in financial markets.4 A substantial literature theoretically explains these facts (Hong and

Wang, 2000, Subrahmanyam, 1994, Foster and Viswanathan, 1993, Brock and Kleidon, 1992,

Foster and Viswanathan, 1990, Admati and Pfleiderer, 1989, 1988). However, all of these

studies take the existence and length of a daily closure as fixed. This paper considers

variations in the existence and length of daily closures.

This paper also contributes to the literature on how common financial market structures

3Although we focus on equity markets, the theoretical framework is applicable to other asset classes.
4For example, Bogousslavsky (2021), Hendershott et al. (2020), Lou et al. (2019), Branch and Ma (2012),

Kelly and Clark (2011), Cliff et al. (2008), Branch and Ma (2006), Andersen and Bollerslev (1997), Chan
et al. (1996), Amihud and Mendelson (1991), Stoll and Whaley (1990), Barclay et al. (1990), Harris (1989,
1988), Amihud and Mendelson (1987), Harris (1986), Fama (1965).
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interact with strategic trading and the implications for the allocative efficiency of the mar-

ket (Rostek and Yoon, 2025). Chen and Duffie (2021), Malamud and Rostek (2017), and

Kawakami (2017) study market fragmentation. Fuchs and Skrzypacz (2019), Du and Zhu

(2017) and Vayanos (1999) study trading frequency. Antill and Duffie (2020), Duffie and

Zhu (2017), and Blonien (2024) examine the addition of a trading session at a fixed price.

Chen et al. (2024), Kodres and O’Brien (1994), Subrahmanyam (1994), and Greenwald and

Stein (1991) study circuit breakers. Apart from being the endogenous outcome of adverse

price movements, circuit breakers have conceptual similarities to daily closures, although

none of these papers study their implications for both allocative efficiency and liquidity in a

dynamic model. Fuchs and Skrzypacz (2015) study government market freezes in a dynamic

adverse selection model. None of these papers theoretically study daily market closures. Our

paper also contributes by extending the study of stationary costly strategic delay (Vayanos

(1999), Du and Zhu (2017), Chen and Duffie (2021)) to a setting in which the characteris-

tics of trade vary throughout a trading day, generating non-stationary trade aggressiveness

and liquidity.5 deHaan and Glover (2024) is a recent paper whose focus is on the empirical

portfolio performance of retail traders as a function of trading hours.

The presence of market closures is closely linked to the existence of closing auctions, whose

characteristics have been of recent interest. Bogousslavsky and Muravyev (2023), Jegadeesh

and Wu (2022), and Hu and Murphy (2025) empirically study liquidity and price efficiency

around the NYSE and Nasdaq closing auctions. The percentage of daily volume transacted

in these special sessions has reached an all-time high in recent years (Bogousslavsky and

Muravyev, 2023), consistent with our model, which generates substantial volume near the

opening and closing. Our model predicts that if trading hours are extended, trading volume

will be less concentrated at the open and close. The Autorité des Marchés Financiers (AMF,

2019) has warned that concentration at the close could harm prices and liquidity beforehand.

We find that although liquidity does deteriorate as traders delay for the closing auction, the

resulting social costs can be outweighed by the coordination benefits of closure.

The paper proceeds as follows. Section II defines the model. Section III defines and solves

for the equilibrium and builds intuition for how the traders optimally trade with and without

a market closure. Section IV quantifies welfare. Section V calibrates the model to several

equity exchanges. Section VI extends the model to allow for heterogeneous information.

Section VII concludes. The Appendices provide technical details and proofs.

5Rostek and Weretka (2015) also have non-stationary market characteristics in a slightly different equi-
librium concept. In their setting, price impact is non-stationary and depends on the timing of information
about the dividend throughout the session, although equilibrium allocations are stationary functions of state
variables. In our setting, the end of the trading day coordinates and improves liquidity and increases the
trade aggressiveness embedded in demand schedules.
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II. The Model

This section introduces a model of strategic trading under imperfect competition with

periodic market closures. Time is continuous and goes from 0 to ∞. We set a unit of clock

time to be 24 hours. Each 24 hour period is divided into K evenly spaced subperiods of

length h := 1
K
. Trade occurs the first T + 1 periods, and no trade is permitted in the last

∆ periods. We refer to the fraction of the 24 hours when trade can occur as “day,” and the

remaining fraction is referred to as “night.”

Let us illustrate this setup in the first day, where clock time t is in [0, 1]. Trade occurs

at times 0, h, . . . , Th, and the night spans times (Th, 1), which includes times (T +1)h, (T +

2)h, . . . , (T +∆)h. Note (T +∆)h = 1 − h. At time 1, the next day starts, and the timing

repeats.

There are N ≥ 3 risk-neutral traders who trade a divisible asset. Traders want to hold

the asset because it pays a liquidating dividend of v per unit of inventory held. The time

to liquidation is exponentially distributed, denoted T ∼ Exp(r) so that the expected time

until liquidation is 1
r
. Each trader is endowed with some portion of the asset, referred to

as the trader’s initial inventory. In addition to differing endowments, traders may also have

heterogeneous beliefs or private values that motivate trade (Harris and Raviv, 1993). We

assume a private value of wi
T per unit of the asset is realized upon liquidation. Thus, the

total value of the asset at liquidation is v+wi
T . The private value, w

i
t, is a jump process which

has N(0, σ2) distributed jumps that arrive at constant rate λ. These shocks are independent

across time and traders and independent of all other shocks in the model. Shocks to private

values induce continued gains from trade over time and can be motivated by risk management

considerations or shocks to preferences.

Each trading session is modeled as a uniform-price double auction. Each trader i submits

a demand schedule Di : R −→ R that is a mapping of price to demand, p 7→ Di(p). The

market clearing price, p∗t , is the price that sets net demand to be zero,
N∑
i=1

Di(p∗t ) = 0. (1)

Each trader pays the equilibrium price, p∗t , times the amount of the asset they were allocated,

Di(p∗t ). If Di(p∗t ) < 0, then trader i receives the equilibrium price times the amount of the

asset they sell. The modeling of trade as an auction, as opposed to a limit-order book,

provides tractability while maintaining the important economic mechanism of price impact

from trade.

Traders in the model dynamically manage inventory positions. Define trader i’s inventory

of the asset at time t to be zit, and the average aggregate inventory, Z̄ := 1
N

∑N
i=1 z

i
t, is a
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constant. After trade at time t, trader i’s inventory moves to zit + Di(p∗t ). In addition to

trading due to heterogeneous private values of the asset, discussed above, traders also trade

to manage inventory costs. In particular, we assume traders incur a holding cost per unit of

time of γ×(zit)
2.Chen and Duffie (2021), Antill and Duffie (2020), Duffie and Zhu (2017), Du

and Zhu (2017), Sannikov and Skrzypacz (2016), Rostek and Weretka (2012), Vives (2011),

Blonien (2024) and Chen (2022) all use a similar quadratic holding cost. This cost can

be interpreted as representing inventory costs or collateral requirements. More generally,

including these exogenous inventory costs is a reduced-form way of modeling incentives to

risk share.6

Since traders can only manage inventory through trade during the day, and private values

can be shocked during the day or overnight, the restrictions that market closures impose have

obvious costs. If a shock to private values arrives overnight, traders will arrive at the start

of the next day at positions that are suboptimal. In the model, traders trade off maintaining

suboptimal inventory positions with price impact costs. Therefore, they trade slowly toward

their desired inventory position, potentially heightening the costs of a temporary closure.

This paper’s goal is to study the costs and benefits of daily market closures through the

organization of trade they induce.

Now, let us define the traders’ optimization problem. In the following sections, we will

study equilibria that are periodic, with a period equal to one day. Therefore, to ease the

exposition, we simply focus on time t ∈ [0, 1] and note that results at any other time are

analogous. Recall trade during the first day occurs at times 0, h, . . . , Th. For t = kh in any of

these periods apart from the last, denote any trader’s value function Vk. The value function

is a function of current inventory position zi, current private value wi, and average aggregate

private value W̄ = 1
N

∑N
i=1w

i, and satisfies the following Bellman equation:

Vk(z
i, wi, W̄ ) = max

Di

{
−Dip∗kh︸ ︷︷ ︸

cost of
trade

+(1− e−rh)︸ ︷︷ ︸
prob. of
liquidation

(zi +Di)(v + wi)︸ ︷︷ ︸
liquidation value

− (1− e−rh)

r︸ ︷︷ ︸
expected length

of flow cost

γ

2
(zi +Di)2︸ ︷︷ ︸
inventory
flow cost

+ e−rh︸︷︷︸
prob. of no
liquidation

EkhVk+1(z
i +Di, wi

(k+1)h, W̄(k+1)h)︸ ︷︷ ︸
expected future value

}
. (2)

The maximum is over demand schedules, not simply realized demands. The first term

corresponds to the cost (allocated quantity times market clearing price) of trade incurred in

6Having described the model, it is worth noting slightly different assumptions— continuously paid liqui-
dating dividends, repeatedly paid dividends, private value shocks at pre-determined arrival times, correlated
private value shocks, private signals about a risky common value v (see Section VI), and time-varying de-
terministic inventory costs or private value shocks—do not substantively change the mechanisms of the
model.
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the double auction at time kh. The next term corresponds to the expected payoff if the asset

liquidates before the next session times the probability it liquidates before the next session.

The third term is the expected holding cost before the next session, which incorporates the

probability that the asset might liquidate, after which there is no more holding cost. The last

term is the next period’s continuation value, assuming the asset does not liquidate before

then, times the probability the asset does not liquidate before the next period. As we will

show, prices reveal the average private value W̄ in equilibrium. Therefore, the value function

is a function of W̄ insofar as it affects future prices and realized demands and, thus, utility.

In the last trading period of the day, that is the (T + 1)th trading session at clock-time Th,

the Bellman equation is modified to the following:

VT (z
i, wi, W̄ ) = max

Di

{
−Dip∗Th︸ ︷︷ ︸

cost of
trade

+(1− e−rh(1+∆))︸ ︷︷ ︸
prob. of
liquidation

(zi +Di)(v + wi)︸ ︷︷ ︸
liquidation value

− (1− e−rh(1+∆))

r︸ ︷︷ ︸
expected length

of flow cost

γ

2
(zi +Di)2︸ ︷︷ ︸
inventory
flow cost

+ e−rh(1+∆)︸ ︷︷ ︸
prob. of no
liquidation

EThV0(z
i +Di, wi

1, W̄1)︸ ︷︷ ︸
expected future value

}
. (3)

The terms are modified to reflect the increased likelihood that the asset liquidates before the

next trading session, as there are h(1 + ∆) units of clock time between trade instead of h.

III. Equilibrium

Section IIIA studies the equilibrium of the model of strategic trading under imperfect

competition with periodic market closures. Section IIIB studies a version of the model

without market closure that is a special case of the model studied in Du and Zhu (2017).

Sections IIIC through IIIE study results that describe the solution of the model.

A. Equilibrium with a Daily Closure

Prior literature (e.g., Antill and Duffie (2020), Du and Zhu (2017), Vayanos (1999))

frequently studies symmetric, linear, and stationary equilibria. That is, the equilibrium

demand schedules of each trader are the same linear combination of price and other relevant

state variables and inputs across time. In our model with daily market closures, such an

equilibrium will generally not exist. The trading problem that every trader faces will not be

ex-ante identical at each trading session, as the opportunity set changes throughout the day,

precluding the existence of stationary equilibria. For instance, as the closure approaches,

traders will behave differently as the inability to manage inventory overnight presents a
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substantial change in their opportunity set.

Therefore, we focus on symmetric, linear, and daily-periodic demand schedules. For ex-

ample, in equilibrium, all demand schedules submitted at 9:30 AM will be the same function

every day, but all traders may use a different demand schedule at 10:00 AM than they did

at 9:30 AM. Thus, the equilibria we consider are stationary across days but not within the

same day. Concretely, we conjecture that the equilibrium demand schedule at trading session

k ∈ {0, . . . , T} is of the following form:

Di
k(z

i, wi, p) = ak + bkp+ ckz
i + fkw

i, (4)

and bk < 0. By market clearing, in equilibrium, trader i will face the residual supply curve of

the other N − 1 traders and effectively choose a price and quantity pair. If trader i chooses

demand quantity di, then by market clearing, the price must solve di +
∑

j ̸=i(ak + bkp +

ckz
j + fkw

j) = 0. Therefore, the market clearing price is

Φk(d
i, zi,W−i) := p = − 1

bk(N − 1)

(
di + (N − 1)ak + ck(NZ̄ − zi) + fkW

−i
)
, (5)

where W−i =
∑

j ̸=i w
j. Traders are strategic, and thus, they rationally anticipate and

internalize how their demand affects prices due to imperfect competition. As price impact

itself is only a wealth transfer between traders, it is the strategic effects of avoiding price

impact that can be socially costly by reducing allocative efficiency.

A symmetric (Markov perfect) equilibrium of the above stochastic game is defined by

the sequences (ak)
T
k=0, (bk)

T
k=0, (ck)

T
k=0 and (fk)

T
k=0. Equilibrium requires that if trader i

conjectures the other N − 1 traders use the demand schedule (4), trader i’s best response is

to use the same demand schedule, and the market clears. It is important to note that we

do not assume that trader i must play the conjectured demand schedule, but it is their best

response to do so. We show in the Appendix that this equilibrium exists and is characterized

by Proposition 1.

PROPOSITION 1: If (N − 1)(1 − e−rh) > 1, there exists a unique symmetric, linear, and

periodic equilibrium with trade in periods 0, . . . , T , which satisfies the following properties:

1. The equilibrium quantity traded takes the form

Di
k(p

∗
kh) = ck

(
zikh −

( r
γ
(wi

kh − W̄kh) + Z̄
))

, (6)

where k ∈ {0, . . . , T}, for ck ∈ [−1, 0] characterized in Appendix A.

2. The equilibrium market clearing price is

p∗kh = v + W̄kh −
γ

r
Z̄. (7)

3. Let c̄ denote the equilibrium value of ck if there is no market closure, as given in

Proposition 2. In two consecutive periods in the day, if ck > c̄, then ck+1 < c̄. Similarly,
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if ck < c̄, then ck+1 > c̄. An analogous pattern applies to 1/bk, which determines price

impact.

Let us discuss these results. First, let us look at the functional form of the allocation,

ck(z
i− ( r

γ
(wi− W̄ )+ Z̄)). The allocation is the current inventory net of a measure of desired

inventory, which we define as z̃i := r
γ
(wi − W̄ )+ Z̄, scaled by ck. z̃

i is the inventory position

a trader would reach each period after trade if the market was competitive. We refer to
r
γ
(wi − W̄ ) + Z̄ as desired inventory because if zi = r

γ
(wi − W̄ ) + Z̄ for every trader, then

there is no more trade in equilibrium. Consider the post-trade inventory position,

zik+1 = zik +Di
k(p

∗
k) = (1 + ck)z

i
k − ckz̃

i
k. (8)

Recalling that ck lies in [−1, 0], ck is a measure of trade aggressiveness as it tells us what

fraction of our new inventory position is made up of the old inventory position, and the

remaining fraction is the desired inventory position. Subtracting z̃ik from both sides of

Equation 8, the gap between the next period’s inventory and the desired inventory is

zik+1 − z̃ik = (1 + ck)
(
zik − z̃ik

)
. (9)

As ck approaches −1, which is its value under perfect competition, this gap approaches zero,

and the allocation of the asset becomes more efficient.

The coefficient ck in the equilibrium allocation is negative and largest in absolute value at

the end of the trading day. As the end of the day approaches, traders are aware that they will

soon lose the opportunity to manage random shocks in the desired inventory through trade.

They all, therefore, have the incentive to enter the closure in a desirable inventory position.

As a result, traders are more willing to incur price impact and temporary trading costs

toward the end of the trading day. The old adage of “liquidity begets liquidity” comes into

effect; liquidity improves due to the fear of suboptimal inventory positions being exacerbated

overnight, so it becomes even cheaper to trade more aggressively now, further encouraging

aggressive trade.

This incentive to enter overnight in a good position is strongest in the final period of

trade. In fact, by backward induction, traders know that trade will be cheap in the final

period. So, traders have an incentive to postpone trade until then, reducing liquidity in

the penultimate period. This explains property 3 of the equilibrium, which formalizes the

strategic incentives in the model. Essentially, if trade is aggressive in the next period, trade is

less aggressive in this period, as traders postpone to the next period when the price impact

is lower. Similarly, if trade is less aggressive in the next period, the trade will be more

aggressive in this period. Thus, trade has some oscillatory properties. In our numerical

examples, this oscillation is strongest in the last two periods and decays quickly as traders

move backward in time from the final trading sessions.
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If the incentives to postpone trade are sufficiently strong, the equilibrium with trade

every period breaks down, and there is at least one period of no trade leading up to the

closing session. These incentives are strongest when the market is small, i.e., N is small,

or the liquidation risk before the next trading session is large, i.e., rh is small. Formally,

(N − 1)(1− e−rh) > 1 is a sufficient condition for trade to occur every period. If N is small,

price impact is generally large, implying the benefits of a liquid final period of trade are

substantial. If rh is small, the costs of delaying trade are low as the asset is unlikely to

liquidate in the meantime. Empirically, an analog of these results is the fact that in markets

with closing auctions, liquidity prior to the closing auction is relatively thin, as trade is

delayed due to the coordination in the closing auction.

Below, we provide a result that describes the equilibrium that arises if the parameters

are such that traders are not willing to trade in the period immediately preceding the liquid

close. In order to obtain this modified equilibrium, we relax the assumption that submitted

demand schedules must be strictly downward sloping (bk < 0) by allowing traders to not

trade for a period. That is, we allow for a halt in trade for a single period. This proposition

can be generalized to allow for halts in multiple periods.

PROPOSITION 2: Assume that an equilibrium with trade in every period does not exist.

Then, if (N − 1)(1 − e−2rh) > 1, there is an equilibrium in which demand schedules are

permitted to be uniformly zero for a single period during the trading day. This equilibrium

has no trade in period T − 1 and satisfies properties 1, 2, and 3 of Proposition 1 in the other

periods.

There are multiple equilibria when traders can submit zero demand schedules in any

period. If all other traders submit zero demands, it is equilibrium behavior for any trader to

do the same, as their implied price impact is effectively infinite. Thus, in principle, traders

can abstain from trade in any combination of periods during the trading day.

However, the arguments used to prove Proposition 2 imply its equilibrium is unique in the

following sense. Among equilibria with trade in all periods except for at T −1 and overnight,

it is unique. In addition, if there were another equilibrium, then at least one of the periods

without trade would be a period that could alternatively sustain a trade equilibrium with

downward-sloping demand curves but does not. In this sense, the equilibrium of Proposition

2 is the least restrictive equilibrium without trade in a single period, in that traders engage

in trade in every period in which they are able to achieve an equilibrium with non-zero trade.

The condition (N−1)(1−e−2rh) > 1 is weaker than the condition in Proposition 1 for trade

to occur in every period. Moreover, given this condition and the condition in Proposition 1

are only sufficient conditions, it is worth being certain that the set of parameters for which
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there is no equilibrium with trade in every period and (N − 1)(1− e−2rh) > 1 is non-empty.

We verify this numerically in unreported results.

Before moving on to analyzing the model in more detail, we note there is a continuous

trade version of the model, which we will make use of when analyzing welfare. In this model,

trade occurs in a continuous sequence of uniform-price double auctions for the first 1−∆− ϵ

units of the day, there is a halt in trade for the next endogenous length ϵ units of time, and a

closing auction occurs at time 1−∆. The derivation of this continuous trade equilibrium is

in Internet Appendix IA.3, where we also show the convergence of the discrete trade model.

In this version of the model, the length of the halt can be determined analytically, with no

parameter restrictions apart from N > 2. Moreover, prior to the halt, demand schedules are

stationary and thus do not depend on time and so do not oscillate. In addition, trade in the

final period is more aggressive than trade in the opening sequence of sessions.

It is worth highlighting some of the expressions in the continuous trade version of the

model, as quantities such as ck and bk for the discrete trade model are provided in the

Appendix but are not readily interpretable. In the continuous trade model, the length of the

halt ϵ is

ϵ = min

{
1−∆,

1

r
log

(
e−∆r + (1− e−∆r)N

e−∆r + (1− e−∆r)(N − 1)

)}
. (10)

For ϵ < 1−∆, the coefficient cT in the demand function at the close, 1−∆, is

cT = − (N − 2)(1− e−∆r)

e−∆r + (1− e−∆r)(N − 1)
, (11)

and cT = γ
r
bT . It’s straightforward to see that ϵ is increasing in ∆ (as long as the minimum

above does not bind) and decreasing in N , while both cT and bT become more negative as

N and ∆ increase. These comparative statics are analyzed in further detail in the discussion

surrounding Figure 2 below.

B. Equilibrium Without a Daily Closure – 24/7 Trading

Let us briefly review the solution without market closure and then compare the two

models. We make no other modifications to the model from the previous section other

than setting ∆ = 0. Once again, we differ from most prior literature by conjecturing linear,

symmetric, and periodic equilibria of the same form as Equation 4. Periodicity again requires

the demand functions to be periodic functions of time with period 1.

We characterize the equilibrium in Proposition 3.

PROPOSITION 3: When ∆ = 0 and N > 2, there exists a unique symmetric, linear, and

periodic equilibrium with the following properties:
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1. The equilibrium quantity traded takes the form

Di
k(p

∗
kh) = c̄

(
zikh −

( r
γ
(wi

kh − W̄kh) + Z̄
))

, (12)

where k ∈ {0, . . . , T}, and c̄ ∈ [−1, 0] and is equal to

c̄ =
−(N − 1)(1− e−rh) +

√
(N − 1)2(1− e−rh)2 + 4e−rh

2e−rh
− 1.

2. The equilibrium market clearing price is

p∗kh = v + W̄kh −
γ

r
Z̄. (13)

The equilibrium strategy played is time-invariant. Despite allowing the demand schedules

submitted to be periodic across days, the unique equilibrium is constant across time, as in

Du and Zhu (2017). Thus, this model is a special case of Du and Zhu (2017) in which there

is no information asymmetry. In the model with closure, trade is non-stationary throughout

the day. Importantly, this non-stationarity leads to a coordination of liquidity towards the

end of the day. It is worth noting that prices are the same when trade is 24/7. In equilibrium,

the first-order condition for optimal demand implies that the price has to equal the average

marginal value of the asset. That is, p∗kh = 1
N

∑N
i=1

∂Vk

∂zi
. This average marginal value does not

depend on price impact since price impact is a transfer across traders. It is only a function of

the marginal benefit of holding the asset, which depends on the common and private values,

and the marginal cost of holding the asset, which depends on γ.

C. Equilibrium Intuition

In this section, we compare the equilibrium in Propositions 1 and 2, where there is a

market closure, with the equilibrium in Proposition 3, where trading occurs 24/7. The

introduction of a long pause in trading, lasting h(1 + ∆) units of clock time, creates non-

stationarity in the equilibrium demand functions. Instead of there being a constant fraction

of excess inventory closed at each trading period, as in the 24/7 model, the intensity with

which agents trade in the model with a closure, ck, typically has three distinct periods of

behavior. Let us discuss this through the example displayed in Figure 1.

Figure 1 quantifies the magnitude of the coordination of liquidity when there is a market

closure for various trading frequencies throughout a day. The y-axis is the percentage of

excess inventory left for a given trader relative to the start of the day, assuming neither shocks

to private values nor asset liquidation occurs. Mathematically, the y-axis is
∏k

j=0(1 + cj),

where k is the (k + 1)th trading session of the day, which occurs at clock time kh. Recall

excess inventory is simply the difference between current inventory, zit, and desired inventory,

z̃it, which is closed by 1 + ck in trading session k.
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Figure 1. Trading Intensity Throughout the Day
This figure plots trading intensity for various regimes throughout the day. The y-axis is the
expected percentage of the time 0 excess inventory left at time t in the day. The solid lines
are market designs with a closure of 31.25% of the day from Proposition 1, and the dashed
lines are market designs without a closure from Proposition 3. The colors map to the trading
frequency of the market, with blue being K = 16 periods a day and orange being continuous
trading. The vertical dotted line is when the market closes for trading for structures with
closure. We use N = 100 and r = 1/30.

When trade is 24/7, c is constant and between −1 and 0, and traders close |c| percent of
the excess inventory per period. Comparing the orange and blue dashed lines, when trading

frequency is higher, the strategic effects are amplified as liquidity per trading session is lower,

which increases price impact, which further reduces a trader’s willingness to trade. Du and

Zhu (2017) studies the tradeoff between this strategic cost and the ability to react to shocks

more quickly by quantifying the optimal trading frequency in financial markets.

When we add a closure, the strategic behavior of traders changes the equilibrium trading

patterns dramatically. This is reflected in the solid blue lines for a slower market and solid

orange lines for a faster market. It is easiest to work backward. Starting at the close, traders

rationally anticipate that they will be stuck in an inventory position overnight, which will

incur flow costs overnight irrespective of the shocks to their private values, and there is

some chance the asset will liquidate. Moreover, traders will not be able to react to shocks

to private values that occur overnight, making excess inventory at the end of the day even
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less desirable. These risks increase traders’ marginal willingness to incur additional price

impact at the end of the day to avoid a worse inventory position overnight. This incentive is

present among all traders. So, as they all become more aggressive, liquidity increases, which

decreases price impact. They, therefore, can become even more aggressive, and this logic

repeats. The closure helps traders coordinate their trade that is otherwise very spread out

when trade is 24/7. This can be seen in the plot by the large downward jump in the amount

of excess inventory held right after the last trading session of the day. It takes almost the

entire night for traders to offload as much of their initial excess inventory when trade is 24/7.

Yet, because trade is very efficient at the close and traders are rational and strategic, in

periods leading up to the closure, traders know that if they delay trade, they will be able

to trade very cheaply at the close. This incentive to delay trade is so strong that, in the

plotted example, there is no trade in the periods just preceding the close.

When traders are far enough away from the close, the undesired flow costs and liquidation

risk throughout the day are sufficiently large that it is worth incurring some price impact

to optimize positions, and there is non-zero trade. When trade is continuous, trade is the

same during this time whether there is a closure or not, which can be seen by the solid

and dotted orange lines being indistinguishable. When trade is slower, you can see some

oscillation in aggressiveness around the level of aggressiveness in the 24/7 trade model (see

Property 3 of Proposition 1). If liquidity is better next period, agents are less willing to

trade now, which lowers aggressiveness and liquidity this period. If liquidity is poor next

period, agents are more willing to trade now and incur price impact. So, the non-stationarity

of the trader’s problem generates an oscillation that increases in magnitude as the closure

approaches. This oscillation is relatively small in magnitude and can be seen by the dashed

blue line alternately being below and above the solid blue line.

In Figure 2, we study how aggressive trade is at the close and the length of the endogenous

halt in trade as functions of the number of traders or the length of overnight closure. The

lines in the plot are the discrete-trade versions of equations 10 and 11. Panel A studies how

these endogenous quantities change as the market grows in size. First, the closer the dotted

blue line is to 100%, the closer the model is to perfect competition, and the more efficiently

the asset is traded as the close. The y-axis is the fraction of excess inventory that is sold

at the close. As the market becomes larger, price impact decreases as demand is dispersed

across more traders, and very quickly, the majority of the excess inventories is reallocated

in any given period, including the close. The orange line plots the length of the halt prior

to the closure. For the parameters considered, and when there are few traders, there is

no trade apart from at the closing auction until there are about 75 traders. Then, as the

number of traders increases, the fraction of the day with endogenously no trade decreases
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Figure 2. Trading Around the Close
We plot the aggressiveness of traders at the close, |cT |, where closer to 100% is closer to
perfect competition, with a blue dotted line, and the percentage of the trading day where
no trade endogenously happens leading up to the close with an orange solid line. In Panel
A, we plot these two quantities as a function of the size of the market, N . In Panel B,
we plot these two quantities as a function of the percentage of the day where the market
is closed, ∆/K. The continuous trade version of the blue-dotted line is equation 11, and
the continuous trade version of the solid-orange line is equation 10. We use r = 1/30 and
K = 1, 000 for both plots. In Panel A, we set ∆/K = 73%, and in Panel B, we set N = 100.

towards zero. As the market grows, price impact decreases, making it less costly to trade in

any period before close and minimizing the relative benefits of coordinated liquidity at the

close. For sufficiently many traders, the length of the halt is zero by Proposition 1, although

this number is not reached in Panel A.

In Panel B, we show that as the length of closure increases, so does the efficiency of

trade at the close. As the costs of closure increase, so does traders’ willingness to incur price

impact at the close. Eventually, the closure is so long that there is only trade at the close,

and the line flattens. By similar logic, the length of the halt increases as the efficiency of the

closing session increases, as there is more incentive to postpone trade. Eventually, there is

only trade at the close, which is mechanically moved towards the open for ∆ large enough,

which results in the line having a slope of −1.
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(a) Simulation with ∆ = 17.5 hours of night (b) Simulation with trading 24/7 (∆ = 0)

Figure 3. Simulation With and Without Closure
These figures plot excess inventory paths under the same simulated shocks over a single day
for ten traders, N = 10, but the left plot has a closure of 17.5 hours, and the right plot
allows trade 24/7. The desired excess inventory position (the solid black line) is zero, and
the shocks to traders’ private values are the same across plots and occur every period right
after trade. The parameters used are σ = 1, r = 10%, K = 1, 000, and γ = .4.

D. Simulating the Models

To examine the inventory paths different market structures induce for traders, we simulate

a trading day for a market with ten traders. We run a single simulation for two scenarios:

first, when trade only occurs for the first 6.5 hours of the day, followed by a closure without

trade for 17.5 hours, and second, when trade can occur 24/7. Each trader receives the same

shocks to their inventory position in the two scenarios. The only difference is how their

strategies endogenously change when there is a closure. For the N = 10 traders, we set the

initial excess inventory positions to be equally spaced between −.9 to .9.

The results of these simulations are plotted in Figure 3. Let us start with Figure 3(a).

While there is noise in the traders’ inventory positions during the trading day due to shocks

to their desired position, at the close there is a large drop in the amount of excess inventory

held across traders. This drop results from the coordinated trade and liquidity a closure

induces.

Using the same shocks, we plot how the trader’s excess inventory position would have

endogenously evolved in a model with 24/7 trade in Figure 3(b). Without market closure,

traders strategically break up their orders over time, spreading out liquidity and trading

slowly toward their desired inventory positions. Without the coordination of liquidity, traders

never substantially close the gap. They do appear to be in better positions by the end of
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Figure 4. Volume Throughout the Day
This figure is the percentage of the expected daily trading volume in each 30-minute bin
when trading occurs for 6.5 hours a day. We simulate 1,000 trading days and plot the
average fraction of daily volume in each bin. This example uses N = 500, r = 10%, σ = 1,
K = 1, 000, and ∆/K = 17.5

24
.

the day, though. From this simulation alone, it is not clear which scenario the traders would

prefer ex-ante. In Section IV, we will formally study trader welfare as a function of the

market structure.

E. Volume

One way to see the implications of the model for intraday trade is by studying volume.

A robust empirical pattern is the U-shaped (smirk) pattern of trading volume throughout

the day (e.g., Chan et al. (1996), Jain and Joh (1988)).

Due to the inability to trade overnight, the absolute gap between any trader’s current

and desired inventory position grows overnight in expectation. Therefore, although trade is

not very aggressive in the morning in the sense that traders exchange a small percentage of

the gap (small |ck|), due to the large average gap, they still trade a large quantity of the

asset. In the middle of the day, traders are neither very aggressive nor have a large excess

inventory position. Finally, at the close, traders become very aggressive and close the gap

significantly, resulting in a large increase in trading volume.

Figure 4 demonstrates the above reasoning. Figure 4 plots the expected fraction of the

total daily volume in each 30-minute trading bucket by computing the average volume in

simulations of the model. To match the NYSE, we assume the trading day is 6.5 hours. If
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trade volume was uniformly distributed throughout the day, you would expect about 7.7% of

the daily volume in each bin. Yet, we see significantly more near the open and close. About

17% of the daily volume happens in the first 30 minutes, and about 14% happens in the last

30 minutes.

Some markets, such as foreign exchange (FX) markets or cryptocurrencies, already trade

24/7. Yet, volume patterns in these markets are not flat throughout the day, as the equi-

librium of Proposition 3 would imply. Empirically, we see spikes in volume in FX and

cryptocurrency markets when either the London or New York stock exchanges first open

or close and overall during their overlapping trading hours. Allowing for the volatility or

frequency of shocks to be a deterministic function of time would help the model match these

patterns by increasing volume when shock volatility and frequency are high. The daily entry

and departure of groups of traders could also potentially coordinate trade sufficiently to

generate the empirical patterns we observe in markets that do trade 24/7. More generally,

modeling the interdependence between exchanges and their hours is well beyond the scope of

this paper; to be fully understood, it would require the study of traders’ dynamic strategic

trade between correlated assets trading on different exchanges, each with potentially different

trading hours.

IV. Welfare

We now formally study whether traders are ex-ante better off in a market structure with

a daily closure of some length or in a market structure that allows for 24/7 trade. We do

this by studying the aggregate ex-ante welfare of traders. Specifically, we define welfare as

the sum of traders’ ex-ante expected value of their value functions across all traders in the

market. As each trader’s value function aggregates their expected profits net of inventory

costs, the higher its value, the more efficient the market is. In this section, for simplicity, we

assume that the initial inventory position for each trader is zero, zi0 = 0, which implies that

Z̄ = 0, and each initial private value is i.i.d. N(0, σ2) distributed. We will also focus on the

continuous trade version of the model for simplicity. The discrete trade version of the model

has qualitatively similar welfare results.

As a first benchmark, we define the first-best (efficient) welfare as that which continuously

and perfectly reallocates each trader’s inventory position to the competitive benchmark. This

benchmark is what a benevolent social planner would achieve if both frictions in the model

were eliminated by making trade perfectly competitive and letting trade occur continuously
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and 24/7. Efficient welfare is

W e :=
N∑
i=1

E
[
V e(zi = 0, wi, W̄ )

]
=

σ2(N − 1)(r + λ)

2γ
. (14)

Next, we quantify welfare under the market structure with 24/7 trade. The 24/7 welfare is

W 24/7 :=
N∑
i=1

E
[
V (zi = 0, wi, W̄ )

]
= Nα0 + σ2

(
Nα5 + α6 + α9

)
, (15)

where the αi’s determine the equilibrium value function, given in Internet Appendix IA.3

when ∆ is set to 0. Finally, we quantify the welfare achieved from an equilibrium market

structure with a market closure of a fraction ∆ of the day. Welfare under a market closure

of length ∆ is

W (∆) :=
N∑
i=1

E

[
1

1−∆

∫ 1−∆

0

Vt(z
i = 0, wi, W̄ )dt

]
=

1

1−∆

∫ 1−∆

0

Nα0(t) + σ2

(
Nα5(t) + α6(t) + α9(t)

)
dt, (16)

where the αi’s determine the equilibrium value function, given in Internet Appendix IA.3.

Since welfare with a closure is a non-stationary function of time, we compute welfare by

averaging across time periods in the trading day. In effect, time is an additional state variable,

and, in addition to randomizing across initial values of wi and W̄ , we also randomize across

the initial time at which the trader begins trading.

A. Welfare Comparative Statics

In Figure 5, we plot the percentage change in welfare from a market structure with 24/7

trade to welfare from a market structure with a closure. We display the percentage change

as a function of the length of the closure. Panel A plots the relationship for two different

market sizes, and Panel B plots the relationship for two different private value shock arrival

rates.

In Panel A, we show that welfare changes are more negative for the larger market, par-

ticularly for long closures. In larger markets, the cost of strategic trade is lower. There

isn’t a substantial price impact at any period throughout the day, and, therefore, closure is

relatively more costly. In small markets, the benefit of the closing session offsets more of the

cost through the coordination of liquidity that is otherwise spread out thinly throughout the

day, and in fact, there is an interior optimal length of closure near 5% of the day. There is

also an interior optimal length of closure in the larger market, although it is very small. We

will discuss the interior optima further in the following section.
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Figure 5. Welfare Comparative Statics
Above is the percent change between welfare under a market closure and welfare under 24/7
trade as we vary the length of the closure in the equilibrium of the continuous trade model.
Panel A plots this relationship for two different numbers of traders. Panel B plots this
relationship for two different rates of shocks. Both plots use r = 10%. In Panel A, λ = 10.
In Panel B, N = 10.

In Panel B, welfare differences are displayed for different rates of shocks to private values.

If the shocks are infrequent, closure benefits traders. The higher the frequency of shocks,

the lower the relative welfare with a closure. This is due to the fact that the average gap

generated overnight between current and desired inventory widens as the length of closure

increases and as the rate of shocks increases. If there are not any shocks overnight, then the

probability that your inventory position, which tends to be good at the close, is near the

desired position at the following open is high. But if there are many shocks at night, then

the position you start at the beginning of the next day will be suboptimal, which will be

costly to slowly correct in the subsequent trading days. Again, even the case with λ = 100

has an interior optimal length of closure, although it is small.

We have assumed parameters governing the rate of shocks or holding costs are the same

overnight as during the trading day, while there may be reason to believe they differ. In the

Internet Appendix, we relax this assumption, and we show welfare moves intuitively as these

parameters change across time.

B. Is 24/7 Trading Better?

While there is some length of closure that is better than 24/7 trading in Figure 5, it

is not obvious whether that is always the case. Proposition 4 shows that there is always a
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Figure 6. Optimal Length of Closure
We plot the ex-ante welfare maximizing length of closure, ∆∗, that maximizes Equation 16.
We assume that σ and γ are constant across day and night and use r = 10%.

market design with a daily market closure of some length that is strictly better than having

trade occur 24/7.

PROPOSITION 4: There always exists a closure length, ∆ ∈ (0, 1), such that the ex-ante

welfare of a market design with a market closure is greater than that of a market design of

24/7 trading, where welfare is measured by Equation 16.

The proof is found in Internet Appendix IA.3.3. Within the confines of our model and

assumptions, Proposition 4 shows that 24/7 is never optimal, and there is always a benefit

of at least a short closure.

How long should the closure be? Proposition 4 gives no guidance on that dimension.

While we do not provide closed-form expressions for the optimal length of the closure, ∆∗,

we investigate its value numerically in Figure 6. In Figure 6, we plot the optimal length of

closure as a function of the size of the market, N . We plot separate lines as a function of the

information arrival frequency, λ. The plot shows that in smaller markets, those with fewer

traders or slower informational arrival markets, the optimal length of night can be fairly

long at over 40%. However, as the number of traders or the information arrival frequency

increases, the optimal length of closure approaches zero quickly. It is worth noting that

it never actually reaches zero but becomes economically equivalent to 24/7 trade in larger

markets with a fast rate of information arrival.

Overall, the results of this section and Figure 5 suggest 24/7 trading is near optimal

in large markets. A daily closure is useful in small markets where shocks are infrequent.
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Asset classes such as corporate bonds or index CDSs fit this description well. On the other

hand, traders in larger markets with frequent shocks to desired positions, such as equities,

cryptocurrencies, futures, and foreign exchange markets, are better off in the model with

near 24/7 trade. However, we caveat that there are other benefits of closure that are not

modeled in our paper. Closing prices are frequently used as reference prices, and it is not

obvious what price to use if there is never a closure. Further, most companies prefer to

announce news outside of market hours. Exchanges also need time outside of market hours

for updates and maintenance. Finally, managing, collecting, and settling contracts, margin

accounts, and collateral need time and a reference close price. These benefits may more than

compensate for any small welfare loss in our model from a short closure of an hour, which

is not perfectly optimal, as all the curves in Figure 5 flatten as ∆ nears 0. We will see this

point quantitatively in the next section when we calibrate the model to some large equity

exchanges.

V. Calibration

To apply our model to the data, we calibrate key model parameters for several exchanges

to quantify the welfare gains or losses from changes in trading hours. More specifically, we

calibrate the number of traders per exchange, N , and the relative volatility of shocks to

private values between the day and night, σd/σn, allowing this value to differ from 1, as

in Internet Appendix IA.1. To estimate these parameters, we match some moments of our

model to data. Specifically, we match intraday volume. Given a closure length, the number of

traders, and the relative volatility from day to night, the model implies an expected volume

in a given time period as a fraction of the total expected volume in a day, as described

in Appendix IA.3.1.7 We match these moments to moments from four different exchanges:

NYSE, Arca, Nasdaq, and CBOE EDGX. We select these four exchanges as the NYSE is

the largest registered U.S. equity exchange, and the Nasdaq, CBOE EDGX, and NYSE Arca

have announced plans to extend to 24/5, 24/5, and 22/5 trading days, respectively.

We need two linearly independent moments to identify our two parameters. We use the

average fraction of daily volume per exchange in the first 3 hours and last 3 hours, which we

estimate from TAQ data.8 Once we have the calibrated parameters, we study counterfactual

7The moments we have chosen only identify the relative magnitude and not the level of volatility from
day to night. Percentage changes in welfare also only depend on the relative magnitude and not the level.
To make the computation of volume more tractable, we use the continuous trade model and assume shocks
to private values occur continuously as a Brownian motion. Assuming shocks are Brownian is a limiting case
of the jump process for private values as its arrival rate goes to infinity.

8The middle section is a linear combination of the other two moments, which provides no new information.
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Table I
Calibration

This table compares the welfare of the current market closure to that of 24/7 trading, 23/7
trading, or the optimal length of closure by using the calibrated volatility and number of

traders per exchange. N̂ denotes the estimated size of the market, and σ̂d

σn
is the relative

instantaneousness volatilities during the day and night. We assume that total volatility is
constant across closure lengths so that σd solves σ

2
T = (1−∆)σ2

d +∆σ2
n. The optimal length

of closure, ∆∗, is that which maximizes welfare defined by Equation 16 given the calibrated
parameters and subject to the total volatility constraint. We assume r = 10%, v = 0, and
zi0 = 0 for all calibrations.

Exchange
Current
Length of
Night (∆)

N̂ σ̂d

σn

Optimal
Length of
Night (∆∗)

% Welfare
Change from
∆ to 23/7

% Welfare
Change from
∆ to 24/7

% Welfare
Change from

∆ to ∆∗

NYSE 72.9% 208 1.28 0.469% 2.053% 2.057% 2.057%
Nasdaq 72.9% 325 1.32 0.480% 1.997% 2.002% 2.002%
Arca 72.9% 303 1.23 0.123% 2.128% 2.133% 2.133%
CBOE EDGX 72.9% 191 0.87 0.137% 2.606% 2.612% 2.612%

daily closure lengths and fix the total daily private value volatility per exchange to be

constant. Specifically, we assume σd solves σ2
T = (1−∆)σ2

d +∆σ2
n so that total volatility is

constant as a function of closure lengths.

We estimate what the welfare change would be if trading went to 23/7, as proposed by

24X. This value is also close to the proposed trading hours for NYSE Arca, CBOE EDGX,

and Nasdaq. Then, we compare this counterfactual welfare to the estimate of welfare under

the current 17.5-hour closure. We also compare the welfare change from the current market

structure to 24/7 trade and, finally, from the current to an optimal closure length. The

optimal length of closure, ∆∗, is that which maximizes welfare defined by Equation 16 given

the calibrated parameters and subject to the total volatility constraint. The results are in

Table I.

Table I suggests that, in the model, extending trading hours results in an increase in

the welfare (allocative efficiency) of the market. Intuitively, as we have calibrated to large

exchanges, the liquidity coordination channel is not as important as the ability to trade for

a relatively large fraction of the day since the market is already fairly liquid. Our calibration

implies that the NYSE and other large equity exchanges, such as the London or Tokyo stock

exchange, should consider extending trading hours. In thinner markets, such as microcap

equities, smaller international exchanges, or electronic corporate bond trading, we would

expect a calibration to imply a larger decrease in allocative efficiency when moving to 24/7

trade. Interestingly, the welfare gain comes mostly from extending to 23/7, with only a very

small additional gain from going all the way to 24/7 or the optimal length of closure. It is

23



worth noting that the optimal length of closure is an interior length of 2 to 7 minutes a day,

which is very short.

VI. Heterogeneous Information

In this section, we summarize an extension that allows for heterogeneous fundamental

information regarding the dividend. The main results are analogous to those of previous

sections, suggesting our results regarding the effect of a market closure on liquidity and

allocative efficiency are robust to the consideration of informational frictions. The introduc-

tion of an information problem is done by adding two components to the model: a stochastic

liquidating dividend and private signals regarding its payoff. These components generate a

learning problem, discussed below, on top of the inventory management problem discussed

in detail in previous sections.

The liquidating dividend is now assumed to evolve according to a jump process. Jumps

in the dividend vt are assumed to coincide with jumps in the private value shocks and are

N(0, σ2
D) distributed. Each trader receives private signals about these jumps. If a jump

in the dividend level occurs at time t, the signal is given by Ŝi
t = vt − vt− + ϵi, where

ϵi
iid∼ N(0, σ2

ϵ ). If jumps occurred at dates t1 < t2 < · · · < tk < t, trader i forms a signal

Si ≡
∑k

j=1 Ŝ
i
tj
at date t. Assume these normally distributed shocks are all independent of

each other and of all other shocks in the model. All other aspects of the model are the same

as before.

We focus on daily-periodic, linear, and symmetric strategies and conjecture equilibrium

demand schedules at time t = kh+ n for any integer n take the following form:

Di
k(z

i, wi, Si, p) = ak + bkp+ ckz
i + fk(w

i + ASi).

Based on these demand schedules, in equilibrium, any investor will be able to observe W̄+AS̄

directly from the price. Note that there is no time dependence in A. This is a technical point,

but an important one. If there were time dependence, investors’ conditional expectations of

the dividend would no longer be a simple function of a few state variables, namely wi, Si and

W̄ + AS̄. In particular, time dependence in A would effectively force beliefs to be a state

variable of the problem. Any investor i’s beliefs would depend on other investors’ beliefs,

which in turn depend on investor i’s beliefs. This loop iterates, leading to an infinite regress

of beliefs problem, which the literature has yet to understand how to resolve.

Given the above demand schedules, each investor solves a learning problem. Traders

observe wi, Si and W̄ + AS̄, from which they infer the level of the dividend. In particular,
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conditional beliefs at time t = kh of the value of the dividend are

Et[w
i
t + vt] = wi

t +B1S
i
t +B2(W̄t + AS̄t),

for some constants, B1, B2. B1 and B2 unsurprisingly depend on A, as the relative weight of

the signal from the price on W̄ and S̄ affects the learning problem. Conversely, A depends

on B1 and B2, as optimal demand schedules depend on beliefs. This fixed point problem

leads to a straightforward non-linear equation for A.

We provide the solution of this model in the Appendix B. It is fairly straightforward to

show that if the learning problem goes away, in the sense that B1 = B2 = 0, the equilibrium

reduces to that described in Proposition 1. Defining si = 1
α
(wi+ASi) for a constant α, with

a slight relabelling of the demand function, equilibrium demand is given by

Di
k = ck

(
zikh −

(r(Nα− 1)

γ(N − 1)
(sikh − s̄kh) + Z̄

))
.

sik is simply a weighted sum of trader i’s private value and their signal. α is an endogenous

measure of the amount of information asymmetry in the market. When α = 1, there is no

information asymmetry, and traders learn no new information about the asset’s payoff from

the price. As α decreases, they put more weight on the signal inferred from the market and

less on their own information. We will show that the main result of this paper still holds

when learning is introduced. As the trading day comes to an end, traders trade aggressively

towards their desired allocations. As they do so, price impact decreases, further improving

liquidity and the incentives to trade aggressively in the final period.

We plot trading intensity and welfare in Figures 7 and 8. We consider the model of

this section alongside a model in which σϵ is set to 0 so that information asymmetry is

eliminated and alongside a model with information asymmetry but without market closure.

In Figure 7, we consider trading intensity by plotting
∏k

j=0(1 + cj) as a function of k. This

quantity measures how much of the gap between a trader’s initial inventory and initial

desired inventory has closed between the start of the trading day and time t, assuming no

shocks have arrived in the interim. For both models with closures, trade is most aggressive

in the final period. Perhaps unsurprisingly, trading intensity with information asymmetry is

slightly slower than without. Traders avoid price impact as purchasing the asset increases

other’s beliefs about the liquidation value, making them even less willing to sell the asset.

It is worth noting that this slower trading is due primarily to heterogeneity, not simply

uncertainty. If one plots the trading intensity corresponding to a model in which signals

are public, it is indistinguishable from the plot in which there is no uncertainty about the

dividend.

In Figure 8, we see that market closure continues to have consequences for welfare.

Welfare is better with a long closure if the rate of information arrival is sufficiently slow.
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Figure 7. Trading Intensity with Heterogeneous Information
This figure plots trading intensity for various regimes throughout the day. The y-axis is the
expected percentage of time 0 excess inventory left at time t in the day. If there is a closure,
its length is 31.25% of the day. The parameters are K = 16, N = 100, and r = 1/30.
Moreover, σD = σ = 1, σϵ = 0.1, and λ = 1. If information is homogeneous, σϵ is set to 0.

Moreover, if the number of traders is sufficiently small, the results of the left panel suggest

a closure of roughly 10% of the day is optimal. Relative to Figure 5, welfare with a market

closure is slightly better relative to welfare under 24/7 trade when agents have heterogeneous

information. This is not particularly surprising since the coordination a closure provides near

the end of the trading day is relatively more important when liquidity is already spread thin

due to heterogeneous information. Overall, the primary mechanisms of this paper are present

when there is heterogeneous information regarding asset values.

Although not the focus of this paper, it is worth discussing any implications the model

might have for price efficiency. One can think of price efficiency as the magnitude of a

trader’s conditional variance of the dividend given their signals and the price, relative to

the unconditional variance of the dividend, that is, Vart(vt)
Var(vt)

. This value jumps down whenever

trading opens, as traders infer information from the price, and increases on average whenever

the market closes. Thus, market closure hinders price efficiency simply because prices are

not observed overnight, although price efficiency returns to its level with 24/7 trade as

soon as the market is reopened and prices are observed. Although worth pointing out,

this is not a particularly surprising finding, as the information structure we consider is
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Figure 8. Welfare Comparative Statics with Heterogeneous Information
Above is the percent change between welfare under a market closure and welfare under 24/7
trade as we vary the length of the closure, in the equilibrium of the continuous trade model
with heterogeneous information. Panel A plots this relationship for two different numbers of
traders. Panel B plots this relationship for two different rates of shocks. Both plots assume
σD = σ = 1, σϵ = 0.1, and r = 10%. In Panel A, λ = 10. In Panel B, N = 10.

simple enough to make the model tractable. Extensions in which some traders had higher

quality signals than others might yield interesting results. Implementing extensions with

more interesting information structures is not a trivial problem. The infinite regress of

beliefs problem mentioned above that arises even with relatively simple complications of the

information structure makes tractable extensions challenging to formulate. In the absence of

these difficulties, the impact of market closure on the dynamic interaction between allocative

efficiency, liquidity, and price efficiency with heterogeneously informed investors promises to

yield very interesting research, which we leave to future study.

VII. Conclusion

This paper studies the effect of daily market closures on liquidity and allocative efficiency.

Market closures coordinate trade at the end of the trading day, and this coordination gener-

ates social benefits that can outweigh the costs of the restrictions closure imposes on trade.

Although in our model there is a non-zero length of closure that always improves welfare

relative to a market structure with 24/7 trade, for large markets with many traders and fre-

quent shocks to private values, this optimal length of closure is very short. Our calibration

suggests that a short closure of a couple of hours or less would improve welfare relative to
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current market structures in large equity exchanges.

While our model focuses on the effect of a market’s hours on allocative efficiency, market

closures may play an important role for many other reasons. Even in securities that trade

24/7, such as Forex, we empirically observe volume spikes coinciding with the opening and

closing of other exchanges, such as the NYSE. These volume spikes suggest market closures

are even important across asset exchanges. Closing auction prices are used in the settlement

of many derivative contracts, for margin requirements, to measure the performance of insti-

tutional investors, to price mutual fund shares, and to compute the asset value for ETFs and

stock indices. Further, market closures have been used to make announcements without in-

ducing excess short-run volatility in a share price. Cross-exchange effects of market closures,

the effect of closures on the efficiency of closing prices, and their interaction with endogenous

disclosure decisions are important for policymakers and future research to consider.
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Appendix

A. Proofs of Propositions 1-3

This appendix proceeds as follows. First, we set up the problem, which describes equilib-

rium. Then, in Appendix A.1, we construct a solution and describe some of its properties,

proving Proposition 1. Appendix A.2 solves the model with a halt in trade to prove Proposi-

tion 2, and Appendix A.3 specializes to the case in which ∆ = 0, so that there is no overnight

period, to prove Proposition 3.

Under the assumption of linear demand schedules, and based on the form of the payoffs,

the value function will be linear-quadratic:9

Vk(z
j, wj, W̄ ) = ak0+ak1z

j+ak2w
j+ak3W̄+ak4(z

j)2+ak5(w
j)2+ak6(W̄ )2+ak7z

jwj+ak8z
jW̄+ak9w

jW̄ .

First, we characterize its solution. The Bellman equation for every time t = kh, where t < T ,

is

Vk(z
j, wj, W̄ ) = max

Dj

{
−Djp∗t + (1− e−rh)(zj +Dj)(v + wj)− (1− e−rh)γd

2r
(zj +Dj)2

+e−rh
[
at+1
0 + ak+1

1 (zj +Dj) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 (zj +Dj)2 + ak+1

5 ((wj)2 + λσ2) + ak+1
6 (W̄ 2 +

λσ2

N
)

+ak+1
7 (zj +Dj)wj + ak+1

8 (zj +Dj)W̄ + ak+1
9 (wjW̄ +

λσ2

N
)

]}
,

and for the last period, by periodicity, it is

VT (z
j, wj, W̄ ) = max

Dj

{
−Djp∗T + (1− e−rh(1+∆))(zj +Dj)(v + wj)

− (1− e−rh(1+∆))γn
2r

(zj +Dj)2 + e−rh(1+∆)
[
a00 + a01(z

j +Dj) + a02w
j + a03W̄

a04(z
j +Dj)2 + a05((w

j)2 + λ(1 + ∆)σ2) + a06(W̄
2 +

λ(1 + ∆)σ2

N
)

+a07(z
j +Dj)wj + a08(z

j +Dj)W̄ + a09(w
jW̄ +

λ(1 + ∆)σ2

N
)

]}
.

The FOC for optimal demand in the first T − 1 periods is then

0 = −p∗t − λkD
j + (1− e−rh)(v + wj)− (1− e−rh)γd

r
(zj +Dj)

9One can apply a contraction mapping theorem to show the uniqueness of the solution to the trader’s
decision problem given the other trader’s demand functions. First, one can restrict the decision space
to a compact subset of the set of linear demand functions. Value iteration will map the set of bounded
continuous functions into itself, assuming a Feller-type condition regarding the continuity of the conditional
expectation of the continuation value and assuming boundedness is defined using a weighted norm of the
form ||f || = sup |f(t, z, w, W̄ )e−||(z,w,W̄ )||22 |. Then, using Blackwell’s conditions along with the Contraction
Mapping Theorem, one gets uniqueness on any compact subset of linear demand functions.
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+ e−rh[ak+1
1 + 2ak+1

4 (zj +Dj) + ak+1
7 wj + ak+1

8 W̄ ],

and in the last trading session of the day

0 = −p∗T − λTD
j + (1− e−rh(1+∆))(v + wj)− (1− e−rh(1+∆))γn

r
(zj +Dj)

+ e−rh(1+∆)[a01 + 2a04(z
j +Dj) + a07w

j + a08W̄ ].

where λk :=
∂Φt

∂dj
= − 1

bk(N−1)
. Assume

Dj
k = ak + bkpt + ckz

j + fkw
j.

Market clearing implies the equilibrium price is

pt = −ak + ckZ̄ + fkW̄t

bk
,

and equilibrium demand is

Dj
k = ck(z

j
t − Z̄) + fk(w

j
t − W̄t).

Substituting these expressions into the FOC,

ak + ckZ̄ + fkW̄

bk
+

1

bk(N − 1)
(ck(z

j − Z̄) + fk(w
j − W̄ ))

+ (1− e−rh)(v + wj)− (1− e−rh)γd
r

((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))

+ e−rh
[
ak+1
1 + 2ak+1

4 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )) + ak+1
7 wj + ak+1

8 W̄
]
= 0,

and

aT + cT Z̄ + fT W̄

bT
+

1

bT (N − 1)
(cT (z

j − Z̄) + fT (w
j − W̄ ))

+ (1− e−rh(1+∆))(v + wj)− (1− e−rh(1+∆))γn
r

((1 + cT )z
j − cT Z̄ + fT (w

j − W̄ ))

+ e−rh(1+∆)
[
a01 + 2a04((1 + cT )z

j − cT Z̄ + fT (w
j − W̄ )) + a07w

j + a08W̄
]
= 0.

Grouping common terms,

ak + ckZ̄

bk
− ckZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γdckZ̄

r
+ e−rhak+1

1 − 2e−rhak+1
4 ckZ̄ = 0,

ck
bk(N − 1)

− (1− e−rh)γd(1 + ck)

r
+ 2e−rhak+1

4 (1 + ck) = 0,

fk
bk(N − 1)

+ (1− e−rh)− (1− e−rh)γdfk
r

+ 2e−rhak+1
4 fk + e−rhak+1

7 = 0,

fk
bk

− fk
bk(N − 1)

+
(1− e−rh)γdfk

r
− 2e−rhak+1

4 fk + e−rhak+1
8 = 0,

and similarly at period T . We show in the Internet Appendix IA.4 that αk
7 + αk

8 = 1 and
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hence fk = −bk by the 3rd and 4th FOCs. This leads to the following expressions for the

parameters describing demand functions:

bk =
r
(
N − 2− (N − 1)e−rh(1− ak+1

7 )
)

(N − 1)(γd(e−rh − 1) + 2re−rhak+1
4 )

,

ck =
2 + (ak+1

7 − 1)e−rh −N(1 + e−rh(ak+1
7 − 1))

(N − 1)(1 + e−rh(ak+1
7 − 1))

,

fk =
r(1 + e−rh(ak+1

7 − 1))ck

γd(e−rh − 1) + 2re−rhak+1
4

,

ak = −ck(N − 2)Z̄

N − 1
+ bk

(
v(e−rh − 1)− e−rhak+1

1 +
ckγd(e

−rh − 1)Z̄

r
+ 2e−rhckZ̄a

k+1
4

)
.

The expression for ck simplifies to

ck =
1

(N − 1)(1 + e−rh(ak+1
7 − 1))

− 1.

Thus, given the coefficients describing the value function, the demand functions are known.

Let us now characterize the value function. Returning to the Bellman equation, we have

Vk = (ck(z
j − Z̄) + fk(w

j − W̄ ))(
ak
bk

+
ck
bk
Z̄ +

fk
bk
W̄ )

+ (1− e−rh)((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))(v + wj)

− (1− e−rh)γd
2r

(((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )))2

+ e−rh
[
at+1
0 + ak+1

1 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))2 + ak+1

5 ((wj)2 + λσ2) + ak+1
6 (W̄ 2 +

λσ2

N
)

+ak+1
7 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))wj

+ak+1
8 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))W̄ + ak+1

9 (wjW̄ +
λσ2

N
)

]
Matching coefficients in the Bellman equation,

ak0 = −Z̄
ckak + c2kZ̄

bk
− ck(1− e−rh)vZ̄ − (1− e−rh)γd

2r
c2kZ̄

2

+ e−rhat+1
0 − e−rhak+1

1 ckZ̄ + e−rhak+1
4 c2kZ̄

2 + e−rhak+1
5 λσ2 + e−rhak+1

6

λσ2

N
+ e−rhak+1

9

λσ2

N

ak1 =
ckak + c2kZ̄

bk
+ (1− e−rh)(1 + ck)v +

(1− e−rh)γd
r

(1 + ck)ckZ̄

+ e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄a

k+1
4

ak2 =
fkak
bk

+
fkck
bk

Z̄ + (1− e−rh)(fkv − ckZ̄) +
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2
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− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)fkv −
(1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1 + e−rhak+1

3

+ e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk −
(1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −f 2
k

bk
− (1− e−rh)γd

2r
f 2
k + e−rhak+1

4 f 2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck)

at8 =
ckfk
bk

+
(1− e−rh)γd

r
(1 + ck)fk − 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
8 (1 + ck)

at9 = fk

(
fk
bk

− (1− e−rh) +
(1− e−rh)γd

r
fk − 2e−rhak+1

4 fk − e−rhak+1
7 + e−rhak+1

8

)
+ e−rhak+1

9

The joint solution of these recursions, along with the expressions for ak, bk, ck, fk, charac-

terizes the equilibrium. We give simplifications of these recursions in Internet Appendix

IA.4.

A.1. Construction, Existence and Properties of solution

In this subsection, we describe the solution for a7. If we have a solution for a7, that yields

solutions for c. This then allows for a solution for a4, since the recursion is linear. Solutions

of a7, c, a4 yield solutions for b and f . Moreover, we show below that ak/bk = v, implying

solutions for b that yields solutions for a. The remaining recursions for the value function

are linear and have simple solutions. To sum up, solving the model reduces to solving for a7.

Explicit Solution for (ak7)
T
k=0:

We have

ak7 =
1

(N − 1)2(1 + e−rh(ak+1
7 − 1))

,

for k = 0, . . . , T − 1. Then, at time T ,

aT7 =
1

(N − 1)2(1 + e−r(1+∆)h(a07 − 1))
.

Set a07 = d for some constant d which solves a quadratic equation. Write δ = e−rh. The

constant term in the quadratic equation is

− 2
(
(−1 + δ)(N − 1)2 −

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
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+ 2
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1

+ δT+1+∆

[(
(−1 + δ)δ−(T+1) − (−1 + δ)δ−(T+1+∆)

)
(N − 1)2

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)

+
(
δ−(T+1) − δ−(T+1+∆)

)√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

+
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)]

.

The coefficient on the first-order term is

δT+1+∆

[(
− 2δ−T + (1− δ)δ−(T+1) + δ−(T+1+∆)(1 + δ)

)
(N − 1)2

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)

−
(
δ−(T+1) − δ−(T+1+∆)

)√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

+
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)]

,

and the coefficient on the second-order term is

2δ1+∆(N − 1)2
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)
.

One can show the discriminant of the quadratic equation for d is positive, implying one root

is positive, and one is negative. Note if ak7 > 0 for some k, the recursion for a7 given in the

Internet Appendix, along with the expression for ck, implies all other ak
′

7 are also positive.

Similarly, if one of the ak7 < 0 for some k, all the other ak
′

7 must be negative too. This results

from the fact that if one were positive, all the subsequent ak
′

7 would be positive, prohibiting

a solution by periodicity. Thus, the ak7 are either all positive or all negative. We show next

that only the positive solution can occur in equilibrium.
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Characterizing the equilibrium solution and its existence:

This section first shows the equilibrium c, f and a7, a4 must satisfy certain restrictions,

then discusses the existence of the solution.

The SOC for demand optimization is given by

1

b(N − 1)
− (1− e−rh)γd

r
+ 2e−rhak+1

4 < 0

First, note since f/b = −1, we must have f > 0 in equilibrium. By the third FOC above,

this fact combined with the SOC implies

(1− e−rh) + e−rhak+1
7 > 0.

Then, by the expression for f , both c and γd(e
−rh − 1) + 2re−rhak+1

4 must have the same

sign. Now, the second FOC implies

ck
bk(N − 1)

=
(1− e−rh)γd(1 + ck)

r
− 2e−rhak+1

4 (1 + ck).

If c ≤ −1, the LHS is positive while the RHS is negative. So c ≥ −1. This fact implies, as

hinted at in discussions above, that a7 > 0 in equilibrium.

Now since c and γd(e
−rh − 1) + 2re−rhak+1

4 have the same sign, we can analyze γd(e
−rh −

1) + 2re−rhak+1
4 to determine the sign of c. Let’s consider the case k = 0. Other cases are

similar.

a04 = −(1− e−rh)γd
2r

(1 + c0)
2 + e−rha14(1 + c0)

2

= −(1− e−rh)γd
2r

(1 + c0)
2 − (1− e−rh)γd

2r
e−rh(1 + c0)

2(1 + c1)
2 + e−2rha24(1 + c0)

2(1 + c1)
2

= · · ·

= −(1− e−rh)γd
2r

k∑
t=0

e−trh

t∏
i=0

(1 + ci)
2 + e−(k+1)rhak+1

4

k+1∏
i=0

(1 + ci)
2

for k ≤ T − 1. Iterating to k = T and beyond is similar. In order for positions to be non-

explosive functions of past positions, based on the expression for equilibrium demand, we

only consider equilibria that imply
∏k

i=0(1 + ci) → 0 as k → ∞. Note that this also implies,

taking the limit in the expansion above, that a04 < 0. One can show ak4 < 0 similarly.

This, in turn, implies c < 0. It’s worth noting that c < 0 will imply
∏k

i=0(1 + ci) → 0,

where one imposes periodicity in the limit in the obvious way.

Thus, we’ve shown that in equilibrium, a7 must be positive, and c must be between

−1 and 0. Let us show (N − 1)(1 − e−rh) > 1 is a sufficient condition for an equilibrium

with trade every period to exist. The positive solution for a7 constructed above is the only
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candidate. Since we must have

ck =
1

(N − 1)(1 + e−rh(ak+1
7 − 1))

− 1,

the candidate a7 will imply ck ≥ −1. And, ck < 0 for all k if (N−1)(1−e−rh) > 1. Note if this

condition did not hold, ck would only be negative if ak+1
7 were sufficiently large. Hence, since

−1 ≤ c < 0, by the expressions for a4 given above the solution for a4 will be negative. So, f

will be positive, and b will be negative, given by the solutions to the first-order conditions

above. Therefore, there is an equilibrium.

Properties of the solution:

We show four properties of the solution. The first two describe the oscillating properties

of the solution, while the last two are useful for simplifying equilibrium demand and price

expressions.

(1) The first is that if one ak7 is larger than the long-run solution (i.e., the solution in

which the market is always open), the “next” one, ak−1
7 , must be smaller. To see this, define

f(x) =
1

(N − 1)2(1− e−rh + e−rhx)
.

The long-run solution solves the quadratic equation given by f(x0) = x0. Since for x > 0, f

is decreasing in x, if x > x0, y ≡ f(x) < f(x0) = x0. So the next iteration y is less than x0.

The opposite happens if x < x0. So solutions oscillate around the long-run solution when

the market is open.

(2) Second, we show the size of the oscillations decrease as one gets further away from

the end of trade. To do this, note if ak7 = x, where k ̸= 0, 1,

ak−2
7 = f(f(x)).

Note the long run solution x0 solves the quadratic equation x0 = f(f(x0)). After simplifying,

we can write this equation as

0 = 1− (1− e−rh)(N − 1)2x0 − e−rh(N − 1)2x2
0.

Note the long-run solution x0 that we care about is the positive root - it’s straightforward

to show, like our solution for a7 above, one root is positive, and one is negative, and the

quadratic function defined by the right-hand side above is decreasing in positive reals. In

particular, if 0 < x < x0,

1− (1− e−rh)(N − 1)2x− e−rh(N − 1)2x2 > 0,

which by reversing the same operations that led us from f(f(x0)) = x0 to the quadratic

equation, implies f(f(x)) > x, so that ak−2
7 > ak7. Similarly, if x > x0, then ak−2

7 < ak7. So

the oscillations decrease in magnitude as one moves further from the end of trade.
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We illustrated these first two properties for a7. The correspondence between a7 and c

implies analogous results for c.

(3) The third property is that ck/fk = −γ/r. First, recall

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck).

Plugging in the expression for fk derived above, this implies

ak7 = (1− e−rh)(1 + ck)
2 + e−rhak+1

7 (1 + ck)
2.

Thus, defining κk = 2r
γd
ak4 + ak7, we have κk = e−rhκk+1(1 + ck)

2. for t < T, and similarly

when t = T. This periodic recursion has unique solution κk = 0. Then, the expression for fk

implies fk = − r
γ
ck.

(4) The last property is that ak/bk = −v. Recall the first FOC for optimal demand is

ak + ckZ̄

bk
− ckZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γdckZ̄

r
+ e−rhak+1

1 − 2e−rhak+1
4 ckZ̄ = 0,

By the third FOC above, this can be rewritten as

0 =
ak
bk

+
ck
bk
Z̄ +

ckZ̄

fk
e−hrak+1

7 + (1− e−rh)(v +
ckZ̄

fk
) + e−rhak+1

1 .

Then, the recursions for a1, a7 imply

− r

γZ̄
ak1 + ak7 =

r

γZ̄

(
ak
bk

+
ckZ̄

bk

)
.

Combined, these last two expressions imply

− r

γZ̄
ak1 + ak7 = − r

γZ̄
(1− e−rh)

(
v − γ

r
Z̄
)
+ e−rh(ak+1

7 − r

γZ̄
ak+1
1 ).

It’s straightforward to show this relation also holds when there is no trade, implying − r
γZ̄

ak1+

ak7 = − r
γZ̄

(v− γ
r
Z̄). Plugging this back into the simplified FOC above, we arrive at ak

bk
= −v.

A.2. Solution when there’s a halt in trade for a period

In this subsection, we illustrate how the solution is constructed when there is a halt in

trade for a period. After characterizing an equation the equilibrium must satisfy, we then

study the existence of the equilibrium with a halt in trade for at least a period.

Construction of the solution:

If there’s a halt in trade for one period before the penultimate period, then we have

ak7 =
1

(N − 1)2(1 + e−rh(ak+1
7 − 1))

for k = 0, . . . , T − 2. In period T ,

aT7 =
1

(N − 1)2(1 + e−r(1+∆)h(a07 − 1))
,
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and aT−1
7 = (1−e−rh)+e−rhaT7 . Setting a07 = d for some constant d, we can write the solution

in terms of a quadratic equation in d when there wasn’t a halt. It is straightforward to show

that there is one positive and one negative root, just as before. For the same reasons as

before, the positive root will characterize the solution. Moreover, all ak7 must be positive by

the recursions for a7.

Existence of the equilibrium:

We still need to verify the solution of the quadratic equation we have just given generates

an equilibrium under the conditions of Proposition 2, in that in all periods of trade, the

implied values of b are negative. Before discussing the existence of the equilibrium with a

halt in trade only at T − 1, let us more generally study when an equilibrium with a halt

exists.

Let us adjust the recursions for a7 above to allow for no trade in certain periods. Once

the equilibrium value of a7 is determined, the rest of the parameters determining equilibrium

can be pinned down as before. In particular, we will frequently make use of the fact that

the expression for ck in periods with trade must be the same function of ak+1
7 as before.

Note if 1
(N−1)(1−e−rh+e−rh+at+1

7 )
> 1, the arguments in Appendix A.1 imply there is no

solution for trade at k in downward sloping demand curves, because the solution for ck and

hence bk would be positive. This condition reduces to

ak+1
7 < 1− N − 2

e−rh(N − 1)
,

so that we can redefine the recursion for ak+1
7 when we don’t require trade every period to

ak7 =

1− e−rh + e−rhak+1
7 if ak+1

7 ≤ 1− N−2
e−rh(N−1)

1

(N−1)2(1−e−rh+e−rhak+1
7 )

if ak+1
7 > 1− N−2

e−rh(N−1)

= min{1− e−rh + e−rhak+1
7 ,

1

(N − 1)2(1− e−rh + e−rhak+1
7 )

}.

Define f to be the right-hand side of this expression as a continuous, piecewise-defined func-

tion ak+1
7 . This recursion corresponds to the model in which, if there is no trade equilibrium at

k in downward-sloping demand curves, there is no trade at k. If there is a trade equilibrium,

the corresponding value of ak7 is selected.

Moreover, f is a contraction from [0,∞) to itself. One can argue this as follows. f

is increasing if at+1
7 ≤ 1 − N−2

e−rh(N−1)
and decreasing otherwise. Moreover, on the first re-

gion, its slope is e−rh and on the second region its slope is decreasing and maximized when

at+1
7 = max{1− N−2

e−rh(N−1)
, 0}. Its slope at this point is also strictly less than 1. So, it’s then

straightforward to see that f is a contraction.

Then, we can iterate the recursions for a7 T times to write at7 as the solution of a fixed
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point problem, by periodicity. Note the recursion at period T must be appropriately adjusted

to account for the overnight period. This fixed point function is the composition of functions

that are contractions, and hence at7 is the fixed point of a contraction mapping. Thus, by the

Contraction Mapping Theorem, there’s a unique solution to at7 and, therefore, the sequence

of a7’s.

Hence, there is a unique solution to the problem for which trade at any period is only

abandoned if there is no equilibrium in downward-sloping demand curves in that period.

Now, let us specifically discuss the equilibrium with a single halt. Recall Proposition 2

assumes (N − 1)(1− e−2rh) > 1, and there is no equilibrium with trade in every period. It is

straightforward to show via numerical examples that this condition is not meaningless, i.e.,

there are parameters for which 1 − e−2rh > 1
N−1

> 1 − e−rh and only a halt for exactly one

period exists.

Note since ∆ ≥ 1, the condition (N − 1)(1 − e−2rh) > 1 alone implies there is a trade

equilibrium at T since the implied cT is negative. If there were also trade at T − 1, the

oscillation properties (1) and (2) shown above would imply there is trade in all previous

periods, a contradiction. Hence, there is no trade at T − 1.

Now let us show that aT−1
7 and aT−2

7 are large enough for a trade equilibrium to occur in

periods T − 2 and T − 3. Or equivalently, we show that the value of ck necessary for trade

to occur is negative. Since there’s no trade in period T − 1,

aT−1
7 = (1− e−rh) + e−rhaT7 > 1− e−rh

For a trade equilibrium to exist in period T − 2, we need the necessary value of cT−2 to be

negative. It is sufficient that

1 < (N − 1)
(
1− e−rh + e−rh(1− e−rh)

)
= (N − 1)(1− e−2rh),

which holds.

Confirming aT−2
7 is sufficiently large is slightly less straightforward. First note that since

there is no trade at period T − 1, the implied cT−1 must be positive. This results from the

definition of the modified recursion. This is true if

(N − 1)(1 + e−rh(aT7 − 1)) < 1,

which simplifies to

aT7 <
1− (N − 1)(1− e−rh)

e−rh(N − 1)
.

Then,

aT−1
7 = (1− e−rh) + e−rhaT7 <

1

N − 1
.

Using this, for cT−3 to be negative it suffices to have
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1 < (N − 1)

(
1− e−rh + e−rh

(
1

(N − 1)2(1− e−rh + e−rh

N−1
)

))
= (N − 1)(1− e−rh) + e−rh 1

(N − 1)(1− e−rh) + e−rh

=
(N − 1)2(1− e−rh)2 + e−rh(N − 1)(1− e−rh) + e−rh

(N − 1)(1− e−rh) + e−rh
.

This rearranges to (N − 1)(N − 2)(1− e−rh)2 > 0, which holds.

Now, the oscillation properties discussed above imply ck < 0 for all periods earlier in the

day, and a repetition of the arguments in the previous section implies the equilibrium exists.

Note, there can’t be an equilibrium with a single halt in an earlier period (period T − 2

or earlier), unless such an equilibrium involved forgoing trade in periods in which there is

a trade equilibrium. This results from the uniqueness of the solution a7 of the modified

recursion. One can also see this fact using the oscillation properties of the solution. In

such equilibrium, a07, a
T
7 would be sufficiently large for trade to occur in periods T, T − 1.

The oscillation properties would imply they would be sufficiently large in any prior period,

up to and including the period in which no trade occurred. Thus, this equilibrium would

necessarily enforce no trade in at least one period in which a trade equilibrium is attainable.

A.3. Proposition 3: 24/7 Trade

It is straightforward to see that when ∆ = 0, solutions to the recursions must be constant.

The recursions describing the value function reduce to

a0 = −Z̄2c2
(

1

b(N − 1)
+ e−rha4

)
+ e−rha0 + e−rha5λσ

2 + e−rha6
λσ2

N
+ e−rha9

λσ2

N

a1 =
c(c+ 1)Z̄

b(N − 1)
− a+ cZ̄

b

a2 = − cZ̄

N − 1
− (1− e−rh)cZ̄ + e−rha2 − e−rha7cZ̄

a3 =
cNZ̄

N − 1
+ e−rha3 − e−rha8cZ̄

a4 = −(1− e−rh)γd
2r

(1 + c)2 + e−rha4(1 + c)2

a5 = (1− e−rh)
f

2
+

f

2(N − 1)
+ e−rh f(1 + c)

2(N − 1)
+ e−rha5

a6 = − fN

2(N − 1)
− e−rhf

2

(
N − 2

N − 1
− c

N − 1

)
+ e−rha6

a7 =
1 + c

N − 1
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a8 = −c+
N − 2

N − 1
(1 + c)

a9 =
cf

(1 + c)(N − 1)
+ e−rha9

and the equations describing the trade equilibrium reduce to.

b =
r
(
N − 2− (N − 1)e−rh(1− a7)

)
(N − 1)(γd(e−rh − 1) + 2re−rha4)

,

c =
1

(N − 1)(1 + e−rh(a7 − 1))
− 1,

f =
r(1 + e−rh(a7 − 1))c

γd(e−rh − 1) + 2re−rha4
,

a = −c(N − 2)Z̄

N − 1
+ b

(
v(e−rh − 1)− e−rha1 +

cγd(e
−rh − 1)Z̄

r
+ 2e−rhcZ̄a4

)
.

Therefore,

c =
−(N − 1)(1− e−rh) +

√
(1− e−rh)2(N − 1)2 + 4e−rh

2e−rh
− 1.

Given c, we can solve for a7 and a4. This yields solutions for b, f, a, and the remaining

recursions.

B. Information Problem

This appendix characterizes the solution of the model when agents have heterogeneous

asset values. Recall Sj is each trader’s total signal (sum of past signals). sj is each trader’s

modified signal. Write their expectation of the dividend as

wj +B1S
j +B2

∑
i ̸=j

(
wi + ASi

)
,

for some constants B1, B2, A. Consistency of the learning problem requires B1 = A. See Du

and Zhu (2017) for details. Recall the variance of private value shocks is σ2, of dividend

shocks is σ2
D, and of signal shocks is σ2

ϵ . Then, Du and Zhu (2017) Lemma 1 gives the

conditional expectation of v given wj, Sj, and
∑

i ̸=j (w
i + ASi) is

wj +
1/(A2σ2

ϵ )

1/(A2σ2
D) + 1/(A2σ2

ϵ ) + (n− 1)/(A2σ2
ϵ + σ2)

Sj+

1/(A2σ2
ϵ + σ2)

1/(A2σ2
D) + 1/(A2σ2

ϵ ) + (n− 1)/(A2σ2
ϵ + σ2)

1

A

∑
i ̸=j

(
wi + ASi

)
.

B1 is defined in terms of A by the above. A solves the equation A = B1, and B2 is then

given as a function of A.
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Define

sj =
1

α
(wj +B1S

j),

where

α =
A2σ2

ϵ + σ2

NA2σ2
ϵ + σ2

.

Then, the conditional expectation of v is given by

αsj +
1− α

N − 1
s−j =

Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄.

Guess that the value function is linear-quadratic:

Vk(z
j, Z̄, sj, s̄) = ak0 + ak1z

j + ak2s
j + ak3 s̄+ ak4(z

j)2 + ak5(s
j)2 + ak6(s̄)

2 + ak7z
jsj + ak8z

j s̄+ ak9s
j s̄.

σ2 = 1
α2 (σ

2+A2(σ2
D+σ2

ϵ )) is variance of the shock to sj, and σ2
N = 1

α2 (σ
2/N+A2(σ2

D+σ2
ϵ/N))

is the variance of the shocks to s̄. The Bellman equation for every period, except the last, is

Vk(z
j, sj, s̄) = max

Dj

{
−Djp∗t + (1− e−rh)(zj +Dj)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
−(1− e−rh)γd

2r
(zj +Dj)2 + e−rh

[
at+1
0 + ak+1

1 (zj +Dj) + ak+1
2 sj + ak+1

3 s̄

ak+1
4 (zj +Dj)2 + ak+1

5 ((sj)2 + λσ2) + ak+1
6 (s̄2 + λσ2

N)

+ak+1
7 (zj +Dj)sj + ak+1

8 (zj +Dj)s̄+ ak+1
9 (sj s̄t + λσ2

N)
]}

,

and it is similar in the last period. The FOC for optimal demand in the first T periods is

then

0 = −p∗t − λkD
j + (1− e−rh)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

r
(zj +Dj) + e−rh[ak+1

1 + 2ak+1
4 (zj +Dj) + ak+1

7 sj + ak+1
8 s̄],

where λk :=
∂pt
∂Dj

k

. Assume

Dj
k = ak + bkpt + ckz

j + fks
j.

The equilibrium price is

pt = −ak + ckZ̄ + fks̄t
bk

.

The FOC implies

ak + ckZ̄ + fks̄

bk
+

1

bk(N − 1)
(ck(z

j − Z̄) + fk(s
j − s̄))

+ (1− e−rh)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

r
((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))

+ e−rh
[
ak+1
1 + 2ak+1

4 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄)) + ak+1
7 sj + ak+1

8 s̄
]
= 0.
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Then

b = −
ehr
(
−a8 + a7(−2 +N) + (−1 + ehr)(−2 + αN)

)
r

((−1 + a7 + a8 + ehr)(−1 +N) ((−1 + ehr)γ − 2a4r))

c =
a8 − a7(−2 +N)− (−1 + ehr)(−2 + αN)

a7(−1 +N) + (−1 + ehr)(−1 + αN)

f = −
(
−a8 + a7(−2 +N) + (−1 + ehr)(−2 + αN)

)
r

(−1 +N) (γ − ehrγ + 2a4r)

Returning to the Bellman equation, we have

Vk = (ck(z
j − Z̄) + fk(s

j − s̄))(
ak
bk

+
ck
bk
Z̄ +

fk
bk
s̄)

+ (1− e−rh)((1 + ck)z
j − ckZ̄ + fk(s

j − s̄))

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

2r
(((1 + ck)z

j − ckZ̄ + fk(s
j − s̄)))2

+ e−rh
[
at+1
0 + ak+1

1 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄)) + ak+1
2 sj + ak+1

3 s̄

ak+1
4 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))2 + ak+1

5 ((sj)2 + λσ2) + ak+1
6 (s̄2 + λσ2

N)

+ak+1
7 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))sj

+ak+1
8 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))s̄+ ak+1

9 (sj s̄+ λσ2
N)
]
,

which yields recursions as before.
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