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Abstract 

 

We present the first piece of empirical evidence on blockchain adoption for environmental 

monitoring. Using a staggered difference-in-difference (DID) framework, we find that the 

concentrations of SO2, NO2, CO in blockchain adopting cities in China are on average lower 

by 17%, 8% and 4% compared to other cities. However, the blockchain monitoring system is 

also coming with a decrease in economic activities. The quarterly GDP growth is reduced by 

1.6%-2.6% in blockchain adopting cities, which is mostly driven by the reduction in the 

industrial sector. Further evidence shows that firms in adopting cities open more plants in other 

cities to avoid regulation. We then build a theory of endogenous pollution behaviors, 

environmental monitoring, and blockchain adoption to elucidate how blockchains without 

crypto affect environmental monitoring efficiency and pollution levels. The model implies that 

adopting blockchains reduces the pollution level in a city, however, it also decreases its 

production and market share of firms as firms relocate to other cities. The city that cares more 

about the environment quality is more likely to adopt the blockchain. Lastly, high adoption 

costs and pollution benefits may cause inefficient under-adoption, and a wealth transfer is 

necessary to coordinate full adoption and thus achieve the social optimum.  
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1. Introduction 

Environmental monitoring is crucial for sustainability because it supplies the foundational 

data necessary for environmental protection. Accurate monitoring data is indispensable for 

ensuring effective ecological management. However, data quality remains a significant concern 

in practice. Issues such as reporting manipulation are prevalent. In addition, because 

environmental monitoring facilities and reporting entities are independently managed, valuable 

data is siloed and not cross-validated, failing to realize its value in aggregate. Similar data 

quality issues also plague ESG disclosures and ratings, which often lack accountability and 

proper audits, creating greenwashing (Marquis et al., 2016; Christensen et al., 2021; 

Raghunandan and Rajgopal, 2022) and inaccurate rating.1 Companies themselves are unclear 

about how to effectively implement ESG practices and fall behind on their green commitments 

(Aldy et al., 2023), not to mention institutional investors’ withdrawal from ESG funds due to 

the unreliability of standardized scores.2  

It has taken accounting literature nearly four decades to thoroughly understand and 

regulate financial disclosure. However, emergent distributed ledger technologies such as 

blockchains, as an innovative solution for establishing algorithmic trust at low costs without 

conventional trusts, offers an arguably quicker path (e.g., Abadi and Brunnermeier, 2020; Cong 

and He, 2019). Blockchain’s inherent features, such as tamper-resistance and traceability, 

ensure data integrity, while its consensus mechanisms ensure data reliability (e.g., Chiu and 

Koeppl, 2019). Moreover, the decentralized nature of blockchains enables privacy-

preserving/secure multiparty computation (secure-MPC) which features multiple applications 

in financial and corporate reporting settings (see Chen, Cong, and Xiao, 2021, Hastings, Falk, 

and Tsoukalas, 2023, Cao, Cong, and Yang, 2024, and Chinco, 2024).3  

Recently, blockchain has been adopted by some governments to enhance environmental 

sustainability (Glavanits, 2020; Erwin and Yang, 2023), because blockchain facilitates the 

adoption of new green production techniques and enhances the monitoring, storage, and 

analysis of data concerning pollution and environmental degradation. Equipped with 

blockchain, the regulator can subsequently monitor and detect pollution violations through 

comprehensive data analysis. For instance, by comparing the power usage of pollutant 

treatment equipment with that of the production lines in a factory, the regulator can infer 

whether the treatment equipment is operating normally, thereby detecting pollution violations. 

Thanks to encryption techniques such as secure MPC in the blockchain system, violations are 

 
1 Many greenwashing scandals have been reported in news. One such example is the German asset manager DWS, 

who needs to pay $19mn to the US securities regulator in a greenwashing probe after being accused of making 

“materially misleading statements”. Source: https://www.ft.com/content/cf9001ab-e326-4264-af5e-12b3fbb0ee7b 

2  Clients have withdrawn a net $40 billion from ESG funds this year according to the website: 

https://www.ft.com/content/cf9001ab-e326-4264-af5e-12b3fbb0ee7b 

3 This is typically aided by encryption technologies such as Zero-Proof Knowledge and other commitment schemes, 

through which one can cross-validate information and analyze data in aggregate without seeing the details of the raw 

data. See Cao et al. (2020) and Cao, Cong, and Yang (2024) for technical details. 
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validated without revealing proprietary information4. It also enables the real-time collection and 

analysis of green or low-carbon data, which is crucial for timely decision-making (Bai and 

Sarkis, 2019; Mora et al., 2021; Saberi et al., 2019). Furthermore, the immutability feature of 

blockchain prevent the recorded data from being revised. 

Studies on blockchains often entail the discussion of their cryptocurrencies. CZ from 

Binance even famously claimed in 2022 that “You can’t have blockchain without crypto.” We 

make a key contribution by analyzing the economic impact of blockchains without crypto. To 

that end, although some articles have suggested that blockchain technology can enhance 

economic and environmental sustainability (Pazaitis et al., 2017; Varsei et al., 2014), none 

establishes a theoretical foundation for the economic design and socioeconomic implications 

of blockchain-based environmental monitoring systems. Empirical data on blockchain 

applications in environmental monitoring or from a setting of blockchain without crypto are 

extremely hard to obtain. Our paper takes an initial step to bridge these gaps.   

We start with documenting stylized empirical facts regarding the impact of blockchain 

adoption on pollution emission and real economy. As cryptocurrencies and tokens are banned 

in China, the Chinese context offers a unique opportunity to isolate the effect of implementing 

blockchains as databases from complications brought by token incentives and price volatility. 

We explore six cities that applied the blockchain technology in environmental monitoring in 

China. Using a multivariate logit regression setting, we document that local pollution level, 

fiscal income and environmental attention are the main drivers of local governments’ adoption 

decisions.  

We then investigate the impact of blockchain adoption on pollution mitigation. Using the 

cohort matching difference in difference method, we find that on average, the SO2, NO2 and 

CO concentration decreased by 17%, 8% and 4% respectively in one-year after the blockchain 

adoption for treated cities, compared to control groups. The results are robust to an entropy 

balanced sample constructed using blockchain adoption determinants as covariates. The strict 

monitoring imposed by blockchain also have side effect on economic activity. We present 

supporting evidence that after the adoption of blockchain system, the quarterly GDP growth of 

treated cities is reduced by 1.6%-2.6%, which implies a hidden costs of 1.7-2.7 billion RMB 

per year. We show further evidence that almost all the reduction of economic activities come 

from the secondary industry. 

Given the real impact of blockchain environmental monitoring on economics, firms may 

have the incentive to delocalize their activities and shift the emission to other areas. We find 

that firms headquartered in blockchain adopting cities do open more factories in other cities in 

the post-adoption period. The evidence supports the argument that non-universal climate policy 

may lead to the regulatory arbitrage activities of firms (Bartram, Hou and Kim, 2022). 

Nevertheless, the separate dynamics of treatment and control groups indicate that the 

blockchain adoption effects on pollution emission are mostly come from the reduction in 

adopting cities and not the opposite. 

Furthermore, we develop a theoretical model to demonstrate how blockchains and the 

 
4 Appendix 1 provides more details about the secure multi-party computation. 
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secure-MPC they enable can enhance the efficiency of environmental monitoring and mitigate 

pollution. We derive conditions under which equilibria with full adoption, partial adoption, or 

no adoption of blockchain can be achieved, and analyze their corresponding social welfare. We 

demonstrate that adopting blockchain helps reducing a city’s pollution levels, but it also has a 

reduction effect on its economic output (production) and the number of firms. We also highlight 

that high blockchain adoption costs or high economic benefits from pollutions may prevent 

economy from reaching socially optimal equilibria with full adoption. In these scenarios, a 

social planer plays a pivotal role in providing subsidies to the regulator or the firms for 

achieving full adoption and thus increasing the social welfare.  

Specifically, the economy consists of two regulators in two cities, who only differ in their 

preference for environment quality, and multiple firms, who differ only in their location 

preference for cities. Firms’ productions emit harmful pollutants, and the regulator monitors the 

firms' pollution levels and imposes penalties if they are found to violate pollution standards. 

However, due to high monitoring costs, the regulator can only verify the pollution for a small 

fraction of the firms. As firms can generate additional revenues from pollution violations, they 

are incentivized to violate and to manipulate the pollutant discharge data to avoid the violation 

penalty. In this model, the regulator's objective is to maximize the economic benefit from 

production, which is increasing in pollution, while taking into account the social costs of 

pollution violations (both detected and undetected violations) and the verification costs, by 

selecting the optimal verification intensity. Conversely, each firm chooses the city in which it 

operates and the violation probability to maximizes its utility from uncaught violations while 

taking into account the potential loss from violations being caught and its location preference 

for two cities.   

Within this framework, a unique equilibrium exists. A firm's optimal violation probability, 

increases with the regulator's verification cost and the firm’s economic benefits from pollution 

violations. Conversely, the violation probability decreases with the social loss the regulator 

faces for failing to catch violations and the penalties the firm faces if violations are detected. 

From the regulator's perspective, the optimal verification intensity decreases with its 

verification cost, the firm's violation penalty, but increases with the regulator’s social loss and 

the firm’s economic benefits from uncaught violations. The regulator who faces higher social 

loss from undetected violations, or cares more about environment quality, get a lower market 

share of firms in the equilibrium. 

We subsequently integrate blockchain technology into this monitoring framework. By 

establishing a federated blockchain, one that allow a permissioned set of firms to be nodes in 

the network, the regulator can collect and analyze pollution-related data with greater accuracy, 

enabling cost-free verification of pollution levels for firms on the blockchain. As a result, the 

firm’s optimal strategy is not to violate at all. We model the interactions between the regulator 

and firms as a two-stage game: in the first stage, the regulator decides whether to adopt the 

blockchain; in the second-stage, firms and regulators play the previous game. 

We first show that adopting blockchain not only reduces pollution levels, but also 

decreases the market share as well as the and total production of the city. Then we derive the 

conditions under which no adoption, partial adoption, or full adoption exists. We show that no 

adoption and full adoption can coexist under certain conditions, however, both of them cannot 
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coexist with partial adoption. In a partial adoption, the regulator who faces higher social loss 

from uncaught violations is more likely to adopt the blockchain. However, high blockchain 

adoption cost or high economic benefits from pollutions for regulators can impede the adoption 

of blockchain and leads to inefficient social outcome. In particular, when regulators gain high 

economic benefits from pollutions, there exist cases where full adoption is social optimal but 

not an equilibrium. In this case, a central or higher-level government plays an important role 

by providing a wealth transfer to coordinate the full adoption and thus achieve the social 

optimum.  

Our study contributes to a nascent literature on the real effects of blockchains, especially 

without introducing any native cryptocurrencies. Early studies have theoretically examined 

issues related to consensus algorithms (Biais et al., 2019; Saleh, 2021), cryptocurrency mining 

(e.g., Cong et al., 2021a; Lehar and Parlour, 2020; Prat and Walter, 2021), scalability (e.g., 

Abadi and Brunnermeier, 2020; John et al., 2020), fee designs (Easley et al., 2019; Basu et al., 

2019; Huberman et al., 2021), tokenomics (e.g., Cong et al., 2021b; Cong et al., 2022ab; 

Malinova and Park, 2023), DeFi (e.g., Harvey et al., 2021; Capponi and Jia, 2021), and so on. 

Recently, researchers pay increasing attention to the fundamental value-creation of blockchain 

systems, including the role on business collaboration (Narang et al., 2019), firm operations 

(Chod et al., 2020), counterfeiting combat (Pun et al. 2021), supply chains (Iyengar et al., 2022; 

Ma et al., 2022; Chen et al., 2023), auditing (Cao et al., 2020; Cao, Cong, and Yang, 2024). 

While blockchain technologies such as immutability and smart contracts are expected to 

significantly facilitate the implementation of environmental regulations (Li, Lim, and Wang, 

2022), empirical studies are limited.5 Our research is among the earliest empirical investigation 

of the economic impact of blockchains without crypto, and is the first on blockchain adoption 

in environmental monitoring. 

Our paper therefore contributes to the growing literature on environmental regulation and 

sustainability. Prior research highlights the indispensable role of government enforcement 

(Heyes and Rickman, 1999; Grainger and Schreiber, 2019; Zou, 2021), corporate behavior 

(Bolton et al., 2022; Friesen, 2003; Shimshack and Ward, 2008; Duflo et al., 2013; Evans, 2018), 

and public awareness (Berg et al., 2024; Barwick et al., 2024), on environmental regulations 

and sustainability. Environmental monitoring remains a challenge despite various technological 

breakthroughs (e.g., Yang, et al., 2024). In this context, blockchain enables multi-party 

computation and supervision, effectively enhancing data integrity (Abadi and Brunnermeier, 

2020; Cong and He, 2019; Hu et al., 2022). Our theory provides an initial framework to analyze 

environmental monitoring with endogenous pollution and monitoring technology adoption. It 

further illustrates that the adoption of blockchain technology, coupled with government 

subsidies, can significantly reduce the violation probabilities. 

Finally, our study is broadly related to the evaluation of new technology on social welfare. 

Previous literature suggests that technological innovation can drive social welfare through 

economic growth (Jones and Williams, 1998). In particular, Iyengar et al., (2023) found that 

blockchain can reduce information asymmetry, benefiting consumer welfare. However, 

 
5 See “White Paper on Blockchain Applications for Environmental Regulation” published by Ministry of Industry 

and Information Technology in 2021.  
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technology hardly solves the principal-agent problem in environmental monitoring (Greenstone, 

et al., 2022; Yang, et al., 2024). We contribute by describing how in theory and in practice 

blockchains helps environmental monitoring. We also investigate how adoption cost and 

economic incentives may hinder adoption---a social suboptimum mitigated by government 

subsidies, which relates to recent studies showing how a planner facilitates the reduction of 

environmental externalities (e.g., Inderst and Opp, 2024).  

The remainder of the paper is structured as follows: Section 2 provides the institutional 

background; Section 3 presents empirical evidence of the environmental benefits of blockchain 

adoption on environment monitoring in China. Section 4 models the regulator’s monitoring of 

firm pollution without blockchains and derives the equilibrium strategies for the regulator and 

firms. Section 5 characterizes the equilibrium with endogenous blockchain adoption. Section 6 

explores policy implications before Section 7 concludes. 

2. Institutional Background 

The integrity and accuracy of environmental data are of paramount importance for 

competent ecological governance. To mitigate the severe air and water pollution accompanied 

with the rapid economic growth over the past two decades, the Chinese central government has 

launched a series of environmental regulation policies since the early 2000s to incentivize local 

governments to tackle and reduce pollution, including evaluating environmental performance 

for local officials (He et., 2020), taxing large polluters (Gowrisankaran et al., 2020), deploying 

automatic pollution monitoring stations (Greenstone et al., 2022), setting up various 

environmental appeals centers to encourage public participation (Buntaine et al., 2024).  

In 2004, to improve the quality of environmental monitoring, the Ministry of 

Environmental Protection (MEP) launched the Continuous Emissions Monitoring System 

(CEMS) to automatically monitor the key polluting firms nationwide. The system monitors the 

emission concentrations of both water pollutants (COD and NH3-N) and air pollutants (SO2, 

PM, NOX) for all the key polluters in an hourly frequency through the installed monitoring 

equipment at the pollution sites and a centralized data processing center. A firm’s inclusion into 

the system depends on its emissions in the previous two years, and the MEP has relaxed the 

inclusion criteria and expanded the CEMS coverage over time. As of early 2020, CEMS 

monitored almost 25,000 firms, representing more than 75% of China's industrial emissions of 

air and water pollutants (Buntaine et al., 2024). Since 2013, the Chinese government mandated 

that environmental protection authorities publicly disseminate real-time hourly emissions data 

via the CEMS website, promoting public engagement in emissions compliance monitoring. 

Despite the government’s enormous effort, challenges such as data distortion and 

manipulation remain prevalent. For instance, in 2021 alone, China prosecuted 270 cases 

involving the falsification of monitoring data from critical pollutant discharging entities.6 To 

address these challenges, some cities have begun to incorporate blockchain technology into 

their environmental monitoring frameworks because blockchain's attributes—decentralization, 

immutability, and traceability—make it an ideal solution to enhance data credibility and 

 
6 Data source: “Blockchain White Paper” published by the China Academy of Information and Communications 

Technology in 2021. 
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traceability in environmental monitoring. It also ensures the accuracy and reliability of evidence 

used in legal proceedings and therefore provides a solid legal foundation for law enforcement 

(Zhong et al., 2022; Jin and Chang, 2023). 

For instance, Zouping, a city in Shandong Province, has pioneered the development and 

implementation of a blockchain-based ecological environment supervision platform in 

December 2020, marking the first of its kind in China. The platform integrates the automatic 

pollution monitoring data with power usage data of the pollutant treatment facilities into a 

federated blockchain. By analyzing the correlation between electricity consumption and the 

operation of pollutant treatment equipment, the platform can accurately identify and record 

tamper-proof violations in real-time, effectively enhancing the timeliness and accuracy of 

environmental supervision. For example, if a firm consumes a significantly higher electricity 

than what its reported pollution level would imply, and heightened SO2 level in the region is 

detected, the firm can be red-flagged for further investigation. If any data require privacy 

protection, they can be encrypted using Zero-Knowledge-Proof or other commitment schemes 

from computer science that would mask sensitive information while still allowing the needed 

cross verifications. 

Furthermore, these data are also shared with the local environmental protection department, 

big data center, police office, and judiciary department in the blockchain, thereby providing 

robust technical and legal support for legal enforcement actions. The platform encompasses 

over 1,000 enterprises, mandating participation for most polluting companies. It operates with 

more than 6,000 trusted terminal devices and manages over 600 million pieces of data with 

significant legal and enforcement implications. The introduction of blockchain has markedly 

improved real-time supervision efficiency to over 90%, while the rate of false alarms has 

decreased from 10% to 1% in less than a year.7   

The main features of the blockchain based environmental monitoring platform in Zouping 

are summarized as follows: 

(1) Enhanced accuracy of monitoring and improved off-site regulation efficiency. Real-

time production and pollution data such as power consumption, temperature, switch timing, and 

switching status will be uploaded to the blockchain. The encryption method such as secure 

MPC in blockchain guarantees the all-weather monitoring without revealing proprietary 

information and facilities the accurate implementation of production suspension decisions.8 

(2) Improved credibility of data and improved law enforcement efficiency. The 

immutable nature of blockchain prevent anyone from tempering with the uploaded 

environmental data. Also, blockchain nodes enables the preservation and verification of 

environmental regulatory evidence, facilitates information sharing across different departments, 

and provides support for law enforcements. 

Given the significant improvement in environmental monitoring quality brought by the 

blockchain technology, Hengshui, a city in Hebei province, built a similar but much bigger 

system in November 2022 that has over 4,000 enterprises as permissioned nodes on-chain, 

 
7 Data source: https://caifuhao.eastmoney.com/news/20231224120150112105750 

8 Appendix 1 provides more details about the secure multi-party computation. 
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linking approximately 20,000 devices to the blockchain network. 9  The blockchain based 

monitoring system not only ensures rigorous environmental compliance but also addresses 

challenges in environmental data forensics, the complexity of electronic evidence evaluation in 

legal contexts, and enhances judicial linkage and data sharing.  

Other than Zouping and Hengshui, many other cities also applied the blockchain 

technology in environment monitoring. Beijing’s Big Data Sharing and Integration System for 

the Ecological Environment leverages a "Catalog Blockchain" to provide a robust data support 

for ecological environment governance through data sharing among different government 

departments.  Hebi in Henan Province, relying on the municipal government cloud platform, 

constructed a unified portal known as “Smart Atmosphere.” By integrating industrial internet 

identifier resolution and blockchain technology, it has enhanced the real-time performance and 

accuracy of air quality monitoring and online monitoring of pollution sources, offering novel 

technological means for environmental supervision. Zhejiang Province has also achieved 

remarkable results in applying blockchain technology to environment supervision. City Ningbo 

innovatively introduced the concept of health codes and launched the "Blockchain + 

Environmental Protection Code" model, achieving digital transformation of core environmental 

management services. City Jiaxing, on the other hand, established a pioneering "Coal Sample 

Chain Management" digital platform to incorporate power generation enterprises' carbon 

emission data into blockchain management, and thereby realize transparent and traceable 

monitoring of carbon emissions. 

3. Empirical Patterns and Initial Investigation 

3.1 Data Description 

We refer two sources to identify cities that adopt blockchain technologies in environmental 

monitoring. The first source is the list of blockchain applications cases disclosed by the Ministry 

of Industry and Information Technology (hereinafter referred to as MIIT) every year.
10

 These 

cases present different practices on blockchain from different cities (districts). The second 

source is the list of environmental monitoring innovation cases disclosed by China National 

Environmental Monitoring Centre (CNEMC), affiliated to the Ministry of Ecology and 

Environment.
11

 Similarly, these cases present different practice on environmental monitoring 

innovation from different cities (districts). For both data sources, we select cases (cities) 

explicitly indicating their usage of blockchain technology on environmental monitoring. 12 

Finally, we identify 6 cases with the adoption of blockchain technologies on environmental 

 
9 Data source: https://hbepb.hebei.gov.cn/hbhjt/xwzx/jicengfengcai/101699834137936.html. 
10 Here is an example for 2023:https://www.cac.gov.cn/2024-01/18/c_1707243870538299.htm 

11 See the website: 

https://mp.weixin.qq.com/s?__biz=MzI0MDYzMzIxNA==&mid=2247564745&idx=1&sn=3947420c953fb9d081

7bdeea8b45085a&chksm=e91469d8de63e0ce38a3477ff0415400ed9898baacc0f59c8740cc0ddc1c2876704aa51f61

22&scene=27 

12 To further check the completeness and reliability of the data, we search the official website of Bureau of 

Ecology and Environment for each city with the keyword “blockchain”. The outcomes are consistent with what we 

collect from the above two sources. (For example, we search “blockchain” at the website for Bureau of Ecology 

and Environment, Hengshui city  (http://sthjj.hengshui.gov.cn/). 
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monitoring and summarize them in Table A1. The related cities are Zouping, Ningbo, Beijing, 

Jiaxing, Hengshui, Hebi and the adoption time ranges from Dec., 2020 to Dec., 2023.  

Insert Table A1 about here. 

We obtain the pollutant concentration data from the China National Environmental 

Monitoring Center’ platform. The platform releases hourly pollutant concentrations at all 

monitoring stations for each city. We average these data at the city-month level. For cities with 

missing pollutant concentration data, we supplement the data obtained from the monthly urban 

air quality status reports disclosed by official websites of local governments. In the end, our 

database includes pollution concentration data for 333 prefecture-level cities and 37 county-

level cities in China from January 2018 to August 2024.  

The regional economic information data comes from several sources. Firm registration 

database. This database is released by SAIC and covers the universe of all registered firms in 

China, which is over 300 million during our sample period. The firm registration data contains 

information on the 4-digit industry classification code, registration date, registration location, 

branches and history of changes (if any). We aggregate these data to the city-level. The data for 

regional GDP and fiscal income is obtained from CEIC database. The data reginal balance of 

loans from financial institutions is hand collected from the China City Statistical Yearbook and 

the China District and County Statistical Yearbook. The definitions of variable used in the paper 

are provided in the Table A2. 

Insert Table A2 about here. 

3.2 Determinants of Blockchain Adoption  

The decision of building blockchain system to monitor the pollution emission is made by 

the local government, and clearly this choice is not randomly assigned. In this section, we 

explore the determinants of blockchain adoption decision. We estimate a logit model where the 

dependent variable equals 1 if city adopt the blockchain for environmental monitoring and 0 

otherwise. The independent variables are constructed using information from the most recent 

fiscal year ended before the adoption date. We hypothesize the adoption decision is related to 

three factors: pollution level, local fiscal condition and environmental attention. The main 

variables we used in the model are as follows: 

Pollution level.  Cities with sever pollutions suffer more from environmental problems, 

and the local governments are more willing to adopt the new technology for environmental 

monitoring. Thus, we expect that the past pollution level is positively related to the blockchain 

adoption decision. 

Fiscal revenue. It is costly to build up the blockchain monitoring platform in addition to 

the existing CNEMC system, so local governments with better fiscal condition are more likely 

to pay for the equipment. Thus, local fiscal revenue should increase the probability of 

blockchain adoption. 

Environmental attention. Pollutions not only impose environmental costs but also social 

costs. For areas where people care more about environment than economics, one unit emission 

of pollution lead to higher social cost. We use the local Baidu search index on “wumai” (haze) 

to measure the local environmental attention. We expect it is positively associated with the 
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blockchain adoption decision. 

Insert Table 1 about here. 

Table 1 presents the results from a pooled regression. Column 3 reports the estimation 

from the benchmark model and shows that all the coefficients are significant with the expected 

sign. Column 4 and 5 further include other predictors such as industrial firm numbers 

(InduFirm_num) and loan balance of banks (loan) in the area. We find that these two variables 

are highly correlated with factors in the benchmark model (Column 3) and are not significant 

in a horserace regression.  

As in any experiment we worry about endogenous selection to treatment, the analysis of 

treatment selection here facilitates us to construct a more comparable sample to estimate the 

real impact of blockchain adoption. Specifically, we employ the Entropy Balancing method 

(Hainmueller, 2012) to generate a control group that is balanced on observable characteristics 

(i.e. variables in Column 3 of Table 1). This method allows us to directly establish covariate 

balance within the weighting function (Hainmueller and Xu, 2013) without losing any sample. 

Following prior literature (Karplus and Wu, 2023), we balance on the first-order covariates and 

our results are also robust to higher-order moments of the covariate distributions.  

Insert Table 2 about here. 

We compare the covariates in treatment and control group in Table 2. We can see that the 

values of covariates are closer between treat and control cities after entropy balancing. For 

example, in the cohort of Zouping, the average fiscal revenue of control group is 9.9 μg/m³ 

before balancing and it drops to 7.6 μg/m³ after balancing, which is more closed to that of 

Zouping (6.9 μg/m³). The similar is true for other covariates and cohorts. 

3.3 Impact of Blockchain Monitoring on Pollution Concentrations 

We adopt the cohort-matching approach suggested by Gormley and Matsa (2011) to 

estimate a difference-in-differences model that accounts for multiple events. Specifically, we 

compare the changes in pollutant concentrations between cities that have implemented 

blockchain technology for environmental supervision (treatment group) and those that have not 

(control group), around the time of blockchain technology implementation. For each new 

implementation of blockchain technology, we construct a cohort of the treatment and control 

cities using city-level monthly observations for 12 months before and after the implementation. 

Specifically, we estimate the following model: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑖,𝑐,𝑡 =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖,𝑐 × 𝑃𝑜𝑠𝑡𝑐,𝑡 + 𝛾𝑖,𝑐 + 𝜆𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡 , (3.1) 

where i denotes the city, c denotes the cohort, and t denotes the month. The dependent 

variable is the logarithm of SO2, NO2, O3 or CO. Treat is equal to 1 if city i in cohort c applied 

blockchain technology in ecological environment supervision and 0 otherwise. Post is equal to 

1 if blockchain is implemented in ecological environment supervision in year-month t in cohort 

c and 0 otherwise. We include city-cohort fixed effects, 𝛾i,c, to control for any fixed differences 

between cities, and year-month-cohort fixed effects, 𝜆𝑐,𝑡to control for any time trends. We allow 

the city and time-fixed effects to vary by cohort. If the application of blockchain technology in 

environmental supervision improves air quality and reduces pollution, we expect 𝛽1, which 

captures the average treatment effect across multiple events, to be negative and statistically 
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significant. Our treatment group consists of cities that have implemented blockchain technology 

for environmental supervision (as listed in our Table A1). As for the control group, it includes 

other prefecture-level cities that have refrained from adopting blockchain technology for 

environmental oversight during the corresponding period. Notably, since Zouping is a county-

level city, we deliberately selected other county-level cities to constitute our control group.  

Insert Table 3 about here. 

Table 3 presents the average treatment effects under the Difference-in-Differences (DiD). 

Column 1-4 reports the estimates using unbalanced sample and shows a significant decrease of 

16.6%, 7.6% and 4.4% respectively for concentrations of SO2, NO2 and CO after the 

implementation of blockchains for environmental supervision. According to the statistics of key 

emission sources report in China, 75% SO2 and 37% NOX are emitted by industrial firms. Thus, 

the estimates from DID model indicate that the decrease of pollution after the blockchain 

adoption are likely driven by the reduction of pollutants emitted from industrial sector. The 

results using covariate entropy balancing sample (Column 5-8) yield consistent conclusions.  

Insert Figure 1 about here. 

Figures 1 shows the dynamic effects of blockchain adoption on pollution reduction 

estimated from unbalanced Difference-in-Difference regressions. Prior to the integration of 

blockchain technology in environment supervision, the coefficient for concentrations were 

generally insignificant, indicating the parallel trend between treat and control group. After the 

blockchain adoption, the concentrations of SO2, NO2 and CO show a clear downtrend pattern 

and revert a bit afterwards. For example, the concentrations of SO2 drop about 40% after 7 

month of adoption and revert to 20% reduction after one year. In an untabulated table, we show 

that in a longer window (post 2-year), the decrease of SO2 is stable at around 20%, but the 

concentrations of NO2 and CO revert to the level before treatment. It is due to the fact that SO2 

is a better indicator to capture the pollutions from stationary industrial sources (Karplus and 

Wu, 2023). 

3.4 Impact of Blockchain Monitoring on Economic Activities 

As the adoption of blockchain for environmental monitoring significantly reduce the 

pollutants emissions, it possibly also impacts on the economic activities. We employ the similar 

DID framework in eq (1) to investigate how the blockchain adoption influence the real economy: 

𝐺𝐷𝑃 𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑐,𝑡 =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖,𝑐 × 𝑃𝑜𝑠𝑡𝑐,𝑡 + 𝛾𝑖,𝑐 + 𝜆𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡  , (3.2) 

where i denotes the city, c denotes the cohort, and t denotes the quarter. The dependent 

variable is the year-on-year growth rate of GDP in sum, GDP from primary industry, secondary 

industry or tertiary industry. The independent variables are similarly defined with Equation 

(3.1). Our treatment group consist of Ningbo, Jiaxing, Beijing and Hengshui. We drop Zouping 

and Hebi because there are many missing or negative GDP value in these two cities and we also 

drop other cities in the control group with similar data problem.  

Insert Table 4 about here. 

Table 4 shows the estimations from a set of regression in Equation (3.2). Column 1-4 

reports the estimates using unbalanced sample and Column 5-8 reports the estimates using 



12 

 

entropy-balanced sample. The quarterly growth rate of GDP drops 1.6% to 2.6% after the 

blockchain adoption. Given that the average annual GDP of treat group is 556.4 billion RMB 

with an average 4.7% growth rate before treatments, the indirect economic costs of blockchain 

adoption for environmental monitoring yields about 1.7 billion RMB (556.4×4.7%×1.6%×4) 

to 2.7 billion RMB per year. While blockchain adoption imposed little impact on the primary 

industry and tertiary industry, it largely reduced the economic activities in secondary industry 

which is mainly consist of industrial firms. On average, secondary industry accounts for 38% 

of total GDP and its growth rate decreased by 7.4% after blockchain adoption, which implies a 

2.8% decrease of total GDP growth. In other words, the reduction of economic activities 

induced by blockchain monitoring is mainly driven by the secondary industry. This evidence is 

consistent with the estimates of distribution across different pollutants in Table 3.  

Even though the adoption decision is made by the local government, the firms have the 

option to delocalize their activities in other cities without blockchain. In other words, a non-

universal blockchain platform opens the door for firms to shift polluting operations to other 

places. We test the hypothesis using the following DID model: 

𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑖,𝑐,𝑡 =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖,𝑐 × 𝑃𝑜𝑠𝑡𝑐,𝑡 + 𝛾𝑖,𝑐 + 𝜆𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡  , (3.3) 

where i denotes the city, c denotes the cohort, and t denotes the quarter. The dependent 

variable is the number of relocations for firm in city i, which is proxied by branch_num and 

locatechg_num. branch_num is calculated as the total number of non-local branches newly 

opened by firms in city i each quarter. locatechg_num is calculated as total number of firms in 

city i that changed their headquarters to other cities each quarter. As blockchain adoption mainly 

affects the secondary industry, we only account for industrial firms when calculating these two 

proxies. The independent variables are similarly defined as in Equation (3.1).  

Insert Table 5 about here. 

Table 5 presents the results of regressions from Equation (3.3). Column 1 and 3 reports the 

estimates for branch_num using unbalanced sample and entropy-balanced sample respectively 

and both of the coefficients are significantly positive. It implies that after the adoption of 

blockchain monitoring, industrial firms open more plants in non-local cities to shift emissions. 

Column 2 and 4 reports the estimates for locatechg_num and the coefficients are not significant. 

It indicates that firms do not change their headquarters or registrations to avoid the regulation, 

which may incur higher costs and more likely to be hurdled by local governments. 

Insert Figure 2 about here. 

Given the facts that firms may open more plants in non-local cities to shift emissions, a 

worry is that the treatment effect of blockchain adoption maybe driven by the increase of 

pollution in control group cities. To rule out this possibility, we depict the dynamics of SO2 and 

NO2 concentrations in 48-month window separately for treatment and control groups in Figure 

2. We find that the pollutions in the control group do not increase after the treatment, while the 

pollutions in the treat group show a significant downward trend. The potential reason why 

emission shifts do not result in higher level pollution out of adoption city is that, the destinations 

of new plants are evenly distributed across the cities. The diversification of emissions should 

absorb the hurts of pollutants to the air quality. 
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4. A Model of Environmental Monitoring 

We introduce an economic framework featuring multiple firms and two regulatory 

authorities in two cities a traditional setting without blockchains. Each firm endogenously 

chooses one of the two cities to operate, and engages in a production process that result in 

environmental pollution, e.g., a chemical plant emits exhaust gases with high concentrations of 

SO2. To mitigate environmental harm, the regulator in each city sets up a continuous monitoring 

system to oversee firms’ pollutant emission levels, and imposes penalties for non-compliance 

when their emission levels surpass the maximum allowed levels, which are set by national 

environmental laws. Despite of these measures, there are instances when the monitoring system 

fails to accurately detect pollution violations. For example, firms may physically obstruct 

monitoring sensors or directly manipulate the emission data. These actions undermine the 

efficacy of the environmental regulatory framework, presenting challenges in maintaining 

environmental compliance.  

We assume a continuum of firms 𝑗 ∈ [0,1]  that are the same in every aspect except 

different location preference 𝑑𝑗,𝑖  for city 𝑖 . Each firm 𝑗  regularly submits a continuum of 

pollutant emission levels, denoted by 𝑥𝑗,𝑘 ≥ 0, 𝑘 ∈ [0, 𝑁], to the regulator, where 𝑁 represents 

the total number of submissions. The true value of firm 𝑗’s emission level is  𝑥𝑗,𝑘 ≥ 0, which is 

assumed to be a linearly increasing function of its output for simplicity. Due to potential 

manipulations, the reported emission level 𝑥𝑗,𝑖 may deviate from its true value  𝑥𝑗,𝑖.  

The environmental law sets the maximum permissible pollution level  𝑥̅ , and the regulator 

punishes the firm if it pollutes more than that level. Consequently, the firm has incentives to 

underreport its pollution level as 𝑥𝑗,𝑘 ≤ 𝑥̅ whenever 𝑥𝑗,𝑘 > 𝑥̅. For simplicity, given a firm 𝑗 is 

regulated under the regulator 𝑖 , we assume that each of its submissions either violates the 

maximumly limited pollution level by a constant amount 𝜇 > 0 , i.e., 𝑥𝑗,𝑘 = 𝑥̅ + 𝜇 , with a 

probability 𝑝𝑖 ∈ [0,1] , or pollutes at the maximum level 𝑥𝑗,𝑘 = 𝑥̅  with a probability 1 − 𝑝𝑖 . 

However, the firm always reports 𝑥𝑗,𝑖 = 𝑥̅ to the regulator in both cases. In other words, when 

it violates the pollution standards, 𝑥𝑗,𝑘 > 𝑥̅, it falsifies its pollution reports by submitting 𝑥𝑗,𝑖 =

𝑥̅ to comply superficially with regulations.  

Therefore, for each submission, the regulator receives a pollution level reported by the 

firm that is always equal to 𝑥̅, but some of them are actually false. In order to find out whether 

a firm violates, the regulator needs to obtain his own estimate of the true pollution level. The 

regulator could either accept the firm’s submitted number, i.e., setting 𝑥̃𝑗,𝑘 = 𝑥𝑗,𝑘 = 𝑥̅, or spend 

effort to verify the true pollution level, i.e., setting 𝑥̃𝑗,𝑘 = 𝑥𝑗,𝑘. Verification is inherently costly 

as it typically involves on-site inspections. We assume that each regulator 𝑖 randomly picks 𝑠𝑖 ∈

[0,1] fraction of the firms and verifies all submissions of each firm. In other words, a firm has 

a probability of 𝑠𝑖 to be verified by the regulator 𝑖.  

We define the regulator’s cost of verification on a single firm as 𝑐(𝑠) with 𝑐′(𝑠) > 0 and 

𝑐′′(𝑠) > 0. The convexity of the function captures the growing resource demands and logistical 

complexities associated with higher levels of verification efforts. Specifically, we assume that 

the cost function is of the following quadratic form: 

𝑐(𝑠, 𝑁) = 𝑎𝑠2𝑁2 + 𝑏, where 𝑎, 𝑏 > 0. 

The constant term b represents the regular monitoring cost for the regulator. Furthermore, 
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we assume that pollution violations cause social losses that are linear in the violation amount 

and undetected violations cause addition losses that are convex in the violation amount. 

However, pollutions also bring economic benefits to the city, e.g., the economic development 

and tax revenues from firms’ productions, and they are assumed to be linear in the violation 

amount. Therefore, the regulator 𝑖  chooses 𝑠𝑖  to maximum the economic benefits from 

pollutions while considering the social losses accompanied by pollutions and the relevant 

verification costs.  

Since all firms’ violation probabilities under the same regulator are the same, we suppress 

the subscription 𝑗 for firms afterwards for convenience. Furthermore, we assume each regulator 

independently verifies each firm. That is, for each firm in its city, the regulator 𝑖 maximizes the 

following utility function: 

𝑚𝑎𝑥
𝑠𝑖∈[0,1]

𝐿(𝑠𝑖) = 𝜃𝐸 [∫ 𝑥𝑘𝑑𝑘

𝑁

0

] − 𝜋𝐸 [∫ (𝑥𝑘 − 𝑥̅)𝑑𝑘

𝑁

0

] − 𝛽𝑖𝐸 [∫ (𝑥̃𝑘 − 𝑥𝑘)2𝑑𝑘

𝑁

0

] − 𝑎𝑠𝑖
2(𝑁)2

− 𝑏, 

where 𝜃 > 0 and 𝜋 > 0 are scaling parameters reflecting the economic benefit and social 

losses from pollution violations, respectively, and we assume 𝜃 > 𝜋 to make it non-trivial. 𝛽𝑖 >

0 is a scaling parameter reflecting the additional social loss for undetected pollution violations. 

Note that 𝛽𝑖  is the only difference between two regulators, representing their different 

preferences on environment quality. Since (1 − 𝑠)𝑝𝑖 is the probability that a firm violates and 

not being detected by the regulator 𝑖 and 𝑠𝑝𝑖 is the probability that the violation is caught, the 

regulator’s optimization problem therefore reduces to: 

𝑚𝑎𝑥
𝑠𝑖∈[0,1]

𝐿𝑖(𝑠𝑖) = 𝜃𝑁𝑥̅ + (𝜃 − 𝜋)𝑝𝑖𝑁𝜇 − 𝛽𝑖(1 − 𝑠𝑖)𝑝𝑖𝑁𝜇2 − 𝑎𝑠𝑖
2𝑁2 − 𝑏, 

The first order condition implies that the optimal verification size is equal to: 

𝑠∗ = 𝑚𝑖𝑛 (
𝛽𝑖𝑝𝑖𝜇2

2𝑎𝑁
, 1)                                                                  (4.1) 

On the firm side, conditional on being verified by the regulator 𝑖, each firm determines the 

probability 𝑝𝑖 of pollution violation by trading off the economic benefits from violations and 

the penalties from violations if caught by the regulator. Specifically, the firm’s economic benefit 

from pollutions is assumed to be proportional to the pollution level with a parameter 𝛾, which 

measures the production efficiency or the economic incentive of firm’s pollutions. However, if 

pollution violations are detected, the firm needs to pay a penalty that is convex in the violation 

amount 𝜇 and the violation frequency with a punishment intensity parameter 𝛿, i.e., increasing 

incremental punishment for severe violations or highly frequent violations. Furthermore, firms’ 

location preference 𝑑𝑖 for regulator 𝑖 are assumed to be uniformed distributed in [0,1], and for 

each firm, 𝑑𝑖 + 𝑑−𝑖 = 1, where −𝑖 represents the other regulator. In sum, the firm maximizes 

the following utility function: 

𝑀𝑎𝑥
𝑝𝑖∈[0,1]

𝐹𝑖(𝑝𝑖) = 𝛾𝑁𝑥̅ + 𝑝𝑖𝛾𝑁𝜇 − 𝛿𝑖(𝑠𝑖𝑝𝑖𝑁𝜇)2 − 𝑒𝑑𝑖,   𝛿 > 0 

The firm’s production output is proportional to 𝑁𝑥̅ + 𝑝𝑖𝑁𝜇 . Solving the first order 

condition yields the optimal violation probability: 
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𝑝𝑖
∗ = min (

𝛾

2𝛿𝑖𝑁𝜇𝑠𝑖
2 , 1)                                                                (4.2)                           

Combing Equation (4.1) and (4.2) yields the following optimal strategies (𝑠𝑖
∗, 𝑝𝑖

∗) for the 

regulator and firms. 

si
∗ = min ([

𝛽𝑖𝛾𝜇

4aN2δi
]

1
3

, 1)                                                        (4.3) 

pi
∗ = min ([

2𝑎2𝑁𝛾

βi
2𝜇5δi

]

1
3

, 1)                                                        (4.4) 

Each firm then chooses which city to operate by comparing its maximized utilities under 

two regulators. Note that a firm’s optimized utility under regulator 𝑖 can be written as  

𝐹𝑖
∗ = 𝑝𝑖

∗𝛾𝑁𝜇 − 𝛿𝑖(𝑠𝑖
∗𝑝𝑖

∗𝑁𝜇)2 + 𝛾𝑁𝑥̅ − 𝑒𝑑𝑖 

Assuming interior solution, dividing both sides of equation (4.2) by 𝑝𝑖
∗2and then plugging 

it in to the above equation yields: 

𝐹𝑖
∗ = 𝑊𝑖 + 𝛾𝑁𝑥̅ + 𝑒𝑑𝑖 , 

where 𝑊𝑖 =
𝑝𝑖

∗𝛾𝑁𝜇

2
=

2𝑎𝑁2𝛾𝑠𝑖
∗

𝛽𝜇
. Therefore, a firm chooses to operate in city 𝑖 if  

𝑊𝑖 + 𝛾𝑁𝑥̅ − 𝑒𝑑𝑖 > 𝑊−𝑖 + 𝛾𝑁𝑥̅ − 𝑒(1 − 𝑑𝑖), 

and the market share 𝑑𝑖
∗ of the regulator i is given by the marginal firm who is indifferent 

between two regulators: 

𝑊𝑖 + 𝛾𝑁𝑥̅ − 𝑒𝑑𝑖
∗ = 𝑊−𝑖 + 𝛾𝑁𝑥̅ − 𝑒(1 − 𝑑𝑖

∗) 

Solving the equation gives us: 

𝑑𝑖
∗ =

1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
 

 

Definition 1. An equilibrium of the model without blockchain is defined as an assignment 

of firms to regulators and given a match between a firm and a regulator, the firm choose the 

optimal violation probability and the regulator selects the best verification intensity to maximize 

their utilities.  

Proposition 1.  There exists a unique equilibrium in the economy that is characterized as 

follows: Given a firm regulated by the regulator 𝑖 in city 𝑖, 

1. the regulator and the firm’s optimal strategies (si
∗, pi

∗) are determined by equations 

(4.3) and (4.4).  

2. The regulator’s optimal verification intensity si
∗  is increasing in 𝛽𝑖, μ, γ , and 

decreasing in 𝑎, 𝑁, 𝛿 . A firm’s optimal violation probability pi
∗  is increasing in 𝑎, 𝑁, γ , and 

decreasing in 𝛽𝑖, μ, 𝛿.   
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3. The regulator’s maximized utility from each firm it regulates and each firm’s 

maximized utility are: 

Li
∗ = 𝜃𝑁𝑥̅ + 𝑉𝑖,                                                                       (4.5) 

𝐹𝑖
∗ = 𝑊𝑖 + 𝛾𝑁𝑥̅ − 𝑒𝑑𝑖                                                            (4.6) 

where 𝑊𝑖 =
𝛾𝑁𝜇𝑝𝑖

∗

2
=

2𝑎𝑁2𝛾𝑠𝑖
∗

𝛽𝑖𝜇
,   and 𝑉𝑖 =

𝜃−𝜋

𝛾
𝑊𝑖 + 𝑎𝑁2𝑠𝑖

∗(𝑠𝑖
∗ − 2) − 𝑏 . 

Furthermore,𝑊𝑖,  𝑉𝑖 , Li
∗,  and 𝐹𝑖

∗  are decreasing in the regulator’s awareness of environment 

quality parameter 𝛽𝑖. 

4. The market share of regulator 𝑖 is given by: 

𝑑𝑖
∗ =

1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
, 

where 𝑊𝑖 =
𝛾𝑁𝜇𝑝𝑖

∗

2
=

2𝑎𝑁2𝛾𝑠𝑖
∗

𝛽𝑖𝜇
  is decreasing in the regulator’s social loss on undetected 

violation 𝛽𝑖. Therefore, the regulator who cares less about undetected violations, or care less 

about environment quality, attracts more firms. 

5. The regulator 𝑖’s maximized utility from all firms operate in its city is given by: 

TLi
∗ = 𝑑𝑖

∗(𝜃𝑁𝑥̅ + 𝑉𝑖),                                                   (4.7) 

and the total production 𝑃𝑖
∗ in each city is proportional to 𝑑𝑖

∗(𝑁𝑥̅ + 𝑝𝑖
∗𝜇) 

In this economy, the relationship between the firm's violation probability 𝑝𝑖
∗  and the 

regulator’s verification intensity 𝑠𝑖
∗  is conceptually inverse. Specifically, an increase in the 

firm's frequency of pollution violation corresponds to a decrease in the regulator's verification 

efforts, and vice versa. The equilibrium behaviors of both parties are thus generally opposed 

concerning various parameters. For instance, if the unit cost of verification 𝑎, the submission 

volume N, a firm tends to violate more frequently (increasing 𝑝𝑖
∗), while the regulator opts to 

verify a smaller proportion of the firm’s submissions (decreasing 𝑠∗). Conversely, higher social 

losses for undetected violations (increasing 𝛽𝑖) or pollutions (increasing 𝜇) leads the firm to 

reduce its pollution violation frequency (decreasing 𝑝𝑖
∗), prompting the regulator to intensify 

verification efforts (increasing 𝑠∗).  

Interestingly, certain parameters affect the firm's and the regulator's equilibrium decisions 

in the same direction. An increase in the penalty for pollution violation 𝛿 results in both parties 

lowering their respective decision variables (𝑝𝑖
∗  and 𝑠𝑖

∗ decrease). However, if the unit extra 

benefit from pollution violation 𝛾 rises, the firm is more likely to violate (increasing 𝑝𝑖
∗) and 

the regulator responds by increasing the verification frequency (increasing 𝑠𝑖
∗). Lastly, A single 

firm’s pollution size 𝑝𝑖
∗𝑁 and the auditor’s verification size 𝑠∗𝑁 are increasing in the number of 

emission submissions N. 

The fourth result of Proposition 1 implies that the regulator who cares less about the 

undetected violations, or more broadly speaking, cares less about environment quality, receives 

a higher market share. This is because the regulator sets a lower verification intensity, and as a 

result, firms violate more frequently and get higher utilities. Therefore, more firms choose this 

regulator. In other words, firms prefer the city with looser regulation on pollutions.  However, 
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not all firms choose the city with lower regulation intensity thanks to their location preference. 

As interior solutions are more interesting, we focus on the interior solutions of the 

equilibrium. 

5. Environmental Monitoring with Blockchains and Secure Multi-Party Computation  

In the conventional approach, regulatory agencies are often constrained in budget and 

technological infrastructure, necessitating random sampling for compliance verification. 

However, the advent of blockchain technology offers a transformative shift in monitoring and 

verifying industrial pollution for regulators. A practical implementation involves the 

establishment of a federated blockchain where various stakeholders can contribute relevant data 

to monitor pollution levels. Participants might include not only the firms themselves but also 

utilities managing power, water, and gas, as well as meteorological departments. This 

collaborative data repository is encrypted to maintain privacy and ensure the security of the 

information, which is crucial considering its sensitive nature and the potential for misuse. 

Encryption algorithm such as the secure MPC can be implemented to ensure the automatic 

verification while protecting the proprietary information of data contributors. Within this 

federated blockchain, data integrity is preserved, and entries are tamper-proof and fully 

traceable.  

For example, the power utility department could install additional meters to measure 

power consumption of pollutant treatment facilities within a chemical plant. These data, 

representing the electricity usages for the normal production and pollutant treatment, can be 

automatically uploaded to the blockchain. In scenarios where a firm might bypass treatment 

processes—discharging untreated wastewater directly into water bodies—and manipulate data 

to mislead the regulator, the blockchain provides a reliable countermeasure. If the recorded 

power usage for pollutant treatment is anomalously low compared to overall production usage, 

it signals potential misconduct even if the firm’s monitored pollution levels do not exceed the 

regulatory allowed level. Furthermore, the benefit of the blockchain increases with the volume 

of pertinent data uploaded, allowing for more precise assessments of environmental compliance. 

For example, the participation of multiple firms from the same industry in the blockchain allows 

for cross-sectional analyses. Such analyses can identify outliers whose emission levels 

significantly deviate from industry norms, and help the regulator pinpoint and verify instances 

of pollution violations more efficiently. 

Thus, blockchain technology allows the regulator to verify the on-chain firms’ pollution at 

almost zero cost and focus on monitoring those off-chain firms. Furthermore, if the smart 

contracts are also designed in the system, the punishment on firm’s violations can also be 

automatically collected. This not only enhances the capacity for monitoring but also 

significantly elevates the efficiency and accuracy of environmental regulation compared to 

traditional systems. However, the installation and operation cost of a blockchain system can 

also be excessive. So, the regulator is not necessarily better off with the blockchain technology, 

and it needs to compare its utility with and without blockchain before it determines to set up 

the federated blockchain system. On the firm side, it is mandatory required to join the 

blockchain if its regulator adopts the blockchain, however it can relocate to a city without 

blockchain adopted if that makes it better off.  Therefore, regulators’ blockchain adoption 
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decision may lead to a change in the market share of each regulator or city. 

To elucidate this concept, we model the economy with blockchain as a two-stage game. In 

the first-stage, the regulators decide whether or not to adopt the blockchain. In the second-stage, 

the firms endogenously choose which city to operate, and regulators and firms play the game 

as described in the previous section. The equilibrium behaviors of the regulator and the firms 

as well as their optimized objective functions in the second-stage have been described in the 

previous section, and the equilibrium in the first-stage is defined as follows. 

Definition 1. A first-stage equilibrium of the model is defined as an assignment of firms 

to regulators and blockchain adoption decisions by two regulators that satisfy the following 

conditions:  

(i) Given the blockchain adoption decisions of the regulators, each firm chooses the 

regulator that maximizes its utility. 

(ii)  Anticipating the other regulator’s blockchain adoption decision, a regulator’s 

blockchain adoption decision maximizes its utility. 

We solve this two-stage game backward, and assume that the regulators and firms play the 

equilibrium strategies determined by Propositions 1 in the second-stage. In the first-stage, we 

assume that the regulator subsumes the blockchain adoption costs which consists of a fixed set 

up cost 𝑐𝑓 > 0 and a variable operational cost  𝑐𝑣 > 0 for each firm on the chain. When a firm 

joins the blockchain, its pollution violations will be automatically verified, i.e., si = 1, and the 

regulator no longer needs to spend efforts to verify on-chain firms, in other words, the regulator 

now can automatically verify all pollutions at zero cost. In response to the blockchain adoption, 

firms choose to not violate at all13.  

Assuming the regulator 𝑖  adopts the blockchain, then optimized utility becomes of the 

firms in its city becomes: 𝐹𝑖
𝑏 = 𝛾𝑁𝑥̅ − 𝑒𝑑𝑖, and the firm’s production is proportional to 𝑁𝑥̅, 

lower than that in the previous model without blockchain. The regulator 𝑖’s utility from each 

firm is: 𝐿𝑖
𝑏 = 𝜃𝑁𝑥̅ − 𝑐𝑣 − 𝑐𝑓 , and the market share of the regulator 𝑖  given two regulators’ 

different choices of blockchain adoption decision are as follows:  

Scenario 1: If both regulators adopt the blockchain, then the regulator i’s market share 

𝑑𝑖
∗𝑏(𝐴, 2) is determined by the following equation: 

𝐹𝑖
𝑏 = 𝛾𝑁𝑥̅ − 𝑒𝑑𝑖

∗𝑏(𝐴, 2) = 𝐹−𝑖
𝑏 = 𝛾𝑁𝑥̅ − 𝑒 (1 −  𝑑𝑖

∗𝑏(𝐴, 2)), 

where the first argument of 𝑑𝑖
∗𝑏(. , . ) represents the blockchain adoption decision of the 

regulator 𝑖 and takes values of A for adopt or N for NOT adopt blockchain, and the second 

argument indicates the number of regulators that adopt the blockchain. Solving the equation 

gives us: 

𝑑𝑖
∗𝑏(𝐴, 2) =

1

2
 

So, if both regulators adopt the blockchain, they equally share the market as firms choose 

 
13 Interior solutions imply 𝑝𝑖

∗𝛾𝑁𝜇 − 𝛿𝑖(𝑝𝑖
∗𝑁𝜇)2 < 0 if 𝑝𝑖

∗ > 0. So, firms no longer violate. 
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the city according to their location preference. 

Scenario 2: If the regulator 𝑖 adopts and −𝑖 does not adopt the blockchain, then regulator 

𝑖’s market share 𝑑𝑖
∗𝑏(𝐴, 1) is determined by the following equation: 

𝐹𝑖
𝑏 = 𝛾𝑁𝑥̅ − 𝑒 𝑑𝑖

∗𝑏(𝐴, 1) = 𝐹−𝑖
∗ = 𝑊−𝑖 + 𝛾𝑁𝑥̅ − 𝑠−𝑖

∗ 𝑘𝛾 − 𝑒 (1 − 𝑑𝑖
∗𝑏(𝐴, 1)) 

Solving the equation yields:  

𝑑𝑖
∗𝑏(𝐴, 1) =

1

2
−

𝑊−𝑖

2𝑒
<

1

2
 

Scenario 3: If regulator  𝑖 does not adopt while −𝑖 adopts, then by symmetry, the regulator 

𝑖’s market share is: 

𝑑𝑖
∗𝑏(𝑁, 1) =

1

2
+

𝑊𝑖

2𝑒
>

1

2
 

Scenario 4: If neither adopts the blockchain, then then the regulator 𝑖’s market share is the 

same as that in Proposition 1: 

𝑑𝑖
∗𝑏(𝑁, 0) = 𝑑𝑖

∗ =
1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
 

It is clear from the discussions above that adopting blockchain leads to a reduction in a 

regulator’s market share as some firms choose to relocate to the other city to maximize utilities. 

For example, for a regulator that is less concerned about undetected violations, its market share 

is greater than 1/2 if neither regulator adopts the blockchain, however, its market share drops 

below 1/2 if it first adopts the blockchain and drops to 1/2 if both adopt the blockchain. The 

main reason is that its comparative advantage of lower verification intensity no longer exists 

after the blockchain adoption, and causes the relocation of some firms to the other city.  

Furthermore, the adoption of blockchain also leads to a decrease in the total production of the 

city as both the market share and production of a single firm decrease.  

We summarize the above results in the following proposition. 

Proposition 2: (Effects of Blockchain Adoption) 

(1) Adopting blockchain reduces firms’ violation probability to zero, and consequently 

decreases the firms’ pollution levels and production levels. 

(2) Adopting blockchain leads to reductions on both the market share, pollution level, and 

total production of the city. 

Knowing the market share, two regulators’ total utilities in the equilibrium given two 

regulators’ blockchain adoption can be summarized in Table 6. A no-deviation analysis for two 

regulators implies the following equilibrium conditions. 

Proposition 3: (First-stage Equilibria) 

(1) The conditions for the existence of a full adoption equilibrium are the following 

inequality holds for 𝑖 = 1,2: 
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1

2
𝜃𝑁𝑥̅ −

1

2
𝑐𝑣 − 𝑐𝑓 > (

1

2
+

𝑊𝑖

2𝑒
) (𝜃𝑁𝑥̅ + 𝑉𝑖)                                           (5.1) 

(2) The conditions for the existence of a no adoption equilibrium are the following 

inequality holds for 𝑖 = 1,2: 

(
1

2
+

𝑊𝑖−𝑊−𝑖

2𝑒
)(𝜃𝑁𝑥̅ + 𝑉𝑖) > (

1

2
−

𝑊−𝑖

2𝑒
) (𝜃𝑁𝑥̅ − 𝑐𝑣) − 𝑐𝑓                    (5.2) 

So, for sufficient large 𝑐𝑓,  no adoption is an equilibrium 

(3) The conditions for the existence of a partial adoption equilibrium, where only the 

regulator 𝑖 = 1, 𝑜𝑟 2 adopts blockchain, are the following two inequalities hold: 

(
1

2
−

𝑊−𝑖

2𝑒
) (𝜃𝑁𝑥̅ − 𝑐𝑣) − 𝑐𝑓 > (

1

2
+

𝑊𝑖−𝑊−𝑖

2𝑒
)(𝜃𝑁𝑥̅ + 𝑉𝑖)                    (5.3) 

(
1

2
+

𝑊−𝑖

2𝑒
) ( 𝜃𝑁𝑥̅ + 𝑉−𝑖) >

1

2
𝜃𝑁𝑥̅ −

1

2
𝑐𝑣 − 𝑐𝑓                                     (5.4) 

(4) No adoption and full adoption can coexist if and only if 𝑐𝑣 + 𝑉𝑖 < 0 for i=1,2. 

(5) Both no adoption and full adoption equilibrium cannot coexist with Partial Adoption 

equilibrium. 

(6) If there only exists one partial equilibrium, then it must be the one where only 

regulator with higher 𝛽𝑖  adopts the blockchain. Moreover, if two regulators have similar 

preference 𝛽𝑖 for undetected violations and 𝑐𝑣 < 𝑉𝑖 for 𝑖 = 1,2,, then both partial equilibria can 

coexist.  

The first part of the proposition defines an upper bound of the blockchain adoption cost 

for the existence of the full adoption equilibrium, and it requires 𝑉𝑖 < 0. So, if the regulators 

have low economic benefits from pollutions (low 𝜃) or cares a lot about the environment quality 

(high 𝛽), then the upper bound is high and therefore a full adoption is more likely to achieved.  

Oppositely, the second part of the proposition defines a lower bound of the blockchain adoption 

cost for the existence of the no adoption equilibrium. If the regulators have high economic 

benefits from pollutions (high 𝜃) or cares a little about the environment quality (low 𝛽), then 

the lower bound is low and therefore a no adoption equilibrium is more likely to achieved. 

6. Social Welfare and Policy Implications 

Although blockchain adoption in environmental monitoring significantly reduces the 

pollution level, it also reduces the firm productions in the economy. Furthermore, high adoption 

cost or regulators’ competition for firms impede the adoption of blockchain that may cause a 

sub-optimal solution. Therefore, it is important to analyze the effect of blockchain adoption 

from the viewpoint of the social welfare, which is defined as the sum of utilizes of all firms and 

the two regulators. Since both the no adoption equilibrium and the full adoption equilibrium 

cannot coexist with the partial equilibrium, we focus on the social welfare analysis of the no 

adoption and full adoption equilibria.  

Using the results in Proposition 1 and Table 6, the social welfare in the no adoption 

equilibrium is: 
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𝑆0 = 𝜃𝑁𝑥̅ + 𝑑1
∗𝑉1 + 𝑑2

∗𝑉2 + 𝑑1
∗𝑊1 + 𝑑2

∗𝑊2 + 𝛾𝑁𝑥̅ −
1

2
𝑒, 

and the social welfare in the full adoption equilibrium is: 

𝑆𝑏 = 𝜃𝑁𝑥̅ − 𝑐𝑣 − 2𝑐𝑓 + 𝛾𝑁𝑥̅ −
1

2
𝑒 

The following proposition lays out the conditions for the social optimality of a full 

adoption equilibrium, and discuss the role of central government’s subsidy in helping the 

society reaching the full adoption when it is social optimal but not an equilibrium. 

Proposition 4 (Social Optimum).  

(1) Full adoption is social optimal, i.e., 𝑆𝑏 > 𝑆0, if and only if 𝑐𝑣 + 2𝑐𝑓 < 𝐶0, where  𝐶0 is 

a positive constant. 

(2) When regulators’ economic benefits from pollutions 𝜃 is higher than a threshold 𝜃0 >

0 , there exists a constant 0 < 𝐶1 < 𝐶0  such that full adoption is social optimal but not the 

equilibrium when 𝐶1 < 𝑐𝑣 + 2𝑐𝑓 < 𝐶0. In this case, a central government or social planner can 

provide subsidies or wealth transfer to local regulator and coordinate the full adoption 

equilibrium to achieve the social optimum. 

7. Conclusion 

We study the endogenous adoption of blockchain technology for mitigating industrial 

pollution. We present the first piece of evidence using data from China on how blockchains as 

an infrastructure for secure multi-party computation impact on industrial pollution levels and 

economic activities. The concentration of SO2, NO2 and CO decreased by 17%, 8% and 4% 

respectively in one-year after the blockchain adoption. Then, we document the evidence that 

blockchain adoption also has a side effect on economic activities. The quarterly GDP growth in 

adopting cities is reduced by 1.6-2.6%, giving a hidden cost of 1.7-2.7 billion RMB. Further 

evidence shows that the non-universal blockchain monitoring results in the delocalized 

activities of firms. 

We then construct a theoretical framework to rationalize the observations and further 

elucidate the relationship among endogenous firm production and pollution, environmental 

monitoring, and blockchain adoption. Our model consists of two regulators in two cities and 

multiple firms. In a unique equilibrium of environmental monitoring and reporting without 

blockchains, a firm's probability of violating pollution standards increases with the regulator’s 

verification cost and its economic benefits from violations, and decreases with the social loss 

from undetected violations and penalties for detected violations. The regulator's optimal 

verification intensity decreases with verification costs, but increases with social losses caused 

by pollutions and firms’ additional benefits from violations. 

Introducing blockchain technology allows the regulator to collect and analyze pollution 

data more accurately and verifying on-chain firms at zero cost. We derive the conditions under 

which no adoption, partial adoption, or full adoption equilibrium can be achieved and show that 

the firms’ violation probabilities and the total pollution amounts are reduced in the equilibria 

with blockchain adoption. However, blockchain adoption also reduces the correspond city’s 
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production and market share. Lastly, high adoption cost or high economic benefits from 

pollutions may cause under-adoption in the equilibrium that is socially inefficient. In these cases, 

a wealth transfer provided by a central government is necessary to promote full adoption and 

therefore to increase the social welfare. 

Our theoretical findings not only explain the empirical patterns we document but also offer 

pragmatic implications into the economic tradeoffs arisen in blockchain adoption. This study 

provides an initial guidance for policymakers and industry leaders who are exploring 

blockchains to enhance regulatory effectiveness and achieve sustainable environmental 

outcomes.   
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Table AI: Variable definition  

 

The sample period of pollutants is from January 2018 to August 2024. The pollutant concentration 

data is from the China National Environmental Monitoring Center data platform, supplemented by 

data hand-collected from the monthly urban air quality status reports disclosed by local governments. 

The regional economic data is from CEIC database and the China City (District and County) 

Statistical Yearbook. The industrial firm information is obtained from firm registration database 

released by SAIC. All of the variables are constructed at the city level. 

 

Variable Definition 

Pollutants  

SO2 The logarithm of monthly average SO2 concentration (μg/m³ ). 

NO2 The logarithm of monthly average NO2 concentration (μg/m³ ). 

O3 The logarithm of monthly average O3 concentration (μg/m³). 

CO The logarithm of monthly average CO concentration (μg/m³ ). 

Pollution level Average concentration of SO2 and NO2 over past 6 months. 

Regional economy  

Fiscal revenue General public budget fiscal revenue (billion RMB). 

Environmental attention Baidu search index for the key word “wumai” (haze) scaled by GDP. 

InduFirm num The logarithm of the number of operating industrial enterprises in 

city i.  

Loans The logarithm of the balance of loans from financial institutions at 

the end of the year scaled by GDP. 

GDP growth Year-over-Year growth rate of quarterly GDP. 

GDP1 growth Year-over-Year growth rate of quarterly GDP in Primary Industry. 

GDP2 growth Year-over-Year growth rate of quarterly GDP in Secondary Industry. 

GDP3 growth Year-over-Year growth rate of quarterly GDP in Tertiary Industry. 

branch num Total number of non-local branches newly opened by firms in city i 

each quarter. 

locatechg num Total number of firms in city i that changed their headquarters to 

other cities each quarter. 
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Table A2: Cities Adopting Blockchain for Environmental Monitoring 

 

This table shows the cities adopting blockchain technology for environment monitoring, along with 

the timing of the implementation and specific case or project names. 

 

City Date Case or Platform Name 

Zouping Dec-2020 Blockchain Ecological Environment Supervision 

Platform 

Ningbo Nov-2021 Ecological Environment 'Smart Management and 

Service' System 

Beijing Apr-2022 Research and Demonstration Application of New 

Ecological Environment Governance System Project 

Jiaxing Jun-2022 "Coal Sample Chain Management" Platform for 

Emission  

Hengshui Nov-2022 Ecological Environment Data Notarization Platform 

Hebi Dec-2023 Air Quality Monitoring and Supervision Integrated 

Platform 

   

 



30 

 

Figure 1: Dynamic effect of blockchain adoption on pollutants   

 

This figure shows the coefficient dynamics concerning the effect of blockchain adoption on pollutants using unbalanced DiD estimates with 1 month before the adoption 

of blockchain as the base. The x-axis represents months before and after the event and y-axis shows the magnitude of pollutants. 
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Figure 2: Dynamics of SO2 and NO2 concentrations for treats and controls 

 

This figure shows the dynamics of SO2 and NO2 concentrations in 24-month before and after the 

adoption separately for treat (blue line) and control groups (red line). The x-axis represents months 

before and after the event and y-axis shows the magnitude of pollutants. 
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Table 1: Determinants of blockchain adoptions  

 

This table reports the results from a set of logit regressions. The dependent variable is a dummy that 

equals 1 if a city implements blockchain-based environmental monitoring and 0 itherwise. The 

independent variables a series of regional economic variables by the end of most recent fiscal year 

before the adoption date. Pollution level is the average pollutants concentrations over the past six 

months. Fiscal revenue is the general public budget revenue. Environmental attention is Baidu 

Search Index of haze scaled by GDP. InduFirm num is the number of operating industrial enterprises. 

Loans is balance of loans from financial institutions. Variables are defined in Table AI. All variables, 

except for dummy variables, are winsorized at the 1% level for each cohort group. Standard errors 

are clustered at the city-cohort level. *** and ** denote statistical significance at the 1% and 5% 

levels, respectively. 

 
 (1) (2) (3) (4) (5) 

Pollution level  2.6180*** 2.5416** 2.5882** 2.5707** 2.4824* 

 (2.61) (2.28) (2.17) (2.00) (1.92) 

Fiscal revenue  0.0503*** 0.0528*** 0.0414* 0.0399* 

  (3.05) (3.27) (1.68) (1.65) 

Environmental 

attention 
  0.0132** 0.0166*** 0.0165*** 

   (2.19) (2.65) (2.65) 

InduFirm num     0.5217 0.4863 

    (0.79) (0.76) 

Loans     0.2807 

     (0.45) 

Observations 1445 1445 1445 1445 1445 

R2 0.043 0.102 0.117 0.130 0.131 
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Table 2: Summary Statistics for Entropy-Balanced Variables 

 

This table shows the mean values of the covariates before and after entropy balancing. Pollution 

level is the average pollutants concentrations (μg/m³) over the past six months. Fiscal revenue is 

the general public budget revenue (billion RMB). Environmental attention is Baidu Search Index 

of haze scaled by GDP. 

 
  Before After 

Treat-

group 
Covariate variable Control Treat Control Treat 

Zouping Pollution level 3.539 3.830 3.758 3.830 

Fiscal revenue 9.909 6.948 7.637 6.948 

Environmental attention 108.524 86.187 98.102 86.187 

Ningbo Pollution level 3.575 3.872 3.872 3.872 

Fiscal revenue 29.239 172.314 172.215 172.314 

Environmental attention 10.221 6.022 6.023 6.022 

Beijing Pollution level 3.605 3.498 3.472 3.498 

Fiscal revenue 29.239 593.231 520.749 593.231 

Environmental attention 10.223 5.230 5.652 5.230 

Jiaxing Pollution level 3.522 3.800 3.800 3.800 

Fiscal revenue 29.239 67.480 67.479 67.480 

Environmental attention 10.221 7.750 7.750 7.750 

Hengshui Pollution level 3.221 3.423 3.423 3.423 

Fiscal revenue 29.239 13.664 13.693 13.664 

Environmental attention 10.221 15.934 15.932 15.934 

Hebi Pollution level 3.288 3.637 3.637 3.637 

Fiscal revenue 28.741 7.731 7.731 7.731 

Environmental attention 10.785 9.803 9.803 9.803 
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Table 3: Average Treatment Effects of Blockchain Adoption on Air Pollution Concentration 

 
𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑖,𝑐,𝑡 =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖,𝑐 × 𝑃𝑜𝑠𝑡𝑐,𝑡 + 𝛾𝑖,𝑐 + 𝜆𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡  

 

This table presents the results of the regression equation mentioned above. The dependent variable is the logarithm of the concentration of SO2, NO2, O3 and CO. For 

each new adoption of blockchain technology, we construct a cohort consisting of treated and control cities. Treat is equal to 1 if city i in cohort c applied blockchain 

technology in ecological environment supervision and 0 otherwise. Post is equal to 1 if blockchain is implemented in environment supervision in year-month t in cohort 

c and 0 otherwise. In Columns (1)-(4), we display unbalanced Difference-in-Differences (DiD) estimates. In Columns (5)-(8), we present Entropy-DiD estimates using 

past pollutant concentrations, general public budget revenue, environmental attention as covariates. We include City×cohort and YearMonth×cohort fixed effects in our 

analysis. All variables, except for dummy variables, are winsorized at the 1% level for each time-cohort group. Standard errors are clustered at the city-cohort level. 

*** and ** denote statistical significance at the 1% and 5% levels, respectively. 

  
Unbalanced DiD ebDiD 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Variable SO2 NO2 O3 CO SO2 NO2 O3 CO 

Post x Treat -0.1655*** -0.0757** 0.0042 -0.0438** -0.1633*** -0.0483** -0.0036 -0.0759*** 
 

(-3.71) (-2.32) (0.33) (-2.17) (-7.01) (-1.98) (-0.46) (-3.29) 

Observations 39,248 39,248 38,369 38,369 33,832 33,832 33,107 33,107 

R2 0.709 0.865 0.675 0.729 0.910 0.904 0.835 0.807 

City x Cohort FE Yes Yes Yes Yes Yes Yes Yes Yes 

YearMonth x Cohort FE Yes Yes Yes Yes Yes Yes Yes Yes 
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Table 4: Impact of Blockchain Adoption on Economic Activities 

 
𝐺𝐷𝑃 𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑐,𝑡 =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖,𝑐 × 𝑃𝑜𝑠𝑡𝑐,𝑡 + 𝛾𝑖,𝑐 + 𝜆𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡  

 

This table presents the results of the regression above. The dependent variables are the year-on-year growth rates of total GDP, primary industry GDP, secondary 

industry GDP, and tertiary industry GDP. For each new adoption of blockchain technology, we construct a cohort consisting of treated and control cities. Treat is equal 

to 1 if city i in cohort c applied blockchain technology in ecological environment supervision and 0 otherwise. Post is equal to 1 if blockchain is implemented in 

environment supervision in year-month t in cohort c and 0 otherwise. In Columns (1)-(4), we display unbalanced Difference-in-Differences (DiD) estimates. In Columns 

(5)-(8), we present Entropy-DiD estimates using past pollutant concentrations, general public budget revenue, environmental attention as covariates. We include 

City×cohort and YearQuater×cohort fixed effects in our analysis. All variables, except for dummy variables, are winsorized at the 5% level. Standard errors are clustered 

at the city-cohort level. *** and ** denote statistical significance at the 1% and 5% levels, respectively. 

 

 
 Unbalanced DiD ebDiD 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Variable GDP growth GDP1 growth GDP2 growth GDP3 growth GDP growth GDP1 growth GDP2 growth GDP3 growth 

Post x Treat -0.0262** 0.0016 -0.0744* -0.0055 -0.0162** -0.0152 -0.0587** 0.0068* 

 (-2.51) (0.18) (-1.74) (-1.34) (-2.24) (-1.30) (-2.18) (1.66) 

Observations 4119 4087 4086 4096 4086 4086 4086 4086 

R2 0.740 0.416 0.665 0.736 0.887 0.540 0.794 0.909 

City x Cohort FE Yes Yes Yes Yes Yes Yes Yes Yes 

YearQuarter x 

Cohort FE 
Yes Yes Yes Yes Yes Yes Yes Yes 
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Table 5: Relocation between Treat and control cities 

 
𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑖,𝑐,𝑡 =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖,𝑐 × 𝑃𝑜𝑠𝑡𝑐,𝑡 + 𝛾𝑖,𝑐 + 𝜆𝑐,𝑡 + 𝜖𝑖,𝑐,𝑡  

 

This table presents the results of the regression above. The dependent variables are branch_num 

and locatechg_num. branch_num is calculated as the total number of non-local branches newly 

opened by firms in city i each quarter. locatechg_num is calculated as total number of firms in 

city i that changed their headquarters to other cities each quarter. For each new adoption of 

blockchain technology, we construct a cohort consisting of treated and control cities. Treat is equal 

to 1 if city i in cohort c applied blockchain technology in ecological environment supervision and 0 

otherwise. Post is equal to 1 if blockchain is implemented in environment supervision in year-month 

t in cohort c and 0 otherwise. In Columns (1)-(2), we display unbalanced Difference-in-Differences 

(DiD) estimates. In Columns (3)-(4), we present Entropy-DiD estimates using past pollutant 

concentrations, general public budget revenue, environmental attention as covariates. We include 

City×cohort and YearQuater×cohort fixed effects in our analysis. All variables, except for dummy 

variables, are winsorized at the 1% level. Standard errors are clustered at the city-cohort level. *** 

and ** denote statistical significance at the 1% and 5% levels, respectively. 

 
 Unbalanced DiD ebDiD 

 (1) (2) (3) (4) 

Variable branch num  locatechg num  branch num  locatechg num  

Post x Treat 5.3068*** 0.1227 3.5471*** 0.3360 
 

(2.63) (0.24) (4.31) (0.99) 

Observations 13,366 11,520 11,603 10,188 

R2 0.853 0.620 0.967 0.636 

City x Cohort FE Yes Yes Yes Yes 

YearQuarter x Cohort FE Yes Yes Yes Yes 
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Table 6: Regulators’ Utilities 

This table presents the total utilities of two regulators in the first-stage under different scenarios 

of their blockchain adoption decisions. 𝑐𝑓 if the fixed cost of blockchain adoption, and  𝑐𝑣 is 

the variable operational cost for each firm on the blockchain. 𝑊𝑖 =
𝛾𝑁𝜇𝑝𝑖

∗

2
, 𝑉𝑖 =

𝜃−𝜋𝑖

𝛾
𝑊𝑖 +

𝑎𝑁2𝑠𝑖
∗(𝑠𝑖

∗ − 2) − 𝑏 , 𝑝𝑖
∗  is the firm’s optimal pollution violation probability if regulated by 

regulator 𝑖  in the second stage, and 𝑠𝑖
∗  is regulator 𝑖 ’s optimal verification intensity in the 

second stage. The notation −𝑖 denotes the regulator other than 𝑖 in the economy. 

 

Regulators’ blockchain 

adoption decisions 

Total utility 

Regulator 𝑖 Regulator −𝑖 

Scenario 1: 
Both 

adopt 

1

2
𝜃𝑁𝑥̅ −

1

2
𝑐𝑣 − 𝑐𝑓 

1

2
𝜃𝑁𝑥̅ −

1

2
𝑐𝑣 − 𝑐𝑓 

Scenario 2: 
𝑖 adopts, 

- 𝑖 not 
(

1

2
−

𝑊−𝑖

2𝑒
) (𝜃𝑁𝑥̅ − 𝑐𝑣) − 𝑐𝑓 (

1

2
+

𝑊−𝑖

2𝑒
) ( 𝜃𝑁𝑥̅ + 𝑉−𝑖) 

Scenario 3: 
𝑖 not, - 𝑖 
adopts 

(
1

2
+

𝑊𝑖

2𝑒
) (𝜃𝑁𝑥̅ + 𝑉𝑖) (

1

2
−

𝑊𝑖

2𝑒
) (𝜃𝑁𝑥̅ − 𝑐𝑣) − 𝑐𝑓 

Scenario 4: 
Neither 

adopts 
(
1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
)(𝜃𝑁𝑥̅ + 𝑉𝑖) (

1

2
−

𝑊𝑖 − 𝑊−𝑖

2𝑒
)(𝜃𝑁𝑥̅ + 𝑉−𝑖) 
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Appendix 1: Secure Multi-Parity Computation 

 

Secure multi-party computation (MPC) is a subfield of cryptography that enables multiple 

parties to collaboratively compute a function over their inputs while keeping those inputs 

private. This technology addresses concerns on data breaches and information misuse arising 

from traditional methods which require a third party to perform computations on behalf of the 

involved parties. MPC provides a robust framework for secure and privacy-preserving 

computation that are important in many scenarios such as decentralized systems. The concept 

of MPC was first introduced by Yao (1986) through the formulation of the two-party 

Millionaires' Problem. Goldreich, Micali, and Wigderson (1987) extend it to the multi-party 

case. Wang, Ranellucci, and Katz (2017a, b) provide efficient algorithms for two-party and 

multi-party secure computations.  
 

MPC protocols are designed to withstand various threat models, such as semi-honest and 

malicious adversaries. In a semi-honest model, participants follow the protocol correctly but 

may attempt to extract additional information from the data they receive. In contrast, malicious 

adversaries may intentionally deviate from the protocol to disrupt the computation or gain 

unauthorized access to sensitive data. MPC protocols employ techniques such as homomorphic 

encryption, secret sharing, and oblivious transfer to ensure the security of data. 

 

In recent years, the growing demand for data privacy has led to the applications of MPC 

in many other fields, such as privacy-preserving auctions (e.g., 2008 Danish sugar beet auction, 

Bogetoft et al., 2015) and auditing (Bogdanov et al., 2015). 
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Appendix 2: Proof of Proposition 1 

 

The proof of (1), (2), (4) are straightforward.  

 

Proof for (3):  

The regulator i’s maximized utility on each firm in the equilibrium is: 

𝐿(𝑠𝑖) = 𝜃𝑁𝑥̅ + [(𝜃 − 𝜋𝑖)𝑝𝑖
∗𝑁𝜇 − 𝛽𝑖(1 − 𝑠𝑖

∗)𝑝𝑖
∗𝑁𝜇2 − 𝑎𝑠𝑖

∗2𝑁2 − 𝑏] 

Rewrite equation (1) as 𝑝𝑖
∗ =

2𝑎𝑁𝑠𝑖
∗

𝛽𝜇2  and plugging into L gives us: 

𝐿(𝑠𝑖) = 𝜃𝑁𝑥̅ + [(𝜃 − 𝜋𝑖)
2𝑎𝑁𝑠𝑖

∗

𝛽𝑖𝜇2
𝑁𝜇 − 𝛽𝑖(1 − 𝑠𝑖

∗)
2𝑎𝑁𝑠𝑖

∗

𝛽𝑖𝜇2
𝑁𝜇2 − 𝑎𝑠𝑖

∗2𝑁2 − 𝑏] 

= 𝜃𝑁𝑥̅ + [𝑎𝑁2𝑠𝑖
∗ (

2(𝜃 − 𝜋𝑖)

𝛽𝑖𝜇
− 2(1 − 𝑠𝑖

∗) − 𝑠𝑖
∗) − 𝑏]  

= 𝜃𝑁𝑥̅ + [𝑎𝑁2𝑠𝑖
∗ (𝑠𝑖

∗ +
2(𝜃 − 𝜋𝑖)

𝛽𝑖𝜇
− 2) − 𝑏] 

= 𝜃𝑁𝑥̅ + [
𝜃 − 𝜋𝑖

𝛾
𝑊𝑖 + 𝑎𝑁2𝑠𝑖

∗(𝑠𝑖
∗ − 2) − 𝑏] 

Define 𝑉𝑖 =
𝜃−𝜋𝑖

𝛾
𝑊𝑖 + 𝑎𝑁2𝑠𝑖

∗(𝑠𝑖
∗ − 2) − 𝑏, then we have: 

𝐿(𝑠𝑖) = 𝜃𝑁𝑥̅ + 𝑉𝑖 

Since 𝑝𝑖
∗ is decreasing in 𝛽𝑖, 𝑊𝑖 =

𝑝𝑖
∗𝛾𝑁𝜇

2
  is also decreasing in 𝛽𝑖. Taking derivative with 

respect to 𝛽𝑖 for  𝑉𝑖 implies: 
𝜕𝑉𝑖

𝜕𝛽𝑖
=

𝜃 − 𝜋𝑖

𝛾

𝜕𝑊𝑖

𝜕𝛽𝑖
+ 𝑎𝑁2(2𝑠𝑖

∗ − 2)
𝜕𝑠𝑖

∗

𝜕𝛽𝑖
< 0, 

where the last inequality uses the fact that 𝑠𝑖
∗ is increasing in 𝛽𝑖. Therefore, Li

∗, and 𝐹𝑖
∗ are 

also decreasing in 𝛽𝑖. 

 

Proof for (5):  

The regulator’s total utility from all firms operate in its city thus becomes: 

𝑇𝐿(𝑠𝑖) = 𝑑𝑖
∗𝑇(𝜃𝑁𝑥̅ + 𝑑𝑖

∗𝑉𝑖) 

The total production 𝑃𝑖
∗ in each city is proportional to 𝑑𝑖

∗(𝑁𝑥̅ + 𝑝𝑖
∗𝜇) by definition. 

 

 

Q.E.D.   
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Appendix 3: Proof of Proposition 3 

 

The (1)-(3) of the proposition can be easily derived using non-deviation conditions for 

regulators.   

 

Proof of (4):  

The full adoption equilibrium condition (5.1) implies 

 𝑐𝑓 <
1

2
𝜃𝑥̅ −

1

2
𝑐𝑣 − (

1

2
+

𝑊𝑖

2𝑒
) 𝜃𝑥̅ − (

1

2
+

𝑊𝑖

2𝑒
) 𝑉𝑖 

= −
𝑊𝑖

2𝑒
𝜃𝑥̅ −

1

2
𝑐𝑣 − (

1

2
+

𝑊𝑖

2𝑒
) 𝑉𝑖 = 𝐶1 

The no adoption equilibrium condition (5.2) implies 

 𝑐𝑓 >= (
1

2
−

𝑊−𝑖

2𝑒
) 𝜃𝑥̅ − (

1

2
−

𝑊−𝑖

2𝑒
) 𝑐𝑣 − (

1

2
+

𝑊𝑖−𝑊−𝑖

2𝑒
) 𝜃𝑥̅ − (

1

2
+

𝑊𝑖−𝑊−𝑖

2𝑒
) 𝑉𝑖 

= −
𝑊𝑖

2𝑒
𝜃𝑥̅ − (

1

2
−

𝑊−𝑖

2𝑒
) 𝑐𝑣 − (

1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
) 𝑉𝑖 

= 𝐶2 = 𝐶1 +
𝑊𝑖

2𝑒
(𝐶𝑣 + 𝑉𝑖) 

Therefore, no adoption and full adoption coexist if and only if 𝐶2 < 𝐶1, or equivalently, 

𝐶𝑣 + 𝑉𝑖 < 0 𝑓𝑜𝑟 𝑖 = 1,2. 
 

Proof of (5):  

Since inequality (5.1) and (5.4) cannot hold at the same time, full adoption and partial 

adoption cannot co-exist. Similarly, since inequality (5.2) and (5.3) cannot hold at the same 

time, no adoption and partial adoption cannot coexist. 

 

Proof of (6):  

From (3) of the proposition, inequalities (5.3) and (5.4) are the conditions for the 

existence of a partial adoption equilibrium where only the regulator 𝑖  adopts blockchain. 

Inequality (5.3) implies 

 𝑐𝑓 < (
1

2
−

𝑊−𝑖

2𝑒
) 𝜃𝑥̅ − (

1

2
−

𝑊−𝑖

2𝑒
) 𝑐𝑣 − (

1

2
+

𝑊𝑖−𝑊−𝑖

2𝑒
) 𝜃𝑥̅ − (

1

2
+

𝑊𝑖−𝑊−𝑖

2𝑒
) 𝑉𝑖 

= −
𝑊𝑖

2𝑒
𝜃𝑥̅ − (

1

2
−

𝑊−𝑖

2𝑒
) 𝑐𝑣 − (

1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
) 𝑉𝑖 = 𝐶3 

And inequality (5.4) implies: 

𝑐𝑓 >
1

2
𝜃𝑥̅ −

1

2
𝑐𝑣 − (

1

2
+

𝑊−𝑖

2𝑒
) 𝜃𝑥̅ − (

1

2
+

𝑊−𝑖

2𝑒
) 𝑉−𝑖 

= −
𝑊−𝑖

2𝑒
𝜃𝑥̅ −

1

2
𝑐𝑣 − (

1

2
+

𝑊−𝑖

2𝑒
) 𝑉−𝑖 = 𝐶4 

The partial equilibrium where only the regulator 𝑖 adopts blockchain exists if and only 

if 𝐶4 < 𝐶3. That is: 

(
𝑊𝑖

2𝑒
−

𝑊−𝑖

2𝑒
) 𝜃𝑥̅ −

𝑊−𝑖

2𝑒
𝑐𝑣 − (

1

2
+

𝑊−𝑖

2𝑒
) 𝑉−𝑖 + (

1

2
+

𝑊𝑖 − 𝑊−𝑖

2𝑒
) 𝑉𝑖 < 0 

 

Denote the left-hand side of the inequality as 𝐶5
𝑖 . Similarly, partial equilibrium where 

only the regulator −𝑖 adopts blockchain exists if and only if 𝐶5
−𝑖 < 0. If  𝛽𝑖 < 𝛽−𝑖, then we 

must have 𝐶5
𝑖 < 𝐶5

−𝑖 since both 𝑊𝑖 and 𝑉𝑖 are decreasing in 𝛽𝑖. Therefore, if there is only one 

partial equilibrium, then it must be the one where only the regulator 𝑖 adopts the blockchain. 

 

If two regulators have similar 𝛽𝑖, then 𝑊𝑖 and 𝑊−𝑖,  𝑉𝑖 and 𝑉−𝑖 are very close and the 

inequality above can be approximated by: 
𝑊𝑖

2𝑒
(𝑐𝑣 − 𝑉𝑖) < 0 or 𝑐𝑣 < 𝑉𝑖 

Therefore, if two regulators have similar 𝛽𝑖 and 𝑐𝑣 < 𝑉𝑖, both partial equilibria can exist. 

 

Q.E.D. 
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Appendix 4: Proof of Proposition 4 

 

(1) Full adoption is social optimal if and only if 𝑆𝑏 > 𝑆0, or equivalently, 

𝜃𝑁𝑥̅ − 𝑐𝑣 − 2𝑐𝑓 + 𝛾𝑁𝑥̅ −
1

2
𝑒 > 𝜃𝑁𝑥̅ + 𝑑1

∗𝑉1 + 𝑑2
∗𝑉2 + 𝑑1

∗𝑊1 + 𝑑2
∗𝑊2 + 𝛾𝑁𝑥̅ −

1

2
𝑒 

2𝑐𝑓 + 𝑐𝑣 < −𝑑1
∗𝑉1 − 𝑑2

∗𝑉2 − 𝑑1
∗𝑊1 − 𝑑2

∗𝑊2 

2𝑐𝑓 + 𝑐𝑣 < −
𝑊1 − 𝑊2

2𝑒
𝑉1 −

𝑊2 − 𝑊1

2𝑒
𝑉2 −

1

2
(𝑊1 + 𝑊2 + 𝑉1 + 𝑉2) −

(𝑊1 − 𝑊2)2

2𝑒
 

Denote the right-hand-side of the inequality as 𝐶0. 

(2)  If full adoption is the equilibrium, then (5.1) holds for all 𝑖=1,2. Summing equation (5.1) 

over 𝑖 yields:  

𝜃𝑁𝑥̅ − 𝑐𝑣 − 2𝑐𝑓 > 𝜃𝑁𝑥̅ +
𝑊1

2𝑒
𝜃𝑁𝑥̅ +

𝑊2

2𝑒
𝜃𝑁𝑥̅ + (

1

2
+

𝑊1

2𝑒
) 𝑉1 + (

1

2
+

𝑊2

2𝑒
) 𝑉2, 

2𝑐𝑓 + 𝑐𝑣 < −
𝑊1 + 𝑊2

2𝑒
𝜃𝑁𝑥̅ −

𝑊1

2𝑒
𝑉1 −

𝑊2

2𝑒
𝑉2 −

1

2
(𝑉1 + 𝑉2) 

Denote the right-hand-side of the inequality as 𝐶0, and rewrite it as follows: 

𝐶1 = 𝐶0 −
𝑊1 + 𝑊2

2𝑒
𝜃𝑁𝑥̅ −

𝑊2

2𝑒
𝑉1 −

𝑊1

2𝑒
𝑉2 −

1

2
(𝑊1 + 𝑊2) −

(𝑊1 − 𝑊2)2

2𝑒
 

= 𝐶0 −
𝑊1

2𝑒
(𝜃𝑁𝑥̅ + 𝑉2) −

𝑊2

2𝑒
(𝜃𝑁𝑥̅ + 𝑉1) −

1

2
(𝑊1 + 𝑊2) −

(𝑊1 − 𝑊2)2

2𝑒
 

Since 𝑉𝑖 =
𝜃−𝜋

𝛾
𝑊𝑖 + 𝑎𝑁2𝑠𝑖

∗(𝑠𝑖
∗ − 2) − 𝑏  is increasing in 𝜃 , there exists a threshold 𝜃0 

such that 𝐶1 < 𝐶0 when 𝜃 > 𝜃0. Therefore, if   𝐶1 < 2𝑐𝑓 + 𝑐𝑣 < 𝐶0, then full adoption is social 

optimal but not an equilibrium. In this case, a subsidy from the central government or social 

planner is needed to achieve the full equilibrium such that the social welfare is optimized. 

 

Q.E.D. 
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