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Abstract

I study the optimal integration of humans and technologies in multi-layered
decision-making processes. Each layer can correct existing errors but may also
introduce new ones. A one-dimensional quality metric – a decision-maker’s er-
ror correction capability normalized by its new errors – determines the optimal
rule: deploying higher-quality technologies in later stages. Interestingly, the
final decision-making layer may not achieve the greatest error reduction; in-
stead, its role hinges on minimizing new errors. Human effort varies asymmet-
rically across layers—early stages prioritize error correction with lower effort,
while later stages emphasize avoiding new errors with higher effort. Applying
the model to artificial intelligence (AI) reveals that AI’s generative capabili-
ties make it more likely to serve as the final decision-maker, reducing the need
for costly human input, but underscoring the risks of AI hallucination. The
theoretical framework also extends to applications including repeated delega-
tion, automation design, loan screening, tenure review, and other multi-layer
decision-making scenarios.
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1 Introduction

Modern production and decision-making processes increasingly depend on automa-
tion, with generative artificial intelligence (AI) technologies such as ChatGPT, au-
tonomous vehicles, and FinTech lending experiencing rapid growth in recent years.
While technologies often reduce human errors and save human effort, they can also
introduce new errors into the system. This raises several key questions: How should
humans and technology be optimally integrated? Who should serve as the ultimate
decision-maker? How does this integration impact human effort?

To address these questions, I propose a framework based on Markov matrices to
analyze the optimal integration of humans and technologies in multi-layered decision
processes. Each decision-making entity—whether human or technology—takes the
recommended action from the preceding layer as input and generates a (potentially
random) recommendation for the next layer. The recommendation of the final layer
determines the ultimate action, with payoffs potentially depending on unobservable
states.

To illustrate the framework, let us consider a binary action scenario in automation,
such as aviation autopilots or autonomous vehicles. Actions are broadly classified into
two categories: safe or dangerous. A decision-maker (human or automated technol-
ogy) can make two types of errors: altering a safe action to a dangerous action (type-1
error, with probability e1) and failing to correct a dangerous action into a safe one
(type-2 error, with probability e2). Optimal integration seeks to maximize the prob-
ability of adopting a safe action and provides guidance for the allocation of authority
between humans and technologies.

Mathematically, the effect of a decision maker is captured by a 2× 2 probability

transition matrix spanned by the two error probabilitiesM≡

(
1− e1 e1

1− e2 e2

)
. Mul-

tiplying the input action distribution by this Markov matrix yields the recommended
action distribution for the next layer. The optimal integration is a particular sequence
to multiply these matrices (or equivalently, applying the corresponding technologies)
in order to maximize the probability of ultimately choosing the correct action.

The rule of thumb for optimal integration is to deploy higher-quality technologies
in later stages. Intuitively, superior technologies act as “gatekeepers,” preventing sub-
sequent inferior technologies from altering safe actions erroneously, thereby improving
outcomes.
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However, defining a one-dimensional "quality" metric to rank technologies in
multi-dimensional contexts (e.g. two types of errors e1 and e2) is not straightfor-
ward and may not even be feasible. A key contribution of this work is to establish
such quality metrics for economically relevant applications, while demonstrating the
absence of a universal metric in general cases.

In the binary action case, the invariant probability ( 1−e2
1−e2+e1

) associated with the
transition matrix M serves as a one-dimensional quality metric, uniformly ranking
decision technologies. This metric also has an intuitive meaning: It reflects a tech-
nology’s error correction capability (1− e2) normalized by the amount of new errors
it introduces (e1). Applying a technology shifts the prior probability of a safe ac-
tion towards its invariant probability. Optimal integration progressively increases the
likelihood of achieving a safe action throughout the decision-making process.

An intriguing observation is that the final decision-maker, equipped with the
highest-quality technology (as measured by 1−e2

1−e2+e1
or equivalently 1−e2

e1
), may not

necessarily contribute the most to error reduction. Instead, their primary role is
minimizing the introduction of new errors (ensuring a low type-1 error e1).

Next, I examine how human efforts to mitigate errors are influenced by their
placement within the integration process. Effort incentives across layers reveal distinct
patterns for reducing type-1 and type-2 errors. While both types of effort increase in
later layers, the effort to reduce type-1 errors rises more sharply. Early agents exert
lower effort and focus on reducing type-2 errors (correcting existing errors), whereas
final agents exert higher effort and prioritize reducing type-1 errors (avoiding new
errors).

Intuitively, effort incentives are shaped by two factors: the “relevance” of the error
type faced by the human decision-maker and the “consequences” of human errors for
the correctness of the final action. Errors in later stages carry greater consequences
due to fewer subsequent layers available for a potential correction. However, the
relevance of error types is asymmetrical. Type-1 errors, arising from correct inputs,
become more relevant in later stages, where the input actions are more likely to be
correct. Conversely, type-2 errors, arising from incorrect inputs, become less relevant
as erroneous inputs diminish. Consequently, incentives for mitigating type-1 errors
grow throughout the process, driven by both increasing relevance and consequence,
while incentives for type-2 errors rise more slowly, as greater consequences outweigh
reduced relevance.

2



The problem is significantly more complex with multiple states (denoted by T )
and feasible actions (denoted by A). This complexity accommodates state-contingent
errors of varying severities. For instance, in loan screening, banks make A = 2

decisions—accepting or rejecting applicants—who belong to T = 2 types: creditwor-
thy or unworthy. Accepting unworthy borrowers can incur significant default losses,
while rejecting creditworthy applicants results in milder losses from foregone interest.
Generic decision technologies (e.g., human loan officers or automated lending sys-
tems) can be modeled using a probability transition matrix in the state-action space
(e.g., a 4× 4 matrix when A = T = 2).

For binary actions and multiple states (A = 2 and T ≥ 2), I derive an explicit con-
dition for determining the optimal integration of any two technologies, independent
of initial action distributions. This condition incorporates expected error costs and
the relative quality of the technologies across states. Surprisingly, this binary relation
is not transitive when more than two technologies are considered. For example, three
technologiesM1,M2, andM3 can form a circular order whereM1M2,M2M3, and
M3M1 are each optimal depending on the pairing.

This lack of transitivity indicates that no one-dimensional "quality metric" can
universally determine the optimal integration of arbitrary technologies. For multiple
actions (A ≥ 3), the impossibility of a universal one-dimensional rule is further con-
firmed. Additionally, optimal integration may depend on initial action distributions,
adding further complexity. I hope future research will provide deeper insights into
these general cases.

By imposing additional structures on the decision matrices, I extend the gen-
eral framework to analyze two applications: human-AI integration and multi-layer
delegation.

In the first application, both humans and AI are subject to type-1 and type-2
errors. However, unlike humans, who often require costly effort to actively make
decisions, AI can handle large volumes of tasks relatively inexpensively. Moreover,
generative AI can sometimes produce outcomes beyond typical human capabilities.1

The analysis offers a simple criterion for AI to assume final decision authority.
The more creative and accurate the AI, the greater its likelihood of becoming the
ultimate decision-maker. However, delegating the final decision to AI does not require

1Notable examples include AlphaGo’s victory over human players and ChatGPT’s ability to write
poetry surpassing most individuals.
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its error correction capability to be better than human. In contrast, AI hallucinations
that introduce new errors (type-1 errors) significantly hinder its suitability for final
decision-making roles. Additionally, the presence of AI reduces the need for humans
to make active decisions, thereby lowering effort costs.

The multi-layer delegation application builds on the classic delegation model by
Aghion and Tirole (1997). A principal delegates project choices to agents who may
possess superior decision-making skills but may also have preferences misaligned with
the principal’s, representing varying levels of loyalty. Agents can also make mistakes
by incorrectly overruling their predecessor’s informed decisions.

The framework produces a one-dimensional metric based on agents’ skills, loyalty,
and likelihood of mistakes, ranking them to form an optimal delegation sequence. A
somewhat surprising insight is that when agents are error-free, ranking depends solely
on loyalty, regardless of skill levels.

Additional applications discussed include autopilot design in aviation and multi-
layer approval processes, such as academic promotions, student admissions, and bud-
get reviews.

Literature Review

This paper connects with several strands of literature in statistics, decision science,
and economics. The spirit of the decision problem aligns with the statistical decision-
making literature, particularly “sequential analysis” (see Johnson, 1961 for a survey
of the literature). Unlike standard statistical tests that rely on fixed samples, sequen-
tial analysis allows sampling decisions to be endogenous—each observation informs
whether to accept or reject the null hypothesis or to continue sampling. A key devel-
opment in this area is Wald’s sequential probability ratio test (e.g., Wald, 1945).

In addition, the topic of combining results from multiple tests is also relevant
in biostatistics (e.g., Su and Liu, 1993; Huang et al., 2011). While these problems
often leverage type-1 and type-2 errors (e.g., thresholds in sequential probability ratio
tests or ROC curves), they typically do not embed a Markov structure, and thus the
optimal arrangement of Markov matrices is not a focus. Additionally, the role of
human effort in reducing errors is largely overlooked in this literature.

Relatedly, Bayesian learning and herding models in economics (Banerjee, 1992;
Bikhchandani et al., 1992; Cong and Xiao, 2024) offer useful comparison. For in-
stance, Bayesian updating with normally distributed priors and signals generates
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posterior estimates as weighted averages of priors and signals based on their respec-
tive precisions. Herding models, by contrast, assume subsequent decision-makers
observe only prior actions rather than signals. My setting is closer to herding models
in that each decision maker’s recommendations are based on previous actions rather
than signals. However, these frameworks similarly lack Markov property, and the
optimal sequencing of players is not their typical focus.2

The use of Markov matrices in this paper links to the extensive literature on
Markov processes (e.g., Stroock, 2013 as a textbook reference) and Markov decision
theory, which is a staple in dynamic economic models. However, while the literature
on Markov process typically analyzes the properties of given stochastic processes (e.g.,
periodicity, ergodicity, reversibility, convergence, or optimal stopping), this paper
focuses on optimizing the sequence of multiplying different Markov matrices.

Within decision science, the Analytic Hierarchy Process (AHP) in Multiple-Criteria
Decision Making (MCDM), pioneered by Saaty (1977), offers a robust method for
selecting the best option among candidates with multi-dimensional attributes. My
work complements AHP by focusing on determining the optimal sequence of applying
different decision-making technologies. While both approaches utilize matrix formu-
lation, they address distinct problems. AHP uses eigenvectors to prioritize attributes
based on pairwise preferences, whereas my analysis uses them to optimally sequence
two-dimensional Markov matrices as one of the results.

From an application perspective, this paper also contributes to the literature on
effort problems involving multiple agents. Holmstrom (1982) examines moral hazard
in teams but does not incorporate hierarchical structures. In addition, this paper
introduces a novel separation of two types of effort—correcting mistakes and improv-
ing execution—and demonstrates how these efforts evolve differently across decision-
making layers.

Two strands of economic literature address multi-layered structures: organiza-
tional hierarchies in firms (e.g., Calvo and Wellisz, 1979; Qian, 1994; Chen, 2017;
Garicano, 2000) and intermediation chains in financial markets (e.g., Glode and Opp,
2016; Glode, Opp, and Zhang, 2019; He and Li, 2023; Dasgupta and Maug, 2021).
This paper contributes by introducing the concept of optimally sequencing technolo-

2A notable exception is Bikhchandani et al. (1992), where they show that it is beneficial for
“fashion leader” to have less precise information in order to defer the emergence of herding. While
related to the optimal sequence, their analysis does not solve for the optimal arrangement of an
arbitrary set of heterogeneous decision makers.
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gies and applying it to artificial intelligence contexts.
Methodologically, this paper builds on Zhong (2023), where a special (two-dimensional)

case of this framework analyzes skill and effort distribution in intermediation chains.
The current framework generalizes these ideas, incorporating multiple states and ac-
tions while shifting focus to the optimal integration of decision-making layers.

The rest of the paper is organized as follows. Section 2 introduces the baseline
setting for technological integration and provides several examples. Section 3 solves
for the optimal integration rule in the case of A = 2 actions and demonstrates the
absence of a one-dimensional rule in the general case (A ≥ 3). Section 4 incorporates
human effort to modify decision technologies and examines how human incentives
are influenced by their position in the decision chain. Finally, two applications of
the framework — human-AI integration and multi-layer delegation — are explored
in Section 5, followed by a technical extension in Section 6.

2 Baseline Model Setup

2.1 Model

Consider a multi-layer decision-making process with T unobservable fundamental
states (T) and A available actions (A). The probability distribution of fundamental
states is denoted by q = (q1, q2, ..., qT ), while the payoff from action a taken in state
t is represented by Uat. Collectively, these payoffs form the vector

U = (U11, U21, ..., UA1, U12, U22, ..., UA2, ..., U1T , U2T ..., UAT ) ∈ RAT . (1)

The outcome of the decision-making process can be characterized by a distribution
of actions p(t) = (p1t, p2t, ..., pAt), which may vary by state t. Coupled with the
fundamental distribution q, the resulting distribution on the AT dimensional state-
action space is given by

P = (q1p11, q1p21, ..., q1pA1, q2p12, q2p22, ..., q2pA2, ..., qTp1T , ..., qTpAT ). (2)

Therefore, the expected payoff is given by PU′, where ′ denotes the transpose.
There are N ≥ 2 sequential decision makers—either human or technology. Each

decision maker receives a recommended action ai−1 ∈ A from the previous layer as
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input and produces a new recommendation ai for the next layer. The output recom-
mendation may be randomly distributed on A and may depend on the fundamental
state. The initial action a0 is drawn from an exogenous prior P0, and the final rec-
ommendation becomes the ultimate action.

Mathematically, each decision maker is represented by an AT × AT probability
transition matrixM on the action-state space A×T, such that the posterior distribu-
tion of the output recommendation is P1 = P0M. It captures arbitrary ways that a
decision maker may propose actions based on the underlying state (e.g. from private
information about the fundamental state) and the input action from the previous
layer. Although not considered in this paper, the setting also allows the possibility
that a decision maker can change the fundamental state.

When N decision makers {Mn} are sequentially applied, the final posterior dis-
tribution is

PN = P0

N∏
n=1

Mn, (3)

generating an expected payoff of

PNU
′ = P0

N∏
n=1

MnU
′. (4)

An integration of a subset of the N decision makers is defined by a mapping
σ : {1, 2, ..., N} → {0, 1, 2, ..., I} for some I ≤ N such that σ−1(i) uniquely exists for
each i = 1, 2, ..., I. The mapping i = σ(n) specifies the layer index of technology n in
the integration, with σ(n) = 0 indicating exclusion. Hence, only I ≤ N technologies
are used in the decision-making process.

The optimal integration σ∗(·) for a given prior distribution P0 and payoff vector
U maximizes the expected payoff

max
σ(·),I

P0

I∏
i=1

Mσ−1(i)U
′. (5)

I consider two problems:

1. Optimal Integration of Technologies: Determining the best sequence of
exogenous decision matricesMn in Section 3.
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2. Impact of Technology on Human Effort: Understanding how the presence
of technologies influences human effort in Section 4. This feature is modeled
through endogenous matrices M(f) that depends on multi-dimensional effort
input f .

I then apply the framework to analyze human-AI integration and multi-layer delega-
tion in Section 5.

It is worth noting that representing a decision maker by a transition matrix M
essentially assumes Markov property: Given the most recent recommendation received
by the decision maker, earlier inputs are irrelevant. This assumption is justified in
scenarios where:

1. Only N = 2 decision makers are involved (e.g. human v.s. technology). In this
case, the Markov property is naturally satisfied.3

2. Later decision makers cannot fully observe, comprehend, or process all preceding
recommendations due to cognitive or practical constraints.

I provide several examples ofM in different applications in the next subsection and
discuss the relevance of Markov property.

2.2 Illustrative Examples

2.2.1 Automation: Autopilot and Self-Driving

In the simplest case with T = 1 (single fundamental state) and A = 2 (two possible
actions), the model captures error correction in decision-making. Automation in
aviation (e.g., autopilot) or autonomous driving provides a concrete example. Here,
the two actions are abstractly defined as safe and disastrous. A safe action yields a
normalized payoff of 1, while a disastrous action results in a payoff of 0.

Human operators (pilots or drivers) are prone to errors that can lead to disastrous
outcomes. Automation helps reduce these risks but introduces its own vulnerabilities,
such as sensor failures or inducing human complacency.

A decision maker (human or autopilot) can be represented by a 2 × 2 Markov
matrix

Mn =

(
1− e1,n e1,n

1− e2,n e2,n

)
, (6)

3From the perspective of the second decision maker, the only predecessor is the first one.
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where e1,n denotes the probability of a type-1 error – changing a safe action to a
disastrous one and e2,n denotes the probability of a type-2 error – failing to correct a
disastrous action. Formally,

P (an is disastrous|an−1 is safe) = e1,n

and
P (an is disastrous|an−1 is disastrous) = e2,n

The model provides insights into optimal integration of automation, its impact on
human effort, and the allocation of decision-making authority between humans and
machines.

The Markov property is likely satisfied if each decision maker only observes the
immediate predecessor’s recommendations (e.g., a human pilot might only see the au-
topilot’s actions without access to the flight computer’s inputs from various sensors).

2.2.2 Loan Screening

This example considers T > 1 payoff relevant states and A = 2 actions. In loan
screening, the fundamental states are the borrower types: Good (G) and Bad (B) for
simplicity. The two possible actions are to Accept (A) or Reject (R) the borrower.
The proportion of good borrowers is qG, and denote by qB = 1− qG.

There are A × T = 4 outcomes: accepting good, rejecting good, rejecting bad,
accepting bad borrowers, denoted by {GA,GR,BR,BA} respectively. Accepting a
good borrower generates an interest income of r > 0, while accepting a bad borrower
results in a loss of principal of −L < 0. Rejecting a borrower yields a payoff of 0
regardless of type. Therefore, the payoff vector is U = (r, 0, 0,−L),

A loan screening technology (human loan officer or automated screening system)
is represented by a Markov matrix on the four outcomes:

Mn =


1− e(G)

1,n e
(G)
1,n 0 0

1− e(G)
2,n e

(G)
2,n 0 0

0 0 1− e(B)
1,n e

(B)
1,n

0 0 1− e(B)
2,n e

(B)
2,n

 , (7)

where e(θ)
1,n and e

(θ)
2,n (θ = G or B) are the type-1 and type-2 errors of technology n
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when facing a type-θ borrower.
To elaborate, for a good borrower, the "correct" action—one that yields the higher

payoff in that state—is to accept. Hence, a type-1 error in this case is to switch from
accepting (GA) to rejecting (GR) and a type-2 error is to maintain the GR state.

In contrast, for a bad borrower, the correct action is to reject. Therefore, a type-1
error in this case is to switch from rejecting (BR) to accepting (BA) and a type-2
error is to maintain the BA state.

It is reasonable to assume that a loan screening technology can only change lending
decisions, but not the borrower type. Hence, the decision matrixMn only contains
T = 2 diagonal blocks, each of size 2 × 2 (A × A), indicating no transition between
good and bad type borrowers.

More generally, a decision technology that can alter the proposed action, but not
the fundamental states is represented by a block diagonal matrix

M =


M(1) 0 0 0

0 M(2) 0 0

0 0 ... 0

0 0 0 M(T )

 . (8)

The state-dependent blocks M(t)|A×A allow for the possibility that decision makers
perform differently in different states.

The theoretical result for this case (in Subsection 3.2) mostly focuses on the case
with only N = 2 layers, and the Markov property is automatically satisfied.

2.2.3 Multi-Layer Approval Process

The model also applies to multi-layered approval processes, such as academic pro-
motion, budget reviews, and student admissions. In these cases, multiple layers of
decision-making occur sequentially, with recommendations being passed between lay-
ers (e.g., external evaluators, committees, provosts, and presidents).

While late-stage decision makers in these cases have access to earlier information,
the Markov property may still hold if each decision maker mostly reacts to the im-
mediate prior recommendations. For instance, in academic promotion, higher-level
officials (e.g. provosts or presidents) often lack the time or expertise to evaluate all
prior recommendations (e.g. all reference letters) and instead depend on summaries
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or condensed evaluations from their immediate predecessors.
Effort-based matrices M(f) discussed in Section 4, provide further insights into

how each layer should prioritize specific aspects of the decision-making process.

3 Optimal Integration of Technologies

I first provide a succinct integration rule in Subsection 3.1 for the simplest case with
binary actions (A = 2) and a single underlying state (T = 1), motivated by the
application of automative technologies in Subsection 2.2.1. The case with multiple
states (A = 2 and T > 1) is studied in Subsection 3.2. To complete the analysis,
Subsection 3.3 provides insights on the complexity of the general problem with many
actions (A > 2).

3.1 Binary Actions (A = 2) and a Single State (T = 1)

I start by analyzing the simplest case with binary actions (A = 2) and a single state
(T = 1), using the explicit form of matrixMn in (6) and the language of type-1 and
type-2 errors, e1,n and e2,n. This language is without loss of generality in the case
of binary actions (even with multiple states as in Section 3.2), since the “correct”
action in each state can always be labeled as the one generating the higher payoff.
Additionally, the payoff vector is normalized to U = (1, 0) without loss of generality.

Throughout the paper, I assume type-2 error is higher than type-1 error

e2 > e1. (9)

Correcting a mistake is generally more difficult than maintaining a correct action, a
scenario that is arguably more relevant in most applications.4 The necessity of this
assumption will transpire shortly following condition (15), and the consequence of its
violation will be studied more carefully in Subsection 6.

I first characterize the impact of applying a technologyMi on the success proba-
4For example, in aviation (Subsection 2.2.1), few things can go wrong during routine flight when

the input action is correct (lower type-1 error). In contrast, recovering from dangerous actions (e.g.
in an emergency when autopilot fails) is considerably more challenging (higher type-2 error).
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bility. Define the invariant probability p∗i associated withMi as(
p∗i 1− p∗i

)
=
(
p∗i 1− p∗i

)
Mi. (10)

Equivalently,
p∗i = (1− e1,i) p

∗
i + (1− e2,i) (1− p∗i ) . (11)

which simplifies to:

p∗i =
1− e2,i

1− e2,i + e1,i

. (12)

Intuitively, this represents the probability of a correct action that remains constant
after applying technologyMi.

The evolution of probability (3) can be recursively expressed as

Pi ≡ (pi, 1− pi) = Pi−1Mi,

or explicitly:
pi = (1− e1,i) pi−1 + (1− e2,i) (1− pi−1) , (13)

where pi denotes the probability of the correct action being proposed by the i-th
decision maker.

The difference between (11) and (13) is

p∗i − pi = (e2,i − e1,i) (p∗i − pi−1) , (14)

or equivalently,
pi = p∗i − (e2,i − e1,i) (p∗i − pi−1) . (15)

Condition (15) yields an intuitive and important observation: Technology Mi

shifts the prior probability pi−1 towards its invariant probability p∗i , and the differ-
ence between these two probabilities diminishes by a factor of e2,i − e1,i. Therefore,
the posterior probability pi lies between the prior probability pi−1 and the invariant
probability p∗i .

It is worth noting that this observation relies on assumption (9). If the opposite
assumption holds (e2,i ≤ e1,i), the posterior oscillates around p∗i : the prior pi−1 and
the posterior pi lie on opposite sides of p∗i . Intuitively, a lower prior pi−1 increases the
posterior success pi because the technology better handles mistakes than maintaining
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correctness.
I now characterize optimal integration strategy.

Proposition 1 [Ranking Two Technologies] Suppose there are two available
technologies M1 and M2 such that p0 ≤ p∗1 ≤ p∗2. Then applying M1 first is weakly
better than applyingM2 first. Formally,(

p0 1− p0

)
M1M2U

′ ≥
(
p0 1− p0

)
M2M1U

′, (16)

where equality holds if and only if p∗1 = p∗2.

Intuitively, to achieve a superior outcome, higher “quality” technology should be
positioned later in the sequence as the "gatekeeper." Placing a good technology early
is suboptimal since subsequent worse technologies may introduce more errors, com-
promising the correct actions made by the initial technology. However, defining “qual-
ity” is challenging due to multidimensional error profiles: one technology may create
higher type-1 errors while the other generates higher type-2 errors. Proposition 1
reduces the dimensionality of this problem, showing that the invariant probability is
the key metric to rank different technologies.

It is also useful to observe that ranking technologies by their invariant probability
p∗ is equivalent to ranking them by 1−e2

e1
, which carries clear intuition. This ratio

measures a technology’s capability to correct errors (troubleshooting) relative to the
amount of new errors it produces.

Thanks to this one-dimensional quality metric—invariant probability p∗ or equiv-
alently 1−e2

e1
– one can rank any number of technologies when N > 2. Therefore, the

intuition from Proposition 1 generalizes to an optimal integration rule as follows.

Proposition 2 [Optimal Integration] Suppose T = 1 and A = 2, and there are
N technologies, each characterized by its transition matrix Mn, n = 1, 2, ..., N . The
invariant probability associated with Mn is p∗n. The optimal integration σ∗ selects
only those technologies whose invariant probability exceeds the prior probability p0;
that is

σ∗(n) = 0 if p∗n < p0.

The remaining technologies are integrated in ascending order of invariant probabilities,
meaning

σ∗(n1) < σ∗(n2)
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if p∗n1
< p∗n2

.

To implement the optimal integration rule in Proposition 2, one simply needs
to calculate the invariant probabilities p∗n for each of the N technologies, eliminates
those with p∗n < p0 because they worsen the posterior probability, and then applies
the remaining ones sequentially from lowest to highest invariant probabilities.

Since each posterior probability pi lies between the prior probability pi−1 and
the invariant probability p∗i , the increasing sequence of p∗i under optimal integration
implies that the sequence of pi is also increasing. This feature is particularly relevant
when considering human effort in decision-making processes.

Corollary 1 Under the optimal integration of technologies, the probability pi in-
creases with i.

It is important to note that having the highest-quality technology as the final deci-
sion maker does not necessarily mean it contributes the most significant improvement
to the outcome. Consider the following extreme example:

The prior correct probability is p0 = 0. Two technologies are given by

M1 =

(
0.9 0.1

0.9 0.1

)
andM2 =

(
1 0

0.1 0.9

)
.

It is easy to calculate the corresponding invariant probabilities:

p∗1 =
1− 0.1

1− 0.1 + 0.1
= 0.9 and p∗2 =

1− 0.9

1− 0.9 + 0
= 1.

The optimal integration is thereforeM1M2. However, technologyM1 corrects 90%

mistakes whereas technologyM2 only corrects 10% of the remaining mistakes. The
key forM2 to be the final decision maker is its low likelihood of introducing new mis-
takes (specifically, 0% type-1 error), even though its contribution to error reduction
is smaller thanM1.

I conclude this subsection with a relevant observation in aviation. Type-1 error
in the model reflects execution quality (the ability to maintain safe actions) whereas
type-2 error measures troubleshooting capabilities (the ability to correct dangerous
actions). Machines excel in execution (e1 ≈ 0), but struggle with troubleshooting
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(e2 ≈ 100%), resulting in an indeterminant invariant probability (0
0
). The optimal

placement of these technologies is therefore highly sensitive to the specific combination
of the two errors, explaining varied approaches towards automation among companies.
In the design of autopilot, Airbus pioneered the “fly-by-wire” technology in commercial
aviation, effectively giving the ultimate decision to the machine (flight computer).
If pilot actions are deemed dangerous by the computer, the plane overrides those
actions. In contrast, Boeing adhered to an alternative design philosophy for many
years, maintaining that humans should retain ultimate control (Kornecki and Hall
2004).

3.2 Binary Actions (A = 2) and Multiple States (T ≥ 2)

The simplest case with A = 2 actions and T = 1 type, previously analyzed, essentially
assumes all errors are equally costly. In practice, the same action may be correct in
some states but wrong in others. Additionally, the cost of errors can vary depending
on the underlying states (recall the loan screening application in Section 2.2.2). These
features are captured by considering multiple payoff-relevant states T ≥ 2 and binary
actions A = 2. Binary actions allow for the interpretation of “error,” as one can
always label the action generating a higher payoff as the correct action.

This problem becomes significantly more complex. First, I derive the optimal
integration rule for N = 2 technologies, analogous to Proposition 1. Next, I show that
a result similar to Proposition 2 does not exist: No one-dimensional metric based only
on individual technologies can generally determine the optimal integration sequence
for N ≥ 3 arbitrary technologies.

Consider a generic technology in (8) for A = 2 actions and an arbitrary states T ≥
2. Denote by (t) in the superscripts (t = 1, 2, ..., T ) the state-dependent probability
distribution p(t)|1×2, transition matrix M(t)|2×2, and payoff vector U(t)|1×2. Recall
from (2) that qt denotes the probability of fundamental state t, which remains constant
throughout the decision-making process. Using the block diagonal form of M, the
payoff (4) can be explicitly rewritten as:

PNU
′ =

T∑
t=1

qtp
(t)
0

N∏
n=1

M(t)
n U(t)′ .

Denote by (u(t), u(t)) ≡ U(t) the payoffs associated with the two actions, and
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without loss of generality, assume u(t) ≥ u(t). Hence,

PNU
′ =

T∑
t=1

(
u(t) − u(t)

)
qtp

(t)
0

N∏
n=1

M(t)
n

(
1

0

)
+ qtp

(t)
0

(
u(t)

u(t)

)
. (17)

Intuitively, each fundamental state is associated with a minimum payoff of u(t), re-
flected by the constant second term in (17) irrespective of different integration se-
quence. Technologies (Mn) act on the payoff difference between the two actions(
u(t) − u(t)

)
. Factoring this out, the payoff vector can be normalized to (1, 0), yield-

ing the first term in (17).
Ignoring the constant, the optimal integration problem becomes:

max
σ(·),I

T∑
t=1

(
u(t) − u(t)

)
qt · p(t)

0

I∏
i=1

M(t)

σ−1(i)

(
1

0

)
. (18)

I now derive the optimal integration rule for N = 2 technologies. For each funda-
mental state t, denote by e(t)

i,n the type-i error of technology n = 1, 2, represented by
the diagonal blocks:

M(t)
n =

(
1− e(t)

1,n e
(t)
1,n

1− e(t)
2,n e

(t)
2,n

)
.

I calculate the payoff difference between the two orders of applying the technologies:

P0M1M2U
′ −P0M2M1U

′ =
T∑
t=1

(
u(t) − u(t)

)
qt det

(
e

(t)
1,1 e

(t)
1,2

1− e(t)
2,1 1− e(t)

2,2

)
, (19)

where det denotes the determinant of a matrix. The detailed calculation is relegated
to the proof of the next result in the Appendix. An important feature of (19) is
that the difference is independent of the initial distribution of actions p(t)

0 , but only
depends on the distribution of fundamental states qt. This property allows one to rank
any two technologies independent of the initial action distribution p

(t)
0 . Formally, we

have the following result.

Proposition 3 Suppose A = 2 and N = 2. For any T ≥ 1, a given distribution of
fundamental states qt, and the payoff vector U, it is optimal to apply technologyM2
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afterM1 if and only if

T∑
t=1

(
u(t) − u(t)

)
qt det

(
e

(t)
1,1 e

(t)
1,2

1− e(t)
2,1 1− e(t)

2,2

)
≥ 0. (20)

This result nests Proposition 1 (i.e., p∗2 ≥ p∗1) as a special case with T = 1, where
condition (20) simplifies to:

det

(
e1,1 e1,2

1− e2,1 1− e2,2

)
≥ 0, or equivalently,

e1,1

1− e2,1

≥ e1,2

1− e2,2

.

Condition (20) is also intuitive. When comparing two technologies, their relative
quality depends on the state and is measured by the determinant of their error cor-
rection capabilities (1− e(t)

2,n) and chances of making new mistakes (e(t)
1,n). The overall

comparison further weights the cost of making a mistake in that state
(
u(t) − u(t)

)
and the likelihood of each state qt.

When applied to the loan screening application in Section 2.2.2, condition (20)
can be explicitly written as

rqG det

(
e

(G)
1,1 e

(G)
1,2

1− e(G)
2,1 1− e(G)

2,2

)
+ LqB det

(
e

(B)
1,1 e

(B)
1,2

1− e(B)
2,1 1− e(B)

2,2

)
≥ 0.

This condition highlights three important considerations when comparing different
lending technologies (e.g. loan officers v.s. FinTech algorithms): borrower compo-
sition (qG and qB), the costs of errors (r or L), and the relative performance of the
technologies for each borrower type measured by the determinants.

Lack of Transitivity when N ≥ 3

Intriguingly, unlike the case of T = 1, the binary relation given by Proposition 3 does
not possess transitivity. Formally, denote by M2 � M1 if condition (20) strictly
holds, meaning that it is strictly better to apply M2 after M1 when only these
two technologies are available. Then, it is possible to have circular ranking, i.e.,
M3 � M2, M2 � M1, and M1 � M3. The lack of transitivity also implies that
there is no one-dimensional metric that can rank all technologies, forming a general
integration rule like Proposition 2.
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For an illustrative counterexample, consider U = (3, 2, 1, 0), P0 = (0, 0.5, 0, 0.5),
and the following three technologies

M1 =


0.75 0.25 0 0

0.3 0.7 0 0

0 0 0.7 0.3

0 0 0.3 0.7

 ,M2 =


0.8 0.2 0 0

0.4 0.6 0 0

0 0 0.8 0.2

0 0 0.1 0.9

 ,M3 =


0.9 0.1 0 0

0.3 0.7 0 0

0 0 0.7 0.3

0 0 0.1 0.9

 .

One can verify that the following three relations hold:

P0M1M2U
′ = 1.415 > 1.41 = P0M2M1U

′,

P0M2M3U
′ = 1.35 > 1.345 = P0M3M2U

′, (21)

P0M3M1U
′ = 1.3875 > 1.38 = P0M1M3U

′.

The optimal integration with all three technologies is

P0M3M1M2U
′ = 1.456,

which dominates all other permutations of any subsets. However, condition (21)
implies that in the absence of M1, the optimal way to integrate the remaining two
technologies is to applyM2 first. Therefore, introducing a new technology (M1) can
significantly disrupt how existing technologies (M2 andM3) are integrated.

Intuitively, the introduction of a new technology can alter the relative importance
of each state, thereby changing the relative quality of the existing technologies. Con-
sequently, the optimal integration may require a non-monotonic reordering of existing
technologies.

This phenomenon does not arise when there is no fundamental uncertainty (T =

1), as the invariant probability p∗ serves as a one-dimensional quality metric that
ranks all technologies universally.

3.3 More than Two Actions: A > 2

When A ≥ 3, the notion for “correct” or “wrong” becomes less clear, and the problem
becomes even more complex. The optimal integration may not only depend on the
probability of the fundamental states qt, but also the initial distribution on actions
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p
(t)
0 .
To illustrate this complication, consider a simple numerical example with A = 3

actions and T = 1 fundamental state. Let U = (2, 1, 0). The two technologies under
consideration are:

M1 =

 1 0 0

0.5 0 0.5

0 1 0

 , M2 =

 1 0 0

0 1 0

0.5 0.5 0

 .

Compare two initial action distributions P0 = (0, 1, 0) and P̂0 = (0, 0, 1). One can
verify the following relations:

P0M1M2U
′ = 1.75 > 1 = P0M2M1U

′,

and
P̂0M1M2U

′ = 1 < 1.5 = P̂0M2M1U
′.

Thus, the optimal integration sequence depends on the initial distribution of ac-
tions, even in the absence of fundamental uncertainty.

Intuitively, with A ≥ 3 actions, the concept of a “correct” or “wrong” action
becomes ambiguous. An action a2 might yield a higher payoff than a3, but perform
poorly when addressing a1. A technology might excel at improving a2 to a1, but bad
at handling a3. As a result, the choice of which technology to apply first can depend
on the initial action distribution. The following result summarizes the discussion
formally.

Proposition 4 Except in the case where A = 2 and T = 1, no one-dimensional
metric exists that can rank arbitrary technologies based solely on the characteristics
of individual technologies.

I conclude this section by explaining the technical challenge of characterizing a
result analogous to (20) when A ≥ 3 actions are available. One might conjecture
that by decomposing the action space into pairwise actions, it would be feasible to
transform the problem into one involving multiple (A(A−1)

2
) pairs of actions, thus

potentially yielding a result similar to (20). However, the issue with this approach is
that the decision technologies, when limited to a pair of actions, no longer adhere to
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the Markov property. Consequently, I have yet to discover an elegant criterion for the
general case with A ≥ 3. As a result, the applications discussed in Section 5, which
involve multiple actions, require additional structures for the decision matrices.

4 Impact of Technology on Human Effort

So far, the analysis has focused on the optimal integration of exogenous technologies.
In contrast, humans can exert costly effort to modify or improve these technologies.
This section explores how technological integration influences human effort incentives.
Subsection 4.1 analyzes the effort incentive of a single human decision-maker and
Subsection 4.2 extends the intuition to study the case with multiple human layers
and effort specialization.

To provide a tangible interpretation of effort and errors, I will focus on the binary
action case discussed in Subsection 3.1.5 An interesting result is that the incentive
for human effort varies depending on their position in the integration sequence and
exhibits asymmetry between type-1 and type-2 errors.

4.1 Effort Incentives of a Single Player

To formally introduce human effort, suppose that there is a strategic human decision
maker among the N layers, henceforth, the “player”. This player operates in layer
j ∈ {1, 2, ..., N} and creates type-i error hi(fi,j) which depend on effort input fi,j,
where i = 1, 2. The notation hi highlights endogenous errors by the human player,
contrasting with the exogenous errors probabilities ei of machines. Hence, similar to
(6), the player’s decision technology is given by

Mj =

(
1− h1(f1,j) h1(f1,j)

1− h2(f2,j) h2(f2,j)

)
. (22)

If the correct action is chosen, the player receives a positive utility normalized to
1. Otherwise, there is no utility. The cost of effort is denoted by ci(fi,j) (i = 1, 2).
Our focus in this subsection is the player’s optimal effort levels, f1,j and f2,j, that

5When A = 2, the action that generates a higher payoff can always be labeled as the correct
one. When multiple actions (A > 2) are possible, the mathematical expressions are similar, but
the interpretation becomes less intuitive. Effort here can be thought of as replacing an existing
technology with a new one. For further discussion, see the effort analysis in Section 5.1.
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maximize the expected payoff net of effort costs:

max
f1,j ,f2,j

pN − c1(f1,j)− c2(f2,j).

The remainingN−1 technologiesMn (n 6= j) are given exogenously and optimally
arranged in the ascending order of their invariant probabilities p∗n, as specified by
Proposition 2. The case of N human players is analyzed in Section 4.2. I impose
standard assumptions to guarantee a solution:

• Error functions: hi(fi,j) are decreasing and convex in fi,j, reflecting diminishing
marginal benefit of effort.

• Costs functions: ci(fi,j) are increasing and convex in fi,j, reflecting increasing
marginal cost of effort.

The first-order condition for f1,j can be decomposed as follows:

c′1(f ∗1,j) =
∂

(
p0 1− p0

)∏N
i=1MiU

′

∂f1,j

=
(
p0 1− p0

)∏j−1
i=1Mi

(
−1 1

0 0

)
h′1(f1,j)

∏N
i=j+1MiU

′

=
(
p0 1− p0

)∏j−1
i=1MiU

′ ·
(
−1 1

)
h′1(f1,j)

∏N
i=j+1MiU

′

= −h′1(f ∗1,j) ·
(
p0 1− p0

) j−1∏
i=1

MiU
′

︸ ︷︷ ︸
relevance of type-1 error

·
N∏

i=j+1

(e2,i − e1,i)︸ ︷︷ ︸
consequence of type-1 error

,

(23)

where U =
(

1 0
)
.

Two intuitive channels determine the marginal benefit of effort. The first channel is
the “relevance” of type-1 error in layer j, captured by the term

(
p0 1− p0

)∏j−1
i=1MiU

′

in (23). It represents the probability of a correct action is proposed to the human
player, the case where type-1 error is relevant. The second channel

∏N
i=j+1 (e2,i − e1,i)

is the "consequence" of an error in layer j, reflecting its impact on the correctness of
the final action.

Similarly, the first-order condition for f2,j can be decomposed into the relevance
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(when the input action is wrong) and consequence components:

c′2(f ∗1,j) =
∂

(
p0 1− p0

)∏N
i=1MiU

′

∂f2,j

=
(
p0 1− p0

)∏j−1
i=1Mi

(
0 0

−1 1

)
h′2(f2,j)

∏N
i=j+1MiU

′

=
(
p0 1− p0

)∏j−1
i=1Mi

(
0

1

)(
−1 1

)
h′2(f2,j)

∏N
i=j+1MiU

′

= −h′2(f ∗2,j)
(
p0 1− p0

) j−1∏
i=1

Mi

(
0

1

)
︸ ︷︷ ︸

relevance of type-2 error

N∏
i=j+1

(e2,i − e1,i)︸ ︷︷ ︸
consequence of type-2 error

(24)

Comparing (23) and (24), the consequence term is identical for both error types,
but the relevance terms differ due to their dependence on the probabilities of correct
and incorrect input actions.

For convenience, define the effort incentive for reducing type-i errors as the ratio:

effort incentivei ≡
c′i(f

∗
i,j)

−h′i(f ∗i,j)
, (25)

which represents the marginal cost per unit of error reduction. This measure captures
the player’s equilibrium effort incentive.6

The decompositions (23) and (24) of effort incentives into relevance and con-
sequence components provide a clear framework for understanding the asymmetric
behavior of effort incentives for type-1 and type-2 errors.

Proposition 5 [Effort Incentive] Suppose a human player operates in layer j of
an N-layer decision making process, and the other N − 1 technologies are optimally
integrated according to Proposition 2, then the player’s optimal effort levels f ∗1,j and
f ∗2,j are increasing in j.

Furthermore, the equilibrium effort incentive for f ∗1,j increases more quickly than

6For classic linear-quadratic benefit-cost functions c(f) = 1
2f

2 and h(f) = 1− f (f ∈ [0, 1]), this
ratio simplifies to the exact equilibrium effort choice c′(f∗)

−h′(f∗) = f∗. More generally, under natural
convexity and monotonicity assumptions, expression (25) is increasing in f∗.
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that for f ∗2,j. Mathematically,

−c′1(f ∗1,j+1)/h′1(f ∗1,j+1)

−c′1(f ∗1,j)/h
′
1(f ∗1,j)

>
−c′2(f ∗2,j+1)/h′2(f ∗2,j+1)

−c′2(f ∗2,j)/h
′
2(f ∗2,j)

> 1. (26)

Intuitively, for type-1 errors, effort increases later in the chain because both the
relevance and the consequence of type-1 errors increase. On the one hand, type-1
errors are more relevant because the proposed action is more likely to be correct
(Corollary 1). On the other hand, the consequence of an error is more severe in later
layers due to fewer subsequent layers that can potentially make corrections.

The intuition is more intricate for type-2 errors. While the consequence of type-
2 errors increases (by a factor of 1

(e2,j−e1,j)
), their relevance decreases (by a factor

of 1−pj−1

1−pj ), because inputs are less likely to be wrong in later layers. However, as
demonstrated in the appendix, the increased consequence dominates the decreased
relevance, resulting in an overall increase in effort incentive for f ∗2,j with j albeit more
slowly than f ∗1,j.

Impact of Technology on Human Effort in Practice

A common concern associated with reliance on automation, frequently highlighted
in news reports, is that human operators (pilots or drivers) may lose focus or even
fall asleep once the autopilot or auto-drive system takes control. Notable incidents
reinforcing this issue include Northwest Airlines Flight 188 in 2009 and Batik Air
Flight 6723 in 2024.7 Such occurrences are even more prevalent in the context of
autonomous driving, with multiple instances reported of Tesla drivers falling asleep
at the wheel.8 While this negligence is both dangerous and illegal, it is a natural
consequence predicted by Proposition 5: Technologies capable of making ultimate
decisions reduce the incentive for human effort.

A positive aspect of this effort pattern is that human operators can now focus
more on troubleshooting and innovation (reducing type-2 errors) when technology

7For the official transcript released by the Federal Aviation Administration regarding the
Northwest Airlines incident, see https://www.faa.gov/data_research/accident_incident/2009-
10-23. For the preliminary investigation report on the Batik Air incident, refer to
https://knkt.go.id/Repo/Files/Laporan/Penerbangan/2024/KNKT.24.01.02.04-Preliminary-
Report.pdf.

8For news coverage on this issue, see https://www.businessinsider.com/tesla-driver-asleep-wheel-
car-reached-70-mph-autopilot-times-2022-12 and https://www.nbcnews.com/news/us-news/tesla-
driver-slept-car-was-going-over-80-mph-autopilot-n1267805, among others.
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assumes final execution. A notable example from aviation is the US Airways Flight
1549 incident. After experiencing a bird strike shortly after takeoff from LaGuardia
Airport in New York, the Airbus A320 lost both engines but successfully ditched in
the Hudson River. The autopilot system (fly-by-wire) maintained the plane’s basic
stability (minimizing type-1 execution errors), allowing the pilots to concentrate on
troubleshooting the problem and devising a solution within the extremely limited
timeframe of three minutes.9

Anecdotally, recent developments in generative AIs (e.g., ChatGPT) enable soft-
ware developers and artists to delegate more tedious final execution tasks (such as
coding and video/image generation) to these tools. Consequently, humans can con-
centrate on the more innovative aspects of their work, such as algorithm design and
concepts for original content.

4.2 Multiple Players and Effort Specialization

The insight from Proposition 5 extends to scenarios involving multiple layers of human
decision-makers: early layers do not exert effort to reduce errors because early-stage
errors are inconsequential; middle layers specialize in reducing the more relevant type-
2 errors due to the relatively low-quality inputs; and final layers focus on minimizing
type-1 errors as the input quality improves. To formalize these insights succinctly, I
consider a simplified effort technology as follows.

Suppose there is a sequence of N ex-ante identical human players, each with
a type-i error ei, where i = 1 or 2. Each player can either use their status-quo
technology, or, by incurring a cost c, reduce their type-1 error e1 or type-2 error e2

by ∆. I impose a natural parameter assumption that

e2 −∆ > e1 > ∆,

implying that even after effort is exerted to reduce type-2 error, it still dominates
type-1 error, and the type-1 error remains positive after its reduction. Furthermore,

9In its submission to the National Transportation Safety Board regarding the accident in-
vestigation, Airbus explicitly stated that “[d]uring this time period the Aircraft was in the
alpha protection mode which allowed the flight crew to remain focused on their priorities; con-
versely, if the Aircraft had been a non-fly-by-wire aircraft, the flight crew would have had to
fly in and out of the stick shaker to maintain the desired descent profile.” For full details, see
https://data.ntsb.gov/Docket/Document/docBLOB?ID=40329236&FileExtension=.PDF&FileName=Airbus%20Submission-
Master.PDF
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to focus on the most generic case, I assume that the status-quo technology {e1, e2} is
useful in that it improves the probability of the correct outcome. Using Proposition
2 and (12), this assumption can be explicitly written as

p0 <
1− e2

1− e2 + e1

. (27)

As before, each player receives 1 unit of utility only if a correct action is ultimately
adopted and optimally decides whether to exert effort and which type of error to
reduce. I characterize the effort pattern in a Nash equilibrium, where no player has
an incentive to deviate given the equilibrium effort profile of the other players.

Proposition 6 [Effort Specialization] All Nash equilibria are characterized by two
cutoffs 0 ≤ N1 ≤ N2 ≤ N , resulting in at most three effort regions. Players in the
initial N1 layers exert no effort; those between layers N1 + 1 and N2 specialize in
reducing type-2 errors; and those in the final N − N2 layers specialize in reducing
type-1 errors.

It is useful to be more explicit about how the equilibrium cutoffs N1 and N2 are
determined. In the generic case when all three effort regions exist, the posterior
probabilities can be explicitly calculated from equation (14) as follows:

pj =


p∗(0) − (e2 − e1)j

(
p∗(0) − p0

)
j ≤ N1

p∗(2) − (e2 − e1 −∆)j−N1

(
p∗(2) − pN1

)
N1 < j ≤ N2

p∗(1) − (e2 − e1 + ∆)j−N2

(
p∗(1) − pN2

)
j > N2

, (28)

where p∗(0) ≡
1−e2

1−e2+e1
, p∗(1) ≡

1−e2
1−e2+e1−∆

, and p∗(2) ≡
1−e2+∆

1−e2+∆+e1
denote the invariant

probabilities associated with the status-quo technology, and the ones after the reduc-
tion of type-1 or type-2 errors, respectively.10

In the early stages of the decision-making process, the incentive to exert effort is
low because mistakes at these stages have limited consequences. As a result, initial

10All three regions exist when the initial probability p0 is sufficiently small and e1 −∆ < 1 − e2
holds. The second condition implies that reducing type-1 error is associated with higher invariant
probabilities than reducing type-2 errors: p∗(1) > p∗(2) > max{ 12 , p

∗
(0)} > p0. Hence, the ordering of

the matrices also satisfies the optimal integration rule specified in Proposition 2.
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players do not exert effort until layer N1, where

N1 = max
{
j|c ≤ (1− pj−1) ∆ (e2 − e1 −∆)N2−j (e2 − e1 + ∆)N−N2

}
. (29)

The right-hand side of this inequality represents the difference in payoffs between not
making effort and making effort to reduce type-2 errors.

The next group of players, after layer N1, focus on reducing type-2 errors because
the proposed action is less likely to be correct (pj ≤ 1

2
) making type-2 errors more

relevant.
When the proposed action becomes more likely to be correct (pj > 1

2
) in layer N2,

where
N2 = max{j|pj ≤

1

2
}, (30)

players shift their focus to the more relevant type-1 errors. The overall intuition
follows and generalizes Proposition 5 to the case of multiple players.

It is worth noting that some of the three effort regions described in Proposition
6 can disappear. For example, if N2 = N , then no players reduce type-1 errors.
If N1 = 0, then every player makes effort to reduce either type-1 or type-2 errors.
Finally, if N2 ≤ N1, then players in the initial N1 layers do not make effort, those after
layer N1 specialize in reducing type-1 errors, and no players reduce type-2 errors.

Implications for Multi-layer Approval Process

Revisiting the application in Section 2.2.3 on multi-layer approval process, Proposition
6 provides insights into the division of labor among decision makers in different layers.

Initial layers, such as departmental or school committees, often dedicate substan-
tial effort to screening promotion cases for merit, addressing errors and rectifying
misjudgments from earlier rounds (reducing type-2 errors). At this stage, inputs are
relatively noisy—a candidate may be misevaluated by letter writers or other initial
reviewers. Consequently, the relevance of addressing type-2 errors is high.

In contrast, higher-level decision-makers, such as provosts and presidents, rarely
overturn school recommendations. Their focus is instead on the efficient execution of
decisions: ensuring procedural compliance, minimizing administrative burdens, and
facilitating smooth outcomes for both successful and unsuccessful candidates. This
includes promoting successful candidates effectively and dismissing unsuccessful ones
in a way that avoids adverse consequences for the university and the individuals
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involved. At this stage, recommendations from earlier layers are more likely to be
accurate, shifting the emphasis to execution and reducing type-1 errors.

A similar division of focus is observed in many other multi-layer approval pro-
cesses, such as budget reviews and student admissions. Lower-tier agents prioritize
error reduction, while higher-tier decision-makers, who hold ultimate authority, em-
phasize procedural fidelity and executional accuracy.

5 Two Applications

5.1 Integration of Human and Generative AI

This section applies the framework to analyze the integration of humans and genera-
tive AI in decision-making processes. By adding structure to the decision matrix, the
model accommodates several key features of generative AI technologies.

First, generative AI can produce novel outcomes without requiring extensive hu-
man input. These outcomes may occasionally surpass human capabilities (e.g. Al-
phaGo’s triumph over human players) or result in mistakes, such as AI hallucinations
(e.g., producing erroneous or misleading content). Second, AI can handle a large vol-
ume of tasks, significantly reducing the effort required from humans to make active
decisions.11

To capture these features, suppose there are three outcomes with associated pay-
offs, U = {S, 1, 0}:

1. The outcome of 0 represents a mistake.

2. The payoff of 1 corresponds to a routine correct outcome, which can be delivered
by either humans or AI.

3. The special outcome with a payoff of S represents a unique result achievable
only by AI. The value S can be greater or smaller than 1, reflecting the creative
potential of AI, which may exceed or fall short of human capabilities.

The prior distribution of outcomes consists of either correct results or mistakes (i.e.,
no special outcomes) and is given by P0 = (0, p0, 1− p0).

11See Banh and Strobel (2023) for a discussion on the key features and challenges associated with
generative AI.
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If humans actively make decisions, their effect is described by the decision matrix:

MH =

 1− e1,H 0 e1,H

0 1− e1,H e1,H

0 1− e2,H e2,H

 .

where e1,H represents the human type-1 error—the possibility of failing to maintain
a good status-quo outcome (either a prior or AI-generated result) and e2,H represents
the human type-2 error—the possibility of failing to correct a mistake.

To model the cost of human decisions, I assume that "no change" is always an
option at no cost. This scenario is mathematically represented by the identity matrix
I. Active decision making through MH , however, is associated with a cost c(πH)

where πH indicates the fraction of tasks (or equivalently, probability) for which human
actively make decisions. No change is made to the remaining 1−πH fraction of tasks.

Combining these two aspects, the human decision matrix is expressed as:

(1− πH) I + πHMH .

Unlike active human decisions, AI’s decisions do not incur additional costs.12 In
addition, AI has the unique ability to achieve special outcomes with a probability
sAI . However, similar to human, AI is also prone to type-1 (e1,AI) and type-2 (e2,AI)
errors. This is captured by the AI decision matrix:

MAI =

 a b c

sAI 1− sAI − e1,AI e1,AI

sAI 1− sAI − e2,AI e2,AI

 ,

where the probabilities {a, b, c}, conditional on the special outcome, are arbitrary and
irrelevant because AI does not encounter special outcomes as inputs in the model.13

Determining whether humans or AI should make the final decision depends on the
12The large fixed cost of adopting AI is sunk and therefore does not appear in the optimal inte-

gration problem.
13Recall that special outcomes are defined as outcomes only achievable by AI.
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following comparison:maxπH
P0 ((1− πH) I + πHMH)MAIU

′ − c(πH), if AI makes the final decision,

maxπH
P0MAI ((1− πH) I + πHMH)U′ − c(πH), if human makes the final decision.

(31)
It is useful to note that the optimal effort level, πH , generally depends on the se-
quence of integration (i.e., whether humans act before or after AI). After simple
manipulations, the payoff functions can be rewritten as:maxπH

πHP0 (MH − I)MAIU
′ + P0MAIU

′ − c(πH), if AI makes the final decision,

maxπH
πHP0MAI (MH − I)U′ + P0MAIU

′ − c(πH), if human makes the final decision.
(32)

Define three effort levels:

1. π∗H,1: the optimal effort level when AI makes the final decision (the first row in
(32));

2. π∗H,2: the optimal effort level when human makes the final decision (the second
row in (32));

3. π∗H,0: the optimal effort level without AI:

π∗H,0 ≡ arg max
πH

πHP0 (MH − I)U′ + P0U
′ − c(πH). (33)

I can now characterize the optimal integration of human and AI, and compare human
effort level in different scenarios.

Proposition 7 It is optimal for the AI to make the final decision if and only if

1− e2,AI

e1,AI

[
sAI

1− e2,AI

(S − 1) + 1

]
≥ 1− e2,H

e1,H

, (34)

Under this optimal integration, human effort is higher compared to the suboptimal
integration:

π∗H,1 ≥ π∗H,2.

Furthermore, the presence of AI reduces human effort level compared to the scenario
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without AI:
π∗H,1 ≤ π∗H,0.

To understand this result, first note that the integration rule (34) closely relates to
those characterized by Propositions 1 and 2. In fact, when AI does not generate any
special outcome sAI = 0 or if the special outcome is not distinctive (S = 1), condition
(34) degenerates to the case of binary outcomes: comparing invariant probabilities
( 1−e2

1−e2+e1
which is equivalent to 1−e2

e1
) for both human and AI.

AI’s ability to generate outcomes superior to the correct action (S > 1) enhances
its effective “quality,” making it more likely to serve as the final decision maker.
Conversely, when S < 1, such AI is more likely to be integrated before human, acting
as an assistive tool.

For AI to take final control, it is not necessary for its error detection capability
to surpass that of humans (i.e., e2,AI < e2,H). The critical factor is that the AI
must not generate a significant amount of new mistakes (i.e., its type-1 error e1,AI

must not be too large). Mathematically, in condition (34), type-1 error appears in
the denominator, amplifying its importance. Put differently, a high probability of AI
hallucination (high type-1 errors) significantly constrains its feasibility as the final
decision maker.

Next, I turn to the effort comparison in Proposition 7. Revisiting (32), when
humans “do nothing,” the AI-only decision outcome is represented by P0MAIU

′,
regardless of the integration sequence. The marginal benefit of involving humans
lies in their active decision-making, which, with probability πH , yields (MH − I)

in the corresponding layer. This marginal benefit is captured by the coefficient of
πH in both cases of (32). The significance of this marginal benefit determines both
the level of human effort and the optimal integration sequence. Consequently, the
optimal integration sequence also motivates higher human effort compared with the
suboptimal integration sequence.

It is worth noting that this insight is independent of the specific forms ofMH and
MAI . However, it does rely on the assumption that the benchmark action is “doing
nothing,” represented by the identity matrix I. Suppose human effort modifies the
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decision matrix from a genericMne
H toMe

H , then (32) becomesmaxπH
πHP0 (Me

H −Mne
H )MAIU

′ + P0Mne
HMAIU

′ − c(πH), if AI makes the final decision,

maxπH
πHP0MAI (Me

H −Mne
H )U′ + P0MAIMne

HU′ − c(πH), if human makes the final decision.
(35)

Clearly, the optimal integration depends not only on the marginal effect effect (Me
H −Mne

H )

but also how the benchmark no-effort matrixMne
H integrates with AI’s decision matrix

MAI .
The presence of AI reduces the necessity of human effort, aligning broadly with

the general intuition in Proposition 5. The underlying mechanism is that the marginal
benefit of active decision-making decreases due to the presence of another subsequent
layer.

5.2 Multi-layer Delegation

The framework developed in this paper extends the classic delegation problem by
Aghion and Tirole (1997) to a multi-layer setting.

Consider a principal andN ≥ 2 agents, indexed by n. Following Aghion and Tirole
(1997), the principal needs to adopt one project out of many ex-ante identical projects.
The n-th agent’s preferred project is labeled as the n-th project. Additionally, there is
an N+1-th project, yielding a payoff of 0 to both the principal and the agents, which
can be interpreted as doing nothing. Apart from these N+1 "relevant" projects, there
are also disastrous projects that generate sufficiently negative payoffs. The identities
of the projects are unknown to all players ex-ante, except for the N + 1-th project
(doing nothing). Thus, in the absence of additional information, the N +1-th project
should be adopted to avoid the risk of disastrous projects. Consequently, only the
first N + 1 projects can be chosen in equilibrium.

The n-th agent learns the identity of their preferred project with probability qn.
To account for the possibility of incorrect information and mistakes, I assume that
with probability q′n ≤ 1− qn, the agent erroneously overrules the previously proposed
project and instead proposes doing nothing (i.e., the N + 1-th project). With the
residual probability 1−qn−q′n, the agent has no information and retains the proposed
project choice. The agent’s preferred choice generates a payoff of Un to the principal.
Each agent is therefore represented by a triplet (qn, q

′
n, Un), which measures the agent’s
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skill level (qn), propensity for mistakes (q′n), and preference alignment or loyalty (Un).
The multi-layer delegation game unfolds as follows. The principal selects a del-

egation sequence σ(n), assigning the n-th agent in layer i = σ(n). The initial
proposal is doing-nothing (project N + 1), i.e., the initial probability distribution
P0 = (0, ..., 0, 1) ∈ RN+1 over the N + 1 relevant projects. The agent in layer i
maintains the proposed project from the previous layer i− 1 if he has no information
(with probability 1 − qn − q′n). In addition, with probability qn, the agent correctly
identifies and proposes his preferred project n. Finally, with probability q′n the agent
mistakenly overrules prior recommendations and proposes project N + 1. Hence, the
agent’s decision is summarized by the following (N + 1)× (N + 1) matrix

Mn =



1− qn − q′n 0 0 qn 0 0 0 q′n

0 1− qn − q′n 0 qn 0 0 0 q′n

0 0 ... qn ... ... ... ...

0 0 0 1− q′n 0 0 0 q′n

0 0 0 qn 1− qn − q′n 0 0 q′n

...

0 0 0 qn 0 0 1− qn − q′n q′n

0 0 0 qn 0 0 0 1− qn


,

where the n-th and the N + 1-th columns contain the (off-diagonal) entries qn and
q′n, respectively.

The principal optimally chooses the delegation sequence σ(n) to maximize the
expected payoff as described in (5), where U ≡ (U1, U2, ..., UN , 0).

Proposition 8 Suppose there are N agents, each associated with a triplet (qn, q
′
n, Un).

The optimal delegation order σ∗ is given by

σ∗(n) = 0 if and only if Un < 0,

and
σ∗(n1) > σ∗(n2) > 0 if and only if

Un1

1 +
q′n1

qn1

>
Un2

1 +
q′n2

qn2

. (36)

In words, only agents with Un ≥ 0 are included in the optimal delegation sequence,
and they are arranged in ascending order of Un

1+
q′n
qn

. Similar to the role of invariant
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probabilities p∗n in Theorem 2, the “quality” of agents in this delegation application is
measured by Un

1+
q′n
qn

. Intuitively, more loyal agents (higher Un) and more skilled agents

(higher qn) and agents who make fewer mistakes (lower q′n) are more likely to be
delegated the responsibility of deciding on the project.

This application nests the two-party principal-agent delegation problem in the
classic Aghion-Tirole (1997) framework as a special case: N = 2, U1 = 1, and U2 =

α < 1. Essentially, agent 1 is the principal, sharing the same preferred action whose
payoff is normalized to U1 = 1, and agent 2’s preferred action generates a lower
payoff. Having agent 1 act first (M1M2) reflects effective delegation to the agent (or
"A-formal authority" in Aghion-Tirole’s terminology), while having agent 2 act first
(M2M1) reflects the principal retaining ultimate authority (or "P-formal authority").
Consistent with their findings, the principal is more likely to delegate when the agent
is more loyal (higher U2), more skilled (higher q2), and less prone to mistakes (lower
q1). Proposition 8 extends the basic Aghion-Tirole result to a multi-layer setting,
offering a clear order for arranging heterogeneous agents.

An intriguing observation is that when agents do not make mistakes (q′n = 0),
the optimal delegation order depends only on loyalty (Un) and not on skill (qn). Put
differently, more loyal agents are more likely to become ultimate decision-makers,
regardless of their skill. Intuitively, this arrangement allows more loyal agents to select
projects closer to the principal’s preferences. Furthermore, it does not compromise
the contributions of skilled but less loyal agents, whose preferred projects are still
adopted if the more loyal agents remain uninformed about their own preferences.

6 Technical Extension: Higher type-1 error (e1 > e2)

Throughout this work, in the case of binary actions (A = 2), I have assumed that
correcting a mistake is more difficult than maintaining a correct action, i.e., e2 > e1,
which is arguably the more empirically relevant case. In this section, I consider
the opposite scenario where maintaining the correct action is more difficult, i.e.,
e1 > e2. Such a technology delivers better outcomes when the prior probability
is worse. Mathematically, this is evident from (15), where pi is negatively related to
pi−1. Furthermore, (14) shows that the prior and posterior probabilities pi−1 and pi
oscillate around the invariant probability p∗i . Intuitively, when a technology is better
at correcting errors than maintaining correctness, feeding the technology a mistake
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results in a superior outcome.
Consequently, in contrast to Proposition 2 and Corollary 1, the optimal integration

in this case may no longer be “monotonic.” It might be optimal to initially degrade
the quality of the proposed action and then apply a technology with a lower type-2
error to correct these mistakes, thereby achieving a better outcome. Moreover, it is
possible for “bad” technologies with invariant probabilities lower than the initial p0

to be utilized in the optimal integration.
Consider the following simple and extreme example with three technologies:

M1 =

(
0.5 0.5

0 1

)
, M2 =

(
0 1

1 0

)
, andM3 =

(
0.1 0.9

1 0

)
,

with the initial probability p0 = 0.7.

• The first technology (M1) never corrects existing errors, introduces 50% new
errors, and therefore has an invariant probability p∗1 = 1−1

1−1+0.5
= 0.

• The second technology (M2) exchanges the correct and wrong actions, yielding
an invariant probability p∗2 = 1−0

1−0+1
= 0.5.

• The third technology (M3) has a slightly lower type-1 error of 90%, resulting
in an invariant probability p∗3 = 1−0

1−0+0.9
= 0.53.

Notably, bothM2 andM3 have higher type-1 errors (e1 > e2). Despite all three tech-
nologies having invariant probabilities lower than p0, the optimal integration sequence
isM2M1M3, delivering a final correct probability of 86.5%.

Examining the effect after each layer, following M2, the posterior probability
becomes 1− p0 = 30%. After the second layer (M2M1), the posterior further deteri-
orates to 15% asM1 introduces another 50% new mistakes. Finally,M3 corrects all
existing mistakes while maintaining 10% of the correct outcomes, resulting in a final
probability of 1− 15% + 0.1 ∗ 15% = 86.5%.

As discussed, when e1 > e2, the prior and posterior probabilities oscillate around
the invariant probability. This oscillation is evident inM2 (70% → 30% after layer
1) andM3 (15% → 86.5% after layer 3). Due to this oscillation, even a technology
that solely generates errors (M1) may prove useful in the optimal integration.

These complexities make it challenging to characterize a general rule for optimal
integration, leaving room for future research to advance our understanding in this
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direction.

7 Conclusion

This paper constructs a framework based on Markov matrices to analyze the optimal
sequential integration of different decision-making technologies. In the binary-action
case, technologies differ in their type-1 errors (rejecting a correct action) and type-2
errors (accepting a wrong action). The analysis demonstrates that applying tech-
nologies in ascending order of their associated invariant probabilities yields the best
ultimate decision. However, when there are multiple payoff-relevant states or more
than two actions, such a one dimensional integration rule does not generally exist.

The study also reveals that human effort to reduce errors increases through-
out the decision-making process, with efforts to minimize type-1 errors accelerating
more rapidly than efforts to minimize type-2 errors. This finding suggests that early
decision-makers should prioritize reducing type-2 errors, while final decision-makers
should focus on reducing type-1 errors.

I provide two applications of the framework. In the context of human-AI in-
tegration, the model provides a decision rule for assigning final decision authority
to a generative AI. Specifically, the AI is more likely to be entrusted with ultimate
decision-making when its error rates are low, and its creative abilities are high. More-
over, the presence of AI reduces the necessity for human decision-making effort. In
the context of multi-layer delegation, the model extends the classic Aghion and Tirole
(1997) result, introducing a metric to rank agents based on their skill, loyalty, and
propensity for errors. Additional applications include automation design, multi-layer
approval processes, and loan screening.

Finally, the framework developed here can be further applied to study other lay-
ered structures. For example, Zhong (2023) employs a similar framework to examine
the market structure of intermediation chains. Another promising area of application
lies in labor hierarchies and job design. In the specific case of human-AI integra-
tion, numerous questions remain unanswered. For instance, in autonomous driving,
how should rewards or liabilities be allocated between the driver and the car man-
ufacturer? The allocation could depend on the interim outcomes of decisions—for
example, whether the human corrects the AI’s mistakes or vice versa. Additionally,
there may be multiple drivers sharing the same autonomous driving system. Ad-
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dressing these questions could provide valuable insights for regulation and insurance
design in this market.
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Appendix

Proof of Proposition 1: Note that both sides of (16) are linear functions in p0.
Hence, I only need to establish the inequality at the two boundaries p0 = 0 and
p0 = p∗1, and then the result holds for all p0 ≤ p∗1.

First, consider p0 = p∗1. Since p∗1 < p∗2, it follows from (14) that

(
p∗1 1− p∗1

)
M2

(
1

0

)
∈ (p∗1, p

∗
2) . (37)

Apply (14) again, the lower bound of p∗1 in (37) implies that

(
p∗1 1− p∗1

)
M2M1

(
1

0

)
<
(
p∗1 1− p∗1

)
M2

(
1

0

)
=
(
p∗1 1− p∗1

)
M1M2

(
1

0

)
.

Next, consider p0 = 0. Our objective (16) becomes

(1− e1,2) (1− e2,1) + (1− e2,2) e2,1 > (1− e1,1) (1− e2,2) + (1− e2,1) e2,2

which is equivalent to

(1− e1,2 − e2,2) (1− e2,1) > (1− e1,1 − e2,1) (1− e2,2)

which is in turn equivalent to

e1,2 (1− e2,1) < e1,1 (1− e2,2)⇔ e1,1

1− e2,1

>
e1,2

1− e2,2

⇔ p∗2 > p∗1.

Finally, suppose p∗1 = p∗2. Then matricesMi can be simultaneously diagonalized
as follows (

1 1− p∗i
1 −p∗i

)
=

(
p∗i 1− p∗i
1 −1

)−1

Mi =

(
1 1− p∗i
1 −p∗i

)(
1 0

0 e2,i − e1,i

)(
p∗i 1− p∗i
1 −1

)
.

Hence, the two matrices commute, and the ordering is irrelevant. �
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Proof of Proposition 2: I first establish the following lemma.

Lemma 1 For any integration σ of N technologies, the final probability pN is strictly
increasing in p0.

Proof of Lemma 1: It is clear from (14) that since e2,n > e1,n, the posterior
probability pi is strictly increasing in the prior probability pi−1. Mathematical induc-
tion immediately implies that it also strictly increases with the prior probability p0.
�

Now I prove the proposition. First, I show all technologies with p∗n < p0 should be
excluded from the optimal integration. Suppose otherwise, the nth technology Mn

and σ∗(n) = N0 is the first technology in the integration with p∗n < p0. Consequently,
all technologies in the integration before N0 (i < N0) have p∗σ∗−1(i) > p0. From
(14), we know that the posterior probability in the integration after applying N0 − 1

technologies is higher than p0. Hence, removing technology Mn strictly increases
the posterior probability after N0 technologies. Lemma 1 then implies that the final
probability is also strictly higher, contradicting with the efficiency of σ∗. Hence, all
technologies in the optimal integration must feature invariant probabilities higher
than p0.

In addition, the optimal integration must include all technologies with invariant
probability greater than p0. Otherwise, supposeMn is an excluded technology with
p∗n > p0, i.e., σ∗(n) = 0. Then adding it as the first technology in the integration
(σ̂(n) = 1 and σ̂(i) = σ∗(i) + 1 for all σ∗(i) > 0) strictly improves the posterior
probability p1 as well as the final probability per Lemma 1.

Next, I show that the optimal integration must feature a sequence of technologies
with weakly increasing invariant probabilities. Suppose otherwise that N0 and N0 +1

are two adjacent technologies in the optimal integration σ∗ such that p∗σ∗−1(N0) >

p∗σ∗−1(N0+1). Consider the posterior probability pN0−1 after applying the first N0 − 1

technologies. There are two possibilities.
If pN0−1 ≥ p∗σ∗−1(N0+1), then the posterior probability pN0 after N0 must lie between

pN0−1 and p∗σ∗−1(N0). Therefore, the posterior pN0 > p∗σ∗−1(N0+1) and it is optimal to
remove the N0 + 1th technology.

If pN0−1 < p∗σ∗−1(N0+1), then Proposition 1 implies that switching the order between
the N0th and N0 + 1th technology strictly improves the posterior probability.
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Both cases contradict with σ∗ being the optimal integration, and hence the propo-
sition. �

Proof of Proposition 3: For any p
(t)
0 ≡ (p0, 1−p0), calculate the difference in payoff

between the two integrations p2 ≡ p
(t)
0 M

(t)
1 M

(t)
2

(
1

0

)
and p̂2 = p

(t)
0 M

(t)
2 M

(t)
1

(
1

0

)
.

First, consider the former integration p2. Iterate (14),

p∗2 − p2 = (e2,2 − e1,2)(p∗2 − p∗1 + p∗1 − p1)

= (e2,2 − e1,2)(p∗2 − p∗1) + (e2,2 − e1,2)(e2,1 − e1,1)(p∗1 − p0).

Symmetry implies that, for the alternative integration p̂2, one has

p∗1 − p̂2 = (e2,1 − e1,1)(p∗1 − p∗2) + (e2,2 − e1,2)(e2,1 − e1,1)(p∗2 − p0).

Taking the difference

p2 − p̂2 = (p∗2 − p∗1) [1− (e2,2 − e1,2)− (e2,1 − e1,1) + (e2,2 − e1,2)(e2,1 − e1,1)]

= (p∗2 − p∗1) [1− (e2,2 − e1,2)] [1− (e2,1 − e1,1)] .

Taking all types together, the payoff difference (18) becomes

P0M1M2U
′−P0M2M1U

′ =
T∑
t=1

(
u(t) − u(t)

)
qt(p

(t)∗
2 −p

(t)∗
1 )

[
1− (e

(t)
2,2 − e

(t)
1,2)
] [

1− (e
(t)
2,1 − e

(t)
1,1)
]

Using the definition of p(t)∗
i , one can easily verify that P0M1M2U

′ ≥ P0M2M1U
′

is equivalent to

T∑
t=1

(
u(t) − u(t)

)
qt

[
1

p
(t)∗
1

− 1

p
(t)∗
2

](
1− e(t)

2,2

)(
1− e(t)

2,1

)
≥ 0.

Together with
1

p
(t)∗
i

=
e

(t)
1,i

1− e(t)
2,i

+ 1,
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The above condition becomes

T∑
t=1

(
u(t) − u(t)

)
qt

[
e

(t)
1,1

1− e(t)
2,1

−
e

(t)
1,2

1− e(t)
2,2

](
1− e(t)

2,2

)(
1− e(t)

2,1

)
≥ 0.

After manipulation, it becomes

T∑
t=1

(
u(t) − u(t)

)
qt

[
e

(t)
1,1

(
1− e(t)

2,2

)
− e(t)

1,2

(
1− e(t)

2,1

)]
≥ 0,

establishing conditions (19) and (20). �

Proof of Proposition 5: Compare the two cases when the player operates in layer
j versus layer j+ 1. The posterior probability after layer j− 1 is pj−1. For notational
convenience, denote by {ei,k|i = 1, 2 and k = 1, 2, ..., N} the error probabilities asso-
ciated with the remaining N − 1 technologies, and ei,j = ei,j+1 is same technology in
either layer j or j + 1 depending where the player operates. If the player is in layer
j, the first order conditions (23) and (24) can be rewritten as

−pj−1h
′
1(f ∗1,j)Π

N
i=j+1 (e2,i − e1,i) = c′(f ∗1,j), (38)

and
− (1− pj−1)h′2(f ∗2,j)Π

N
i=j+1 (e2,i − e1,i) = c′(f ∗2,j). (39)

If the machine is the first layer, then the player’s effort levels f ∗1,j+1 and f ∗2,j+1 are
given by

− [pj−1 (1− e1,j) + (1− pj−1) (1− e2,j)]h
′
1(f ∗1,j+1)ΠN

i=j+2 (e2,i − e1,i) = c′(f ∗1,j+1),

(40)
and

− [pj−1e1,j + (1− pj−1) e2,j]h
′
2(f ∗2,j+1)ΠN

i=j+2 (e2,i − e1,i) = c′(f ∗2,j+1). (41)

Corollary 1 implies that the posterior probabilities pi are increasing in i. Com-
paring (38) and (40), I have

c′1(f ∗1,j)

−h′1(f ∗1,j)
= pj−1ΠN

i=j+1 (e2,i − e1,i) > pjΠ
N
i=j+2 (e2,i − e1,i) =

c′1(f ∗1,j+1)

−h′1(f ∗1,j+1)
.
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Since c′1(f)

−h′1(f)
is an increasing function in f , it follows that f ∗1,j+1 > f ∗1,j.

Next, I show that f ∗2,j+1 > f ∗2,j also holds. Note that since ei,j and ei,j+1 feature
the same technology (the one being swapped with human), we have

pj−1e1,j + (1− pj−1) e2,j > (1− pj−1) (e2,j − e1,j) = (1− pj−1) (e2,j+1 − e1,j+1) ,

Together with (39) and (41), I have

−h′1(f ∗1,j)

−h′2(f ∗2,j+1)
>
−h′1(f ∗1,j)

−h′2(f ∗2,j+1)

(1− pj−1) (e2,j+1 − e1,j+1)

[pj−1e1,j + (1− pj−1) e2,j]
=

c′2(f ∗2,j)

c′2(f ∗2,j+1)
.

Hence, the increasing monotonicity of c′2(f)

−h′2(f)
again implies that f ∗2,j+1 > f ∗2,j.

Finally, to establish (26), observe that

c′1(f ∗1,j+1)

−h′1(f ∗1,j+1)
/
c′1(f ∗1,j)

−h′1(f ∗1,j)
=

pj
pj−1 (e2,j+1 − e1,j+1)

and
c′2(f ∗2,j+1)

−h′2(f ∗2,j+1)
/
c′2(f ∗2,j)

−h′2(f ∗2,j)
=

1− pj
(1− pj−1) (e2,j+1 − e1,j+1)

.

The fact that the technologies are optimally integrated implies that pj is increasing,
which in turn implies that

pj
1− pj

>
pj−1

1− pj−1

.

This completes the proof. �

Proof of Proposition 6: I first show that if the player in layer j ≥ 2 finds it
optimal to make no effort, then all players in earlier layers also choose not to make
effort. Consider the incentive compatibility condition. Layer j player prefers not

42



making effort over reducing type-1 error:

c ≥
(
pj−1 1− pj−1

)[( 1− e1 + ∆ e1 −∆

1− e2 e2

)
−

(
1− e1 e1

1− e2 e2

)]∏N
n=j+1Mn

(
1

0

)

=
(
pj−1 1− pj−1

)( ∆ −∆

0 0

)∏N
n=j+1Mn

(
1

0

)

= ∆
(
pj−1 1− pj−1

)( 1

0

)(
1 −1

)∏N
n=j+1Mn

(
1

0

)
= ∆pj−1

∏N
n=j+1 (e2,n − e1,n) .

(42)
Suppose there is a player in layer j′ < j who prefers making effort (either type-1 or
type-2) over no effort. Without loss of generality, denote j′ to be the first such layer.
I claim that the layer-j′ player has no incentive to reduce type-1 error. Calculating
the payoff difference for this player:

(
pj′−1 1− pj′−1

)[( 1− e1 + ∆ e1 −∆

1− e2 e2

)
−

(
1− e1 e1

1− e2 e2

)]∏N
n=j′+1Mn

(
1

0

)
= ∆pj′−1

∏N
n=j′+1 (e2,n − e1,n)

< ∆pj−1

∏N
n=j+1 (e2,n − e1,n) ≤ c.

The strict inequality holds because pj′−1 < pj−1 and
∏j

n=j′+1 (e2,n − e1,n) < 1. The
former condition arises from the fact that no one in the initial j′ − 1 layers makes
effort, and condition (27) implies that pn for n < j′ is an increasing sequence. If some
players between layer j′ and j make effort, the probability pj−1 further increases, and
pj′−1 < pj remains valid. Hence (42) implies that layer-j′ player also does not have
incentive to reduce type-1 error.

I next consider effort incentive for reducing type-2 errors. The incentive compat-
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ibility condition for layer-j player implies that

c ≥
(
pj−1 1− pj−1

)[( 1− e1 e1

1− e2 + ∆ e2 −∆

)
−

(
1− e1 e1

1− e2 e2

)]∏N
n=j+1Mn

(
1

0

)

=
(
pj−1 1− pj−1

)( 0 0

∆ −∆

)∏N
n=j+1Mn

(
1

0

)

= ∆
(
pj−1 1− pj−1

)( 0

1

)(
1 −1

)∏N
n=j+1Mn

(
1

0

)
= ∆ (1− pj−1)

∏N
n=j+1 (e2,n − e1,n) .

(43)
From the definition of pj−1

(1− pj−1) = (1− pj−2) e2,j−1 − pj−2e1,j−1 ≥ (1− pj−2) (e2,j −∆)− pj−2e1,j,

where the inequality is due to the fact that effort at most reduces e2,j−1 by ∆ from the
status-quo level e2,j = e2, and e1,j−1 ≤ e1,j = e1. This expression in turn dominates

(1− pj−2) (e2,j −∆)−pj−2e1,j = (1− pj−2) (e2,j − e1,j)−(1− pj−2) ∆+e1,j > (1− pj−2) (e2,j − e1,j) ,

where the last inequality uses the fact that e1,j = e1 > ∆. Hence,

(1− pj−1) > (1− pj−2) (e2,j − e1,j) ,

and condition (43) implies that

c > ∆ (1− pj−2)
N∏
n=j

(e2,n − e1,n) .

Therefore, the player in layer j − 1 does not have incentive to reduce type-2 error.
The same conclusion holds for any j′ ≤ j − 1.

Hence, define N1 to be the last layer that does not make effort. The above proof
establishes that all players in layers n ≤ N1 do not make effort. Next, I show that if
layer-j player prefers reducing type-2 error over type-1 error, then all players in layers
j′ < j have the same preference. The incentive compatibility condition for layer-j
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player implies that

0 ≥
(
pj−1 1− pj−1

)[( 1− e1 + ∆ e1 −∆

1− e2 e2

)
−

(
1− e1 e1

1− e2 + ∆ e2 −∆

)]∏N
n=j+1Mn

(
1

0

)

=
(
pj−1 1− pj−1

)( ∆ −∆

−∆ ∆

)∏N
n=j+1Mn

(
1

0

)

= ∆
(
pj−1 1− pj−1

)( 1

−1

)(
1 −1

)∏N
n=j+1Mn

(
1

0

)
= ∆ (2pj−1 − 1)

∏N
n=j+1 (e2,n − e1,n) ,

(44)
which is in turn equivalent to pj−1 ≤ 1

2
.

Suppose in contrast that there is a layer-j′ player (j′ < j) who prefers reducing
type-1 error over type-2. Without loss of generality, denote by j′ the first layer
such that the player prefers reducing type-1 error. An analogous derivation as in
(44) yields that pj′−1 ≥ 1

2
. Therefore, the initial N1 layers do not make effort and

those between N1 + 1 and j′ − 1 reduce type-2 error. One can easily calculate the
invariant probabilities associated with the status-quo errors p∗(0) ≡

1−e2
1−e2+e1

, after the
reduction of type-1 error p∗(1) ≡

1−e2
1−e2+e1−∆

and after the reduction of type-2 error
p∗(2) ≡

1−e2+∆
1−e2+∆+e1

. The supposition that pj′−1 ≥ 1
2
implies

1− e2 ≥ e1 −∆.

Otherwise, one can easily verify that p∗(0), p
∗
(1), p

∗
(2) ≤

1
2
, and no posterior pj′−1 ≥ 1

2
,

creating a contradiction. Hence, the ranking of the three invariant probabilities must
be

p∗(0) < p∗(2) ≤ p∗(1). (45)

To verify, note that
p∗(1) ≥ p∗(2)

⇔ 1−e2+∆+e1
1−e2+e1−∆

≥ 1−e2+∆
1−e2

⇔ 2∆
1−e2+e1−∆

≥ ∆
1−e2

⇔ 2 (1− e2) ≥ 1− e2 + e1 −∆

⇔ 1− e2 ≥ e1 −∆.

However, the ranking in (45) still leads to a contradiction. First, it must be
that pj′−1 < p∗(2) because no one prior to layer j′ reduces type-1 error. Furthermore,
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all players between layers j′ and j make either type-1 or type-2 efforts, hence the
posterior pj−1 > pj′−1 ≥ 1

2
. A contradiction.

Hence, let N2 be the last layer that reduces type-2 error, then all layers between
N1 +1 and N2 make effort to reduce type-2 error, and all layers after N2 reduce type-1
error. This completes the proof. �

Proof of Proposition 7: As explained in the main text, the optimal integration
rule reduces to comparing P0 (MH − I)MAIU

′ and P0MAI (MH − I)U′.
First, consider human in the first layer: P0 (MH − I)MAIU

′. Simple calculation
yields

P0 (MH − I) =
(

0 p0 1− p0

) −e1,H 0 e1,H

0 −e1,H e1,H

0 1− e2,H e2,H − 1


= [−p0e1,H + (1− p0) (1− e2,H)]

(
0 1 −1

)
, (46)

and

(
0 1 −1

) a b c

sAI 1− sAI − e1,AI e1,AI

sAI 1− sAI − e2,AI e2,AI

 = (e2,AI − e1,AI)
(

0 1 −1
)
.

Hence,

P0 (MH − I)MAIU
′ = [−p0e1,H + (1− p0) (1− e2,H)] (e2,AI − e1,AI) . (47)

Next, consider AI in the first layer: P0MAI (MH − I)U′. Simple calculation
yields

P0MAI =
(

0 p0 1− p0

) a b c

sAI 1− sAI − e1,AI e1,AI

sAI 1− sAI − e2,AI e2,AI


=

(
sAI 1− sAI − p0e1,AI − (1− p0) e2,AI p0e1,AI + (1− p0) e2,AI

)
,
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and

P0MAI (MH − I)U′

=
(
sAI 1− sAI − p0e1,AI − (1− p0) e2,AI p0e1,AI + (1− p0) e2,AI

) −Se1,H

−e1,H

1− e2,H


= −e1,H [sAI (S − 1) + 1− p0e1,AI − (1− p0) e2,AI ] + (1− e2,H) [p0e1,AI + (1− p0) e2,AI ] .

Comparing the difference

P0 (MH − I)MAIU
′ −P0MAI (MH − I)U′

= [−p0e1,H + (1− p0) (1− e2,H)] (e2,AI − e1,AI)

+e1,H [sAI (S − 1) + 1− p0e1,AI − (1− p0) e2,AI ]− (1− e2,H) [p0e1,AI + (1− p0) e2,AI ]

= −p0e1,H (e2,AI − e1,AI) + (1− p0) (1− e2,H) (e2,AI − e1,AI)

+e1,H [sAI (S − 1) + 1− p0e1,AI − (1− p0) e2,AI ]− (1− e2,H) [p0e1,AI + (1− p0) e2,AI ]

= e1,H [sAI (S − 1) + 1− e2,AI ]− (1− e2,H) e1,AI

Therefore, human should be the first layer iff

e1,H

1− e2,H

[
sAI

1− e2,AI

(S − 1) + 1

]
− e1,AI

1− e2,AI

≥ 0,

and hence condition (34).
It is clear from (32) that P0 (MH − I)MAIU

′ ≥ P0MAI (MH − I)U′ immedi-
ately implies π∗H,1 ≥ π∗H,2.

Finally, comparing P0 (MH − I)U′ and P0 (MH − I)MAIU
′, it is clear from

(46) and (47) that the former is greater. Following the same logic, (34) and (33)
immediately imply that π∗H,1 ≤ π∗H,0. �

Proof of Proposition 8: Denote by I the (N + 1) × (N + 1) dimensional iden-
tity matrix; by In the same dimensional matrix with ones in the nth column and
zeros everywhere else. Therefore,

Mn = (1− qn − q′n) I + qnIn + q′nIN+1.
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Before proceeding, it is useful to note that InIm = Im for any n,m ≤ N+1. Therefore,

(In − I) Im = 0. (48)

First, suppose the agent in layer i = σ(n) > 0 is the first layer in the delegation
sequence with Un < 0. Eliminating this agent from the delegation process is equivalent
to replacingMn by I in payoff calculation (5). Calculating the difference:

P0

∏
j<iMσ−1(j) (Mn − I)

∏
j>iMσ−1(j)U

′

= P0

∏
j<iMσ−1(j) [qn (In − I) + q′n (IN+1 − I)]

∏
j>iMσ−1(j)U

′

= P0

∏
j<iMσ−1(j) [qn (In − I) + q′n (IN+1 − I)]

[
y0I +

∑I
j=i+1 yjIσ−1(j) + yNIN

]
U′

,

where yj are some coefficients. Using condition (48), the above difference becomes

y0P0

∏
j<iMσ−1(j) [qn (In − I) + q′n (IN+1 − I)]U′

= y0qn

(
Un −P0

∏
j<iMσ−1(j)U

′
)

+ y0q
′
n

(
UN+1 −P0

∏
j<iMσ−1(j)U

′
)

< −y0 (qn + q′n)P0

∏
j<iMσ−1(j)U

′

,

where the last inequality utilizes the fact that Un < 0 and UN+1 = 0. Since the initial
i− 1 agents are associated with positive Uj’s, the last expression is negative. Hence,
removing agent n strictly improves the expected payoff to the principal.

Next, suppose there are two adjacent agents i = σ−1(n1) and i+1 = σ−1(n2) such
that

Un1

1 +
q′n1

qn1

>
Un2

1 +
q′n2

qn2

.

Consider the payoff difference with their positions reversed:

P0

∏
j<i

Mσ−1(j) (Mn1Mn2 −Mn2Mn1)
∏
j>i+1

Mσ−1(j)U
′.

Calculate

Mn1Mn2

=
(
1− qn1 − q′n1

) (
1− qn2 − q′n2

)
I + qn1

(
1− qn2 − q′n2

)
In1 + qn2In2

+
[
q′n1

(
1− qn2 − q′n2

)
+ q′n2

]
IN+1

,

48



and using symmetry to take the difference

Mn1Mn2 −Mn2Mn1

= −qn1

(
qn2 + q′n2

)
In1 + qn2

(
qn1 + q′n1

)
In2 + xIN+1

,

where x is some constant.
Therefore, the payoff difference becomes

P0

∏
j<iMσ−1(j) (Mn1Mn2 −Mn2Mn1)

∏
j>i+1Mσ−1(j)U

′

= −qn1

(
qn2 + q′n2

)
Un1 + qn2

(
qn1 + q′n1

)
Un2

= −
(
qn1 + q′n1

) (
qn2 + q′n2

)( Un1

1+
q′n1
qn1

− Un2

1+
q′n2
qn2

)
< 0

,

a contradiction to optimality and concluding the proof. �
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