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Abstract

Many regulations aim at promoting coordination among creditors in bankruptcy by ex
post restricting their ability to exit distressed firms. However, such restrictions may harm
creditors’ ex ante incentives to stay invested, thereby worsening coordination outcomes. We
build a dynamic coordination model to show how this force shapes creditor runs, bankruptcy
filings, and regulation designs. Intriguingly, filing for bankruptcy early, thereby preserving
more assets for latecomers, can prolong firm life. Furthermore, regulators’ clawbacks on
pre-bankruptcy repayments can be superior to firms’ commitment to early bankruptcy filing.
Our analysis generates implications for automatic stay, avoidable preference, bank failures,
and seniority structure.
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1 Introduction

Coordination failure among creditors can inject chaos into the bankruptcy process, as individual
creditors often exhibit a natural inclination to swiftly claim a share of a distressed firm’s assets. To
manage such situations, bankruptcy laws worldwide incorporate regulations aimed at fostering an
orderly resolution, mitigating the first-come-first-serve dynamics inherent in the process. Among
these provisions is the well-known “automatic stay” clause, which, upon a debtor’s bankruptcy
filing, compels creditors to suspend individual debt collections, awaiting a collective resolution
in a bankruptcy court. Another widely utilized regulation with similar objectives is the legal
treatment of “avoidable preference.”1 This regulation, often invoked in bankruptcy cases, prevents
a troubled firm from displaying preferential treatment toward specific creditors by clawing back
repayments made shortly before bankruptcy.2 The proceeds are then shared among all creditors
in bankruptcy court. These regulations often coordinate creditors surrounding bankruptcy by
restricting their ability to collect debt ex post. What is often ignored, however, is that such ex
post restrictions can also reduce creditors’ ex ante incentives to stay invested while the firm is
still relatively healthy.3

In this paper, we analyze how these forces shape creditor runs, the optimal timing for a firm
to file for bankruptcy, and the optimal design of bankruptcy regulations including automatic
stay and avoidable preference. Creditors face a trade-off when staying invested in a distressed
firm. On the one hand, they earn additional interests if the firm does not default; on the other
hand, they are more exposed to a potential bankruptcy which can lead to credit losses. How
long creditors are willing to keep their investments therefore depends on the likelihood of them
being affected by bankruptcy (henceforth, the hazard rate channel) and the recovery payoff they
can expect in the case of a default (henceforth, the recovery rate channel). Several theoretical
insights emerge from these two channels.

First, firms can extend their survival by committing to filing for bankruptcy protection early.
One might intuitively think that, to survive longer, a firm should continue making repayments
until all assets are depleted. However, this logic is incomplete. Zero ex post recovery in bankruptcy
may trigger more frantic runs ex ante because creditors may choose to exit immediately at the
first sign of trouble, pushing the firm into bankruptcy even sooner. Early filing preserves some
assets for creditors in bankruptcy, improving their recovery rate. Hence, despite the higher
hazard rate as fewer creditors can exit before bankruptcy, the improved recovery rate can make
creditors more patient ex ante, delaying the bankruptcy process.

1Between 2017 and 2019, among the 595 bankruptcy cases collected by Westlaw legal research service, 290
cases (or 48.74%) cited avoidable preference in the United States. In the past, many well-known bankruptcies,
such as WorldCom, General Motors, and Lehman Brothers, resorted to avoidable preference legislation to settle
disputes among creditors.

2The typical clawback window is between 90 days and one year in the United States (see Chapter 11, Sections
547 and 550), between six months and one year in China (see Enterprise Bankruptcy Law, Articles 31 and 32),
and between six months and two years in the United Kingdom (see Insolvency Act 1986, Sections 239 and 240).

3Legal professionals also share this concern. See, for example, McCoid (1981) and Countryman (1985).
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This insight offers rationales for two provisions in corporate bankruptcy and bank failures.
Automatic stay is arguably one of the most important features in corporate bankruptcy. The
absence of an automatic stay is akin to a scenario in which early creditors receive full repayments,
while latecomers receive nothing. In this case, the low recovery in bankruptcy motivates creditors
to run faster, possibly leading to earlier bankruptcy. Automatic stay protection are therefore
more valuable when the recovery rate channel is more pronounced. In the model, we show that
this case occurs when firms have milder shocks and lower leverage.

Related, bank failures are often triggered by the regulator’s decision to seize the bank while
considerable assets are still present. Forcing a bank failure early can similarly increase the
recovery payoff of (uninsured) depositors, which can in turn alleviate a potential run.4

Our second insight demonstrates that regulators’ ex post clawback of some pre-bankruptcy
repayments can achieve an even better outcome than firm’s own commitment to file for bankruptcy
early. Intuitively, early bankruptcy disrupts production early at the time of filing. By clawing
back repayments made before bankruptcy, the regulator effectively shifts forward the pivotal
creditor—the last one who is allowed to exit the firm with a full repayment—without actually
disrupting the production process at the time when the pivotal creditor exits. In other words,
compared with early bankruptcy filing, avoidable preference can implement the same hazard rate
and deliver a higher recovery rate from the preserved production.5 This explains the frequent
use of avoidable preference in bankruptcy court.

To formally deliver these insights, we construct a tractable dynamic coordination framework
based on the clock game (e.g., Abreu and Brunnermeier (2003) and Brunnermeier and Morgan
(2010)) to study a financially distressed yet still productive firm that is heading for bankruptcy.6

The firm with a staggered debt structure experiences a random bad shock that reduces its asset
growth rate, causing it to fall below the required interest rate on its liabilities.

There are three sets of players: creditors, the manager of the firm, and a regulator. Each
creditor gradually becomes aware of the bad shock upon debt maturity and decides privately
when to cease rolling over the debt and exit the firm.7 Waiting allows for additional interest
accrual but also increases the risk of bankruptcy before the creditor can exit. The firm’s manager
can decide when to file for bankruptcy based on the number of exiting creditors, in order to

4It is worth noting that deposit insurance is another important mechanism to ensure confidence. In this sense,
the model applies to banks with significant amount of uninsured depositors, where the uncertainty about the
recovery payoff in a bank failure is more pronounced.

5To illustrate the intuition with a simple example, consider the following two cases: (1) the firm files for
bankruptcy early when 40% of creditors exit; (2) the firm files for bankruptcy late when 70% of creditors exit, but
the repayments made to the final 30% of creditors need to be returned and shared among all remaining 60% (equal
to 1 - 70% + 30%) creditors in bankruptcy. Both cases effectively allow only 40% of creditors to exit successfully
and, therefore, share the same hazard rates. However, case 2 offers a higher recovery rate because production is
only terminated later at the 70% threshold rather than at the 40% threshold.

6In real-world scenarios, the majority of bankruptcy filings by large companies fall under Chapter 11
(restructuring) rather than Chapter 7 (liquidation). This choice stems from the idea that these struggling
firms still possess a viable business model but require a balance sheet restructuring. Translated into our model,
we assume that the firm remains productive despite facing an impending costly bankruptcy.

7Private actions imply that, when deciding the waiting time, the creditor lacks knowledge about how many
other creditors are aware of the bad shock or have withdrawn their capital.
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maximize the troubled firm’s life span. We also consider the case when the manager cannot
commit to a bankruptcy filing threshold (or, equivalently, a world without automatic stay), and
bankruptcy is triggered by the depletion of all assets. Finally, a welfare-maximizing regulator
can impose a clawback window and design its length (avoidable preference). Creditors who exit
before the clawback window can leave with full repayments, but those who receive payments
within this window before bankruptcy must return the money and share these proceeds and
remaining assets with other creditors in bankruptcy.

The trade-off between the recovery rate channel and the hazard rate channel naturally emerges
from our model. Initiating bankruptcy proceedings earlier or instituting a longer clawback window
both conserve additional capital within the bankruptcy process, improving the recovery rate and
bolstering coordination. Nonetheless, these actions also subject more creditors to the impact of
bankruptcy, escalating the hazard rate and jeopardizing coordination.

With the model, we can compare the manager’s choice of bankruptcy threshold that maximizes
the firm’s life span versus the regulator’s choice of bankruptcy threshold that maximizes total
welfare. We demonstrate that the regulator prefers to intervene earlier than the manager. To see
the intuition behind this, note that welfare loss results from the outflow of productive capital.
Maximizing welfare therefore entails two aspects: delaying bankruptcy (similar to the manager’s
objective) and minimizing the capital outflow given the time of bankruptcy. The second objective,
unique to the regulator, motivates early intervention and allowing fewer creditors to exit. This
finding highlights the misaligned incentives between the regulator and the manager, and helps
demonstrate how regulations such as avoidable preference can realign their incentives.

In addition, we show that avoidable preference is a relatively detail-free regulation in that
the optimal clawback window does not depend on the firm’s performance characteristics. This is
because the recovery rate channel, measuring the proceeds from the clawback of repayments,
only depends on the features of debt contracts, whereas the hazard rate channel only relies
on the stochastic structure of the bad shock. Neither side of this trade-off depends on the
firm’s performance characteristics. Furthermore, the simple closed-form solution of the optimal
clawback window allows us to conduct clean comparative statics, providing guidance for legal
rulings in practice. For example, a higher intensity of the bad shock or a shorter maturity
(equivalently, faster information transmission) exacerbates the hazard rate channel, resulting in a
longer clawback window and fewer creditors who can exit successfully. A higher interest rate
implies that more repayments can be seized, increasing the recovery rate and thereby reducing
the duration of the clawback window.

We finally extend the model to incorporate ex ante heterogeneous creditors based on seniority.
In this case, junior creditors always exit sooner than their senior counterparts because of their
inferior recovery payoff. Interestingly, the coordination outcome is non-monotonic with respect
to creditor composition. A small number of senior creditors always worsens coordination because
their presence makes junior creditors less patient, leading to earlier bankruptcy. However, as more
creditors become senior, they replace juniors and become more pivotal in triggering bankruptcy.
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Their willingness to wait can prolong firm life and delay bankruptcy. As a robustness analysis,
we also consider the possibility for the firm to recover from the bad shock and different timelines
of actions.

Literature Review

Our framework builds on the clock game, which was first introduced in the computer science
literature (see Halpern and Moses (1990)). The key idea is that not everyone learns of a piece of
news at the same time, but instead some individuals become informed sooner than others. Morris
(1995) applies this information structure to a dynamic coordination game in labor economics.
Abreu and Brunnermeier (2003), Brunnermeier and Morgan (2010), and Doblas-Madrid (2012)
then use the clock game setup to understand the formation of bubbles and their subsequent
crashes. In the context of banking, He and Manela (2016) allow investors to actively acquire
information and show that such information acquisition may accelerate runs. We contribute to
this literature by constructing a tractable framework on bankruptcy and clearly delineating the
trade-off between the recovery rate and hazard rate channels. The tractability of the framework
also allows us to study the strategic interactions between creditors’ exit timing, the firm’s
bankruptcy threshold, and the regulator’s policy design.

A popular alternative approach to study the coordination game is the global game framework
introduced by Carlsson and Van Damme (1993). It has also been extensively applied to modeling
currency attacks and bank runs (see Morris and Shin (1998, 2004) and Goldstein and Pauzner
(2005) for details).

Among this literature, Schilling (2023) and Matta and Perotti (2023) are closely related. In
global game settings, these two papers study how many early withdrawals should be allowed
(forbearance level in Schilling (2023) and selling illiquid assets in Matta and Perotti (2023))
before imposing costly actions (resolution in Schilling (2023) and suspension and liquidation in
Matta and Perotti (2023)). There is a similar trade-off: allowing for more withdrawals makes it
more likely for depositors to receive full repayments but simultaneously lowers the payoff the
remaining ones receive in a resolution. Both papers therefore can deliver interesting insights on
optimal forbearance or liquidation policies.

Like many other global game models, these two papers consider a static setting in which
depositors only choose whether to run but not the exact timing. However, debt runs are
intrinsically a dynamic concept: the timing of exit affects the asset evolution (recovery rate
channel) and the likelihood of a successful exit (hazard rate channel), which in turn affect
creditors’ incentives to exit. Our dynamic coordination framework built on the clock game can
naturally capture this trade-off. Furthermore, there are only two sets of players in both Schilling
(2023) and Matta and Perotti (2023): the policy setter and depositors, whereas our framework
can comprehensively consider the creditors’, the firm’s, and the regulator’s strategic actions
in a unified model, thereby generating dynamic implications on bankruptcy regulations. For
instance, the finding that ex post clawback in bankruptcy is more efficient than the firm’s own

5



commitment to filing for bankruptcy early crucially relies on the fact that assets can appreciate
over the clawback window.

Among the large literature on creditor (depositor) coordination following the seminal work
by Bryant (1980) and Diamond and Dybvig (1983), many papers study how various policies can
alleviate creditor runs.8 Recent studies can be broadly classified into two categories: policies
that affect information structure (for example, bank stress tests; see Goldstein and Huang (2016);
Inostroza and Pavan (2020); Basak and Zhou (2020, 2024)) and policies that directly intervene
payoffs (for example, subsidies and insurance; see Sakovics and Steiner (2012); Frankel (2017);
Allen et al. (2018); Dávila and Goldstein (2023); Shen and Zou (2024)). This paper belongs
to the second category. Different from the literature, we build a model of a dynamic debt run
and study a new policy: avoidable preference (repayment clawback). A novel policy insight is
that the optimal clawback window is relatively detail-free in that it does not depend on the
parameters of the firm’s production process. Therefore, such regulation requires less information
from the regulator.

Finally, our paper also contributes to a large literature on corporate bankruptcy. For example,
Bebchuk (2002) finds that the ex post violation of absolute priority in bankruptcy can exacerbate
the moral hazard problem and thereby lower ex ante efficiency. Bolton and Oehmke (2015)
investigate the ex ante impact of exempting derivatives from automatic stay in bankruptcy. He
and Xiong (2012) study runs on staggered corporate debt and show that a creditor’s decision
not to roll over maturing debt poses an externality on other creditors whose claims have not yet
matured. Donaldson, Gromb and Piacentino (2020a,b) study the role of collateral and covenants
in regulating creditors’ payoffs in bankruptcy. Donaldson et al. (2020) compare out-of-court
restructuring and a formal bankruptcy procedure. Zhong (2021) studies how creditor dispersion
and the resulting coordination friction affect the evolution of creditor structure and the time of
bankruptcy. Different from the existing studies, we focus on two novel aspects of bankruptcy
regulation—avoidable preference and automatic stay in bankruptcy protection—and focus on
how these ex post regulations affect creditors’ ex ante incentives to exit the firm. Our study also
generates implications on the timing of bankruptcy, the recovery rate, and social welfare.

We structure the paper as follows. Sections 2 and 3 introduce and solve the benchmark
model featuring creditors’ choices of exit time and the firm’s choice of bankruptcy threshold.
We consider two cases depending on the firm’s ability to commit to a bankruptcy threshold
and discuss two applications on automatic stay and bank failure. In Section 4, we integrate the
regulation of avoidable preference into our framework and analytically solve the optimal clawback
window in addition to the firm’s and the creditors’ optimization problems. We then apply our

8For early papers in the literature, see, for example, Gorton (1985); Chari and Jagannathan (1988); Jacklin
and Bhattacharya (1988); Green and Lin (2003); Peck and Shell (2003). There is also a more recent literature
on the dynamic global game with a different focus (see, for example, Dasgupta (2007); Angeletos, Hellwig and
Pavan (2007); Basak and Zhou (2020)). These papers study how learning the history of play can affect future
coordination. In contrast, creditors in our model are willing to stay invested not because they are waiting for
more information but rather because of the interest income before bankruptcy.
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framework to study seniority among creditors and temporary bad shocks in Section 5. Finally,
Section 6 concludes.

2 Benchmark Model

The benchmark model introduced in Subsection 2.1 focuses on characterizing the dynamic
patterns of creditor runs and the firm’s bankruptcy decisions. We further elaborate some of the
model assumptions in Subsection 2.2.

2.1 Model Setup

Time t ∈ [0,∞) is continuous, and the discount rate is normalized to zero. To begin, consider
a firm with initial assets A and one unit of liability at t = 0. For simplicity, both assets
and liabilities grow at the same rate g, resulting in the firm maintaining a constant leverage
egt

Aegt = 1
A ≤ 1. A continuum of risk-neutral creditors, indexed by i ∈ [0, 1], initially holds unit

face value debt contracts. These contracts have staggered maturity η, with creditors repeatedly
rolling over their maturing debt. The parameter g represents the promised interest rate. For
creditors to prefer the debt investment initially, we normalize the return on capital outside the
firm to 0.

We focus on the events surrounding bankruptcy; hence, we model a distressed yet still
productive firm that eventually enters costly bankruptcy. At some random time t0 > 0, a bad
shock occurs with intensity λ, permanently reducing the firm’s asset growth rate to g′ ∈ (0, g).9

The density function of the exponentially distributed t0 is expressed as ϕ(t0) = λe−λt0 .
Following a bad shock, creditors gradually become aware of it asynchronously over the interval

[t0, t0 + η], when their debt matures. While the learning window η need not align precisely with
debt maturity, we assume for simplicity that creditor i ∈ [0, 1] privately learns of the shock at
debt maturity ti ≡ t0 + iη.10 Upon learning, creditors then select the maturity associated with
the final debt rollover βi(ti)− ti and exit the firm at βi(ti) ≥ ti. In making the rollover decision,
creditors do not observe how many other creditors are aware of the bad shock (or equivalently,
its arrival time t0). Creditors may wish to keep invested for some time despite the bad shock
because doing so generates interest income, however, an immediate exit or a refusal to roll over
the maturing debt (βi(ti) = ti) is permissible and sometimes happen in the model.11

9Throughout most of the paper, we concentrate on the empirically more relevant scenario where the post-shock
firm remains productive with g′ > 0. In practice, many bankruptcy filings involve Chapter 11 reorganization,
presupposing the business model’s ongoing economic viability. The same mathematical framework can be used
to analyze the simple extension with g′ ≤ 0, which is discussed in footnote 27. We also consider recoverable
temporary bad shocks in Subsection 5.2 for robustness.

10For instance, the due diligence carried out by creditors at the time of debt rollover uncovers the bad shock.
11Alternatively, it is also possible to interpret the asynchronous learning setting as a covenant violation. As

the firm’s fundamental deteriorates, covenants in different debt contracts are gradually violated. Upon violation,
creditors do not know how many other covenants are violated, hence the asynchronous structure. The creditors
can also decide when to exit the firm, including the possibility of demanding an immediate repayment βi(ti) = ti.
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The conditional density of ti is given by f(ti|t0) = 1
η1ti∈[t0,t0+η]. The posterior belief about

t0 is therefore given by

ψ(t0|ti) =
f(ti|t0)ϕ(t0)∫ ti

ti−η f(ti|s)ϕ(s)ds
=
λe−λ(t0−ti)

eλη − 1
, (1)

for t0 ∈ [ti − η, ti], and ψ(t0|ti) = 0 otherwise. Denote by Ψ(t0|ti) the corresponding cumulative
distribution function.

The density (rate) of creditors exiting at any time t ≥ t0 is given by

wt(t0, {βi}) ≡ lim
∆t→0

1

∆t

∫
βi(ti)∈[t,t+∆t]

f(ti|t0)dti. (2)

The total remaining assets in the firm at time t ≥ 0, denoted as Yt, evolve as follows:

dYt =

gYtdt if t ≤ t0(
g′Yt − wte

gt
)
dt if t > t0

. (3)

The Yt process is intuitive: assets grow at a rate of g before the bad shock at t0, and at g′

thereafter. Following t0, at any time t, a mass of wtdt creditors receive a total repayment of
wte

gtdt from the firm.
When a fraction k ∈ (0, 1) of creditors exit, the firm faces bankruptcy. The time of bankruptcy

t̂ is thus defined as
t̂ (k, t0, {βi}) = inf

{
u

∣∣∣∣ ∫ u

t0

wt (t0, {βi}) dt ≥ k

}
. (4)

The equilibrium variables in this model are the creditors’ exit strategies β∗ = {β∗i (ti)|i ∈ [0, 1]}
and the bankruptcy threshold k∗ chosen by the manager of the firm.

The game ends when the firm enters bankruptcy at t̂, and all creditors realize their final
payoffs.12 If a creditor exits before bankruptcy (i.e., βi ≤ t̂), she receives full repayment egβi .
Conversely, if bankruptcy precedes the creditor’s exit (i.e., βi > t̂), she receives the recovery
payoff in bankruptcy Yt̂

1−k ; that is, 1− k creditors share the remaining assets Yt̂. Hence, given
bankruptcy threshold k and other creditors’ equilibrium strategy β∗−i, creditor i’s strategy
β∗i (ti|β∗−i, k) maximizes her expected payoff Πi:

β∗i (ti) = argmax
βi

Πi(βi|ti, β∗−i, k)

≡
∫
{t0:βi≤t̂(t0)}

egβiψ(t0|ti)dt0︸ ︷︷ ︸
exit before t̂

+

∫
{t0:βi>t̂(t0)}

Yt̂
1− k

ψ(t0|ti)dt0︸ ︷︷ ︸
exit after t̂

, (5)

12While our formal model concludes with the firm’s bankruptcy at t̂, one should not narrowly construe this as a
mere liquidation. The essence of our payoff structure is that a creditor’s payoff from bankruptcy typically falls
short of a successful exit. Empirically, the recovery rate is often below 1. The bankruptcy payoff in the model can
also be microfounded with a costly renegotiation.
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where the posterior belief ψ(t0|ti) and the time of bankruptcy t̂ (k, t0, {βi}) are given by (1) and
(4), respectively.13

The manager chooses the bankruptcy threshold k∗ in order to maximize the firm’s life span
t̂(k, t0, {β∗i }), as defined in (4). This preference can be attributed to the manager’s desire to
prolong their tenure within the firm.14 Throughout the paper, we do not distinguish between the
“firm” and its “manager” and use the two terms interchangeably, although the potential agency
friction in this context may be an interesting direction for future work.

We consider two scenarios depending on the manager’s ability to commit to a termination
threshold k up front. First, in the case of commitment, the manager strategically chooses kc to
influence creditors’ exit decisions β∗i (ti|β∗−i, kc), seeking to maximize the firm’s life span

kc ≡ argmax
k

t̂(k, t0, {β∗i |k}). (6)

This commitment may be implemented via holding illiquid assets, convertible into cash only
through a prolonged bankruptcy process. In addition, the solution offers a useful benchmark
when we later compare with what can be achieved through regulatory intervention in Section 4.
There is a natural feasibility constraint in that the remaining assets at the time of committed
bankruptcy cannot turn negative: Yt̂ ≥ 0.

Second, without commitment power, the manager maximizes the firm’s life span ex post,
and bankruptcy is therefore triggered by feasibility—when all assets are depleted. Hence, the
bankruptcy threshold without commitment knc satisfies

Yt̂(knc,t0,{β∗
i |knc}) = 0.

Finally, we introduce social welfare. As will be verified later, the game ends when the
distressed firm goes bankrupt, and equity receives nothing. Hence, the total welfare can be
defined as the total equilibrium payoff to creditors:

W ≡
∫ t0+η

t0

Πi

(
β∗i |ti, β∗−i, k

)
f(ti|t0)dti. (7)

Welfare loss in our model arises from both the productive assets being taken outside the firm
and the termination (disruption) of the production process due to bankruptcy. The bankruptcy
policies that we consider later in the paper influence creditors’ exit strategies β∗i or the bankruptcy
threshold k or both, thereby generating welfare implications.

To prevent infinite values, we introduce a purely technical assumption: if the bad shock
occurs at t0, the game exogenously terminates at t0 + T irrespective of creditors’ actions. In

13Note that t̂ depends on other creditors’ equilibrium exit strategies {β∗
−i} but not on creditor i’s strategy βi

because of the infinitesimally small size of any individual creditor.
14Furthermore, if the firm can stochastically recover from the bad shock, an extension studied in Subsection 5.2,

equity value maximization yields a similar objective: maximizing creditors’ waiting time. The economic insights
remain robust.
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the event of exogenous termination at t, creditors equally share the remaining assets up to the
promised value egt. Throughout the paper, we focus on the scenario where T is sufficiently large
and, thus, nonbinding, such that in equilibrium, the firm reaches endogenous bankruptcy (i.e.,
when k creditors exit the firm).

2.2 Further Discussion of Modeling Assumptions

2.2.1 A Banking Application of the Model

Although our model is mainly framed in the context of corporate bankruptcy, the feature of
asynchronous learning among creditors is also pertinent in bank runs. The setting, interpreted
slightly differently, can be naturally applied to study bank runs.

The banks and uninsured depositors can be interpreted as the firm and creditors respectively
in our model. A bad shock hitting a bank’s net interest margin at some random time t0 resembles
the reduction in the growth rate of the assets, a scenario analogous to the interest rate shock
in a regional bank crisis. Depositors are uncertain about the bank’s exposure to the bad shock
and others’ awareness of it, reflected in the model by the asynchronously learning window over
[t0, t0 + η]. Upon learning about the shock, depositors privately decide to withdraw at βi(ti) ≥ ti.
A shorter η reflects faster news dissemination among depositors, akin to the 2023 U.S. regional
bank crisis rapidly affecting Silicon Valley Bank within days.

We compare two bank failure thresholds in Section 3.4: the bank’s voluntary termination
threshold kc that maximizes the duration of the bank (6) and the regulator’s choice of the failure
threshold kW that maximizes welfare in (7).

2.2.2 Renegotiation and New Financing

If all creditors could collectively renegotiate and accept a lower interest rate g′ < g following the
bad shock, then the coordination problem would obviously dissolve. However, achieving such a
coordinated renegotiation in a decentralized manner is practically unattainable, which is arguably
one of the reasons for formal bankruptcy procedures. Empirical evidence indicates that when
firms disclose adverse news, private renegotiation commonly leads to higher interest rates (see
Roberts and Sufi (2009a,b) and Roberts (2015)).15 Consequently, endogenizing interest rates could
exacerbate the coordination problem by widening the gap in creditors’ payoffs between successful
exits and bankruptcy due to faster interest accrual and fewer remaining assets. Therefore, the
fundamental channel of our model remains robust.

Moreover, the prospect for the firm to secure new equity or debt financing may also be very
difficult. A recent prominent instance is the collapse of First Republic Bank during the 2023
regional bank crisis in the U.S. Unlike the swift failure of Silicon Valley Bank over a couple of
days, First Republic Bank had more than a month to secure additional financing following the
initial bank run. Despite mounting efforts, their financing efforts proved futile as no investors

15Related to the covenant interpretation of the model, interest rates often increase upon covenant violations.
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were willing to cover the shortfall on the bank’s balance sheet. In our model, when the bad shock
occurs at t0, the firm becomes immediately insolvent. The value of debt (assuming no default
and paid at natural maturity t0 + T ) amounts to eg(t0+T ), while the value of assets post-shock
becomes Aegt0+g′T . If T is significantly large, as assumed in this paper, the firm lacks adequate
assets to cover its liabilities. This debt overhang problem substantially impedes the firm’s ability
to raise new capital.

2.2.3 Observability of Exits and Information Revealed in the Capital Market

We follow the literature (Abreu and Brunnermeier (2003), Goldstein and Pauzner (2005) and He
and Manela (2016)) and adopt the assumption that an individual creditor’s decision to exit the
firm is unobservable to others. Moreover, we abstract from potential public signals, such as the
firm’s equity or bond price. These assumptions align well with scenarios involving bank runs and
lending to private firms, where the disclosure of contractual details is typically rare. Even in the
case of public firms, where such signals or information disclosure is more prevalent, they are likely
imperfect. For instance, the retirement of maturing debt might stem from a creditor’s reluctance
to roll over, but it could also result from the firm’s deliberate reduction of leverage. Many factors
unrelated to the firm’s performance could be driving the debt composition of the firm—its capital
needs, liquidity management, macroeconomic conditions, mispricing in the capital market, and
so on. Introducing a noisy public signal about t0 would significantly complicate the exposition
without altering the central trade-off within the model.

3 Solution to the Benchmark Model

In line with existing literature, our analysis centers on symmetric linear equilibria: each creditor
opts to wait for a uniform duration τ ≥ 0 after learning about the bad news at ti and divests at

βi(ti) ≡ β(ti) = ti + τ. (8)

This focus on symmetric linear equilibria aligns naturally with the fact that all creditors are ex
ante identical.16 Throughout the paper, we make the following parameter assumptions, which
ensure the existence and uniqueness of the symmetric linear equilibrium with the game ending in
finite time.

Assumption 1 The parameters satisfy (1) 1 < A < A ≡
(

g
g−λ

) g−g′
λ −1

(g−g′)η ; and (2) η > 1
g−λ > 0.

16The existence of these equilibria hinges upon the feature that time itself does not inherently convey information.
Following Abreu and Brunnermeier (2003) and He and Manela (2016), we focus on the stable learning phase when
t0 ≥ η. In contrast, when the bad shock occurs prematurely (e.g., t0 = 0), the potential for learning from time
arises: the initial creditor who becomes aware of the shock at ti = 0 discerns that all other creditors are still
uninformed.
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Essentially, both conditions in Assumption 1 combined ensure that the coordination problem
is a significant concern among creditors in the sense that if all other creditors exit immediately
β(tj) = tj , then the optimal strategy for creditor i is also to exit immediately. The first condition
states that there cannot be too many assets relative to existing debt (A < A). Otherwise,
creditors, facing an ample pool of assets, may not necessarily worry about others’ exit.17 The
second condition requires that the debt maturity η (or the learning window) is sufficiently long, so
that early creditors impose significant externalities on latecomers. Otherwise, even in the extreme
case where all creditors learn of the bad shock simultaneously η = 0 and exit immediately, there
are still assets remaining in the firm, and individual creditors therefore will have an incentive to
deviate and wait.18

We characterize the equilibrium waiting time τ∗ in Subsection 3.1, emphasizing the trade-off
between the recovery rate a creditor can expect in bankruptcy and the hazard rate that measures
the exposure of a creditor to potential bankruptcy. We then compare two managerial choices
of bankruptcy thresholds kc and knc with and without commitment power in Subsection 3.2.
The comparison leads to our insight on the automatic stay clause often imposed in bankruptcy
(Subsection 3.3). Finally, in Subsection 3.4, we compare the manager’s preferred thresholds
against the welfare-maximizing threshold and draw implications on bank failure. The comparison
also highlights the conflicting incentives between the firm and regulator, which motivates the
avoidable preference regulation in Section 4.

3.1 Recovery Rate, Hazard Rate, and Creditor Waiting Time

In a symmetric linear equilibrium (8), creditors start to leave the firm at t0 + τ , followed by a 1
η

fraction of creditors exiting per unit time thereafter. Mathematically, the exit rate defined in (2)
simplifies to

wt(t0, β) =

0 t ≤ t0 + τ

1
η t0 + τ < t ≤ t0 + η + τ

. (9)

The pivotal (kth) creditor learns of the bad shock at tk = t0 + kη and subsequently exits at

t̂ (k, t0, β) = t0 + kη + τ, (10)

thereby triggering bankruptcy. The asset dynamics outlined in (3) and the corresponding recovery
payoff in bankruptcy can be computed accordingly.

17As we discuss later (see Footnote 21), if the first condition is violated, it is possible to select a k to eliminate
the coordination friction, and creditors would strictly prefer to wait longer.

18When the second condition is violated, several exotic outcomes may emerge, including the nonexistence of a
non-commitment equilibrium (see a brief discussion following Proposition 3). While we have investigated these
outcomes, for exposition, we assume them away due to their lack of practical relevance and additional economic
insights.
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Lemma 1 Under the conjectured equilibrium strategy (8), the total remaining assets Yt are
calculated as follows:

Yt =


Aegt 0 ≤ t ≤ t0

Aegt0+g′(t−t0) t0 < t ≤ t0 + τ

Aegt0+g′(t−t0) − egt−eg(t0+τ)+g′(t−t0−τ)

(g−g′)η t0 + τ < t ≤ t0 + τ + kη

. (11)

The recovery payoff to a creditor in bankruptcy is

Yt̂
1− k

=
Aeg

′(τ+kη) − eg(τ+kη)−egτ+g′kη

(g−g′)η

1− k
egt0 ≡ α(τ, k)egt0 . (12)

After determining the recovery payoff, we now compute creditors’ equilibrium waiting time τ∗

for any given bankruptcy threshold k. To avoid confusion in subsequent derivations, we denote
the exit time of a generic creditor i as βi = ti + τi, while τ∗ represents the waiting strategy
in a symmetric equilibrium for other creditors. Utilizing (10) and the conjectured equilibrium
strategy, creditor i’s payoff described in (5) simplifies to

Πi(τi|ti, τ∗, k) =
∫
ti+τi≤t0+kη+τ∗

eg(ti+τi)ψ(t0|ti)dt0

+

∫
ti+τi>t0+kη+τ∗

α(τ∗, k)egt0ψ(t0|ti)dt0. (13)

Taking the first-order condition of (13) with respect to τi and using symmetry τ∗i = τ∗, we
arrive at

geg(ti+τ∗) [1−Ψ(ti − kη|ti)] = [eg(ti+τ∗) − αeg(ti−kη)]ψ(ti − kη|ti). (14)

Condition (14) reveals the trade-off associated with waiting an additional moment ∆t. On
the left-hand side, the marginal benefit is an increase in the exit payoff by g∆teg(ti+τ∗) due to
interest accrual at the rate of g. This occurs when the firm does not enter bankruptcy—a case
with probability 1−Ψ(ti − kη|ti) in equilibrium. Meanwhile, the right-hand side of condition
(14) reflects the marginal costs. With probability ψ(ti − kη|ti)∆t, the firm fails during the next
∆t instant as creditor i approaches pivotal timing (ti ∈ [t0 + kη −∆t, t0 + kη]). In this scenario,
creditor i forfeits the full repayment from a successful exit and instead receives the recovery
payoff in bankruptcy α(τ∗, k)egt0 (or, equivalently, α(τ∗, k)eg(ti−kη) as ti ≈ t0 + kη is pivotal).

Define the following hazard rate:

h(k) ≡ ψ(t0 = ti − kη|ti)
1−Ψ(t0 = ti − kη|ti)

=
λeλkη

eλkη − 1
. (15)

A simple manipulation of (14) yields an important decomposition of the equilibrium waiting
time τ∗ as follows.
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Proposition 1 (Decomposition of Creditors’ Waiting Time) Any symmetric equilibrium
with β(ti) = ti + τ∗, where the waiting time τ∗ > 0, satisfies

τ∗ =
1

g
log
[
α(τ∗, k)e−gkη

]
+

1

g
log

(
h(k)

h(k)− g

)
. (16)

Furthermore, the recovery rate in equilibrium is less than 1:

α(τ∗, k)e−g(kη+τ∗) =
α(τ∗, k)egt0

egt̂
< 1. (17)

Despite being an implicit function of τ∗, the decomposition (16) clearly illustrates the technical
contributions of our framework. It distinctly identifies two key factors influencing creditors’ exit
decisions in a dynamic run scenario. The first term in (16) captures the recovery rate channel,
which is the ratio between the payoff in bankruptcy and the promised repayment

α(τ∗, k)egt0

eg(t0+kη+τ∗)
= α(τ∗, k)e−g(kη+τ∗). (18)

A higher recovery in bankruptcy incentivizes creditors to prolong their waiting time. Notably,
unlike prior dynamic coordination models where the termination payoff α(τ∗, k)egt0 is typically
considered exogenous,19 it is endogenously determined by creditors’ decisions (τ∗), the firm’s
strategy (k), and regulations (to be introduced in Section 4) in our model, leading to a fixed-point
problem in τ∗. Despite its technical complexity, we analytically characterize the equilibrium
waiting time τ∗ in Proposition 2.

The second term in (16) unveils the hazard rate channel, which captures the likelihood of a
creditor being affected by bankruptcy. A higher hazard rate h(k) indicates a greater likelihood
of unsuccessful exits, prompting creditors to exit more rapidly, as reflected by the reduction in
waiting time τ∗ through ( h(k)

h(k)−g ) in (16).
As will be clear soon, there is generally a trade-off between the two channels: often, strategies

or regulatory interventions designed to ameliorate one channel might inadvertently intensify the
other. This trade-off underscores the intricate balance that managerial decisions and regulatory
interventions need to strike. It emphasizes the need for comprehensive assessments and careful
considerations that we develop here. We will revisit this point in Subsections 3.3 and 4.2.

Condition (16) as an implicit function of τ∗ has a unique solution, as illustrated by Figure
1. Because of the nature of a symmetric equilibrium, the hazard rate channel is independent
of the common waiting time τ∗ (see the flat line with circles in Figure 1). The recovery rate is
decreasing in τ∗, as the longer the creditors wait, the more disproportionate the amount of capital
that the exiting creditors can take with them, leaving fewer assets remaining in bankruptcy (see
the decreasing curve with solid dots in Figure 1). We can explicitly solve for τ∗ in the following
proposition.

19For example, in Brunnermeier and Morgan (2010), among other differences, the coefficient of termination
payoff α ≡ 1.
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Figure 1: Equilibrium Waiting Time

Note: The figure depicts the effect of waiting time τ on the recovery rate channel and the hazard rate channels,
and the determination of τ∗ as the fixed-point solution to (16). The decreasing curve with solid dots reflects
the recovery rate channel (i.e., 1

g
log

(
α(τ, k)e−gkη

)
). The flat line with circles plots the hazard rate channel

(i.e., 1
g
log

(
h(k)

h(k)−g

)
). The combined effect given by the solid curve intersects with the 45-degree line, giving the

equilibrium waiting time τ∗. The parameters for this figure are A = 1.1, g = 2, λ = 0.2, η = 0.6, g′ = 1, and
k = 0.5.
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Proposition 2 (Creditors’ Equilibrium Strategy) In the unique equilibrium,

τ∗(k) = max

{
0,

1

g − g′
(logA− log v(k))

}
, (19)

where

v(k) ≡ e(g−g′)kη − 1

(g − g′)η
+ (1− k)

[ g
λ
e(g−λ−g′)kη − (

g

λ
− 1)e(g−g′)kη

]
. (20)

As a technical remark, it is possible to have all creditors exit immediately upon learning the
bad shock; that is, τ∗ = 0. Intuitively, regardless of other creditors’ strategies, creditor i’s best
response is always to undercut: τi < τ∗, leading to the corner solution. This case may occur
when the hazard rate h is high or when the recovery rate α is low in equilibrium.

3.2 Bankruptcy Threshold k with and without Commitment

Having solved for creditors’ exit strategy τ∗, we now turn our attention to the firm’s (manager’s)
choice of bankruptcy threshold k. Comparing the scenarios with and without commitment power
reveals an intriguing insight: committing to filing for bankruptcy early even with remaining
assets may actually postpone its occurrence.

We first analyze threshold knc when the manager has no commitment power. As explained in
the model setup, bankruptcy is triggered when all assets in the firm are exhausted:

Yt0+kncη+τ∗(knc) = 0. (21)

Consequently, the zero recovery α(τ, knc) = 0 motivates creditors to exit immediately upon
learning the bad shock (i.e., τ∗ (knc) = 0). Formally, we have the following proposition.

Proposition 3 (Bankruptcy Threshold without Commitment) Without commitment,
the bankruptcy threshold is given by

knc ≡
1

(g − g′)η
log
(
A(g − g′)η + 1

)
. (22)

The corresponding equilibrium waiting time is τ∗ = 0.

As a technical remark, we briefly discuss some possible outcomes when the second condition
in Assumption 1 is violated. In this case, it is possible that knc > 1, resulting in non-existence
of a symmetric equilibrium without commitment. Intuitively, when maturity η (or the learning
window) is short, even when all creditors exit immediately (τ∗ = 0), early leavers only pose minor
externalities on the late comers. As a result, there are still assets left, making it a profitable
deviation for creditors to wait longer.20

20We further argue that there cannot be a no-commitment equilibrium with τ∗ > 0 and a corresponding
knc(τ

∗) < 1 such that assets are exactly depleted (α = 0) at the time of bankruptcy. In fact, one can consider
the most likely case where assets can be depleted k → 1. In this case, the equilibrium τ∗(k) converges to some
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Next, we consider the case where the manager can commit to a bankruptcy threshold k ∈ (0, 1)

that maximizes the time of bankruptcy t̂. In a linear symmetric equilibrium, this objective (6)
can be explicitly written as

kc = argmax
k

t̂ = argmax
k

kη + τ∗(k). (23)

The following proposition reveals the key insight of this subsection: committing to filing for
bankruptcy early kc < knc may actually postpone its occurrence.

Proposition 4 (Bankruptcy Threshold with Commitment) With commitment, there
exist g0 ∈ (0, g) and A0 ∈ (0, A), both defined in the Appendix, such that the manager chooses
not to file for bankruptcy early; that is, kc = knc if either g′ ≤ g0 or g′ > g0 and A ∈ (1, A0].

Otherwise, if
g′ > g0 and A ∈ (A0, A), (24)

the manager chooses to file for bankruptcy early; that is, the optimal kc < knc.

A higher bankruptcy threshold k affects the firm’s survival time τ∗ + kη through three
channels. First, by allowing more creditors to exit, the firm can mechanically increase the time
to trigger bankruptcy through the kη term. Second, the fact that more creditors can exit also
alleviates the hazard rate channel in the determination of creditors’ equilibrium waiting time τ∗,
making them more patient. Finally, the recovery rate channel works in the opposite direction.
Allowing more creditors to exit leaves fewer assets for the remaining creditors in bankruptcy and
therefore reduces the recovery rate, which in turn motivates creditors to run (lower τ∗). The
recovery rate channel creates the possibility that committing to early bankruptcy filing may
paradoxically extend the firm’s life.

To visualize these effects, we decompose the time of bankruptcy kη + τ∗ (the hump shaped
curve) into these three components in Figure 2. The straight line with squares, kη, represents
the mechanical effect where a larger threshold k necessitates more exiting creditors. Furthermore,
the increasing curve with circles plots the hazard rate channel on τ∗. In contrast, the decreasing
dashed curve with solid dots depicts the lower recovery rate as more creditors are allowed to
leave.

Proposition 4 identifies the exact conditions under which early termination is beneficial: when
the shock is relatively mild (g′ is not too small) and leverage ( 1

A) is relatively low.21

τ∗
lim < ∞, and the equilibrium recovery rate also converges to some positive number: α(k) → αlim > 0. Even in

this extreme case, assets can only be depleted asymptotically as k → 1 in the sense that Yt̂ = (1− k)α → 0, but
not exactly α = 0 in bankruptcy.

21It is also useful to note that we also require A to be not too large as in the first condition of Assumption
1 in order for the game to end in finite time τ∗ < ∞. If this condition is violated, then it may be possible to
choose a k such that the marginal benefit of waiting (i.e., the left-hand side of equation (14)) always dominates.
In this case, creditors have incentives to deviate and wait longer, thereby alleviating the coordination friction.
This observation, although is not a full equilibrium construction, is consistent with Proposition 4 that when A is
larger, commitment to a termination threshold can delay bankruptcy.
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Figure 2: Bankruptcy Threshold and the Firm’s Life Span

Note: We decompose the equilibrium life span of the firm after the arrival of a bad shock (i.e., τ∗(k) + kη, the
unmarked curve) into the decreasing recovery rate channel (i.e., 1

g
log

(
αe−gkη

)
, the dashed curve with dots),

the increasing hazard rate channel (i.e., 1
g
log

(
h(k)

h(k)−g

)
, the dashed curve with circles) and the mechanical delay

components (i.e., kη, the the dotted curve with squares) according to (16). The parameters for this figure are
A = 1.1, g = 2, λ = 0.2, η = 0.6, and g′ = 1.

Intuitively, for early termination to prolong firm life, the equilibrium waiting time τ∗ must
be sufficiently large and sensitive to k in order for its indirect effect through the recovery rate
on τ∗ to dominate the direct effect through kη. When the fundamental is not too bad, i.e.,
relatively larger g′ and A, creditors are more willing to wait, making the recovery rate channel
more pronounced.

To illustrate this point clearly, we again plot the time to bankruptcy against the threshold k
in Figure 3, varying the magnitude of the shock g′ in the left panel and asset-to-debt ratio A in
the right panel. A general feature among these plots is the kinks in the curves, beyond which
the survival time kη + τ∗ collapses to a straight line kη. In other words, creditors immediately
exit (τ∗ = 0) when k is large, because the recovery in bankruptcy is too low to risk any waiting
(recall the intuition from Proposition 3). If this region is too big, such as when g′ or A is small,
the overall effect is dominated by the mechanical term kη. The manager simply allows creditors
to deplete all assets (kc = knc) as the recovery rate channel is largely muted.

3.3 Application: Automatic Stay

Our analysis in Propositions 3 and 4 sheds light on the impact of automatic stay, a significant
aspect in bankruptcy proceedings mandating creditors to cease individual debt collection and
await a collective resolution in a bankruptcy court. In this context, a scenario with automatic
stay mirrors the commitment case in our model (k = kc). Conversely, a world without automatic
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(a) The dependence of (τ∗ + kη) on k and g′ (b) The dependence of (τ∗ + kη) on k and A

Figure 3: Bankruptcy Threshold and the Firm’s Life Span: g′ and A

Note: This figure depicts the firm’s life span τ∗ + kη against the bankruptcy threshold k. The parameters are
A = 1.2, g = 2, λ = 0.2, η = 0.6 (panel 3a), and g = 2, λ = 0.2, η = 0.6, g′ = 0.5 (panel 3b).

stay aligns with allowing a first-come-first-serve system for exiting creditors, resulting in no assets
left for latecomers, as modeled in the non-commitment case (k = knc).

Early bankruptcy filings, facilitated by the automatic stay feature, ensure the preservation of
some assets for remaining creditors during bankruptcy. This incentivizes all creditors to remain
invested ex ante (τ∗ > 0), fostering coordination and delaying bankruptcy. On the flip side,
letting creditors run until all assets are depleted may ex post increase firm life, but the zero
recovery in bankruptcy may cause creditors to start exiting distressed firms early on.

Proposition 4 generates testable empirical predictions regarding the value of automatic stay
and early bankruptcy filings. The conditions that guarantee kc < knc suggest that such legal
protection and commitments are more valuable when they can significantly affect the recovery
rate in bankruptcy—when the shock is relatively mild (high g′) and the firm has relatively low
leverage (high A).

3.4 Welfare-Maximizing k and A Banking Application

It is useful to compare the firm’s choice of bankruptcy threshold (kc and knc) against the one
that maximizes welfare (7), formally denoted by kW . The comparison highlights the different
incentives of the firm and a welfare-maximizing regulator: while the firm may prefer to declare
bankruptcy early in order to prolong firm life, the regulator prefers to terminate even sooner and
preserve more assets in bankruptcy.

We start by explicitly rewriting the welfare function (7). In a linear symmetric equilibrium,
the first k depositors exit during [t0 + τ∗, t0 + kη + τ∗] and receive egt. The remaining creditors
share the assets at bankruptcy Yt0+kη+τ∗ . Hence,

W (k) =

∫ t0+kη+τ∗

t0+τ∗

1

η
egtdt+ Yt0+kη+τ∗ . (25)
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Proposition 5 (Welfare-maximizing Bankruptcy Threshold) The bankruptcy threshold
that maximizes welfare is weakly smaller than the one maximizing the firm’s life span:

kW ≤ kc.

Furthermore, there exists Ã ∈ (0, A), defined in the Appendix, such that the inequality is strict if
g′ > g0 and A ≥ Ã.

In fact, it can be shown that A0 > Ã, and therefore Propositions 4 and 5 combined imply
that whenever early bankruptcy is valuable kc < knc, the regulator strictly prefers to terminate
even sooner than the firm.

To illustrate why a welfare-maximizing regulator favors an earlier bankruptcy (a smaller
kW < kc), we analyze the two factors affecting welfare. The first factor is the termination of
asset growth at t̂ = t0 + kη + τ∗; and both the regulator and the firm share the same incentive
to delay bankruptcy. The second factor is that capital is more productive inside the firm before
bankruptcy: assets in the firm appreciate at the rate of g′ > 0, whereas the outside return is
normalized to 0. Therefore, in addition to a bigger t̂, which is the firm’s sole objective, the
regulator also prefers a delay in starting withdrawal, i.e., a larger t0+ τ∗ = t̂−kη. Hence, relative
to the firm’s preference on k, the regulator suffers an additional marginal dis-utility from the
“−kη” term, which implies a smaller optimal threshold k preferred by the regulator.22 In the
next section, we consider another bankruptcy regulation, avoidable preference, and show that it
can effectively realign the incentives between the firm and the regulator.

In addition to serving as a welfare benchmark, the threshold kW is also particularly relevant
in the context of bank runs. Although regulators often do not have the authority to force a
distressed firm into bankruptcy, many bank failures are triggered by regulators’ decisions to seize
a troubled bank based on the magnitude of bank runs. The welfare maximizing kW therefore
sheds light on the optimal timing to force a bank failure. There is an intricate balance. Seizing
the bank too early may make it too challenging for depositors to exit, potentially accelerating
runs, whereas triggering bankruptcy too late risks having few assets left for latecomers, also
incentivizing ex ante runs.

The prediction that the regulator prefers an earlier termination than the bank (i.e., kW ≤ kc

in Proposition 5) also provides a rationale for regulatory intervention rather than relying on
bank’s self-motivated decision to file for bankruptcy. It echoes the Federal Reserve’s stance in
the wake of the 2023 regional bank crisis that brought down three mid-sized banks: Signature
Bank, Silicon Valley Bank, and First Republic Bank. In a postmortem review of the crisis, the
Federal Reserve explicitly calls for a quicker response from the supervisors.23

22In practice, there may be other reasons for misaligned incentives between the distressed firm and the regulator.
For example, there could be a more efficient user of the assets that warrants a sale of the firm as an efficient
outcome. The regulator in these situations may also prefer to act sooner than the firm’s own choice.

23Specifically, in the Review of the Federal Reserve’s Supervision and Regulation of Silicon Valley Bank
(https://www.federalreserve.gov/publications/files/svb-review-20230428.pdf), one of the key takeaways is that
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4 Avoidable Preference

The framework developed in this paper allows us to study a frequently cited regulation in
corporate bankruptcy: “avoidable preference.” Under this legislation, creditors who receive
repayments shortly before bankruptcy, resulting in a more favorable treatment relative to the
remaining creditors, need to return those payments. These returned repayments, together with
other assets left in the firm, are shared among all creditors in the bankruptcy process.24

In the United States, for example, Chapter 11, Section 547 (b) of the Bankruptcy Code states
that “the trustee may, ... avoid any transfer of an interest of the debtor in property ... made (A)
on or within 90 days before the date of the filing of the [bankruptcy] petition; or (B) between 90
days and 1 year before the date of the filing of the [bankruptcy] petition, if such creditor at the
time of such transfer was an insider.” While rarely studied in the academic literature of finance,
this clause is commonly cited in bankruptcy litigation. Among the 595 bankruptcy cases collected
by the Westlaw legal research service between 2017 and 2019, 290 cases (or 48.74%) cite avoidable
preference in the United States. For instance, when General Motors filed for bankruptcy in
2009, the bankruptcy trustee sued creditor JPMorgan Chase Bank to recover approximately $28
million in interest and $1.4 billion in principal repayments, citing the avoidable preference clause.

In Subsection 4.1, we introduce avoidable preference to study creditors’ exit decisions, the
firm’s selection of bankruptcy thresholds, and the regulation design in a comprehensive framework.
Subsequently, in Subsection 4.2, we characterize the optimal clawback window and show that it
is a relatively detail-free regulation in that it does not rely on the parameters of firms’ production
process. In Subsection 4.3, we present the final key insight that the avoidable preference regulation
can deliver a more efficient outcome than what the firm’s own commitment to filing for bankruptcy
can achieve. Furthermore, this insight is robust to various different timelines of actions, as
discussed in Subsection 4.4.

4.1 Introducing Avoidable Preference

We formally model avoidable preference as a clawback window m chosen by a welfare-maximizing
regulator. If, at the time of bankruptcy t̂, the firm is unable to honor the full repayment
of egt̂ to all remaining creditors (i.e., (1− k) egt̂ > Yt̂), then the avoidable preference clause
becomes effective. Specifically, only creditors who exit at least m dates before bankruptcy (i.e.,
βi(ti) < t̂ −m) can keep the full repayment egβi(ti). Creditors who originally receive the full
repayment egβi(ti) during the final m dates prior to bankruptcy (i.e., βi(ti) ∈

[
t̂−m, t̂

]
) need to

return the money (i.e. subject to clawback) and instead receive the same payoff as the remaining
1− k creditors in bankruptcy. In a symmetric linear equilibrium (8), a mass 1

η creditors withdraw

“[w]hen supervisors did identify vulnerabilities, they did not take sufficient steps to ensure that Silicon Valley
Bank fixed those problems quickly enough.”

24It is useful to distinguish the avoidable preference clause from a related clause known as fraudulent conveyance
in Chapter 11, Section 548. While both are implemented by clawing back repayments made prior to bankruptcy,
the latter focuses more on the intention of the debtor. While this channel is an interesting one to investigate, our
model assumes away any collusion between the firm and (a subset of) creditors.
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every instant, and therefore a total of m
η creditors are subject to clawback. Collectively, they

return total proceeds of

∫ t̂

t̂−m
egt

1

η
dt =

eg(t0+τ)

gη

(
egkη − eg(kη−m)

)
.

Consequently, the bankruptcy payoff now contains two parts: the remaining assets in the
firm Yt̂ and the clawback proceeds. Mathematically,

α(τ, k,m)egt0 =
Aeg

′(kη+τ) − egτ

(g−g′)η

(
egkη − eg

′kη
)
+ egτ

gη (e
gkη − eg(kη−m))

1− k + m
η

egt0 . (26)

Note that if there is no clawback m = 0, the bankruptcy payoff naturally degenerates to (12) in
the benchmark model.

With the aforementioned adjustment to the bankruptcy payoff α(·)egt0 , the payoff to creditors
taking into account the possible clawback becomes

Πi(τi|ti, τ∗, k,m) =

∫
ti+τi≤t̂−m

eg(ti+τi)ψ(t0|ti)dt0

+

∫
ti+τi>t̂−m

α(τ∗, k,m)egt0ψ(t0|ti)dt0. (27)

The equilibrium in this three-party (creditors, the firm, and the regulator) game contains
three objects:

1. The firm’s choice of bankruptcy threshold k∗ maximizes its life span. Similar to the
benchmark model, we consider two choices of the bankruptcy threshold k∗. With
commitment, the management chooses k∗ = kmc that maximizes the termination time t̂ as
in (23). Without commitment, the threshold kmnc is determined by when assets are
depleted as in (21).

2. The regulator’s choice of the clawback window m∗ maximizes welfare in (7).

3. Creditors’ exit decision τ∗(k,m) maximizes their payoff in (27).

The sequence of actions is an intricate aspect as it determines whether a player can internalize
the impact of its actions on other players, and therefore may affect the equilibrium outcome. For
our main analysis, we focus on the timeline where the firm moves first to set k, followed by the
regulator’s choice of m∗(k) and then creditors’ choice of τ∗(k,m).25 Several alternative timelines
are discussed in Section 4.4, and our key theoretical insight remains robust in the sense that

25For instance, bankruptcy codes often impose different clawback windows depending on the types of repayments
and the role of recipients. Creditors who are insiders are often subject to a longer clawback window, whereas trade
creditors who receive payments for “ordinary course of business” are often exempt from the avoidable preference
clause; see Chapter 11, Section 547 (c). The court can also make ex post judgment calls based on the repayment
pattern before bankruptcy.

22



ex post clawback can be a more efficient policy tool than the firm’s own commitment to early
bankruptcy filing (Proposition 8 below).

We rule out the uninteresting and unrealistic case (a technical nuance) that all repayments
are subject to clawback by restricting our attention to cases with

m < kη. (28)

The essence of condition (28) is to allow some creditors to exit successfully in a symmetric
equilibrium.26

4.2 Waiting Time τ ∗(k,m) and Clawback Window m∗(k)

To solve the three-party game, we calculate equilibrium actions backward. First, we determine
creditors’ optimal waiting strategy τ∗(k,m), followed by the regulator’s optimal policy response
m∗(k) for any given k, and finally the choice of k in the next subsection. The determination of
τ∗(k,m) is similar to the benchmark model. From (27), the first-order condition with respect to
τ is

geg(ti+τ∗) [1−Ψ(ti − kη +m|ti)]

= [eg(ti+τ∗) − α(τ∗, k,m)eg(ti−kη+m)]ψ(ti − kη +m|ti),

which is almost identical to (14) except for the modified recovery coefficient α(·) from (26) and
the original time frame for successful exit kη being replaced by kη−m. We can already see from
this modification that repayment clawback effectively moves the pivotal creditor from k to k− m

η ,
a point that we will frequently revisit later.

Similar to (15), we can define the hazard rate associated with the effective pivotal creditor
k − m

η as

h(k,m) ≡ ψ(t0 = ti − kη +m|ti)
1−Ψ(t0 = ti − kη +m|ti)

=
λeλ(kη−m)

eλ(kη−m) − 1
. (29)

Similar to (16), the key equilibrium variable—creditors’ waiting time τ∗—can be decomposed
into the recovery rate and hazard rate channels:

τ∗ =
1

g
log
[
α(τ∗, k,m)e−g(kη−m)

]
+

1

g
log

(
h(k,m)

h(k,m)− g

)
(30)

Next, we characterize the optimal clawback window m∗(k). The ex post redistributive nature
of clawback (m) implies that its welfare implication on (25) is only through affecting creditors’
exit decision τ∗ ex ante. A longer waiting time τ∗ increases welfare by delaying the initial
repayment at t0 + τ∗ (and, consequently, all subsequent ones) and the time of bankruptcy at

26Otherwise, no creditors can exit in a symmetric equilibrium, and arbitrary outcomes may emerge.
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t0 + kη + τ∗. This delay allows the firm to keep more productive assets growing for a longer
period of time at the rate of g′ > 0, thereby enhancing welfare.27

Proposition 6 (Equivalent Welfare Measure: Waiting Time) The total welfare (25) is
increasing in τ∗. Furthermore, the regulator’s welfare objective is equivalent to maximizing τ∗:

m∗ = arg max
m<kη

W (k,m) = arg max
m<kη

τ∗(k,m). (31)

It is also useful to note that when the policy variable is the clawback window m, the regulator’s
incentive is aligned with that of the firm, both maximizing the firm’s life span kη + τ∗(k,m).
However, the regulator and the firm control different choice variables, the former m and the
latter k. A key takeaway of the subsequent analysis is that repayment clawback (m) can achieve
a more efficient outcome than the firm’s own commitment to seek bankruptcy protection (k).

The regulator’s choice of m is also shaped by the recovery rate channel and the hazard rate
channel (recall the decomposition (30)). We visualize the two channels in Figure 4. On the one
hand, a larger m subjects more creditors (mη ) to clawback, thereby generating more proceeds and
improving recovery in bankruptcy α (τ, k,m) egt0 . As a result, creditors are more willing to wait,
reflected by the increasing curve with solid dots in Figure 4. On the other hand, a longer clawback
window makes it more difficult for creditors to exit successfully because a creditor needs to exit
sooner than the (k− m

η )th creditor to be outside of the clawback window. This channel increases
the associated hazard rate h(k,m) and thereby causes creditors to run more anxiously ex ante.
The decreasing curve with circles in Figure 4 features the hazard rate channel. Combining the
two channels, the optimal clawback window m∗ that maximizes τ∗ can be analytically calculated.

Proposition 7 (Optimal Clawback Window) The optimal clawback window m∗(k) ∈ [0, kη)

that maximizes welfare, or, equivalently, the equilibrium waiting time τ∗(k,m), is given by

m∗(k) = max

{
0,

1

g − λ
− (1− k)η

}
< kη. (32)

Just like the optimal choice of kc discussed in Subsection 3.2, the optimal clawback window
m∗ is also generally interior. This implies that allowing either too many or too few creditors
to exit hurts their willingness to remain invested. Allowing too many creditors to exit (a small
m < m∗) increases the likelihood of a successful exit and reduces the hazard rate h. However, the
associated low level of assets in bankruptcy makes it more costly for creditors to risk bankruptcy,
leading to a more accelerated exit. Similarly, aiming for more recovery in bankruptcy by clawing
back too many creditors (a large m > m∗) may also backfire. The difficulty in exiting the firm
ex ante captured by the elevated hazard rate may again exacerbate runs.

27The simple extension with a negative post-shock growth rate g′ < 0 is exactly opposite. In this case, the firm
is no longer productive, and keeping money inside the firm is costly. Hence, welfare is decreasing in τ∗.
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Figure 4: Decomposition of the equilibrium waiting time τ∗.

Note: We decompose the equilibrium waiting time (τ∗) into the payoff channel (i.e., 1
g
log

(
αe−g(kη−m)

)
with

dots) and the hazard rate channel (i.e., 1
g
log

(
h(k,m)

h(k,m)−g

)
with circles) according to the two terms in (30). The

curves of τ∗ correspond to the left y-axis, and the remaining two curves correspond to the right y-axis. The
parameters for this figure are A = 1.1, g = 2, λ = 0.5, η = 1, g′ = 0.1, and k = 0.5.

A simple rearrangement of (32) clearly reveals the economic role of the clawback window
m∗(k):

k − m∗(k)

η
= 1− 1

(g − λ) η
. (33)

Effectively, the regulator sets the pivotal creditor to 1− 1
(g−λ)η should the firm’s choice of k be

different.28

One might therefore conjecture that clawback regulation is equivalent to the firm’s commitment
to bankruptcy threshold 1 − 1

(g−λ)η . Intriguingly, this conjecture is incorrect. In the next
subsection, we show that ex post clawback is always superior to a firm’s own commitment
to terminate, and the reason, as a preview, is that clawback allows the productive process to
continue longer.

We would like to highlight that ex post clawback is a relatively detail-free regulation in that
it does not require the regulator to know some of the firm’s operating characteristics, such as the
initial leverage A and the post-shock growth rate g′.29 This result is robust to different model
specifications because the trade-off associated with the clawback window is independent of the
firm’s performance characteristics. On the one hand, the higher recovery rate due to clawback

28Here, we focus on the interior solution with m∗ > 0. It is possible that the firm chooses a low threshold
k < 1− 1

(g−λ)η
, resulting in a corner solution of no clawback: m∗(k) = 0.

29The optimal m∗ in (32) does depend on the pre-shock growth rate g, which is a firm performance parameter.
We argue that this is because g also represents the interest rate. Based on the intuition that immediately follows,
we conjecture that in a more complicated model where the pre-shock growth rate is different from the interest
rate, the former parameter does not affect m∗.

25



proceeds only depends on the contractual terms of debt, such as the interest rate g, but not
on the firm’s performance. On the other hand, the hazard rate channel only depends on the
stochastic structure of events (shock intensity λ, the endogenous bankruptcy threshold k, and
debt maturity parameter η, or equivalently, the speed of information transmission), but again,
not on the firm’s performance.

Finally, we conclude this subsection with a comparative statics analysis of the optimal
clawback window m∗, or equivalently, the number of creditors who are allowed to exit (k − m∗

η )
based on (33). If the debt contracts feature a higher interest rate g, then more proceeds are
subject to clawback for any given m. The improved recovery rate reduces the need to have a long
clawback window, allowing more creditors to exit in equilibrium. In addition, a higher intensity
of the bad shock λ or a shorter maturity η (or faster information transmission) exacerbates
the hazard rate channel, resulting a longer clawback window and fewer creditors who can exit
successfully.

4.3 Bankruptcy Threshold k under Avoidable Preference

After establishing the optimal policy design in (32), we study how avoidable preference regulation
affects the managerial choices of the bankruptcy threshold k with or without commitment.
Intriguingly, these two cases coincide and both dominate the best outcome that can be achieved
by the firm’s own commitment to file for bankruptcy early without ex post clawback (i.e., the case
with kc and m = 0 in Proposition 4). We start by characterizing the no-commitment bankruptcy
threshold kmnc.

Proposition 8 (Equilibrium without Managerial Commitment) When the manager
cannot commit to a bankruptcy threshold, the equilibrium outcome with avoidable preference is
given by

kmnc =
1

gη
log

(
g2

(g − λ)λ
e
(g−λ)(η− 1

g−λ
) − g − λ

λ
e
g(η− 1

g−λ
)
)
,

τ∗ =
1

g − g′

[
logA− log

e(g−g′)kmncη − 1

(g − g′)η

]
, and m∗ = kmncη − (η − 1

g − λ
). (34)

Furthermore, when compared against the benchmark cases with no clawback, we have

τ∗(kmnc,m
∗) ≥ τ∗(kc, 0) ≥ τ∗(knc, 0) = 0, (35)

and both inequalities are strict when kc < knc.

The result establishes an interesting comparison with the benchmark cases without clawback.
With the help of avoidable preference regulation, even if the firm cannot commit to early
bankruptcy, creditors are still more patient than in the case with only firm commitment (kc in
Proposition 4). This is because the clawed-back proceeds improve the recovery in bankruptcy,
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making creditors less eager to run. Clawback allows the regulator to alter the pivotal creditor
who is allowed to exit with full repayment, effectively committing to a bankruptcy threshold.
From (33) and (34), the pivotal creditor is k0 ≡ kmnc − m∗

η = 1− 1
(g−λ)η .

More intriguingly, the outcome implemented by optimal clawback is superior to the case if the
firm were to commit to terminating at the same level (k0), even though both cases implement the
same hazard rate.30 The reason is the recovery rate channel. If the firm commits to terminating
upon the exit of the pivotal creditor k0, asset appreciation stops at t0 + k0η + τ . If implemented
by clawback regulation, asset appreciation only stops m periods later at t0 + kmncη + τ when
all assets are depleted. This effect prolongs the asset appreciation at the rate of g′ > 0 over
the clawback window (t0 + k0η + τ, t0 + kmncη + τ ] and therefore increases the total resources
available for creditors.

In addition to making creditors more patient (larger τ∗), thereby increasing welfare, the ex
post clawback regulation can also attain a longer life span (kη + τ∗) for the firm relative to the
case with the firm’s own commitment power. The intuition is essentially the same. If the firm
commits to triggering bankruptcy early at some kmc < kmnc while some assets still remain at the
time of bankruptcy, increasing the committed threshold to kmnc can always increase the life span
of the firm. First, the higher threshold mechanically delays bankruptcy through the kη term in
(23). Second, creditors are more patient under the larger bankruptcy threshold kmnc as discussed.
Consequently, it is no longer optimal for firms to commit to early bankruptcy filing. Formally,
we have the following result.

Proposition 9 (Redundancy of Managerial Commitment) Under avoidable preference,
the firm’s ability to commit to a bankruptcy threshold does not change the equilibrium outcome;
that is, kmc = kmnc, m∗, and τ∗ are identical to those in (34).

Essentially, when ex post clawback can be perfectly and freely enforced, the optimal regulation
(m∗) renders the firm’s commitment power inconsequential. Any threshold kmc that can be
committed by the firm can be better implemented by letting creditors deplete all assets and then
making ex post adjustments to their proceeds. In other words, when the regulator controls the ex
post regulation m, the regulator’s incentive is aligned with that of the firm’s, and both maximize
the firm’s life span kη + τ∗(k,m). Unlike early termination through the firm’s commitment on k,
the regulator’s ex post action through m does not generate a deadweight loss from terminating
asset growth early and is therefore superior.

In practice, clawing back prior repayments often involves a lengthy and costly legal battle. In
contrast, automatic stay upon bankruptcy filing is arguably a cheaper coordination device. Our
analysis highlights the extra benefit of avoidable preference in preserving valuable production,
but is silent on the legal costs of enforcing such a clawback. Hence, a direct implication from the
cost consideration is that when such legal costs are lower or the value of uninterrupted production

30Note that the hazard rates are the same because of the same pivotal creditor.
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is higher, avoidable preference is more prevalent. Future structural analysis may shed light on the
economic magnitude of these forces and their impact on firms, creditors, and regulation designs.

4.4 Sequence of Actions

So far in this section, we focus on the case where the firm chooses termination threshold k first,
and the regulator then responds with clawback window m. In this subsection, we consider several
alternative timelines and show that our main theoretical insight that ex post clawback regulation
can achieve a superior outcome relative to the firm’s own commitment (Proposition 8) remains
robust.

Since the firm’s ability to commit to a termination threshold k proves to be inconsequential
from the analysis in Section 4.3, the equilibrium outcome (without firm’s commitment) can
be readily interpreted in some alternative timelines. For example, the regulator first sets the
clawback window m∗; creditors then choose their waiting time τ∗(m), anticipating the pivotal
creditor kmnc who depletes all assets; and finally the firm implements the non-committed threshold
kmnc.31

In addition, if the two actions are chosen simultaneously—that is, k∗ and m∗ constitute a
Nash equilibrium—the equilibrium outcome (m∗(kmnc), k

m
nc) characterized in Proposition 8 is still

an equilibrium under the new concept. To see this, note that the optimal clawback window
m∗(k) given by Proposition 7 is the best response function of the regulator. In addition, the
firm’s best response to the clawback window m∗(kmnc) is indeed kmnc. To see this, note that for
any other k′ < kmc = kmnc, we have

k′η + τ∗(k′,m∗(kmnc)) ≤ k′η + τ∗(k′,m∗(k′))

< kmc η + τ∗(kmc ,m
∗(kmc )) = kmncη + τ∗(kmnc,m

∗(kmnc)),

where the first inequality follows from the fact that m∗(k′) is the optimal choice of m that
maximizes the waiting time τ∗, given k′; the second inequality follows from the definition of
kmc , which maximizes the firm’s survival time kη + τ∗(k,m∗(k)); and the final equality applies
Proposition 9; that is, kmc = kmnc.

Finally, if the regulator moves first to decide regulation m and the firm chooses k∗(m) based on
the regulatory environment, the game is substantially more complicated. The welfare criterion in
this case is no longer equivalent to τ∗ maximization (Proposition 6), and the optimal m∗ no longer
has an explicit expression as in Proposition 7. However, the theoretical insight that clawback
regulation dominates the firm’s commitment to early bankruptcy filing remains robust. In fact,
the regulator can always set m∗ = m∗(kmnc), and the firm’s best response is the no-commitment
solution, as previously discussed in the case of Nash equilibrium. Therefore, the regulator’s

31A subtle detail is whether the regulator treats the expected km
nc as given or considers its policy’s impact on

km
nc through equilibrium τ∗. The proof of Proposition 8 shows that the two equilibrium outcomes also coincide.
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ability to choose a different m that can potentially influence k(m) to achieve higher welfare must
be weakly superior.

5 Extensions and Robustness

5.1 Heterogeneous Creditors: Seniority

The analysis in Section 4 suggests that treating creditors differently ex post (some are subject
to clawback, whereas others are not) can improve welfare and delay bankruptcy. A natural
question that follows is whether ex ante heterogeneity among creditors can also improve welfare.
In this section, we extend the model to consider one such heterogeneity: seniority. Interestingly,
numerical analysis suggests that having both senior and junior creditors may harm welfare.

Suppose, among creditors, an ω-fraction is senior, and the remaining (1 − ω)-fraction is
junior, where ω ∈ [0, 1]. Denote by αSe

gt0 and αJe
gt0 the recovery payoffs in bankruptcy for

senior and junior creditors, respectively. For simplicity, we model absolute priority, which implies
that if senior creditors do not receive full repayment (αSe

gt0 < egt̂, where t̂ denotes the time of
bankruptcy), then nothing is recovered for junior creditors (i.e., αJ = 0). Or, equivalently, if
junior creditors get a strictly positive payoff, then senior creditors must receive full repayment,
that is, αSe

gt0 = egt̂ if αJ > 0. The less extreme relative priority, featuring αS ≥ αJ , delivers
similar economic insights.

As before, we focus on the linear symmetric equilibrium and denote by τS and τJ the waiting
times for junior and senior creditors, respectively. Bankruptcy is triggered by the exit of the kth
creditor. It is possible that only one type or both types of creditors have started exiting at the
time of bankruptcy t̂(τJ , τS)—a term that is modified accordingly:

t̂(τJ , τS) ≡ inf

{
t0 + u

∣∣∣ ∫ u

0

[
1− ω

η
· 1{τJ ≤ δ ≤ τJ + η}+ ω

η
· 1{τS ≤ δ ≤ τS + η}

]
dδ ≥ k

}
. (36)

Senior and junior creditors optimize their waiting times τS and τJ , respectively, by solving
(5), with their type-specific recovery payoffs and the time of bankruptcy t̂(τJ , τS) defined above.

The analysis is substantially complicated by the many cases where different types of creditors
(jointly) trigger bankruptcy (36). In the next result, we briefly summarize the two types
of equilibrium outcomes depending on the fraction of senior creditors while relegating the
comprehensive equilibrium characterization to Appendix B.

Proposition 10 (Seniority) In the model with heterogeneous creditors, there is a unique
equilibrium. In equilibrium, junior creditors run faster than their senior counterparts (i.e.,
τJ ≤ τS). There is a cutoff composition ω̃ ∈ (0, 1− k) of senior creditors, such that

1. when ω ≤ ω̃, senior creditors do not exit before bankruptcy, that is,

τ∗S > τ∗J +
kη

1− ω
= t̂− t0;
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they receive full repayment in bankruptcy, that is,

αS(τ
∗
J , τ

∗
S)e

gt0 = egt̂(τ
∗
J ,τ

∗
S);

and bankruptcy is triggered purely by junior creditors’ exits;

2. when ω > ω̃, the senior creditors do not receive full repayment, and bankruptcy is triggered
by the exits of both groups.

Since junior creditors recover less in bankruptcy than their senior counterparts, waiting is
more costly for juniors, and they are therefore less patient. In addition, when there is only a
small fraction of senior creditors, they can expect full repayment even in bankruptcy because
their total claim is small relative to the total assets available in bankruptcy. Consequently, they
do not have an incentive to exit early. As there are more senior creditors, their claims are no
longer guaranteed, and therefore they start to exit before bankruptcy.

With the general characterization above, we can numerically demonstrate how the senior
composition ω affects the coordination outcome—captured by the firm’s survival time following
the bad shock t̂− t0 in this extended model.32 We plot equilibrium waiting times (τ∗J and τ∗S)
and the life span of the firm (t̂− t0) as functions of ω in Figure 5. An immediate observation is
that seniors are more patient than juniors (see Figures 5a and 5c), as predicted by Proposition
10. In addition, we note two more interesting and robust patterns.

First, when the share of senior creditors is small, bankruptcy always occurs sooner than in the
benchmark model with homogeneous creditors. In the figures, the benchmark level is depicted
by the dashed line when ω = 0 (or equivalently, ω = 1, both featuring homogeneous creditors).
The initial declines in both the junior waiting time (Figures 5a and 5c) and the firm’s life span
(Figures 5b and 5d) demonstrate this result. Economically, when ω is small, the equilibrium
outcome follows case 1 in Proposition 10. Seniors receive full repayments because of their small
size and therefore do not exit, and bankruptcy is purely driven by junior creditors. Juniors exit
sooner than in the benchmark model because the presence of seniors reduces the recovery payoff
in bankruptcy, leading to earlier bankruptcy. Despite the difficulties in proving an analytical
result,33 this pattern is robust to all parameter choices that we have experimented with.

Second, as the fraction of senior creditors further increases, the time of bankruptcy can be
delayed. In this case, the equilibrium outcome switches to case 2 in Proposition 10: senior
creditors also exit before bankruptcy. As more seniors become pivotal in triggering bankruptcy,
they replace their junior counterparts in the exit process, and their willingness to wait may in
turn delay the time of bankruptcy. This is revealed by the increase in the firm’s life span after
ω > ω̃ in both Figures 5b and 5d. Intriguingly, depending on the parameters, the life span of the

32Note that the measure t̂ − t0 equals kη + τ in the baseline model. It no longer has such a simplified
representation here because of heterogeneous creditors.

33The counteracting force that may delay bankruptcy is that there are fewer junior creditors, leading to a
smaller capital outflow per unit of time. Numerically, this channel is always dominated by the smaller waiting
time τ∗

J .
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distressed firm may even be longer than that in the benchmark model (the case in Figure 5b).
However, it is also possible that any ex ante heterogeneity always worsens the outcome, as in
Figure 5d.34

In summary, there is a non-monotonic relation between the firm’s life span and the fraction
of senior creditors. A small number of senior creditors always worsens coordination because their
presence makes junior creditors less patient, leading to earlier bankruptcy. As more creditors
become senior, they replace juniors and become more pivotal in triggering bankruptcy. Their
willingness to wait can prolong firm life and delay bankruptcy.

(a) τJ and τS (b) t̂− t0

(c) τJ and τS (d) t̂− t0

Figure 5: Equilibrium Waiting and Endogenous Life Span with heterogeneous creditors

Note: This figure depicts the equilibrium waiting time (τJ , τS) and the endogenous life span of the firm, t̂− t0
(defined in (36)). The parameters are A = 1.1, g = 2, λ = 0.2, η = 0.6, g′ = 1, k = 0.2 (panel 5a and 5b), and
k = 0.6 (panel 5c and 5d).

34One interesting observation associated with this case is that junior waiting time τ∗
J may even increase when

senior composition approaches 1 (Figure 5c). This is because, despite the recovery rate αJ staying at 0, the
increase in the firm’s life span (Figure 5d) incentivizes juniors to wait longer because of the reduced hazard rate.
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5.2 Recovery of Growth Rate

Throughout the paper, we have assumed that the bad shock is permanent in order to succinctly
model a distressed yet productive firm that is heading for bankruptcy. However, in practice,
many bad shocks are temporary. We can modify the benchmark model to allow for the possibility
of a growth rate recovery. Specifically at some random time t0 + τ̃R ≥ t0, the growth rate g′

reverts back to g. The intensity of the Poisson time τ̃R is λR. For simplicity, we assume that
growth recovery is publicly observable and cannot occur if a positive mass of creditors exit the
firm (τ̃R ≤ τ∗) or when assets are insufficient to cover all debt; that is,

Aegt0+g′τ̃R ≥ eg(t0+τ̃R) ⇐⇒ τ̃R ≤ 1

g − g′
logA.

Upon growth recovery, it is clearly optimal for creditors to stay invested until the project
naturally matures at t0 + T and each receives eg(t0+T ). The total firm value at that point is

Aegt0+g′τ̃R+g(T−τ̃R) = Aeg(t0+T )−(g−g′)τ̃R ,

and the equity is the residual claimant and receives

eg(t0+T )[Ae−(g−g′)τ̃R − 1] ≥ 0.

Creditor i’s payoff is given by

Π̃i(τi|ti, τ∗, k,m) ≡ P (τ̃R > τ∗)Πi(τi|ti, τ∗, k,m) + P (τ̃R ≤ τ∗) eg(t0+T ),

where Πi(τi|ti, τ∗, k,m) is given by (27). It is clear that the optimization problem regarding the
waiting time τi is unchanged because the action of an individual creditor does not affect whether
growth recovery may occur.

The regulator designs the clawback regulation m to maximize welfare W̃ , which, in this case,
captures both the outcomes with and without recovery:

W̃ ≡ max
m

P (τ̃R > τ∗)W (k,m) +

∫
τ̃R≤τ∗

Aeg(t0+T )−(g−g′)τ̃RλRe
−λRτ̃Rdτ̃R,

where both the welfare W (m), defined in (25), and τ∗(k,m) depend on the clawback window
m. Relative to the regulator’s objective in (31), a potential growth recovery introduces an
additional benefit of a longer waiting time τ∗: more patient creditors give the firm more time
to potentially recover from the bad shock, thereby avoiding a run completely. As such, in
the modified model, the regulator’s objective remains to be maximizing τ∗, as established by
Proposition 6. Therefore, the recovery of growth rate does not affect the creditors’ and the
regulator’s optimization problems.
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It is worth noting that the equity value in this case is

Ẽ ≡
∫
τ̃R≤τ∗

eg(t0+T )[Ae−(g−g′)τ̃R − 1]λRe
−λRτ̃Rdτ̃R,

which is also equivalent to maximizing τ∗, just like the regulator’s objective. This is different
from the manager’s objective kη + τ∗ in the benchmark model. Despite the coinciding objective,
the two players have different choice variables: the regulator controls m, and the firm controls k.
One can show that the main economic insight from Section 4 remains robust: ex post clawback
achieves an outcome superior to that of the firm’s commitment to trigger bankruptcy because
the former can effectively implement an earlier bankruptcy without actually terminating the
production process at that point.35

6 Conclusion

In this paper, we build a tractable dynamic coordination framework that highlights two channels
affecting creditors’ decision to stay invested: the recovery rate channel and the hazard rate
channel. We apply our framework to study two bankruptcy regulations—avoidable preference
and automatic stay—as well as the firm’s decision to file for bankruptcy. Those two channels
often imply a trade-off: policies aiming at a higher recovery rate in bankruptcy may affect the
hazard rate by subjecting more creditors to the impact of bankruptcy, leading to more frantic
runs ex ante. Similarly, lenient policies allowing many creditors to exit before bankruptcy lower
recovery in bankruptcy, which may again worsen coordination ex ante.

We find that firms’ commitment to file for bankruptcy early, together with the automatic
stay feature in bankruptcy, can potentially delay bankruptcy because more assets are preserved
in bankruptcy, thereby improving recovery rates and motivating creditors to stay invested.
Intriguingly, when enforced perfectly and costlessly, avoidable preference regulation through the
ex post clawback of some pre-bankruptcy payments can deliver an even superior outcome. It
preserves asset appreciation while controlling the pivotal creditor who can exit the firm with full
repayment. The optimal clawback window is also detail-free in that it does not rely on the firm’s
production parameters.

Furthermore, our model sheds light on bank runs and regulatory intervention. We show that
regulators in general would like to seize a bank sooner than the bank’s self-interested threshold,
highlighting the conflicting incentives between the regulator and the bank (or the firm in general).
Our analysis also shows how ex post clawback realigns their incentives.

Finally, we consider a different seniority structure and show that ex ante heterogeneity among
creditors may not help with coordination. We believe that the analytical framework developed
in this paper is general enough to study dynamic coordination problems associated with other
securities (e.g., repos and mutual funds), as well as the related policies and industry practices

35Proposition 5 no longer applies because both the firm and the regulator share the same objective.
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affecting investors’ payoffs (e.g., redemption gates, fees, and swing pricing). One important
difference in these settings is that the stakeholders’ payoff is no longer debt-like, as in our model.
Hence, the payoff structure needs to be modified, and the coordination problem needs to be
microfounded through externalities from early redemption or other mechanisms closer to these
applications. We look forward to additional research in these areas.
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Appendix A Omitted Proofs

Proof of Lemma 1 Under the symmetric exiting strategy β(t) = t+ τ , wt = 0 for t ≤ t0 + τ .
Based on the dynamic evolution of the total asset value (3) and Y (0) = A, we have

Yt =

{
Aegt 0 ≤ t ≤ t0

Aegt0+g′(t−t0) t0 < t ≤ t0 + τ
.

When t > t0 + τ , wt = 1
η and dYt =

(
g′Yt − 1

ηe
gt
)
dt. Thus, we have

d
(
Yte

−g′t
)
= e−g′t (dYt − g′Ytdt) = − e(g−g′)t

η dt. Solving the above differential equation with the

initial condition Yt0+τe
−g′(t0+τ) = Aegt0+g′τe−g′(t0+τ) = Ae(g−g′)t0 , we have∫ t

u=t0+τ
d
(
Yue

−g′u
)
= Yte

−g′t −Ae(g−g′)t0 =

∫ t

u=t0+τ
−e

(g−g′)u

η
du.

Hence, for t ∈ (t0 + τ, t0 + τ + kη],

Yt = Aegt0+g′(t−t0) − 1

(g − g′) η

[
egt − eg(t0+τ)+g′(t−t0−τ)

]
.

Given this dynamic process of Yt, at time t̂ = t0 + τ + kη,
Yt̂ = Aegt0+g′(τ+kη) − 1

(g−g′)η

[
eg(t0+τ+kη) − eg(t0+τ)+g′kη

]
. Hence, each remaining creditor

receives α(τ, k)egt0 ; that is, α(τ, k) = Yt̂
1−ke

−gt0 =
Aeg

′(kη+τ)− eg(τ+kη)−egτ+g′kη

(g−g′)η
1−k . ■

Proof of Proposition 1 We can rewrite the equilibrium condition (14) as

geg(ti+τ∗) = h(k)[eg(ti+τ∗) − αeg(ti−kη)]. (A.1)

Eliminating egti on both sides of (A.1), we have egτ∗ = α h(k)
h(k)−ge

−gkη. Hence, for any τ∗ > 0 that
satisfies the first-order condition, we have

τ∗ =
1

g
log
[
α(τ∗, k)e−gkη

]
+

1

g
log

(
h(k)

h(k)− g

)
,

thereby completing the proof.
Next, we prove that condition (17) holds true. A simple rearrangement of (16) yields

h(k)− g

h(k)
= α(τ∗, k)e−g(kη+τ∗) = α(τ∗, k)egt0e−gt̂.

Since h(k)−g
h(k) < 1, the above condition implies (17). ■
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Proof of Proposition 2 First, we claim that any reasonable bankruptcy threshold k satisfies
(for the definition of knc, see (22))

k ≤ knc =
1

(g − g′)η
log[A(g − g′)η + 1]. (A.2)

This is because, for k > knc, the firm will not have enough assets to honor full payments to the k
share of withdrawing creditors, regardless of their waiting strategy τ∗. To see this, consider any
k > knc. In an equilibrium with any τ∗ ≥ 0, we have

α(τ∗, k) =
Aeg

′(τ∗+kη) − eg(τ
∗+kη)−egτ

∗+g′kη

(g−g′)η

1− k

=
egτ

∗+g′kη

1− k

(
Ae−(g−g′)τ∗ − e(g−g′)kη − 1

(g − g′)η

)
≤ egτ

∗+g′kη

1− k

(
A− e(g−g′)kη − 1

(g − g′)η

)
.

Thus, by definition of knc, for any k > knc, A− e(g−g′)kη−1
(g−g′)η < 0, and, therefore, α(τ∗, k) < 0 for

any τ∗ ≥ 0. This contradicts the fact that k is a bankruptcy threshold that determines the time
of bankruptcy. As a result, any reasonable bankruptcy threshold must satisfy k ≤ knc.

The following lemma will be helpful in proving the existence and uniqueness of equilibrium.

Lemma A.1 Under Assumption 1,

knc =
1

(g − g′)η
log[A(g − g′)η + 1] <

1

λη
log

g

g − λ
< 1. (A.3)

Proof of Lemma A.1. First, since A < A =

(
g

g−λ

) g−g′
λ −1

(g−g′)η , we have 1
(g−g′)η log[A(g−g

′)η+1] <
1
λη log

g
g−λ . Then, we prove that, under the condition η > 1

g−λ > 0 (Assumption 1),

0 <
1

λη
log

g

g − λ
< 1. (A.4)

To see this, we first have 1
λη log

g
g−λ > 0 and λ

g ∈ (0, 1) based on the fact that g > λ > 0. Then,
consider the function Ω(x) ≡ x

1−x − log 1
1−x for x ∈ [0, 1). It is easy to check that Ω(0) = 0 and

∂Ω(x)
∂x = x

(1−x)2
> 0. Therefore, for any x ∈ (0, 1), Ω(x) > 0, or 1

1−x >
1
x log

1
1−x . Accordingly,

since λ
g ∈ (0, 1), 1

1−λ
g

> 1
λ
g

log 1
1−λ

g

, which implies 1 > g−λ
λ log g

g−λ . Finally, because η > 1
g−λ > 0,

we have 1
λη log

g
g−λ <

g−λ
λ log g

g−λ < 1. ■

Next, we prove that there is a unique symmetric equilibrium with k ≤ knc <
1
λη log

g
g−λ < 1.

Plugging α(τ, k) (see (12)), Ψ(t0|ti) and ψ(t0|ti) (see (1)) into the first-order derivative of (13)
with respect to τi at τi = τ , we have

∂Πi(τi|ti, τ, k)
∂τi

∣∣∣∣
τi=τ

= geg(ti+τ)[1−Ψ(ti − kη|ti)]
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− eg(ti+τ)[1− α(τ, k)e−g(τ+kη)]ψ(ti − kη|ti) (A.5)

∝ g − λ

λ
− g

λ
e−λkη +

Ae−(g−g′)(τ+kη) − 1−e−(g−g′)kη

(g−g′)η

1− k
≡ Λ(τ). (A.6)

Since Λ′(τ) = −A(g−g′)
1−k e−(g−g′)(τ+kη) < 0, Λ(τ) is decreasing in τ . Moreover, as k < 1

λη log
g

g−λ

(see (A.3)), we have

lim
τ→∞

Λ(τ) =
g − λ

λ
− g

λ
e−λkη − 1− e−(g−g′)kη

(g − g′)(1− k)η
< − 1− e−(g−g′)kη

(g − g′)(1− k)η
< 0. (A.7)

Therefore, an equilibrium with τ∗ = 0 holds if and only if Λ(0) ≤ 0 (which implies that Λ(τ) ≤ 0

for all τ ∈ [0,∞)), and an equilibrium with τ∗ > 0 holds if and only if Λ(0) > 0 (which implies
the existence and uniqueness of τ∗ > 0 such that Λ(τ∗) = 0). It is easy to check that the
condition Λ(0) ≤ 0 is equivalent to36

A ≤ e(g−g′)kη − 1

(g − g′)η
+ (1− k)

[
g

λ
e(g−g′−λ)kη − g − λ

λ
e(g−g′)kη

]
≡ v(k). (A.8)

As a result, under the condition that v(k) ≥ A, we have τ∗ = 0 as the unique equilibrium.
On the other hand, when Λ(0) > 0, or, equivalently, A > v(k), rearranging Λ(τ∗) = 0 yields
τ∗ = 1

g−g′ (logA − log v(k)) > 0, which is the unique equilibrium in this case. Therefore, the

unique equilibrium is τ∗(k) = max
{
0, 1

g−g′ (logA− log v(k))
}

. ■

Proof of Proposition 3 First, we show that any τ∗ > 0 cannot hold as an equilibrium. To
see this, consider any τ∗ > 0. Suppose that other creditors play this strategy τ∗ > 0. Then, the
bankruptcy threshold k must satisfy α(τ∗, k) = 0, which implies

k =
1

(g − g′)η
log[A(g − g′)ηe−(g−g′)τ∗ + 1] <

1

(g − g′)η
log[A(g − g′)η + 1] <

1

λη
log

g

g − λ
,

in which the last inequality holds according to Lemma A.1. The fact that k < 1
λη log

g
g−λ

implies that creditor i would strictly prefer a waiting time less than τ∗. This is because the
marginal net payoff of waiting at τi = τ∗ is proportional to g−λ

λ − g
λe

−λkη, which is negative
under k < 1

λη log
g

g−λ . As a result, any τ∗ > 0 cannot constitute an equilibrium.
Next, we prove that τ∗ = 0 and k = knc can hold as an equilibrium. If every creditor

chooses τ∗ = 0, then the manager’s choice would be knc such that (21) holds (i.e., knc =
1

(g−g′)η log(A(g − g′)η + 1)). Given knc and other creditors choose τ∗ = 0, creditor i’s best
response is also τ∗ = 0 because g−λ

λ − g
λe

−λkncη < 0 since knc < 1
λη log

g
g−λ . Therefore, without

commitment, τ∗ = 0, k = knc holds as the unique equilibrium. ■

36Under the condition k ≤ knc < 1
λη

log g
g−λ

(see (A.2) and (A.3)), by definition, v(k) > 0. To see this, it is

easy to check that g
λ
e(g−g′−λ)kη − g−λ

λ
e(g−g′)kη = e(g−g′)kη

(
g
λ
e−λkη − g−λ

λ

)
> 0 following k < 1

λη
log g

g−λ
. As a

result, v(k) > e(g−g′)kη−1
(g−g′)η > 0.
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Proof of Proposition 4 The parameter g0 and A0 are defined as

g0 ≡ g − λ−
log 1

g
(
η− 1

λ
log g

g−λ

)
1
λ log g

g−λ

and A0 ≡
v(k̃)

e(g−g′)k̃η − (g − g′)ηv(k̃)
,

where k̃ is the unique solution to

(1− k̃)gη +
g

λ
− g − λ

λ
eλk̃η − e−(g−λ−g′)k̃η = 0. (A.9)

When g′ > g0, the cutoff A0 ∈ (0, A).
Next, the following lemma regarding τ∗ will be helpful to derive the optimal bankruptcy

threshold.

Lemma A.2 Under Assumption 1, there exists kv ∈ (0, knc) that uniquely solves v(kv) = A,
that is,

e(g−g′)kvη − 1

(g − g′)η
+ (1− kv)

[ g
λ
e(g−λ−g′)kvη − (

g

λ
− 1)e(g−g′)kvη

]
= A. (A.10)

Moreover, there exists k1 ∈ (0, kv) such that τ∗(k) is strictly increasing in k ∈ (0, k1], strictly
decreasing in k ∈ (k1, kv), in which k1 uniquely solves

− g
λ
e−λk1η +

g

λ
+ (1− k1)

(
g(g − g′ − λ)η

λ
e−λk1η − (g − λ)(g − g′)η

λ

)
= 0, (A.11)

and τ∗(k) = 0 for k ∈ [kv, knc].

Proof of Lemma A.2. Since τ∗(k) = max
{

1
g−g′ [logA− log v(k)] , 0

}
, the shape of τ∗(k)

depends on the shape of v(k). The first-order derivative of v(k) w.r.t. k is given by

v′(k) = e(g−g′)kη − g

λ
e(g−g′−λ)kη +

g − λ

λ
e(g−g′)kη

+ (1− k)

[
g(g − g′ − λ)η

λ
e(g−g′−λ)kη − (g − λ)(g − g′)η

λ
e(g−g′)kη

]
= e(g−g′)kη

[
− g
λ
e−λkη +

g

λ
+ (1− k)

(
g(g − g′ − λ)η

λ
e−λkη − (g − λ)(g − g′)η

λ

)]
≡ e(g−g′)kηv1(k).

v′(k) shares the same sign as v1(k). Taking the first-order derivative of v1(k) yields

v′1(k) = gηe−λkη − g(g − g′ − λ)η

λ
e−λkη +

(g − λ)(g − g′)η

λ
− (1− k)g(g − g′ − λ)η2e−λkη

= e−λkη

[
gη − g(g − g′ − λ)η

λ
+

(g − λ)(g − g′)η

λ
eλkη − (1− k)g(g − g′ − λ)η2

]
≡ e−λkηv2(k).
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where v′1(k) shares the same sign as v2(k). If g − g′ − λ < 0, v2(k) > 0, and thus v′1(k) is always
positive. If g− g′−λ > 0, v2(k) is increasing in k, so v′1(k) can be (1) always positive, (2) always
negative, or (3) initially negative and then positive. Combining the two cases, v1(k) can be
(1) increasing in k, (2) decreasing in k, or (3) initially decreasing and then increasing in k. As
v1(0) = −g′η < 0, v(k) is either (1) decreasing in k or (2) initially decreasing and then increasing
in k. Since v(k = 0) = 1 and

v(knc) = A+ (1− knc)

[
g

λ
e(g−g′−λ)kncη − g − λ

λ
e(g−g′)kncη

]
> A > 1, (A.12)

in which the first inequality holds because knc < 1
λη log

g
g−λ < 1 (Lemma A.1), the only possibility

is that v(k) is initially decreasing and then increasing in k. Formally, there exists k1 ∈ (0, knc)

such that v(k) is decreasing in k when k ∈ (0, k1] and increasing in k when k ∈ (k1, knc], in which
k1 uniquely solves v1(k1) = 0 (see (A.11)).

Based on the continuity of v(k) and (A.12), there exists kv ∈ (k1, knc) such that v(k) ∈ (0, A)

when k ∈ (0, kv) and v(k) ≥ A when k ∈ [kv, knc], in which kv uniquely solves v(kv) = A.
Therefore,

τ∗(k) =

{
1

g−g′ [logA− log v(k)] > 0 if k ∈ (0, kv)

0 if k ∈ [kv, knc]
.

From the monotonicity of v(k), τ∗(k) is increasing in k ∈ (0, k1] and decreasing in k ∈ (k1, kv),
and stays at 0 when k ∈ [kv, knc]. ■

According to Lemma A.2, the survival time τ∗(k) + kη is given by

τ∗(k) + kη =

{
1

g−g′ [logA− log v(k)] + kη if k ∈ (0, kv)

kη if k ∈ [kv, knc]
.

To derive the optimal bankruptcy threshold, we need to determine the monotonicity of τ∗(k)+kη
for k ∈ (0, knc). When k ∈ [kv, knc], τ∗(k) + kη is increasing linearly in k. When k ∈ (0, kv), the
first-order derivative of τ∗(k) + kη w.r.t. k is given by

∂(τ∗(k) + kη)

∂k
=

e(g−λ−g′)kη

(g − g′)v(k)

[
(1− k)gη +

g

λ
− g − λ

λ
eλkη − e−(g−λ−g′)kη

]
≡ e(g−λ−g′)kη

(g − g′)v(k)
Γ(k),

which shares the same sign as Γ(k). Taking the first-order derivative of Γ(k) w.r.t. k yields
Γ′(k) = −gη− (g−λ)ηeλkη+(g−λ−g′)ηe−(g−λ−g′)kη < 0, in which the inequality holds because
(g−λ−g′)ηe−(g−λ−g′)kη < max{0, (g−λ−g′)ηeλkη}. As Γ(0) = gη > 0 and limk→∞ Γ(k) = −∞,
there exists k̃ ∈ (0,∞) such that Γ(k) > 0 when k ∈ (0, k̃) and Γ(k) ≤ 0 when k ∈ [k̃,∞).
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Therefore, 1
g−g′ [logA− log v(k)] + kη is increasing (or decreasing) in k when k ∈ (0, k̃) (or

k ≥ k̃).
From the above analysis, the monotonicity of τ∗(k) + kη with respect to k is determined by

the relative size of kv and k̃. When kv ≤ k̃, τ∗(k) + kη is increasing in k ∈ (0, knc), and thus
the optimal bankruptcy threshold takes the corner solution, that is, kc = knc. When kv > k̃,
τ∗(k) + kη is increasing in k ∈ (0, k̃], decreasing in (k̃, kv], and increasing in (kv, knc]. In this
case, the optimal bankruptcy threshold depends on the relative size of τ∗(k̃) + k̃η and kncη. It is
strictly interior (kc = k̃ < knc) when τ∗(k̃) + k̃η > kncη and becomes a corner solution (kc = knc)
otherwise.

According to Lemma A.2, kv ∈ (k1, knc) and v(k) is increasing in k ∈ [k1, knc), which implies

∂kv(A)

∂A
=

1

v′(kv)
> 0. (A.13)

In other words, kv(A) is increasing in A. As k̃ is independent of A, we are going to discuss
the optimal bankruptcy threshold based on different initial assets A. Define k > k1 as the
unique solution for v(k) = 1 and k as the unique solution for v(k) = A (we can easily check that
k = 1

λη log
g

g−λ).

1. When k ≤ k̃ (i.e., k̃ ≥ 1
λη log

g
g−λ), it follows that kv < 1

λη log
g

g−λ ≤ k̃ for all A ∈ (1, A), so
τ∗(k) + kη is increasing in k ∈ (0, knc], and thus kc = knc.

2. When k > k̃, it follows that kv > k̃ for all A ∈ (1, A), so kc depends on the relative size of
τ∗(k̃) + k̃η and kncη, which can be measured by

τ∗(k̃) + k̃η − kncη =
1

g − g′
[logA− log v(k̃)] + k̃η − 1

g − g′
log
[
A(g − g′)η + 1

]
=

1

g − g′
log

(
1

(g − g′)η + 1
A

)
− log v(k̃)

g − g′
+ k̃η.

The difference between τ∗(k̃) + k̃η and kncη is increasing in A. When A → A, we have
kv → knc, and thus

lim
A→A

(τ∗(k̃) + k̃η − kncη) > lim
A→A

(τ∗(kv) + kvη − kncη) = 0.

The first inequality holds because τ∗(k)+kη is decreasing in k ∈ (k̃, kv]. From the continuity
of τ∗(k̃) + k̃η − kncη with respect to A and limA→0(τ

∗(k̃) + k̃η − kncη) = −∞ < 0, there
exists a unique

A0 =
v(k̃)

e(g−g′)k̃η − (g − g′)ηv(k̃)
∈ (0, A)
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that solves τ∗(k̃) + k̃η − kncη = 0, such that τ∗(k̃) + k̃η > kncη if and only if A ∈
(max{A0, 1}, A). Therefore, kc < knc if and only if A ∈ (max{A0, 1}, A) and kc = knc if
and only if A ∈ (1,max{A0, 1}).

3. When k ≤ k̃ < k, there exists a unique A′
0 ∈ (1, A) that solves kv(A′

0) = k̃, such that
when A ∈ (1, A′

0], we have kv ≤ k̃, and thus τ∗(k) + kη is increasing in k, which implies
kc = knc; when A ∈ (A′

0, A), we have kv > k̃, and thus τ∗(k)+ kη is increasing in k ∈ (0, k̃],
decreasing in k ∈ (k̃, kv], and increasing in (kv, knc]. From the discussion above, we can
derive that kc = k̃ only if A > A0. Formally, when A ∈ (A′

0, A0], τ∗(k̃) + k̃η ≤ kncη and
kc = knc; when A ∈ (A0, A], τ∗(k̃) + k̃η > kncη and kc = k̃ < knc.

Combining the three cases, when k̃ ≥ 1
λη log

g
g−λ , that is, Γ( 1

λη log
g

g−λ) ≥ 0, which is equivalent
to

g′ ≤ g − λ−
log 1

g
(
η− 1

λ
log g

g−λ

)
1
λ log g

g−λ

= g0,

we have kc = knc for all A ∈ (1, A). When k̃ < 1
λη log

g
g−λ , that is, Γ( 1

λη log
g

g−λ) < 0, which is

equivalent to g′ > g0, there exists A0 = v(k̃)

e(g−g′)k̃η−(g−g′)ηv(k̃)
∈ (0, A) such that kc = knc when

A ∈ (1,max{A0, 1}] and kc < knc when A ∈ (max{A0, 1}, A). ■

Proof of Proposition 5 The parameter Ã is defined as Ã ≡ max{A1, v(k̃)}, where k̃ is defined
in (A.9) and A1 is the unique solution to

gηv(k̃)
− g

g−g′
[
egk̃η−1

gη + (1− k̃)
(

g
λe

−λk̃η − g−λ
λ

)
egk̃η

]
[(g − g′)η + 1

A1
]

g
g−g′ − ( 1

A1
)

g
g−g′

= 1. (A.14)

Next, we plug Yt0+kη+τ into (25) and have

W (τ, k) =

[
eg(τ+kη) − egτ

gη
+Aeg

′(τ+kη) − eg(τ+kη) − egτ+g′kη

(g − g′)η

]
egt0 . (A.15)

First, we discuss the monotonicity of W (τ∗(k), k) with respect to k. We can check that W (τ, k)

is increasing in τ 37 and k:

∂W (τ, k)

∂k
=

[
eg(τ+kη) +Ag′ηeg

′(τ+kη) − geg(τ+kη) − g′egτ+g′kη

g − g′

]
egt0 ≥ 0, (A.16)

in which the inequality holds according to Aeg′(τ+kη) > eg(τ+kη)−egτ+g′kη

(g−g′)η , implied by α(τ, k) ≥ 0.
From Lemma A.2, we have τ∗ = 0 when k ∈ [kv, knc] and τ∗ > 0 otherwise, in which kv is given

37We formally prove this in Proposition 6.
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in (A.10). Thus, when k ∈ [kv, knc], it follows that dW (τ∗(k),k)
dk = ∂W (τ,k)

∂k

∣∣
τ=0

≥ 0, and thus
W (τ∗(k), k) is increasing in k ∈ [kv, knc].

When k ∈ (0, kv), the first-order derivative w.r.t. k is given by

dW (τ∗(k), k)

dk
=

[
∂W (τ, k)

∂τ

∂τ∗(k)

∂k
+
∂W (τ, k)

∂k

] ∣∣∣∣
τ=τ∗(k)

=

[
∂W (τ, k)

∂τ

∂τ∗(k)

∂k
+
∂W (τ, k)

∂τ
· η − egτ (eg

′kη − 1)egt0
] ∣∣∣∣

τ=τ∗(k)

=

[
∂W (τ, k)

∂τ

∂(τ∗(k) + kη)

∂k
− egτ (eg

′kη − 1)egt0
] ∣∣∣∣

τ=τ∗(k)

.

From Proposition 4, given that g′ > g0, as long as kv > k̃, (τ∗(k) + kη) is increasing in k for
any k ∈ (0, k̃) and any k ∈ (kv, knc), and it is decreasing in k for k ∈ [k̃, kv], which implies
∂(τ∗(k)+kη)

∂k

∣∣
k∈[k̃,kv) ≤ 0. As W (τ, k) is increasing in τ , this leads to

dW (τ∗(k), k)

dk

∣∣∣∣
k∈[k̃,kv ]

≤ −egτ∗(k)(eg′kη − 1)egt0
∣∣∣∣
k∈[k̃,kv ]

< 0.

Also, as τ∗(k) is increasing in k ∈ (0, k1) (see Lemma A.2), it implies that

dW (τ∗(k), k)

dk

∣∣∣∣
k∈(0,k1)

=

[
∂W (τ, k)

∂τ

∂τ∗(k)

∂k
+
∂W (τ, k)

∂k

] ∣∣∣∣
τ=τ∗(k),k∈(0,k1)

> 0.

Thus, regarding the monotonicity of W (τ∗(k), k), we have proven that:

1. W (τ∗(k), k) is strictly increasing in k ∈ (0, k1), in which k1 < k̃;

2. W (τ∗(k), k) is strictly decreasing in k ∈ [k̃, kv];

3. W (τ∗(k), k) is increasing in k ∈ (kv, knc].

As a result, whenever kv > k̃, the welfare-optimizing bankruptcy threshold kW can either lie
within the interval [k1, k̃) or be equal to knc. As kv(A) is increasing in A (see (A.13)) and
v(kv) = A (see (A.10)), A > v(k̃) implies kv > k̃. Also, we have

arg max
k∈(0,knc]

W (τ∗(k), k) > W (τ∗(k̃), k̃).

Therefore, to prove that kW < kc, it is sufficient to show that for all A ≥ A1, W (τ∗(k̃), k̃) ≥
W (τ∗(knc), knc).

Plugging τ∗(k̃) (see (19)) into W (τ∗(k̃), k̃) yields

W (τ∗(k̃), k̃) = A
g

g−g′ v(k̃)
− g

g−g′

[
egk̃η − 1

gη
+ (1− k̃)egk̃η

(
g

λ
e−λk̃η − g − λ

λ

)]
egt0 .

44



Similarly, when we plug knc (see (22)) and τ∗(knc) = 0 (Proposition 3) into W (τ∗(knc), knc), it
follows that

W (τ∗(knc), knc) =
[A(g − g′)η + 1]

g
g−g′ − 1

gη
egt0 .

The ratio between W (τ∗(k̃), k̃) and W (τ∗(knc), knc) is given by

W (τ∗(k̃), k̃)

W (τ∗(knc), knc)
=
gηv(k̃)

− g
g−g′

[
egk̃η−1

gη + (1− k̃)
(

g
λe

−λk̃η − g−λ
λ

)
egk̃η

]
[(g − g′)η + 1

A ]
g

g−g′ − ( 1
A)

g
g−g′

.

As ∂
∂A{[(g − g′)η + 1

A ]
g

g−g′ − ( 1
A)

g
g−g′ } = 1

A2
g

g−g′ [−[(g − g′)η + 1
A ]

g′
g−g′ + ( 1

A)
g′

g−g′ ] < 0 and

v(k̃) > 0, W (τ∗(k̃),k̃)
W (τ∗(knc),knc)

is increasing in A. Also, when A → A, we have kv → knc, and thus
dW (τ∗(k),k)

dk

∣∣
k∈[k̃,knc]

≤ −egτ∗(k)(eg′kη − 1)egt0
∣∣
k∈[k̃,knc]

< 0. As a result, W (τ∗(k), k) is strictly

decreasing in k ∈ [k̃, knc], and, therefore, limA→A
W (τ∗(k̃),k̃)

W (τ∗(knc),knc)
> 1. From the continuity of

W (τ∗(k̃),k̃)
W (τ∗(knc),knc)

with respect to A, there exists A1 that satisfies (A.14), such that W (τ∗(k̃), k̃) ≥
W (τ∗(knc), knc) if and only if A ≥ A1, with the equality holding when A = A1.

Finally, we want to show that A0 > max{v(k̃), A1}. Regarding the relative size between A0

and v(k̃), when A = v(k̃), it implies kv = k̃, so (τ∗(k) + kη) is strictly increasing in k ∈ (0, knc].
From Proposition 4, we have kc = knc and with g′ > g0, it must be v(k̃) < A0. Regarding A0

and A1, when A = A0, we have τ∗(k̃) + k̃η = kncη, and thus

[
W (τ∗(k̃), k̃)−W (τ∗(knc), knc)

] ∣∣∣∣
A=A0

=

[
eg(τ

∗(k̃)+k̃η) − egτ
∗(k̃)

gη
+A0e

g′(τ∗(k̃)+k̃η)

−e
g(τ∗(k̃)+k̃η) − egτ

∗(k̃)+g′k̃η

(g − g′)η
− egkncη − 1

gη

]
egt0

=

[
egkncη − egτ

∗(k̃)

gη
+A0e

g′kncη − egkncη − eg
′kncη+(g−g′)τ∗(k̃)

(g − g′)η
− egkncη − 1

gη

]
egt0

=

[
−e

gτ∗(k̃) − 1

gη
+
e(g−g′)τ∗(k̃) − 1

(g − g′)η
eg

′kncη

]
egt0

=
1

η

[
−e

gτ∗(k̃) − 1

g
+
egτ

∗(k̃) − eg
′τ∗(k̃)

g − g′
eg

′k̃η

]
egt0 ,

in which the second and last equalities hold because τ∗(k̃) + k̃η = kncη and the third equality
holds according to α(τ∗(knc) = 0, knc) = 0. Regarding this difference, we have

egτ
∗(k̃) − eg

′τ∗(k̃)

g − g′
eg

′k̃η − egτ
∗(k̃) − 1

g
>
egτ

∗(k̃) − eg
′τ∗(k̃)

g − g′
− egτ

∗(k̃) − 1

g

=
−geg′τ∗(k̃) + g′egτ

∗(k̃)

g(g − g′)
+

1

g
> 0,
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where the first inequality holds because k̃ > 0 and the second inequality holds because −geg′τ∗(k̃)+
g′egτ

∗(k̃) > −g + g′, which stems from τ∗(k̃) > 0 and the fact that −geg′x + g′egx is increasing
in x ≥ 0. As a result,

[
W (τ∗(k̃), k̃)−W (τ∗(knc), knc)

] ∣∣
A=A0

> 0, which is equivalent to
W (τ∗(k̃),k̃)

W (τ∗(knc),knc)

∣∣
A=A0

> 1. Since W (τ∗(k̃),k̃)
W (τ∗(knc),knc)

> 1 if and only if A > A1, it follows that A0 > A1.
This completes the proof. ■

Proof of Proposition 6 Based on the definition of total welfare W in (25) and the symmetric
equilibrium captured by τ∗, we can rewrite the total welfare as

W (τ∗) =

∫ t0+kη+τ∗−m

t0+τ∗

1

η
egtdt+

∫ t0+η+τ∗

t0+kη+τ∗−m

1

η
α(τ∗, k,m)egt0dt

=

∫ t0+kη+τ∗−m

t0+τ∗

1

η
egtdt+

Yt0+kη+τ∗ +
∫ t0+τ∗+kη
t0+kη+τ∗−m

1
ηe

gtdt

1− k + m
η

∫ t0+η+τ∗

t0+kη+τ∗−m

1

η
dt.

Based on the definition of α and the fact that
∫ t0+η
t0+kη−m

1
η = 1− k + m

η , we have

W (τ∗) =

∫ t0+kη+τ∗−m

t0+τ∗

1

η
egtdt+

∫ t0+τ∗+kη

t0+kη+τ∗−m

1

η
egtdt+ Yt0+kη+τ∗

=

∫ t0+kη+τ∗

t0+τ∗

1

η
egtdt+ Yt̂.

Next, we leverage on the following lemma to prove the monotonicity of W (τ∗) on τ∗. For
convenience, we introduce Yt,τ and wt,s to denote the firm’s asset value and the fraction of exiting
creditors at time t, respectively, if the waiting time is τ for each creditor.

Lemma A.3 For any τ2 > τ1,
Yt,τ2 ≥ Yt,τ1 ,

for any t ≤ t0 + kη + τ1 with equality holding if and only if t ≤ t0 + τ1.

Proof of Lemma A.3. Given the process of asset value Yt (see (11)), if t ≤ t0 + τ1, clearly,
Yt,τ2 = Yt,τ1 . Moreover, when t0 + τ1 < t ≤ t0 + τ2, we have

Yt,τ2 = Aegt0+g′(t−t0) > Aegt0+g′(t−t0) − 1

(g − g′) η

[
egt − eg(t0+τ1)+g′(t−t0−τ1)

]
= Yt,τ1 .

Finally, if t > t0 + τ2, Yt,τ2 > Yt,τ1 because the term egt − eg(t0+τ)+g′(t−t0−τ) in the third-case
scenario in (11) is strictly decreasing in τ . ■

We can rewrite Yt,τ in its integral form: Yt,τ = Yt0 +
∫ t
t0
(g′Ys,τ − ws,τe

gs)ds, where

ws,τ =

 1
η if s ∈ [t0 + τ, t0 + kη + τ ]

0 otherwise
.
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Consider any τ2 > τ1 > 0. The difference in welfare associated with waiting times τ1 and τ2 is
given by

W (τ2)−W (τ1) =

∫ t0+τ2+kη

t0+τ2

1

η
egsds−

∫ t0+τ1+kη

t0+τ1

1

η
egsds

+

∫ t0+kη+τ2

t0

(
g′Ys,τ2 − ws,τ2e

gs
)
ds−

∫ t0+kη+τ1

t0

(
g′Ys,τ1 − ws,τ1e

gs
)
ds.

For any s ≤ t0 + τ1 < t0 + τ2, Ys,τ2 = Ys,τ1 (Lemma A.3), and ws,τ1 = ws,τ2 = 0. Therefore, we
have

W (τ2)−W (τ1) =

∫ t0+τ2+kη

t0+τ2

1

η
egsds−

∫ t0+τ1+kη

t0+τ1

1

η
egsds

+

∫ t0+kη+τ2

t0+τ1

(
g′Ys,τ2 − ws,τ2e

gs
)
ds−

∫ t0+kη+τ1

t0+τ1

(
g′Ys,τ1 − ws,τ1e

gs
)
ds

=

∫ t0+kη+τ2

t0+τ1

g′Ys,τ2ds−
∫ t0+kη+τ1

t0+τ1

g′Ys,τ1ds

=

∫ t0+kη+τ2

t0+kη+τ1

g′Ys,τ2ds+

∫ t0+kη+τ1

t0+τ1

g′ (Ys,τ2 − Ys,τ1) ds.

Since Yt,τ > 0 and Ys,τ2 −Ys,τ1 > 0 (Lemma A.3), the above expression is strictly positive, thereby
completing the proof. ■

Proof of Proposition 7 When τ∗ > 0, we can rewrite the equilibrium condition as

geg(ti+τ∗) = h(k,m)
[
eg(ti+τ∗) − αeg(ti−kη+m)

]
,

in which h(k,m) = λeλ(kη−m)

eλ(kη−m)−1
. When m ∈ (0, kη), we can plug in α(τ∗, k,m) and rearrange it

to find a unique τ∗ that satisfies

τ∗(k,m) = max

{
0,

1

g − g′
(logA− log v(k,m))

}
,

where

v(k,m) ≡ e(g−g′)kη − 1

(g − g′)η
− e(g−g′)kη(1− e−gm)

gη

+ (1− k +
m

η
)
[ g
λ
e(g−λ)(kη−m)−g′kη − (

g

λ
− 1)e(g−g′)kη−gm

]
.

Since vm(k,m) = g
ληe

(g−g′)kη−gm(1 − e−λ(kη−m))[−1 + (η(1 − k) + m)(g − λ)] and η > 1
g−λ

(Assumption 1), we know that if kη − (η − 1
g−λ) > 0, τ∗(k,m) is increasing in m when m ∈

[0, kη−(η− 1
g−λ)] and decreasing inm whenm ∈ [kη−(η− 1

g−λ), kη), and thusm∗ = kη−(η− 1
g−λ);
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if kη − (η − 1
g−λ) ≤ 0, τ∗(k,m) is decreasing in m ∈ [0, kη), and thus m∗ = 0. Therefore, the

optimal m∗ is given in (32). ■

Proof of Proposition 8 In this proof, we consider two cases. In Case I, the regulator, when
choosing m, does not consider the impact of m on the non-commitment bankruptcy threshold
kmnc through m’s impact on τ∗. In Case II, however, the regulator does take such an impact into
account. We will show that both cases, despite their subtle differences, will end up having the
identical equilibrium outcome as shown in Proposition 8.

Case I. In Case I, the triple (m∗, kmnc, τ
∗(k,m)) constitutes a symmetric equilibrium if (a)

given m∗ and kmnc, when other creditors choose τ∗ = τ∗(kmnc,m
∗), no creditor i has an incentive to

deviate from τ∗ = τ∗(kmnc,m
∗); (b) given kmnc and τ∗(k,m), total welfare is maximized at m∗; and

(c) given τ∗ = τ∗(kmnc,m
∗), the firm’s assets are exhausted at kmnc; that is, Yt0+kmncη+τ∗ = 0. We

will find the unique equilibrium that gives rise to the equilibrium outcome given in Proposition 8.
First, according to the proof of Proposition 7, for any given m and k, the equilibrium waiting

time is

τ∗(k,m) =
1

g − g′

{
logA− log

[
e(g−g′)kη − 1

(g − g′)η
− e(g−g′)kη(1− e−gm)

gη

+(1− k +
m

η
)

(
g

λ
e(g−λ)(kη−m)−g′kη − g − λ

λ
e(g−g′)kη−gm

)]}
. (A.17)

Second, according to Proposition 6 and Proposition 7, given k and τ∗(k,m), the optimal clawback
window that maximizes welfare is given by

m∗ = m∗(k) =
1

g − λ
− (1− k)η. (A.18)

Third, given τ∗, kmnc satisfies that
Yt0+τ∗+kmncη = 0. (A.19)

Next, we will show that there exists a unique triple (m∗ = m∗(kmnc), kmnc, τ∗ = τ∗(kmnc,m
∗))

that solves (A.17), (A.18) and (A.19). To begin with, after plugging τ∗ = τ∗(kmnc,m
∗) into (A.19),

we have

Aeg
′(τ∗(kmnc,m

∗)+kmncη) − eg(τ
∗(kmnc,m

∗)+η) − egτ
∗(kmnc,m

∗)+g′kmncη

(g − g′)η
= 0.

This can be further simplified to

τ∗(kmnc,m
∗) =

1

g − g′

{
logA− log

e(g−g′)kmncη − 1

g − g′

}
. (A.20)
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Fixing k = kmnc and m = m∗ in (A.17) and combining it with (A.20), we have

− e(g−g′)kmncη(1− e−gm∗
)

gη

+ (1− kmnc +
m∗

η
)

(
g

λ
e(g−λ)(kmncη−m∗)−g′kmncη − g − λ

λ
e(g−g′)kmncη−gm∗

)
= 0,

which is equivalent to

−e
gm∗ − 1

gη
+ (1− kmnc +

m∗

η
)

(
g

λ
e−λ(kmncη−m∗) − g − λ

λ

)
= 0. (A.21)

We can then solve for kmnc by plugging (A.18) into (A.21); that is,

kmnc =
1

gη
log

[
g2

(g − λ)λ
e
(g−λ)(η− 1

g−λ
) − g − λ

λ
e
g(η− 1

g−λ
)
]
. (A.22)

Then, we can plug (A.22) into (A.18) to solve for m∗; that is,

m∗ =
1

g
log

[
g2

(g − λ)λ
e
−λ(η− 1

g−λ
) − g − λ

λ

]
. (A.23)

Finally, for the equilibrium outcome, we can derive τ∗(k∗,m∗) by plugging k = kmnc and m = m∗

into (A.17), and we can easily check that the equilibrium waiting time is the one given in
Proposition 8.

Case II. In Case II, the triple
(
m∗, k̂(τ), τ∗(m)

)
constitutes a symmetric equilibrium if (a)

given k̂(τ) and τ∗(m), the regulator chooses the clawback window m∗ such that total welfare is
maximized; (b) for any τ , if all creditors choose to wait for τ units of time, then kmnc = k̂(τ) is
such that Yt0+k̂(τ)η+τ = 0; and (c) for any m, the equilibrium waiting time τ∗(m) is such that,
given that other creditors choose τ∗(m) and therefore the asset is depleted at kmnc = k̂(τ∗(m)),
no creditor i has an incentive to deviate from τ∗(m).

We solve the game backwards. First, we consider the non-committed bankruptcy threshold
for any waiting time τ . For any τ , the bankruptcy threshold k̂(τ) that depletes all assets is the
one with which Yt0+τ+k̂(τ)η = 0:

Aeg
′(τ+k̂(τ)η) − eg(τ+k̂(τ)η) − egτ+g′k̂(τ)η

(g − g′)η
= 0, (A.24)

which gives

k̂(τ) =
1

(g − g′)η
log
[
A(g − g′)ηe−(g−g′)τ + 1

]
. (A.25)

Then, we solve for the creditors’ equilibrium waiting time for any given m. For τ∗(m) to hold
in an equilibrium, it must be that no creditor has an incentive to deviate from τi = τ∗(m). That
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implies ∂Πi(τi|τ∗(m),k̂,m)
∂τi

∣∣
τi=τ∗(m)

= 0, in which Πi(τi|ti, τ∗, k,m) is given in (27). This first-order
condition implies that38

g − λ

λ
− g

λ
e−λ(k̂(τ∗(m))η−m) +

egm − 1

(1− k̂(τ∗(m)) + m
η )gη

= 0, (A.26)

which is consistent with (A.21).
Next, we take the first-order derivative of (A.26) w.r.t. m and arrive at

1

η

(
g − λ

λ
− g

λ
e−λ(k̂η−m)

)
−
(
1− k̂ +

m

η

)
ge−λ(k̂η−m) +

egm

η

+

[
−
(
g − λ

λ
− g

λ
e−λ(k̂η−m)

)
+

(
1− k̂ +

m

η

)
gηe−λ(k̂η−m)

]
dk̂

dm
= 0. (A.27)

Multiplying the left-hand side of (A.26) by g and then subtracting the left-hand side of (A.27)
from it, we have

g(g − λ)

λη

(
1− e−λ(k̂η−m)

)[
m+ (1− k̂)η − 1

g − λ

]
+

[(
g − λ

λ
− g

λ
e−λ(k̂η−m)

)
−
(
1− k̂ +

m

η

)
gηe−λ(k̂η−m)

]
dk̂

dm
= 0. (A.28)

Note that, as the regulator does not incorporate the effect of m on k in Case I (i.e., dk̂
dm = 0),

then we can derive m∗ (see (A.18)) directly from (A.28). However, in this case, the regulator
would internalize the effect of m on k̂ when choosing m. Nevertheless, we will show that the
welfare-maximizing regulator would stick to the same m∗ in Case II even though the indirect
effect of m on kmnc = k̂(τ∗(m)) is considered.

In appearance of the indirect effect of m on k, the regulator’s objective of maximizing welfare
may not be equivalent to maximizing the equilibrium waiting time τ∗. (Recall that this result is
proved in Proposition 6 where the firm’s choice of k is fixed but not affected by the regulator’s
choice.) However, the following lemma confirms that internalizing this indirect effect would not
change that equivalence. In other words, in this case, the optimal m that maximizes total welfare
is equivalent to the choice of m that maximizes τ∗(m).

Lemma A.4 When the regulator takes into account of the choice of m on the bankruptcy threshold
kmnc = k̂(τ∗(m)), the welfare-maximizing objective is equivalent to maximizing τ∗:

m∗ = argmax
m≥0

W (m) = argmax
m≥0

τ∗(m).

Proof of Lemma A.4. As the clawback can be considered as a redistribution of assets, the
total welfare stays the same as in (A.15). With the equilibrium waiting time τ∗(m) (see (A.26))
and the bankruptcy threshold k̂(τ∗) (see (A.25)), the total welfare is given byW (τ∗(m), k̂(τ∗(m))).

38For simplicity, we write τ∗ for τ∗(m) and k̂ for k̂(τ∗(m)).
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Taking the first-order derivative of W (τ∗(m), k̂(τ∗(m))) w.r.t. m, we have

dW (τ∗(m), k̂(τ∗(m)))

dm

=

[
∂W (τ, k)

∂τ

dτ∗(m)

dm
+
∂W (τ, k)

∂k

dk̂(τ∗)

dτ∗
dτ∗(m)

dm

] ∣∣∣∣
τ=τ∗(m),k=k̂(τ∗(m))

.

From the above equation, the clawback window m affects total welfare through two channels.
In the direct channel, it influences welfare via the equilibrium waiting time τ∗. In the indirect
channel, it affects welfare through the bankruptcy threshold k, which is determined by τ∗.
However, the net effect of the indirect channel is proved to be zero; that is,

∂W (τ, k)

∂k

∣∣∣∣
τ=τ∗(m),k=k̂(τ∗(m))

= egt0

[
eg(τ+kη) +Ag′ηeg

′(τ+kη) − geg(τ+kη) − g′egτ+g′kη

g − g′

] ∣∣∣∣
τ=τ∗(m),k=k̂(τ∗(m))

= g′ηegt0

[
Aeg

′(τ+kη) − eg(τ+kη) − egτ+g′kη

(g − g′)η

] ∣∣∣∣
τ=τ∗(m),k=k̂(τ∗(m))

= 0,

where the last equation comes from (A.24). Thus, m affects W only through τ∗; that is,

dW (τ∗(m), k̂(τ∗(m)))

dm
=
∂W (τ, k)

∂τ

dτ∗(m)

dm

∣∣∣∣
τ=τ∗(m),k=k̂(τ∗(m))

.

As W (τ, k) is increasing in τ (Proposition 6), it follows that ∂W (τ,k)
∂τ ≥ 0, and thus

dW (τ∗(m),k̂(τ∗(m)))
dm shares the same sign as dτ∗(m)

dm . Therefore, the regulator’s welfare objective is
equivalent to maximizing τ∗. ■

According to Lemma A.4, maximizing welfare is equivalent to maximizing τ∗, which implies
dτ∗(m)
dm

∣∣
m=m∗ = 0. As a result,

dk̂

dm
=

dk̂

dτ∗
dτ∗

dm

∣∣∣∣
m=m∗

= 0,

and, accordingly, condition (A.28) can be simplified to

m∗ + η(1− k̂(τ∗(m∗)))− 1

g − λ
= 0 ⇐⇒ m∗ = m∗(k̂(τ∗)). (A.29)

This explains why m∗ in this case will be the same as that in Case I. Now, following procedures
similar to those in the proof of Case I, the equilibrium objects m∗, τ∗(m), and k̂(τ) can be solved
through (A.25), (A.26), and (A.29). For example, plugging (A.29) into (A.26) yields the optimal
clawback window m∗, the same as in (A.23). Therefore, the unique symmetric equilibrium is as
follows: the regulator chooses m∗ as in (A.23); for any given τ , the bankruptcy threshold k̂(τ) is
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determined as in (A.25); and, for any given m, creditors’ equilibrium waiting time τ∗(m) satisfies
the (A.26):

Accordingly, the equilibrium outcome, characterized by the regulator, the creditors, and the
firm’s choices, is

m∗ =
1

g
log

[
g2

λ(g − λ)
e
−λ(η− 1

g−λ
) − g − λ

λ

]
= m∗(kmnc),

τ∗(m∗) =
1

g − g′

logA− log

(
g2

(g−λ)λe
(g−λ)(η− 1

g−λ
) − g−λ

λ e
g(η− 1

g−λ
)
) g−g′

g − 1

(g − g′)η


= τ∗(kmnc,m

∗), and

k̂(τ∗(m∗)) =
1

gη
log

[
g2

(g − λ)λ
e
(g−λ)(η− 1

g−λ
) − g − λ

λ
e
g(η− 1

g−λ
)
]
= kmnc.

This outcome is identical to what we derived in Case I.

Comparison of equilibrium waiting times. Finally, regarding the equilibrium outcome
derived from the case without commitment but an optimal clawback policy (both Case I and
Case II), we will show that the equilibrium waiting time τ∗(kmnc,m∗) ≥ τ∗(kc, 0) ≥ τ∗(knc, 0) = 0,
and the inequalities are strict when kc < knc.

It is easy to check that when kc = knc, we have τ∗(kmnc,m∗) ≥ τ∗(kc, 0) = τ∗(knc, 0) = 0, in
which the inequality holds because39

τ∗(kmnc,m
∗) = max

m
τ∗(m) ≥ τ∗(m = 0) = τ∗(knc, 0) = 0 (Lemma A.4).

Next, consider the case in which kc < knc. The value of the remaining assets under kc is
strictly positive when all creditors choose τ∗(kc); that is, Yt0+τ∗(kc)+kcη > 0. Therefore, we can
define

k′c ≡ k̂(τ∗(kc)) > kc, (A.30)

such that, when the creditors symmetrically choose the strategy τ∗(k), the value of the remaining
assets reaches 0 after k′c fraction of creditors exit; that is, Yt0+τ∗(kc)+k′cη

= 0, where k̂(·) is given
in (A.25). Furthermore, we define m′ ≡ (k′c − kc)η. We use the following lemma to show that the
recovery payoff under policy (kc, 0) is lower than that under (k′c,m

′) had the creditors taken the
strategy τ∗(kc). We will show that this result, together with the fact that m∗ is the regulator’s

39To avoid confusion, we write τ∗(km
nc,m

∗) for τ∗(m∗) (the no-commitment case where m = m∗), τ∗(kc, 0) for
τ∗(kc) (the commitment case without a clawback policy), and τ∗(knc, 0) for τ∗(knc) (the non-commitment case
without a clawback policy).
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optimal choice, is sufficient to prove that τ∗(m∗) ≥ τ∗(m′) > τ∗(kc), in which τ∗(m′) is the
equilibrium waiting time for the non-commitment case with a clawback policy m′.

Lemma A.5 When creditors choose to wait for τ∗, for any k′ < k̂(τ∗), it must be

∫ t0+τ∗+k̂(τ∗)η

t0+τ∗+k′η

1

η
egtdt > Yt0+τ∗+k′η,

in which k̂(τ∗) is given in (A.25).

Proof of Lemma A.5. As Yt0+τ∗+kη = eg(t0+τ∗)+g′kη
[
Ae−(g−g′)τ∗ − e(g−g′)kη−1

(g−g′)η

]
(see (11)),

we can easily check that

Yt0+τ∗+kη > 0 for any k < k̂(τ∗). (A.31)

According to (3), we have dYt = (g′Yt − 1
ηe

gt)dt when t > t0 + τ∗. Integrating both sides over
[t0 + τ∗ + k′η, t0 + τ∗ + k̂(τ∗)η] yields

Yt0+τ∗+k̂(τ∗)η − Yt0+τ∗+k′η =

∫ t0+τ∗+k̂(τ∗)η

t0+τ∗+k′η
g′Ytdt−

∫ t0+τ∗+k̂(τ∗)η

t0+τ∗+k′η

1

η
egtdt.

As Yt0+τ∗+k̂(τ∗)η = 0 by definition, it follows that

∫ t0+τ∗+k̂(τ∗)η

t0+τ∗+k′η

1

η
egtdt− Yt0+τ∗+k′η =

∫ t0+τ∗+k̂(τ∗)η

t0+τ∗+k′η
g′Ytdt > 0,

in which the inequality holds according to (A.31). ■

Given that other creditors wait for τ∗(kc), from the construction of (k′c,m′), (1) the hazard rate
under (k′c,m′) remains the same as the one under (kc, 0); that is, h(k′c,m′) = h(kc) =

λeλkcη

eλkcη−1
(see

(15) and (29)); and (2) the total value of the assets distributed to each staying creditor (and those
who are clawed back) is strictly higher under (k′c,m

′); that is, α(τ∗(kc), k′c,m′) > α(τ∗(kc), kc).
The second property holds because

∫ t0+τ∗(kc)+k′cη
t0+τ∗(kc)+k′cη−m′

1
ηe

gtdt > Yt0+τ∗(kc)+kcη according to Lemma
A.5 and 1− k′c +

m′

η = 1− kc according to the definition of m′.
With the same hazard rate and higher recovery payoff, creditor i’s net marginal payoff of

waiting τi = τ∗(kc) is strictly positive; that is,

∂Πi(τi|ti, τ∗(kc), k′c,m′)

∂τi

∣∣∣∣
τi=τ∗(kc)

∝ −h(k
′
c,m

′)− g

h(k′c,m
′)

+ α(τ∗(kc), k
′
c,m

′)e−g(τ∗(kc)+k′cη−m′)

> −h(kc)− g

h(kc)
+ α(τ∗(kc), kc)e

−g(τ∗(kc)+kcη) = 0, (A.32)
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in which Πi(·) is given in (27). This result implies that when the manager commits to k′c and the
regulator chooses m′, and given that other creditors choose τ∗(kc), creditor i has an incentive
to wait longer than τ∗(kc). Next, we will show that the equilibrium waiting time τ∗(m′) in the
non-commitment case under clawback policy m′ is indeed higher than that in the commitment
case with kc but no clawback, or τ∗(kc).

Plugging h(k′c,m′) (based on(29)) and α(τ∗(kc), k′c,m′) (based on (26)) into (A.32), we have

g − λ

λ
− g

λ
e−λ(k′cη−m′) +

egm
′ − 1

(1− k′c +
m′

η )gη
> 0. (A.33)

Under the clawback policy m′ in the non-commitment case, the equilibrium waiting time τ∗(m′)

satisfies (see (A.26))

g − λ

λ
− g

λ
e−λ(k̂(τ∗(m′))η−m′) +

egm
′ − 1

(1− k̂(τ∗(m′)) + m′

η )gη
= 0. (A.34)

Comparing (A.34) with (A.33), we have

g − λ

λ
− g

λ
e−λ(k′cη−m′) +

egm
′ − 1

(1− k′c +
m′

η )gη

>
g − λ

λ
− g

λ
e−λ(k̂(τ∗(m′))η−m′) +

egm
′ − 1

(1− k̂(τ∗(m′)) + m′

η )gη
. (A.35)

It is easy to check that the function g−λ
λ − g

λe
−λ(kη−m′) + egm

′−1

(1−k+m′
η
)gη

is increasing in k, so (A.35)

implies k′c > k̂(τ∗(m′)). Recall that, by definition (see (A.30)), k′c = k̂(τ∗(kc)). As k̂(τ∗) is
strictly decreasing in τ∗ (see (A.25)), it follows that τ∗(kc) < τ∗(m′). According to Lemma A.4,
the regulator chooses m to maximize τ∗(m). As a result,

τ∗(m∗) = max
m

τ∗(m) ≥ τ∗(m′) > τ∗(kc).

Moreover, as kc = argmaxk(τ
∗(k) + kη) and kc < knc, we have

τ∗(kc) = (τ∗(kc) + kcη)− kcη > (τ∗(knc) + kncη)− kcη > τ∗(knc).

This completes the proof. ■

Proof of Proposition 9 We first prove that kmc must satisfy Yt0+τ∗(kmc ,m∗(kmc ))+kmc η = 0, in
which m∗(k) is the optimal clawback window given in Proposition 7.40

Suppose Yt0+τ∗+kmc η > 0; then there exists k̆ > kmc such that Yt0+τ∗+k̆η = 0. Define
m̆ ≡ m∗(kmc ) + (k̆ − kmc )η such that, given that other creditors wait for τ∗, if creditor i

40For simplicity, we write τ∗(km
c ,m∗(km

c )) for τ∗.
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chooses τi = τ∗, (1) the hazard rate under policy (k̆, m̆) remains the same as that under policy
(kmc ,m

∗(kmc )); and (2) the total value of the assets distributed to each staying creditor (and those
who are clawed back) is strictly higher under (k̆, m̆); that is, α(τ∗, k̆, m̆) > α(τ∗, kmc ,m

∗(kmc )).
The second property holds because(

Yt0+τ∗+k̆η +

∫ t0+τ∗+k̆η

t0+τ∗+k̆η−m̆

1

η
egtdt

)

−

(
Yt0+τ∗+kmc η +

∫ t0+τ∗+kmc η

t0+τ∗+kmc η−m∗(kmc )

1

η
egtdt

)

=

∫ t0+τ∗+k̆η

t0+τ∗+kmc η

1

η
egtdt− Yt0+τ∗+kmc η > 0

according to Lemma A.5 and 1− k̆ + m̆
η = 1− kmc + m∗(kmc )

η according to the definition of m̆.
With the same hazard rate and higher recovery payoff, we can compare the equilibrium

waiting time under policy (kmc ,m
∗(kmc )), denoted as τ∗, and the one under policy (k̆, m̆), denoted

as τ̆ ≡ τ∗(k̆, m̆). The first-order conditions yield

− h(k̆, m̆)− g

h(k̆, m̆)
+ α(τ̆ , k̆, m̆)e−g(τ̆+k̆η−m̆) = 0

= −h(k
m
c ,m

∗(kmc ))− g

h(kmc ,m
∗(kmc ))

+ α(τ∗, kmc ,m
∗(kmc ))e−g(τ∗+kmc η−m∗(kmc )).

Based on the above analysis, we have h(kmc ,m∗(kmc )) = h(k̆, m̆), α(τ∗, kmc ,m∗(kmc )) < α(τ∗, k̆, m̆),
and k̆η − m̆ = kmc η −m∗(kmc ), thus yielding

α(τ̆ , k̆, m̆)e−gτ̆ = α(τ∗, kmc ,m
∗(kmc ))e−gτ∗ < α(τ∗, k̆, m̆)e−gτ∗ .

We can easily check that α(τ, k,m)e−gτ =
Ae−(g−g′)τ+g′kη+ egkη−eg

′kη
(g−g′)η + egkη−eg(kη−m)

gη

1−k+m
η

is decreasing
in τ , and thus it must be that τ̆ > τ∗. From Proposition 6, the regulator chooses m to maximize
τ∗(k,m). Thus, with the bankruptcy threshold k̆, it follows that

τ∗(k̆,m∗(k̆)) = max
m

τ∗(k̆,m) ≥ τ∗(k̆, m̆) = τ̆ > τ∗. (A.36)

Moreover, the bankruptcy threshold kmc maximizes the firm’s life span, and, therefore,
maxk τ

∗(k,m∗(k)) + kη ≥ τ∗(k̆,m∗(k̆)) + k̆η. As a result, we have

max
k

τ∗(k,m∗(k)) + kη ≥ τ∗(k̆,m∗(k̆)) + k̆η > τ∗ + k̆η > τ∗ + kmc η,

in which the second inequality holds from (A.36) and the third inequality comes from the
definition of k̆. This contradicts the fact that kmc is the optimal bankruptcy threshold. Therefore,
for the optimal threshold kmc , it must be that Yt0+τ∗(kmc ,m∗(kmc ))+kmc η = 0.
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Then, we can solve for the optimal bankruptcy threshold kmc . As Yt0+τ∗(kmc ,m∗(kmc ))+kmc η = 0,

we have egt0
[
Aeg

′(τ+kη) − eg(τ+kη)−egτ+g′kη

(g−g′)η

] ∣∣
k=kmc ,τ=τ∗(kmc ,m∗(kmc ))

= 0 (see (11)), which implies

Ae−(g−g′)(τ∗(kmc ,m∗(kmc ))+kmc η) − 1− e−(g−g′)kmc η

(g − g′)η
= 0. (A.37)

Plugging m∗(kmc ) = 1
g−λ − (1− kmc )η and

τ∗(kmc ,m
∗(kmc )) =

1

g − g′

{
logA− log

[
e(g−g′)kη − 1

(g − g′)η
− e(g−g′)kη(1− e−gm)

gη

+(1− k +
m

η
)

(
g

λ
e(g−λ)(kη−m)−g′kη − g − λ

λ
e(g−g′)kη−gm

)]} ∣∣∣∣
k=kmc ,m=m∗(kmc )

(see the proof of Proposition 7) into (A.37), it follows that

(
1− 1

(g − λ)η

)(
g

λ
e
−λ(η− 1

g−λ
) − g − λ

λ

)
− e

g
[
kmc η−(η− 1

g−λ
)
]
− 1

gη
= 0

since e−g
[
kmc η−(η− 1

g−λ
)
]
> 0. Therefore, kmc can be explicitly solved as

kmc =
1

gη
log

[
g2

(g − λ)λ
e
(g−λ)(η− 1

g−λ
) − g − λ

λ
e
g(η− 1

g−λ
)
]
,

and thus kmc = kmnc, which is given in (34). We can easily check that the equilibrium outcome is the
same as that in the non-commitment case; that is, m∗(kmc ) = m∗ and τ∗(kmc ,m∗(kmc )) = τ∗(m∗).
■

Appendix B Seniority

In this section, we give a complete characterization of equilibrium for the case with heterogeneous
creditors in Section 5.1. The result of τJ ≤ τS in Proposition 10 is superseded by Lemma B.1,
and the properties of the unique equilibrium in Proposition 10 are superseded by Proposition
B.1. In addition, Proposition B.1 gives a detailed characterization of the unique equilibrium
under different parameter conditions.

Lemma B.1 Junior creditors run faster than their senior counterparts (i.e., τJ ≤ τS).
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Proof of Lemma B.1 Denote the firm’s life span under strategy profile (τJ , τS) as ∆(τJ , τS) ≡
t̂(τJ , τS)− t0. According to (36), we have

∆(τJ , τS) = inf

{
u
∣∣∣ ∫ u

0

[
1− ω

η
· 1{τJ ≤ δ ≤ τJ + η}+ ω

η
· 1{τS ≤ δ ≤ τS + η}

]
dδ ≥ k

}
.

(B.1)

Suppose there exists some equilibrium where τJ > τS . In other words, a junior creditor j with
type tj = t̃ withdraws at bJ,j = t̃+τJ , and a senior creditor i with the same type ti = t̃ withdraws
at bS,i = t̃+ τS , in which bJ,j > bS,i. As such, (τJ , τS) can hold as an equilibrium, and the net
marginal payoff of waiting for junior creditor j at bJ,j = t̃+ τJ is supposed to be 0; that is,

egbJ,j
[
g[1−Ψ(bJ,j −∆(τJ , τS)|t̃)]− ψ(bJ,j −∆(τJ , τS)|t̃)

]
+ αJ(τJ , τS)e

g(bJ,j−∆(τJ ,τS))ψ(bJ,j −∆(τJ , τS)|t̃) = 0,

which implies

g − λ

λ
− g

λ
e−λ(∆(τJ ,τS)−τJ ) + αJ(τJ , τS)e

−g∆(τJ ,τS) = 0. (B.2)

Plugging (B.2) into the first-order derivative with respect to τS,i for senior creditor i, we can
obtain the net marginal value of waiting for the senior creditor i at τS,i = τS :

egbS,i
[
g[1−Ψ(bS,i −∆(τJ , τS)|t̃)]− ψ(bS,i −∆(τJ , τS)|t̃)

]
+ αS(τJ , τS)e

g(bS,i−∆(τJ ,τS))ψ(bS,i −∆(τJ , τS)|t̃)

∝g − λ

λ
− g

λ
e−λ(∆(τJ ,τS)−τS) + αS(τJ , τS)e

−g∆(τJ ,τS)

>
g − λ

λ
− g

λ
e−λ(∆(τJ ,τS)−τJ ) + αJ(τJ , τS)e

−g∆(τJ ,τS)

+ [αS(τJ , τS)− αJ(τJ , τS)]e
−g∆(τJ ,τS) = [αS(τJ , τS)− αJ(τJ , τS)]e

−g∆(τJ ,τS) ≥ 0,

in which the first inequality holds because τJ > τS , and the second inequality holds because
αS ≥ αJ according to the rule of seniority. Thus, senior creditor i with τS,i = τS has an incentive
to wait longer, so such equilibrium cannot hold. Therefore, in any possible equilibrium, we must
have that τJ ≤ τS . ■

Lemma B.2 No senior creditors exit before t̂ if and only if all staying senior creditors receive
full repayment; that is, αS(τJ , τS)e

gt0 = egt̂(τJ ,τS) if and only if t0 + τS ≥ t̂(τJ , τS) in equilibrium.

Proof of Lemma B.2 First, we will prove that αS(τJ , τS)e
gt0 = egt̂(τJ ,τS) implies t0 + τS ≥

t̂(τJ , τS). Suppose there exists some equilibrium in which αS(τJ , τS)e
gt0 = egt̂(τJ ,τS) and t0+τS <

t̂(τJ , τS). As senior creditor i will receive full repayment when the firm closes, given other
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creditors choose strategy (τJ , τS), the expected payoff for creditor i at τS,i < t̂(τJ , τS)− t0 is

Πi(τS,i|ti, τJ , τS , k)

=

∫
ti+τS,i<t̂(τJ ,τS)

eg(ti+τS,i)ψ(t0|ti)dt0 +
∫
ti+τS,i≥t̂(τJ ,τS)

egt̂(τJ ,τS)ψ(t0|ti)dt0

<

∫
ti+τS,i<t̂(τJ ,τS)

egt̂(τJ ,τS)ψ(t0|ti)dt0 +
∫
ti+τS,i≥t̂(τJ ,τS)

egt̂(τJ ,τS)ψ(t0|ti)dt0

=

∫
t0

egt̂(τJ ,τS)ψ(t0|ti)dt0 = Πi(τi|ti, τ∗, k)
∣∣∣
ti+τS,i≥t̂(τJ ,τS)

,

in which the inequality holds because τS,i < t̂(τJ , τS) − t0. Thus, in any possible equilibrium
with αS(τJ , τS)e

gt0 = egt̂(τJ ,τS), senior creditor i with τS,i < t̂(τJ , τS)− t0 always has an incentive
to deviate to τS,i ≥ t̂(τJ , τS)− t0 to obtain a full repayment, which contradicts the assumption
of τS < t̂(τJ , τS)− t0. Therefore, in any possible equilibrium with αS(τJ , τS)e

gt0 = egt̂(τJ ,τS), we
have t0 + τS ≥ t̂(τJ , τS).

Next, we can prove that t0 + τS ≥ t̂(τJ , τS) implies αS(τJ , τS)e
gt0 = egt̂(τJ ,τS). Suppose there

exists some equilibrium where τS ≥ ∆(τJ , τS) and αS(τJ , τS) < eg∆(τJ ,τS), where ∆(τJ , τS) is
given in (B.1). Given the other creditors choose strategy (τJ , τS), the net marginal value of
waiting for senior creditor i at τS,i is given by

∂Πi(τS,i|ti, τJ , τS , k)
∂τS,i

= geg(ti+τS,i) [1−Ψ(ti + τS,i −∆(τJ , τS)|ti)]

− eg(ti+τS,i)(1− αS(τJ , τS)e
−∆(τJ ,τS)))ψ(ti + τS,i −∆(τJ , τS)|ti).

When τS,i > ∆(τJ , τS), we have 1−Ψ(ti+τS,i−∆(τJ , τS)|ti) = 0 and ψ(ti+τS,i−∆(τJ , τS)|ti) = 0,
so ∂Πi(τS,i|ti,τJ ,τS ,k)

∂τS,i

∣∣
τS,i>∆(τJ ,τS)

= 0. When τS,i = ∆(τJ , τS), we have 1 − Ψ(ti|ti) = 0 and
ψ(ti|ti) = λ

eλη−1
(see (1)). Hence,

∂Πi(τS,i|ti, τJ , τS , k)
∂τS,i

∣∣
τS,i=∆(τJ ,τS)

= −eg(ti+∆(τJ ,τS))(1− αS(τJ , τS)e
−∆(τJ ,τS)))

λ

eλη − 1
< 0,

in which the last inequality holds because αS(τJ , τS) < eg∆(τJ ,τS). As a result, creditor i with
τS,i ≥ ∆(τJ , τS) can obtain a strictly positive increase in the expected payoff by switching to
τS,i = ∆(τJ , τS)− ε (for some small ε > 0). Therefore, τS ≥ ∆(τJ , τS) cannot be supported in
an equilibrium. In any possible equilibrium with τS ≥ ∆(τJ , τS), we have αS(τJ , τS) = eg∆(τJ ,τS).
This completes the proof. ■

Next, based on Lemma B.1 and Lemma B.2, we give a complete characterization of the
equilibrium.
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Proposition B.1 Denote ω̃ ≡ min

{
ω0, 1− k

1
λη

log g
g−λ

}
, where ω0 ∈ (0, 1 − k) that uniquely

solves

A−
(1− ω0)

(
e
(g−g′) kη

1−ω0 − 1

)
(g − g′)η

− ω0e
(g−g′) kη

1−ω0 = 0. (B.3)

1. When ω ≤ ω̃, the senior creditor will get full repayment in the unique equilibrium. In detail,
the equilibrium waiting time for junior and senior creditors is

τ∗J = max

{
0,

1

g − g′
[logA− log v(k, ω)]

}
, τ∗S ≥ τ∗J +

kη

1− ω
,

where

v(k, ω) =
(1− ω)

(
e(g−g′) kη

1−ω − 1
)

(g − g′)η
+ ωe(g−g′) kη

1−ω

+ (1− ω − k)

(
g

λ
e(g−g′−λ) kη

1−ω − g − λ

λ
e(g−g′) kη

1−ω

)
.

2. When ω > ω̃, the senior creditors cannot get full repayment in the unique equilibrium. In
more detail, the equilibrium is as follows, in which

χ(τ, d, ω) =
g − λ

λ
− g

λ
e−λ(kη−(1−ω)d)

+
Ae−(g−g′)(τ+ωd+kη) − 1−(1−ω)e−(g−g′)[ωd+kη]−ωe(g−g′)[(1−ω)d−kη]

(g−g′)η

ω(1− k) + (1− ω)dω
η

.

(a) If χ(0, 0, ω) ≤ 0, in the unique equilibrium, we have τ∗J = 0 and τ∗S = 0;

(b) If χ(0, 0, ω) > 0 and χ
(
0, ηω (

1
λη log

g
g−λ − k), ω

)
≤ 0, in the unique equilibrium, we

have τ∗J = 0 and τ∗S > 0 that uniquely solve χ(0, τ∗S , ω) = 0;

(c) If χ(0, 0, ω) > 0 and χ
(
0, ηω (

1
λη log

g
g−λ − k), ω

)
> 0, in the unique equilibrium, we

have τ∗J > 0 and τ∗S > 0 given by

τ∗J =
1

g − g′

logA− log

e(g−g′) 1
λ
log g

g−λ − (1− ω)− ωe
(g−g′) η

ω

[
1
λη

log g
g−λ

−k
]

(g − g′) η

+

[
ω(1− k) + (1− ω)

(
1

λη
log

g

g − λ
− k

)]
·
(
−g − λ

λ
e
(g−g′) 1

λ
log g

g−λ +
g

λ
e
(g−g′−λ) 1

λ
log g

g−λ
+ 1

ω
log g

g−λ
−λkη

ω

)]}
τ∗S = τ∗J +

η

ω

(
1

λη
log

g

g − λ
− k

)
.
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Proof of Proposition B.1 We first introduce a lemma of asset dynamics.

Lemma B.3 For any τJ ≥ 0 and ω ∈ (0, 1−k], consider two strategy profiles (τJ , τ1S) and (τJ , τ
2
S),

in which τ1S ≥ τJ +
kη
1−ω and τJ ≤ τ2S < τJ +

kη
1−ω . Given strategy profile (τJ , τ

1
S) ((τJ , τ2S)), denote

Y 1
t (Y 2

t ) as the asset value at time t, and t̂1 ≡ t0 + τJ + kη
1−ω (t̂2 ≡ t0 + (1− ω)τJ + ωτ2S + kη) as

the firm’s closing time. Then if Y 2
t̂2
<
[
ω − (t̂2 − t0 − τS)

ω
η

]
egt̂2, we must have Y 1

t̂1
< ωegt̂1.

Proof of Lemma B.3. When t ∈ (t0 + τ2S , t̂2), we have dY 1
t =

(
g′Y 1

t − 1−ω
η egt

)
dt and

dY 2
t =

(
g′Y 2

t − 1
ηe

gt
)
dt. Then we can calculate the asset values at t̂2 under (τJ , τ

1
S) and (τJ , τ

2
S)

as

Y 1
t̂2
= eg

′(t̂2−t0−τ2S)Y 1
t0+τ2S

− (1− ω)egt̂2 − (1− ω)eg(t0+τ2S)+g′(t̂2−t0−τ2S)

(g − g′)η

Y 2
t̂2
= eg

′(t̂2−t0−τ2S)Y 2
t0+τ2S

− egt̂2 − eg(t0+τ2S)+g′(t̂2−t0−τ2S)

(g − g′)η
.

Since Y 1
t0+τ2S

= Y 2
t0+τ2S

, we have

Y 1
t̂2
− Y 2

t̂2
= eg

′(t̂2−t0−τ2S)
[
Y 1
t0+τ2S

− Y 2
t0+τ2S

]
+
ωegt̂2 − ωeg(t0+τ2S)+g′(t̂2−t0−τ2S)

(g − g′)η

=
ωegt̂2 − ωeg(t0+τ2S)+g′(t̂2−t0−τ2S)

(g − g′)η
,

and as Y 2
t̂2
<
[
ω − (t̂2 − t0 − τS)

ω
η

]
egt̂2 , we have

Y 1
t̂2
− ωegt̂2 = Y 2

t̂2
+
ωegt̂2 − ωeg(t0+τ2S)+g′(t̂2−t0−τ2S)

(g − g′)η
− ωegt̂2

< −(t̂2 − t0 − τ2S)
ω

η
egt̂2 +

ωegt̂2 − ωeg(t0+τ2S)+g′(t̂2−t0−τ2S)

(g − g′)η

= (t̂2 − t0 − τ2S)
ω

η
egt̂2

[
1− e−(g−g′)(t̂2−t0−τ2S)

(g − g′)(t̂2 − t0 − τ2S)
− 1

]
< 0.

which implies Y 1
t̂2
< ωegt̂2 . The last inequality holds because it is easy to check that 1−e−x

x < 1

with x ∈ (0,∞). After the shock hits, the asset grows at rate g′ < g from t̂2 to t̂1 under (τJ , τ
1
S),

and, thus, Y 1
t̂1
< Y 1

t̂2
eg(t̂1−t̂2). Hence, Y 1

t̂1
< Y 1

t̂2
eg(t̂1−t̂2) < ωegt̂2 · eg(t̂1−t̂2) = ωegt̂1 . ■

Next, we solve for the equilibrium when (1) ω ≤ ω̃ and (2) ω > ω̃, respectively.

Case 1. ω ≤ ω̃. We first prove that when ω ≤ ω̃, in any possible equilibrium, it must be that
(τJ ≥ 0, τS ≥ τJ + kη

1−ω ). In other words, senior creditors always wait until the firm closes. Then
we solve for the equilibrium in this case. To prove (τJ ≥ 0, τS ≥ τJ + kη

1−ω ), we first show that
in any possible equilibrium with τJ = 0, senior creditors must choose τS ≥ kη

1−ω . Then we show
that in any possible equilibrium with τJ > 0, senior creditors also choose τS ≥ τJ + kη

1−ω .
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Suppose there exists some equilibrium (τJ = 0, τS <
kη
1−ω ). Then we have t̂ = t0 + ωτS + kη.

According to Lemma B.2, the staying senior creditors cannot receive full repayment; that
is, Yt̂ <

[
ω − (t̂− t0 − τS)

ω
η

]
egt̂. According to Lemma B.3, if (τJ = 0, τS < kη

1−ω ) holds as

an equilibrium, regarding the alternative strategy profile (τJ = 0, τ ′S ≥ kη
1−ω ), closing time

t̂′ = t0 +
kη
1−ω , and asset dynamics Y ′

t , we must have Y ′
t̂′
< ωegt̂

′ . However, from the definition of
ω0 in (B.3), we can also show that when ω ≤ ω0, we must have Y ′

t̂′
≥ ωegt̂

′ . Denote

ρ(ω) ≡ A−
(1− ω)

(
e(g−g′) kη

1−ω − 1
)

(g − g′)η
− ωe(g−g′) kη

1−ω . (B.4)

Taking the first-order derivative of ρ(ω) with respect to ω, we have

ρ′(ω) =
e(g−g′) kη

1−ω

(g − g′)η

[
1− e−(g−g′) kη

1−ω − (g − g′)
kη

1− ω
− (g − g′)η − (g − g′)2η2kω

(1− ω)2

]
<
e(g−g′) kη

1−ω

(g − g′)η

[
−(g − g′)η − (g − g′)2η2kω

(1− ω)2

]
< 0. (B.5)

The first inequality holds because it is easy to check 1− e−x − x < 0 for x ∈ (0,∞). From (B.5),
we know that ρ(ω) is decreasing in ω, so ρ(ω) > 0 (ρ(ω) < 0) when ω < ω0 (ω > ω0). As a result,
when ω ≤ ω̃ ≤ ω0,

Y ′
t̂′
− ωegt̂

′
= egt0+g′ kη

1−ω

A−
(1− ω)

(
e(g−g′) kη

1−ω − 1
)

(g − g′) η
− ωe(g−g′) kη

1−ω


= egt0+g′ kη

1−ω ρ(ω) ≥ 0,

which implies Y ′
t̂′
≥ ωegt̂

′ . This creates a contradiction. Therefore, in any possible equilibrium
with τJ = 0, senior creditors must choose τS ≥ kη

1−ω .
Then, we can prove that in any possible equilibrium with τJ > 0, senior creditors must

choose τS ≥ τJ + kη
1−ω . Suppose there exists some equilibrium (τJ > 0, τS < τJ + kη

1−ω ). Then
we have t̂ = t0 + (1− ω)τJ + ωτS + kη. According to Lemma B.2, the staying senior creditors
cannot receive full repayment (i.e., Yt̂ <

[
ω − (t̂− t0 − τS)

ω
η

]
egt̂), and thus αJ(τJ , τS) = 0. As

τS − τJ < kη
1−ω and ω ≤ ω̃ ≤ 1 − k

1
λη

log g
g−λ

, the first-order derivative for junior creditor j at
τJ,j = τJ is proportional to

g − λ

λ
− g

λ
e−λ(ω(τS−τJ )+kη) + αJ(τJ , τS)e

−g((1−ω)τJ+ωτS+kη)

=
g − λ

λ
− g

λ
e−λ(ω(τS−τJ )+kη) <

g − λ

λ
− g

λ
e−λ kη

1−ω ≤ 0,

so (τJ > 0, τS < τJ + kη
1−ω ) cannot hold as an equilibrium. This is a contradiction. Therefore, in

any possible equilibrium with τJ > 0, senior creditors must choose τS ≥ τJ + kη
1−ω .
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Therefore, when ω < ω̃, in any possible equilibrium, we must have (τJ ≥ 0, τS ≥ τJ + kη
1−ω ).

Now we solve for the equilibrium. Given τJ ≥ 0 and τS ≥ τJ + kη
1−ω , we have t̂ = t0 + τJ + kη

1−ω ,
and the asset dynamics are as follows:

Yt =



Aegt 0 ≤ t ≤ t0

Aegt0+g′(t−t0) t0 < t ≤ t0 + τJ

Aegt0+g′(t−t0) −
(1−ω)

(
egt−eg(t0+τJ )+g′(t−t0−τJ )

)
(g−g′)η

t0 + τJ < t ≤ t0 + τJ + kη
1−ω

.

When the firm closes, each senior creditor receives egt̂ and each junior creditor receives

αJ(τJ , τS)e
gt0 =

Aeg
′(τJ+

kη
1−ω

) −
(1−ω)

(
e
g(τJ+

kη
1−ω )−e

gτJ+g′ kη
1−ω

)
(g−g′)η − ωeg(τJ+

kη
1−ω

)

1− ω − k
egt0 .

Solving the first-order condition for junior creditors (i.e., g−λ
λ − g

λe
−λ kη

1−ω +αJ(τ
∗
J , τ

∗
S)e

−g(τ∗J+
kη

1−ω
) =

0), junior creditors’ equilibrium waiting time is

τ∗J = max

{
0,

1

g − g′
[logA− log v(k, ω)]

}
,

where

v(k, ω) =
(1− ω)

(
e(g−g′) kη

1−ω − 1
)

(g − g′) η
+ ωe(g−g′) kη

1−ω

+ (1− ω − k)

(
g

λ
e(g−g′−λ) kη

1−ω − g − λ

λ
e(g−g′) kη

1−ω

)
.

From ω ≤ 1− k
1
λη

log g
g−λ

, we have k
1−ω ≤ 1

λη log
g

g−λ , and thus v(k, ω) > 0.

Case 2. ω > ω̃. We first prove that when ω > ω̃, in any possible equilibrium, we must have
(τJ ≥ 0, τS < τJ + kη

1−ω ). Then we solve for the equilibrium. To prove (τJ ≥ 0, τS < τJ + kη
1−ω ),

we consider the equilibrium under ω > ω0 and ω > 1− k
1
λη

log g
g−λ

, respectively.
We first consider ω > ω0. When ω > 1 − k, even if all junior creditors withdraw, the

bankruptcy cannot be triggered, so in any possible equilibrium with τJ ≥ 0, we must have
τS < τJ + kη

1−ω , and therefore, we only need to consider ω0 < ω ≤ 1− k. Suppose there exists
some equilibrium (τJ ≥ 0, τS ≥ τJ + kη

1−ω ). Then we have t̂ = t0 + τJ + kη
1−ω and with ω > ω0,

Yt̂ − ωegt̂ =

Ae−(g−g′)(τJ+ kη
1−ω ) −

(1− ω)
(
1− e−(g−g′) kη

1−ω

)
(g − g′) η

− ω

 eg(t0+τJ+
kη

1−ω
)

≤

Ae−(g−g′) kη
1−ω −

(1− ω)
(
1− e−(g−g′) kη

1−ω

)
(g − g′) η

− ω

 eg(t0+τJ+
kη

1−ω
)
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= eg(t0+τJ )+g′ kη
1−ω ρ(ω) < eg(t0+τJ )+g′ kη

1−ω ρ(ω0) = 0,

in which ρ(ω) is given in (B.4). The first inequality holds because τJ ≥ 0, and the second
inequality holds because ρ(ω) is decreasing in ω (see (B.5)). Thus, Yt̂ < ωegt̂ and the staying
senior creditors cannot receive full repayment. According to Lemma B.2, we have τS < τJ + kη

1−ω .
This is a contradiction. Therefore, when ω > ω0, in any possible equilibrium, we must have
(τJ ≥ 0, τS < τJ + kη

1−ω ).
Then, we consider ω > 1− k

1
λη

log g
g−λ

. Suppose there exists some equilibrium (τJ ≥ 0, τS ≥

τJ + kη
1−ω ). Then we have t̂ = t0 + τJ + kη

1−ω , and the junior creditors’ first-order derivative at
τJ,j = τJ is proportional to

g − λ

λ
− g

λ
e−λ kη

1−ω + αJ(τJ , τS)e
−g(τJ+

kη
1−ω

) > αJ(τJ , τS)e
−g(τJ+

kη
1−ω

) ≥ 0.

The first inequality holds because ω > 1− k
1
λη

log g
g−λ

, and the second inequality holds because

αJ(τJ , τS) ≥ 0. Thus, junior creditor j has an incentive to wait longer, and (τJ ≥ 0, τS ≥ τJ+
kη
1−ω )

cannot hold as an equilibrium. This is a contradiction. Therefore, when ω > 1− k
1
λη

log g
g−λ

, in

any possible equilibrium, we must have (τJ ≥ 0, τS < τJ + kη
1−ω ).

As a result, when ω > ω̃, in any possible equilibrium, we must have (τJ ≥ 0, τS < τJ + kη
1−ω ).

Now we can solve for the equilibrium. For τS ≥ τJ ≥ 0, the firm closes at t̂ = t0 + (1− ω)τJ +

ωτS + kη.41 The asset dynamics are as follows:

Yt =



Aegt 0 ≤ t ≤ t0

Aegt0+g′(t−t0) t0 < t ≤ t0 + τJ

Aegt0+g′(t−t0) −
(1−ω)

(
egt−eg(t0+τJ )+g′(t−t0−τJ )

)
(g−g′)η t0 + τJ < t ≤ t0 + τS

Aegt0+g′(t−t0)

− egt−(1−ω)eg(t0+τJ )+g′(t−t0−τJ )−ωeg(t0+τS)+g′(t−t0−τS)

(g−g′)η

t0 + τS < t ≤ t0 + (1− ω)τJ + ωτS + kη

.

41We can prove that t0 + τJ + η < t̂(τJ , τS) cannot hold in any possible equilibrium. Suppose there exists an
equilibrium where τJ + η < t̂(τJ , τS)− t0 = ∆(τJ , τS). For junior creditor j, the net marginal value of waiting at
τJ,j = τJ is proportional to

g − λ

λ
− g

λ
e−λ(∆(τJ ,τS)−τJ ) + αJ(τJ , τS)e

−∆(τJ ,τS) ≥ g − λ

λ
− g

λ
eλ(τJ−∆(τJ ,τS))

>
g − λ

λ
− g

λ
e−λη > 0.

The last inequality is derived from 1
λη

log g
g−λ

< 1 (see (A.3)). Thus, in any possible equilibrium, we must have
τJ + η ≥ ∆(τJ , τS). In other words, there are always some junior creditors that have not withdrawn by the time
the firm closes.
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When the firm closes, each senior creditor receives

αS(τJ , τS)e
gt0 =

Yt̂
ω − (kη − (1− ω)(τS − τJ))

ω
η

=
egt0

ω − (kη − (1− ω)(τS − τJ))
ω
η

·
[
Aeg

′((1−ω)τJ+ωτS+kη)

−e
g((1−ω)τJ+ωτS+kη) − (1− ω)egτJ+g′(ω(τS−τJ )+kη) − ωegτS+g′(kη−(1−ω)(τS−τJ ))

(g − g′) η

]

and each junior creditor receives 0. Junior creditor j’s first-order derivative at τJ,j = τJ is

∂ΠJ,j(τJ,j |τJ , τS , tj)
∂τJ,j

∣∣∣∣∣
τJ,j=τJ

∝ g − λ

λ
− g

λ
e−λ((1−ω)τJ+ωτS+kη−τJ,j)

∣∣∣∣∣
τJ,j=τJ

+ α(τJ , τS)e
−g((1−ω)τJ+ωτS+kη)

=
g − λ

λ
− g

λ
e−λ(ω(τS−τJ )+kη)

Senior creditor i’s first-order derivative at τS,i = τS is

∂ΠS,i(τS,i|τJ , τS , ti)
∂τS,i

∣∣∣∣∣
τS,i=τS

∝ g − λ

λ
− g

λ
e−λ((1−ω)τJ+ωτS+kη−τS,i)

∣∣∣∣∣
τS,i=τS

+ αS(τJ , τS)e
−g((1−ω)τJ+ωτS+kη)

=
g − λ

λ
− g

λ
e−λ(kη−(1−ω)(τS−τJ ))

+
1

ω(1− k) + (1− ω)(τS − τJ)
ω
η

·
[
Ae−(g−g′)(τJ+ω(τS−τJ )+kη)

−1− (1− ω)e−(g−g′)[ω(τS−τJ )+kη] − ωe(g−g′)[(1−ω)(τS−τJ )−kη]

(g − g′) η

]

From the first-order conditions, we know that

1. (τJ = 0, τS = 0) holds as an equilibrium if and only if ∂ΠJ,j(τJ,j |τJ ,τS ,tj)
∂τJ,j

∣∣
τJ,j=τJ=0

≤ 0 (i.e.,

0 ≤ η
ω (

1
λη log

g
g−λ − k)) and ∂ΠS,i(τS,i|τJ ,τS ,ti)

∂τS,i

∣∣
τS,i=τS=0

≤ 0;

2. (τJ = 0, τS > 0) holds as an equilibrium if and only if ∂ΠJ,j(τJ,j |τJ ,τS ,tj)
∂τJ,j

∣∣
τJ,j=τJ=0

≤ 0 (i.e.,

0 < τS ≤ η
ω (

1
λη log

g
g−λ − k)) and ∂ΠS,i(τS,i|τJ ,τS ,ti)

∂τS,i

∣∣
τS,i=τS

= 0;

3. (τJ > 0, τS > 0) holds as an equilibrium if and only if ∂ΠJ,j(τJ,j |τJ ,τS ,tj)
∂τJ,j

∣∣
τJ,j=τJ

= 0 (i.e.,

τS − τJ = η
ω (

1
λη log

g
g−λ − k)) and ∂ΠS,i(τS,i|τJ ,τS ,ti)

∂τS,i

∣∣
τS,i=τS

= 0.
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To solve the equilibrium, denote

χ(τ, d, ω) ≡ g − λ

λ
− g

λ
e−λ(kη−(1−ω)d)

+
Ae−(g−g′)(τ+ωd+kη) − 1−(1−ω)e−(g−g′)[ωd+kη]−ωe(g−g′)[(1−ω)d−kη]

(g−g′)η

ω(1− k) + (1− ω)dω
η

=
g − λ

λ
− g

λ
e−λ(kη−(1−ω)d) + α̃(τ, d, ω).

We can see that with α̃(τ, d, ω) ≥ 0, χ(τ, d, ω) is decreasing in τ ∈ (0,∞) and decreasing in
d ∈ [0, kη

1−ω ) as ∂χ(τ,d,ω)
∂τ = −A(g−g′)e−λ(kη−(1−ω)d)

ω(1−k)+(1−ω)dω
η

< 0 and

∂χ(τ, d, ω)

∂d
= −g(1− ω)e−λ(kη−(1−ω)d) −

(1− ω)ωη α̃(τ, d, ω)

(1− k)ω + (1− ω)dω
η

+
−A(g − g′)ωe−(g−g′)(τ+ωd+kη) + −ω(1−ω)[e−(g−g′)(ωd+kη)−e(g−g′)[(1−ω)d−kη]]

η

(1− k)ω + (1− ω)dω
η

≤
−A(g − g′)ωe−(g−g′)(τ+ωd+kη) + −ω(1−ω)[e−(g−g′)(ωd+kη)−e(g−g′)[(1−ω)d−kη]]

η

(1− k)ω + (1− ω)dω
η

≤ 1

(1− k)ω + (1− ω)(τS − τJ)
ω
η

·

[
−(g − g′)ω

1− (1− ω)e−(g−g′)[ωd+kη] − ωe(g−g′)[(1−ω)d−kη]

(g − g′) η

+
−ω(1− ω)(g − g′)e−(g−g′)(ωd+kη) + ω(1− ω)(g − g′)e(g−g′)[(1−ω)d−kη]

(g − g′) η

]

= −1− e−(g−g′)[kη−(1−ω)d]

η(1− k) + (1− ω)d
≤ 0,

in which the first and second inequalities come from α̃(τ, d, ω) ≥ 0, and the last inequality comes
from d < kη

1−ω .
Therefore, as it is easy to check limτ→∞ χ(τ, d, ω) < 0, when ω > ω̃, the equilibrium conditions

are equivalent to:

1. If χ(0, 0, ω) ≤ 0, in the unique equilibrium, we have τ∗J = 0 and τ∗S = 0;

2. If χ(0, 0, ω) > 0 and χ
(
0, ηω (

1
λη log

g
g−λ − k), ω

)
≤ 0, in the unique equilibrium, we have

τ∗J = 0 and τ∗S > 0 that uniquely solve χ(0, τ∗S , ω) = 0;

3. If χ(0, 0, ω) > 0 and χ
(
0, ηω (

1
λη log

g
g−λ − k), ω

)
> 0, in the unique equilibrium, we have

τ∗J =
1

g − g′

logA− log

e(g−g′) 1
λ
log g

g−λ − (1− ω)− ωe
(g−g′) η

ω

[
1
λη

log g
g−λ

−k
]

(g − g′) η

+

[
ω(1− k) + (1− ω)

(
1

λη
log

g

g − λ
− k

)]
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·
(
−g − λ

λ
e
(g−g′) 1

λ
log g

g−λ +
g

λ
e
(g−g′−λ) 1

λ
log g

g−λ
+ 1

ω
log g

g−λ
−λkη

ω

)]}
, and

τ∗S = τ∗J +
η

ω

(
1

λη
log

g

g − λ
− k

)
.

Finally, we prove that there exists ω0 < 1−k that uniquely solves ρ(ω) = 0 (see (B.4)). From
(B.5), we know that ρ(ω) is decreasing in ω. Thus, we have

lim
ω→0

ρ(ω) = A− e(g−g′)kη − 1

(g − g′)η
> 0, and

lim
ω→1−k

ρ(ω) = A− k(e(g−g′)η − 1)

(g − g′)η
− (1− k)e(g−g′)η

< (1− k)e(g−g′)η

(
1− e−(g−g′)η

(g − g′)η
− 1

)
< 0.

The first inequality holds because k < knc =
1

(g−g′)η log[A(g − g′)η + 1] (see (22)). The second
inequality holds because 1

(g−g′)η log[A(g − g′)η + 1] < 1 (see (A.3)). Therefore, there exists a
unique ω0 ∈ (0, 1− k) that solves ρ(ω0) = 0. This completes the proof. ■
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