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Data Regulation in Credit Markets

Abstract

We study a credit market in which lending decisions depend on a borrower’s digital
profile, and the borrower can manipulate their digital profile. When the borrower
observes the amount of data collected by the lender, manipulation increases as the
lender acquires more data. Such manipulation worsens both the quality of the lender’s
data and its lending decisions. As a result, the lender endogenously limits its own data
coverage. Disclosure regulations allow the lender to credibly commit to limiting its
data coverage, and privacy regulations can benefit all borrowers, including those who
choose to share their data with the lender.



1 Introduction

The online activities of people generate substantial amounts of valuable data. These big data

are increasingly utilized by lending companies to assess and evaluate borrowers. In fact, a

notable characteristic of FinTech lenders, as opposed to traditional banks, is their reliance on

algorithms and alternative data as a substitute for face-to-face interactions between lenders

and borrowers. At the same time, regulators across the world have considered the proper

use of alternative data in credit markets. For example, in 2019, federal banking regulators in

the U.S. issued an inter-agency statement that outlined the advantages and risks associated

with the use of alternative data in assessing consumers’ creditworthiness.1 Similarly, in 2021,

the European Commission put forth proposed revisions to its directive on consumer credit,

to tackle concerns related to the use of personal data.2

When digital information is widely used for lending decisions, it is natural that (as

implied by the Lucas critique (Lucas, 1976)) borrowers may change their behavior to mask

their online activities. Some variables in a digital profile (e.g., utility bill transactions)

may be hard to manipulate because they require a borrower to change their intrinsic habits;

conversely, others (such as which device to use to access the lender’s site) can be manipulated

more easily. In fact, the same set of technologies such as generative artificial intelligence

that are being used by lenders can also be employed by borrowers to manipulate their digital

profile.3 Such manipulation in turn adversely affects the usefulness of the data collected by

a lender.

To examine the equilibrium effects of such behavior, we develop a theoretical model

in which a lender chooses the amount of digital data to acquire on a borrower, and the

borrower in turn can manipulate the data. We establish three main results. First, borrower

manipulation acts as an endogenous factor that limits the usefulness of data and induces a

lender to voluntarily restrict its data coverage. Second, regulations related to transparency

and disclosure of how a lender uses different kinds of data can benefit both borrowers and

lenders. In particular, such regulations allow a lender to credibly commit to restricting its

data coverage. Third, privacy regulations that give borrowers the right to share or withhold

data from a lender can benefit both privacy-conscious borrowers and borrowers who choose to

share their data. Essentially, they provide a borrower who would otherwise have manipulated

their information with a new way to hide themselves, by pooling with borrowers who refuse

1See https://www.federalreserve.gov/supervisionreg/caletters/caltr1911.htm.
2See https://commission.europa.eu/document/download/ed2bb667-04b4-4bae-b990-277e3da7c2c9 en.
3For example, FraudGPT, the dark web counterpart of ChatGPT, can generate realistic counterfeit IDs,

fabricated identities, and financial statements. See “Generative AI financial scammers are getting very good
at duping work email,” CNBC, February 2024.
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to share their data for privacy reasons.

Our model features a single lender and a borrower. The borrower has a project for which

she seeks funding from the lender. There are two types of borrowers, high and low, based on

the probability that the project will succeed. The type is privately known to the borrower.

The borrower also has a digital profile connected to her underlying type. The lender chooses

how much data to collect about the borrower’s digital profile. The data generate a noisy

signal about the borrower’s creditworthiness, and the lender bases its credit decisions on this

signal. Importantly, the borrower can manipulate their digital profile at some cost in order

to fool the lender about their type.

We consider two regulatory regimes, transparent (in which the lender’s data coverage

is observed by the borrower) and opaque (in which the lender’s data coverage remains

unobserved). In the transparent regime, we show that the low-type borrower’s incentive

to manipulate their information increases in the extent of data collected by the lender. The

better the data that the lender has, the more likely those who generate high signals are

indeed high types. As a result, borrowers who generate high signals obtain credit on better

terms (i.e., at a lower interest rate), which implies that low types have a greater incentive

to manipulate their data.

Thus, if the lender increases the amount of data it collects, there are two countervailing

effects. On the one hand, better data coverage leads to more informed lending. On the other

hand, increased data coverage induces low-type borrowers to manipulate their digital profiles

more often. This manipulation lowers the quality of the lender’s data and impairs its lending

decisions. The latter force is more salient when the manipulation cost for borrowers is low.

We show that in equilibrium in the transparent regime, the lender may optimally choose to

limit its own data coverage. To establish our result as starkly as possible, in our model we

assume there is no direct cost to acquiring more data.4

As information becomes cheap in the digital age, in the spirit of Holmström informativeness

(Holmström, 1979), it seems that a lender should acquire and use unlimited amounts of data

on borrowers. Instead, our results imply there is an endogenous limit on the value of big

data to a lender in the transparent regime. Acquiring additional data beyond this optimal

limit results in the data itself being less useful for predicting default.

In contrast, in the opaque regime, the lender chooses to maximize data usage. Essentially,

when data coverage is unobserved by the borrower, the lender cannot credibly commit to

limiting it. Whatever a borrower believes about what data the lender is using, the lender

has an incentive to deviate and acquire more data.

4It is immediate that if there were a large direct cost to increasing its data coverage, the lender would
limit the amount of data acquired.
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We find that in the aggregate, borrowers too may prefer that the lender acquire some

digital information. A lender who has more information can more easily discern between

the types. High-type borrowers obtain loans with better terms, and are initially better off

with a better informed lender. Low-type borrowers, on the other hand, are worse off. The

aggregate borrower payoff increases when high types gain more than low types lose.

Our model offers several insights into the ongoing regulatory discussion about the use of

big data in the credit market. First, there is concern that transparency regarding the use of

alternative data is inadequate. In the U.S., lenders are required by the Fair Credit Reporting

Act (FCRA) and the Equal Credit Opportunity Act (ECOA) to disclose the sources and types

of information used for credit decisions. However, the extent to which these regulations apply

specifically to alternative data is unclear. In the E.U., the 2021 proposal for a new directive

on consumer credit explicitly emphasizes that consumers should have the right to obtain

a meaningful explanation of the credit assessment, including the main variables, logic, and

associated risks involved. In our framework, transparency is enhanced when the lender’s

data coverage becomes observable to the borrower. By comparing the transparent regime to

the opaque one, we find that enhanced transparency grants the lender the ability to commit

to limiting its data coverage. This restrains borrower manipulation, preserves data quality,

and maintains profitability. Therefore, increased transparency actually benefits the lender.

Second, regulations may impose limitations on the use of data in lending. For example,

the 2021 E.U. proposal explicitly states that certain types of personal data, such as data

from social media platforms or health data including cancer-related information, should not

be used to assess creditworthiness. The European Data Protection Supervisor even suggests

the prohibition of using search query data or online browsing activities, based on principles

like purpose limitation, fairness, and transparency. We show that if the restriction on data

usage is moderate, it might not impact the equilibrium or the mechanism highlighted in our

paper. However, if the limit becomes highly restrictive, it can have adverse consequences for

both the lender and the borrower.

Third, recent regulations such as the California Consumer Privacy Act and the revised

Payment Services Directive 2 (PSD2) in Europe have emphasized granting consumers control

over their own data. We expand on our base model to allow borrowers to provide access to

their own data or withhold them from lenders. Borrowers who share their data can in turn

choose to manipulate these data. We find that such regulations can benefit all borrowers,

including both privacy-conscious borrowers and those who are unconcerned about privacy

and choose to share their data with the lender. Essentially, such regulations provide low types

with an additional tool to disguise themselves, by pooling with privacy-conscious borrowers

who withhold their data, reducing their expected manipulation cost. Further, high-type
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borrowers who do share their data now obtain improved credit terms.

Overall, our findings highlight the intriguing dynamics between privacy protection, data

sharing, and borrower manipulation behavior within the context of credit lending. More

broadly, our framework allows us to understand the effects of different factors on borrower

manipulation and credit market outcomes. For example, as financial literacy improves,

individuals will gain better knowledge of both the data used in credit underwriting and

the actions they can take to enhance their creditworthiness. In our model, this would be

equivalent to the manipulation cost decreasing for borrowers. Borrower manipulation will

increase, making lending less efficient overall. Along a similar vein, anti-fraud measures

implemented by lenders that deter manipulation may benefit borrowers in the aggregate,

because the loss to low-type borrowers may be outweighed by the gain to high-type borrowers.

Our paper builds on the literature on manipulation in contracting settings, in which the

agent can manipulate the observed performance measure. In such a setting, the multi-tasking

model of Holmström and Milgrom (1991) implies that when manipulation of a particular

variable is easy, the contract should not depend on that variable. In a moral hazard setting,

Goldman and Slezak (2006) show that manipulation is more likely when managers have

high-powered incentives. Liang and Madsen (2024) build on the career concerns framework

of Holmström (1999) and study how the acquisition of new data impacts the agent effort and

aggregate welfare. Lacker and Weinberg (1989) consider a situation with hidden information,

and show the optimal contract may involve the agent falsifying the reported state. When

both adverse selection and moral hazard are present, Beyer, Guttman, and Marinovic (2014)

find that in the presence of manipulation, the optimal contract is less steep than otherwise.

Recent work on agent manipulation in financial settings includes Barbalau and Zeni

(2023) in the context of green bonds. Cohn, Rajan, and Strobl (2024) examine an issuer

manipulating information provided to a credit rating agency, and tie the incentives to

manipulate the quality of the rating process. With respect to mortgage loans, Rajan,

Seru, and Vig (2015) show that the interest rate on a loan becomes a worse predictor of

default as securitization increases during the subprime crisis. Our manipulation mechanism

provides one potential explanation for this documented failure of default models. In addition,

a line of research in computer science and econometrics explicitly considers the effect of

strategic manipulation behavior on generated data (e.g., Dekel et al., 2010; Chen et al.,

2018; Björkegren et al., 2020; Hennessy and Goodhart, 2023; Gamba and Hennessy, 2024).

The general idea that an agent’s endogenous action can induce information loss has many

broad implications. For instance, Perez-Richet and Skreta (2022) study the optimal design

of tests with manipulable inputs and find that the optimal tests must induce productive

falsification. Frankel and Kartik (2022) consider a more abstract setting and show that
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data-based decision-making should account for the manipulation of data by agents. Our

application to the credit lending market allows us to determine normative implications and

study the effects of different regulations on borrower and lender welfare. Goldman, Martel,

and Schneemeier (2022) show that media coverage can increase the manipulation of corporate

disclosures.

Our paper is also related to the growing literature on FinTech lending and the use of

big data in the lending business. Berg, Fuster, and Puri (2021) offer an excellent survey

on this literature. Berg, Burg, Gombović, and Puri (2020) and Agarwal, Alok, Ghosh, and

Gupta (2020) show that digital footprint variables can be important predictors of default,

and usefully complement credit bureau information. Di Maggio and Yao (2021) note FinTech

lenders’ reliance on information provided in credit reports to automate their lending decisions

fully, and Di Maggio, Ratnadiwakara, and Carmichael (2022) find that alternative data used

by a major FinTech platform exhibit substantially more predictive power with respect to

the likelihood of default than traditional credit scores. Jansen, Nagel, Yannelis, and Zhang

(2022) analyze the welfare effects of increased data availability in the credit market. On the

theory side, Parlour, Rajan, and Zhu (2022) examine the impact of FinTech competition with

banks in payment services, He, Huang, and Zhou (2023) study the effect of open banking

on lending market competition, and Li and Pegoraro (2022) model competition between

banks and a BigTech platform. We contribute to this literature by focusing on borrowers’

manipulation behavior and exploring its implications for the lender’s decisions and the overall

credit market. Although the specific types of alternative data we are considering – those

that are easily manipulable – are likely more relevant for smaller, unsecured loans, our model

applies to both collateralized and uncollateralized loans. For example, Buchak, Matvos,

Piskorski, and Seru (2018) demonstrate that FinTech mortgage lenders in the US rely on

different sources of information than non-FinTech lenders.

Privacy and the impact of related regulations have been the subject of increasing research

interest (e.g., Tang, 2019; Chen, Huang, Ouyang, and Xiong, 2021; Agur, Ari, and Dell’Ariccia,

2023; Aridor, Che, and Salz, 2023; Doerr, Gambacorta, Guiso, and Sanchez del Villar, 2023);

see Johnson (2022) for a survey on this topic. Our paper contributes to this literature by

introducing the concept of non-sharing of data with the lender and manipulation of digital

data as complementary strategies employed by borrowers to safeguard their privacy.

2 Model

We consider a credit market with a lender and a borrower. The borrower has a project that

requires a financial investment of 1 unit at time 0. The project may either succeed or fail.

5



If it succeeds, it generates a payoff at time 2 that is specified below. If it fails, the payoff is

zero. The risk-free rate is zero and both agents are risk-neutral.

The borrower is penniless and seeks external financing for the entire investment of 1.

As is standard with limited liability, both parties receive zero when the project fails. Thus,

without loss of generality, we can refer to the external financing contract as debt and the

financier as a lender.

2.1 Borrower

Borrower’s project: Each borrower has a project that requires an investment of 1 unit

at time 0, and generates a random payoff at time 1. If the project succeeds, at time 1 it

generates a cash flow of 1 + v, where v captures the profitability of a successful project.

This profitability is privately known to the borrower. We assume that v has an atomless

distribution F (·) with support [0, R] and density f(·). The distribution F (·) has an increasing

hazard rate, that is, f(v)
1−F (v)

is increasing in v. If the project fails, the cash flow at time 1 is

zero.

There are two types of borrowers, high (H) and low (L), who differ in the likelihood

that their project will be successful. Let qθ denote the probability that the project of the

borrower of type θ is successful, where 0 < qL < qH < 1. The borrower privately knows her

own creditworthiness. The prior probability that the borrower has a high success probability

is α ∈ (0, 1), and this fraction is common knowledge. Both success probability q and project

profitability v are private information for the borrower. For brevity, we refer to the success

profitability as the “type” of the borrower, so that the high-type (low-type) borrower succeeds

with probability qH (qL).

We assume that the borrower’s reservation utility is zero, that is, if they do not accept

the loan for the project, they obtain a zero payoff. Further, we assume that qH(1 +R) > 1,

that is, the most profitable project of the high-type borrower has positive NPV.

Borrower’s digital profile: Each borrower has a digital profile that is potentially informative

about their success probability. If this profile is uncovered by the lender, the latter obtains

a digital signal dj ∈ {dh, dℓ} about the borrower’s type. We use the term “digital profile” to

include all “alternative data” about the borrower, that is, information other than traditional

financial information that is considered when evaluating a loan applicant. For individuals,

such alternative data includes information about educational and employment history and

bank account cash flows. In our usage, it also includes the digital footprint variables

highlighted by Berg et al. (2020), such as the electronic device the borrower uses (e.g.,

desktop, tablet, or mobile), the operating system (e.g., Windows, iOS, or Android), the
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channel through which a customer has visited a website, and the time at which a customer

applies for a loan. In addition, there may be information gleaned from the apps used by

the borrower, their social media presence, and metrics of social connectivity (Agarwal et al.,

2020). For small and medium-sized businesses (SMBs), the digital profile can include their

business ratings, reviews on social media and on sites like Yelp, web traffic data such as the

global traffic rank, online presence, and use engagement data.

Of course, in deciding whether to make a loan, the lender also considers traditional

financial information such as the credit score, income, and wealth of the borrower, as well

as their history with respect to debt (such as types of loans, outstanding balances, and

length of credit history). These variables are factored into the success probabilities qH and

qL, as well as the probability α of the borrower being the high type. Our focus is on the

additional information a lender may obtain from alternative data obtained from the user’s

online presence.

Manipulation: A key feature of our model is that the borrower can manipulate their

digital profile. Manipulation increases the probability that the digital profile provides incorrect

information about the borrower’s type. Denote the borrower’s manipulation decision as m ∈
[0, 1], where m represents the probability that manipulation is successful. The manipulation

is relevant only if the lender succeeds in uncovering the borrower’s digital profile. In this case,

if the manipulation is unsuccessful, which happens with probability 1−m, the borrower with

a high success probability generates signal dh and the borrower with a low success probability

generates signal dℓ. Conversely, if the manipulation is successful, the high-type generates

signal dℓ and the low-type signal dh. To manipulate, a borrower incurs a cost C(m), where

C(0) = C ′(0) = 0 and C ′(m), C ′′(m) > 0 for all m > 0. The borrower’s manipulation

decision is unobserved by the lender.

There can be several ways to interpret the manipulation cost. First, it includes the

expenditure of time, effort, and money for borrowers to manipulate their digital profile. For

example, an individual may intentionally switch from an Android phone to an iPhone when

applying for a loan online, or a restaurant seeking more funding may engage in inflating

Google reviews to enhance its social presence.

Second, manipulation can potentially have legal consequences and damage the borrower’s

reputation. For instance, in the case of a restaurant inflating its reviews, once the deception

is uncovered, it can negatively impact the restaurant’s reputation. Therefore, the expected

reputational damage is included in the manipulation cost.
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2.2 Lender

Data technology: The lender can leverage the power of alternative data in its lending

business. It chooses a data technology ρ ∈ [0, 1] in its underwriting model, where ρ represents

the probability that the lender successfully observes the digital profile of the borrower. The

more advanced the data technology (i.e., the higher the value of ρ), the more informative

the lender’s signal about the borrower’s digital profile.

Specifically, the lender observes a signal from the borrower’s digital profile. We denote

this digital signal as dj ∈ {dh, dℓ, d0}. With probability 1 − ρ, the lender does not learn

anything extra from the borrower’s digital profile, and we say that it observes the uninformative

signal d0. Conversely, the signals dh and dℓ allow the lender to update its priors over borrower

type, as specified below. Because the signal obtained by the lender is directly informative

only about the borrower’s digital profile rather than the true type, the probability of receiving

signal dh and signal dℓ depends on the extent of manipulation by the borrower.

In practice, data technology used in underwriting models encompasses various aspects,

including data coverage (that is, the amount and types of digital data obtained) and the

quality of algorithms used to extract relevant information from the data. For example,

lenders may choose to incorporate more alternative data into their underwriting models to

paint a more complete picture of a borrower’s digital profile. Furthermore, even with the

same set of alternative data collected in a loan application proposal, lenders can enhance

their algorithms to generate more useful information. For convenience, going forward we

refer to ρ as the extent of coverage about the borrower’s digital behavior.

To focus on the effect that manipulation by the borrower has on the lender, we assume

that the lender faces no direct technological cost. That is, increasing ρ has no cost for

the lender. Thus, the only reason that the lender may not choose the most informative

technology, ρ = 1, is due to the fact that the manipulation by the borrower may lead to a

reduction in signal quality.5

Regulatory regimes: Depending on the regulatory regimes, the lender’s data coverage

ρ may be observed by the borrower or may remain unobservable. In a transparent regime,

the lender is required to disclose the main variables used in the credit underwriting model

and to describe the algorithm in some way, so ρ is observed by the borrower. In contrast, in

the opaque regime, the lender’s data coverage ρ remains unobserved by the borrower.

5In Section 6.2, we consider an extension in which the lender incurs costs to acquire and process data.
We demonstrate the enduring validity of our insight in this context.
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Loan pricing: We assume the lender has deep pockets and can raise an arbitrary amount

of funds at an interest rate normalized to zero. The lender’s data collection facilitates

personalized loan pricing. Specifically, the lender’s decision on whether to offer a loan to the

borrower, and the interest rate if it does so, is contingent on the digital signal dj obtained

from the borrower. The interest rate offered to the borrower is denoted as r. Thus, if a loan

is accepted and the project succeeds, the lender obtains a net payoff r, whereas its net payoff

is −1 when the project fails. Since no borrower will accept a loan offer at an interest rate

strictly higher than the project’s maximum profitability rate R, when the lender does not

want to make a loan, it can simply offer the interest rate R.

2.3 Sequence of Moves

The sequence of moves in the game is illustrated in Figure 1. At time 0, the lender chooses

its data coverage ρ to maximize the expected profit from lending. The borrower observes ρ in

the transparent regime, but not in the opaque regime. The borrower then learns their success

probability qθ, and chooses manipulation intensity mθ. At time 1, the borrower observes the

profitability v of their project. Next, the lender receives a digital signal dj about the success

probability of the borrower, and offers a loan contract at the interest rate rj. The borrower

either accepts or rejects the loan offer. If the borrower accepts, the project is undertaken

and the outcome is realized at time 2.

Time 0

• The lender chooses data
coverage ρ. In the transparent
(opaque) regime, ρ is observed
(not observed) by the borrower.

• The borrower learns their

success probability qθ and

chooses manipulation intensity

mθ.

Time 1

• The borrower learns their
project profitability v.
• The lender receives a digital
signal dj and makes a loan offer
rj to the borrower.

• The borrower decides whether

or not to accept the offer.

Time 2

• The project

outcome 1 + v or

0 is obtained, and

both agents receive

their payoffs.

Figure 1: Timeline

We consider perfect Bayesian equilibria of the model.

Definition 1 (Equilibrium). A perfect Bayesian equilibrium is characterized by the lender’s

choice of data coverage ρ∗ ∈ [0, 1] and interest rate offer r∗d for each dj ∈ {dh, dℓ, d0},
the borrower’s manipulation intensity m∗

θ ∈ [0, 1] for each θ ∈ {H,L} and a loan acceptance
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decision, and the lender’s posterior belief µj that the borrower has the high success probability

given digital signal dj, such that:

(i) The data coverage ρ∗ maximizes the lender’s expected profit.

(ii) The manipulation intensity m∗
θ maximizes the expected payoff of a borrower with success

probability qθ, given the borrower’s belief about the lender’s data coverage.

(iii) The lender’s interest rate offer r∗d maximizes its expected payoff given the digital signal

dj.

(iv) The lender’s posterior belief µj given its digital signal dj satisfies Bayes’ rule wherever

possible.

(v) The borrower’s loan acceptance decision maximizes their expected payoff given their

success probability qθ and profitability v.

The lender does not observe the manipulation decision of each type of borrower. Rather,

the lender forms a belief m̂θ about the extent of manipulation by each creditworthiness type,

mθ. In equilibrium, of course, the lender’s beliefs have to be correct.

Similarly, in the opaque data regime, the borrower has a belief ρ̂ regarding the lender’s

data coverage, and in equilibrium the belief must match the actual choice of ρ by the lender;

i.e., ρ̂ = ρ∗. In the transparent regime, the borrower directly observes the extent of data

coverage.

3 Equilibrium: Borrower Behavior and Lender’s Interest

Rate Offers

We now characterize the equilibrium in the main model. We first examine the borrower’s

decision to accept or reject a loan offer at time 1 and then turn to time 0.

3.1 Borrower’s Loan Acceptance Decision

Suppose that the borrower accepts a loan at interest rate r and undertakes the project. If

the project succeeds, the borrower repays the loan plus the interest rate, obtaining a net

payoff v−r. If the project fails, the borrower defaults and receives 0. Hence, for θ ∈ {H,L},
the borrower’s expected payoff if they accept the loan is qθ [v − r].
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The borrower has a reservation utility of zero. Thus, the borrower accepts the loan if

r < v, is indifferent if r = v, and rejects if r > v. Going forward, we assume that an

indifferent borrower accepts the loan, so that the borrower accepts if and only if r ≤ v.

Thus, at time 0, the lender believes that the probability that the borrower will accept a

loan at rate r is 1− F (r), which characterizes the demand function faced by the lender.6

3.2 Lender’s Interest Rate Offers

Consider the lender’s choice of the interest rate to offer the borrower. After observing digital

signal dj ∈ {dh, dℓ, d0}, the lender updates its posterior beliefs about the borrower type. Let
µd denote the lender’s posterior belief that the borrower has the high type given signal dj,

that is, µj ≡ Pr(θ = H|dj). Let q̄j = µjqH + (1 − µj)qL denote the average success rate of

the project given signal dj.

The lender understands that if it makes a loan offer at interest rate r, the borrower

accepts the offer with probability 1−F (r). Conditional on the borrower accepting the offer,

the lender obtains a net payoff r if the project succeeds and −1 if the project fails. Therefore,

the lender’s expected payoff is

πj(r) = (1− F (r))
[
q̄j · r − (1− q̄j)

]
. (1)

The offered interest rate rj maximizes this expected payoff.

Lemma 1 (Optimal interest rates). Suppose the lender obtains signal dj ∈ {dh, dℓ, d0}.
Then,

(i) If q̄j(1 +R) ≥ 1, the optimal interest rate rj satisfies the equation

r − 1− F (r)

f(r)
=

1

q̄j
− 1. (2)

(ii) If q̄j(1 +R) < 1, the optimal interest rate is rj = R.

Proofs of all results in the main text are provided in Appendix A.

Equation (2) in Lemma 1 is the first-order condition that emerges from the lender’s

maximization problem. Given signal dj, if some projects have a weakly positive NPV (i.e.,

q̄j(1 + R) ≥ 1), the lender sets an interest rate according to equation (2). As in auction

theory, the left-hand side can be interpreted as the virtual interest rate. Rewriting the

6For simplicity, we do not explicitly incorporate limited liability for the borrower in our analysis. With
limited liability, one could argue that a borrower with v < r may also accept the loan and accept a net
payoff of zero. Formally, one could introduce an arbitrarily small cost to the borrower from undertaking the
project. In this case, the borrower will strictly prefer to reject the loan if v ≤ r. Hence, our analysis may
be interpreted as focusing on the limiting case in which the cost to the borrower of undertaking a project
approaches zero.
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equation as rj =
1
q̄j
− 1 +

1−F (rj)

f(rj)
, the lender charges a markup over the zero-profit interest

rate 1
q̄j
− 1.

Of course, if given signal dj, all projects have negative NPV (i.e., q̄j(1 + R) < 1), the

lender simply rejects the loan application by setting rj = R.

3.3 Borrower’s Manipulation Decision

Next, consider the manipulation decision of the borrower. When choosing their manipulation

intensity, the borrower holds a belief ρ̂ about the lender’s data coverage. Suppose the

borrower of type θ ∈ {H,L}manipulates with probabilitymθ. Since the borrower’s manipulation

decision is not observable to the lender, the lender’s interest rate offer for a given digital signal

depends only on its belief about the manipulation intensity of each type, m̂θ.

Taking this belief m̂θ as given, each type of borrower determines their actual manipulation

intensity mθ accounting for the following scenarios. With probability 1− ρ̂, the digital signal
is d0. With probability ρ̂, the digital signal about the borrower is either dh or dℓ. With a

minor abuse of notation, we define dθ = dh (dℓ) and dθ̃ = dℓ (dh) when θ = H (L). When

type θ generates signal dθ, we say that it has been “correctly recognized,” whereas when it

generates signal dθ̃ ̸= dθ, we say it has been “mistaken for the other type.”

Then, the digital signal equals the underlying borrower type θ with further probability

1 −mθ, and the other type θ̃ with probability mθ. Putting all this together, the expected

payoff of the borrower of type θ is

uθ(mθ; m̂θ, ρ̂) = −C(mθ) + ρ̂ mθ · qθ

∫ R

rθ̃

(v − rθ̃︸ ︷︷ ︸)dF (v)
payoff when mistaken for the other type

+ ρ̂ (1−mθ) · qθ

∫ R

rθ

(v − rθ)dF (v)︸ ︷︷ ︸
payoff when type is correctly recognized

+ (1− ρ̂) · qθ

∫ R

r0

(v − r0)dF (v)︸ ︷︷ ︸
payoff when digital signal is uninformative

.

(3)

There are three cases to consider in equation (3). First, given the borrower’s belief ρ̂

about the lender’s data technology, with probability ρ̂ · mθ the borrower will successfully

pretend to be of a different type θ̃ ̸= θ and will be offered the interest rate rθ̃. As discussed

in Section 3.1, if the realized project profitability rate v exceeds rθ̃, the borrower accepts

the offer, obtaining an expected payoff qθ(v − rθ̃). Otherwise, the borrower rejects the loan

and settles for the reservation utility of zero. Therefore, when the borrower manipulates

successfully, her expected payoff is qθ
∫ R

rθ̃
(v − rθ̃)dF (v).

12



Second, with probability ρ̂(1−mθ), the borrower’s digital profile will be correctly recognized

as belonging to type θ. The offered interest rate is rθ. Again, she accepts the loan offer rθ if

v ≥ rθ, and settles for the outside option otherwise. Thus, the expected payoff in this case

is qθ
∫ R

rθ
(v − rθ)dF (v).

Finally, with the remaining probability 1− ρ̂, the lender’s digital signal is uninformative

about borrower type, and the borrower will be offered the interest rate r0. Again, the

borrower needs to make a choice between the loan offered by the lender featured with interest

rate r0 and the outside option. The resulting expected payoff for the borrower is qθ
∫ R

r0
(v −

r0)dF (v).

We show in Proposition 1 below that in equilibrium the high-type borrower never manipulates,

that is, m∗
H = 0. If the low-type borrower believes that the lender’s data coverage is positive

(i.e., ρ̂ > 0), they manipulate with positive probability (i.e., m∗
L > 0). An immediate

implication is that the low digital signal dℓ reveals the borrower to have low success probability,

so that the offered interest rate increases to rℓ > r0, where r0 is offered to borrowers

generating the uninformative signal d0. Conversely, as long as m∗
L < 1, the offered interest

rate after the high digital signal falls to rh < r0.

Letm denote the manipulation intensity of a low-type borrower, and m̂ the lender’s belief

about this intensity. The interest rate offered after signal dh will depend on m̂, and may

be written as rh(m̂). With probability 1 − ρ̂, regardless of how much they manipulate, the

borrower generates the digital signal d0. If the lender obtains an informative signal and the

borrower succeeds in manipulating, they generate digital signal dh and are offered a loan at

interest rate rh(m̂), whereas if they fail they generate digital signal dℓ and are offered the

interest rate rℓ. Noting that in equilibrium m̂ = m, the change in the low-type borrower’s

expected equilibrium payoff from succeeding versus failing at manipulation may be written

as

ρ̂ qL

(∫ R

rh(m)

(v − rh(m))dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
. (4)

Now suppose the low-type borrower manipulates with probability 1, that is, m = 1.

Observe that when m = 1, the lender’s belief after the high digital signal dh is equal to

their belief after the uninformative signal d0. Thus, the interest rate offered, rh(1), equals

r0. Denote

∆(ρ̂) = ρ̂qL

(∫ R

r0

(v − r0)dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
. (5)

Observe that, for a given ρ̂, ∆ depends only on the exogenous variables in the model.

We now characterize the borrower’s manipulation decision. Suppose that, in either the

transparent or the opaque regime, the lender chooses a strictlyu positive data coverage
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ρ > 0. A best response on the part of the borrower is characterized by (i) an optimal

manipulation intensity for each of the high and low type borrowers and (ii) an optimal loan

acceptance decision; i.e., accepting a loan if the interest rate r is weakly lower than the

project profitability v. We say that a best response of the borrower is consistent if the

lender’s posterior beliefs after each of the digital signals dh, dℓ, and d0 satisfy Bayes’ rule

given the borrower’s strategy, and the offered interest rates rh, rℓ, and r0 are determined

from Lemma 1 given the lender’s posterior beliefs. In the special case that m∗
L = 1, the

signal dℓ represents a zero-probability event, and we assign the belief that the borrower is

the low-type.

Proposition 1. Suppose that, in either the transparent or opaque regimes, the lender chooses

data coverage ρ > 0. Then, in any consistent best response of the borrower,

(i) The high-type borrower does not manipulate their digital profile, i.e., m∗
H = 0.

(ii) The low-type borrower manipulates with strictly positive probability. Further, if ∆(ρ̂) <

C ′(1), the equilibrium manipulation intensity is strictly between 0 and 1, that is, m∗
L ∈

(0, 1), whereas if ∆(ρ̂) ≥ C ′(1), then m∗
L = 1.

(iii) The interest rates offered by the lender satisfy rh ≤ r0 < rℓ, with strict inequality

whenever m∗
L < 1.

Going forward, for the rest of the paper, we set mH = 0, and use the subscript-less

variable m to indicate mL, the extent of manipulation by the low type. The signal structure

implied by Proposition 1 is shown in Figure 2.

Type H

dh

dℓ

d0

ρ̂

0

1− ρ̂

Type L

dh

dℓ

d0

ρ̂ m

ρ̂ (1−m)

1− ρ̂

Figure 2: Structure of digital signal when the high-type borrower does not manipulate, and
the low type manipulates with intensity m

Given the manipulation strategies of each type of borrower, and using the fact that in

equilibrium the lender’s beliefs must match the actual manipulation strategies, the lender’s

posterior beliefs after each signal may be written as follows. Let µj denote the posterior

14



probability of the high-type borrower after signal dj. Then, µℓ = 0, µ0 = α, and µh =
α

α+(1−α)m
∈ (0, α). As part (iii) of the proposition says, it follows that the interest rate is

lowest after signal dh and highest after signal dℓ.

As we show in the proof of the Proposition, when C ′(1) > ∆(ρ̂), the equilibrium

manipulation intensity of the low-type borrower, m∗, satisfies the equation

C ′(ρ̂) = ρ̂qL

(∫ R

rh(m)

(v − rh(m))dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
. (6)

We show that in this case, the manipulation intensity is increasing in ρ̂, the borrower’s

belief about the lender’s data coverage.

Lemma 2. Suppose m∗(ρ̂) < 1. Then, the higher the belief about the data coverage chosen

by the lender, the more intensively the low-type borrower manipulates their digital profile.

That is, dm∗

dρ̂
> 0.

When ρ̂ is higher, the borrower believes that their digital profile is more likely to be

revealed. Thus, a low-type borrower has a greater incentive to manipulate their data. The

resulting positive relationship between the lender’s choice of data coverage and the low-type

borrower’s manipulation intensity underlies the key mechanism in our paper.

4 Lender’s Data Coverage

We now turn to the lender’s choice of data coverage, ρ, at the start of the game. The lender

chooses its data coverage to maximize its expected profit from lending. Recall from equation

(1) that the profit after signal dj and interest rate offer r is πj(r) = (1−F (r))[q̄jr− (1− q̄j)],
where q̄j = µjqH + (1 − µj)qL is the average quality of the project given digital signal dj.

The optimal interest rate offer rj also varies by signal, and is given by Lemma 1.

With probability ρ, the lender obtains an informative signal (dh or dℓ) from the borrower’s

digital profile. The low-type borrower manipulates with intensity m. Overall, therefore, the

lender obtains digital signal dh with probability ρ{α + (1 − α)m}. The lender offers the

interest rate rh when it obtains signal dh. Observe that both the optimal interest rate rh and

the average success probability q̄h depend on m. Let πh(rh), as characterized in equation

(1), denote the lender’s expected profit after signal dh.

With probability ρ(1−α)(1−m) the lender obtains the digital signal dℓ and offers interest

rate rℓ. In this case, the lender makes an expected profit of πℓ(rℓ). Finally, with probability

1−ρ, the lender obtains an uninformative digital signal. In this case, the lender sets interest

rate r0 and earns a profit π0(r0).
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Overall, the lender’s expected profit at the start of the game may be written as:

Π(ρ) = ρ
(
{α + (1− α)m}πh(rh) + (1− α)(1−m)πℓ(rℓ)

)
+ (1− ρ)π0(r0). (7)

Note that in equation (7), the low-type borrower’s manipulation intensity m is a function

of the borrower’s belief over data coverage, ρ̂. In the transparent data regime, the borrower

directly observes ρ. In the opaque data regime, the borrower has a belief over ρ, and in

equilibrium the belief matches the actual choice of data coverage by the lender.

To highlight the effects of borrower manipulation on the lender’s choice of data coverage,

we first consider a benchmark case in which the borrower cannot manipulate. We then

discuss the equilibrium choice of data coverage in both the transparent and opaque regimes.

4.1 Benchmark: No Manipulation

Consider first a benchmark economy in which the borrower is unable to manipulate their

digital profile, that is, mθ = 0 for each θ ∈ {H,L}.7 Recall that dθ = dh (dℓ) and dθ̃ = dℓ (dh)

when θ = H (L). In the no-manipulation case, the digital signal fully reveals the borrower’s

success probability. That is,

d =

dθ with probability ρ, for each θ ∈ {H,L}

d0 with probability 1− ρ.
(8)

In particular, the quality of the signal strictly improves with digital data coverage ρ. Given

that increasing ρ incurs no additional costs, it is immediate that the lender prefers maximal

data coverage.

Lemma 3 (No-manipulation benchmark). Suppose the borrower cannot manipulate their

digital profile. Then, regardless of the regulatory regimes, in equilibrium the lender chooses

maximal data coverage, i.e., ρ∗ = 1. Hence, the digital signal is fully informative about

borrower type.

4.2 The Transparent Regime: Endogenous Limit on Data Coverage

We now turn to our base model, in which the borrower can manipulate their digital profile.

In this section, we study the transparent regime, in which the borrower directly observes the

lender’s choice of data coverage ρ.

We are particularly interested in understanding the circumstances in which the lender’s

optimal choice of data coverage is strictly below 1, that is, ρ∗ < 1. The key insight builds on

Lemma 2. Manipulation by the low-type borrower reduces the lender’s profit. Suppose that

7Alternatively, one can assume the borrower’s marginal cost of manipulation is infinite for any positive
m, i.e., C ′(m) = ∞ for any value of m > 0.
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if the lender chooses full data coverage (i.e., sets ρ = 1), the low-type borrower optimally

manipulates with less than full intensity (i.e., chooses m < 1). Then, by reducing its

data coverage slightly, the lender can induce the low-type borrower to reduce the extent of

manipulation. The direct effect of reducing data coverage is to reduce lender profit, whereas

the indirect effect of thereby reducing borrower manipulation increases lender profit.

We identify a sufficient condition under which the indirect effect outweighs the direct

effect, and overall lender profit is greater at some ρ < 1 than at ρ = 1. Recall the definition

of ∆ in equation (5), and set ρ̂ = 1. We have

∆1 = qL

(∫ R

r0

(v − r0)dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
. (9)

We show that if the marginal cost of manipulation is low, specifically if C ′(1) ≤ ∆1, the

lender endogenously limits its own data coverage. In the latter case, when ρ = 1, the low-type

borrower manipulates with probability 1, that is, m∗ = 1. Denote ρ̄ = min{ρ | m∗(ρ) = 1}
when the set {ρ | m∗(ρ) = 1} is non-empty, and ρ̄ = 1 otherwise.

Proposition 2 (Optimal data coverage in the transparent regime). In equilibrium in the

transparent regime:

(i) The lender chooses a strictly positive level of data coverage, i.e., ρ∗ > 0.

(ii) If C ′(1) ≤ ∆1, (i.e., the manipulation cost is sufficiently low), the lender chooses less

than maximal data coverage (specifically, ρ∗ < ρ̄).

Proposition 2 shows that, in the transparent regime, despite the data technology having

no direct cost in our model, the lender may choose to adopt less than full data coverage.

This result sharply contrasts with the benchmark economy without manipulation.

The low-type borrower’s marginal manipulation benefit monotonically decreases in the

manipulation intensity. Thus, when the low-type borrower manipulates with full intensity,

the marginal payoff becomes the lowest. In this case, the lender’s signal dh becomes completely

uninformative, leading to the same level of interest rates under the high signal and no signal,

that is, rh(1) = r0.

The condition in part (ii) of the proposition requires the marginal cost of manipulation

when m = 1 to be sufficiently low. Essentially, it implies that the digital profile is easily

manipulable by the borrower. In such a case, the lender endogenously avoids full data

coverage in order to maintain data quality. Note that the condition is a sufficient condition,

and the result on the lender choosing less than full data coverage will sometimes continue to

hold even when it is violated.8

8In Section 4.2.2, we illustrate this point in a numerical example.
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4.2.1 Borrower Surplus and Total Surplus

We now turn to the surplus generated in equilibrium. To simplify notation, we let ρ and

m respectively denote the equilibrium values of data coverage and manipulation intensity of

the low-type borrower.

First, consider the borrower. Let uθ(ρ) be the expected utility of the type θ borrower

when the data coverage is ρ. Here,

uH(ρ) = qH

{
ρ

∫ R

rh(m)

(v − rh(m))dF (v) + (1− ρ)

∫ R

r0

(v − r0)dF (v)
}
, (10)

uL(ρ) = qL

{
ρm

∫ R

rh(m)

(v − rh(m))dF (v) + ρ(1−m)

∫ R

rℓ

(v − rℓ)dF (v)

+(1− ρ)

∫ R

r0

(v − r0)dF (v)
}
− C(m). (11)

Note that in the transparent regime, the equilibrium manipulation intensity of the low-type

borrower,m, depends on ρ.

The borrower’s ex ante expected payoff is

U = αuH + (1− α)uL. (12)

The social planner cares about the total surplus, which is defined as the sum of the lender

profit and the borrower surplus:

S = Π+ U , (13)

where the lender profit Π and the borrower surplus U are given by equations (7) and (12),

respectively.

We show that there are conditions under which both the borrower and the social planner

have a higher utility when the data coverage is strictly positive. It is unsurprising that the

lender’s profit would be higher when data coverage is strictly positive than when it is zero.

What might be surprising is that in ex ante terms the borrower too is strictly better off.

Intuitively, the low type is hurt as data coverage increases from zero, for two reasons.

First, when ρ > 0, in equilibrium the low type sometimes has their type fully revealed,

and obtains a low payoff. Second, the increase in ρ induces the low type to increase their

manipulation, which incurs a cost. Conversely, the high type benefits when data coverage is

increased above zero, because when the digital signal is high, they obtain a better interest

rate (i.e., they sometimes obtain the rate rh rather than r0).

In terms of the ex ante borrower surplus U , the trade-off between these two effects depends

on how much the equilibrium manipulation by the low type (m) and the interest rates offered

by the lender (rh and rℓ) change as ρ increases. The sizes of these effects, in turn, depend

on the distribution of project profitability, v. To obtain a concrete result, in part (b) of the
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next proposition, we assume project profitability follows a generalized uniform distribution.

Proposition 3 (Borrower surplus and total surplus). In the transparent regime, comparing

small but strictly positive data coverage (i.e., ρ > 0) to no data coverage (i.e., ρ = 0),

(i) The high-type borrower is better off and the low-type borrower is worse off with strictly

positive data coverage. That is, duH

dρ
|ρ=0> 0 and duL

dρ
|ρ=0< 0.

(ii) Suppose that (a) qL(1 + R) ≥ 1 and (b) the project profitability v has a generalized

uniform distribution, that is, F (v) =
(
v
R

)β
, with β > 0. Then, there exist thresholds

β1 < 1 < β2 ≤ β3 such that if β ∈ (β1, β2), ex ante the borrower is better off with

strictly positive data coverage (i.e., ∂U
∂ρ

|ρ=0> 0) whereas if β > β3, ex ante the borrower

is strictly worse off (i.e., ∂U
∂ρ

|ρ=0< 0).

The condition qL(1 + R) > 1 in part (ii) of the proposition ensures that the optimal

interest rate given any signal dj is given by equation (2) in Lemma 1 part (i).

As demonstrated in part (ii) of the Proposition, ex ante borrower surplus may either

increase or decrease when ρ increases from 0. When β is relatively small, the positive effect

on the high-type borrower outweighs the negative effect on the low-type borrower. Note that

the range over which borrower surplus is increasing at ρ = 0 includes the special case of the

uniform distribution (i.e., β = 1). When β becomes large and exceeds the upper threshold

β3, the negative effect dominates, and thus ex ante the borrower is worse off when the lender

starts to acquire data.

The intuition behind this result is as follows. As β increases, the distribution of project

profitability v shifts toward the right. For high values of β, because most borrowers have

high profitability, the interest rates charged to the borrower are relatively high even when

the lender believes the borrower has the high type. That is, the high type has little to gain

from the lender’s data collection efforts. Conversely, for low values of β, the interest rate

offered to the high type can fall more steeply in ρ, resulting in a greater gain for this type

of borrower. Therefore, in this latter case, the borrower too is ex ante better off when the

lender has access to some digital data.

In terms of social surplus, it is immediate that when β is relatively small (i.e., β ∈ (β1, β2),

social surplus increases when the lender starts to acquire data. In this parameter region,

both ex ante borrower surplus and the lender’s profit increase when ρ increases by a small

amount starting at ρ = 0. Numerically, we find that even for large values of β (i.e., β > β3),

social surplus increases in ρ at ρ = 0. That is, the gain to the lender outweighs the ex ante

loss to the borrower.
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4.2.2 Transparent Regime: Numerical Example

We present a numerical example to show that, even when the condition C ′(1) ≤ ∆1 in

Proposition 2 is violated, the lender may nevertheless stop short of maximal data coverage

in the transparent regime. Set qH = 0.95, qL = 0.8, α = 0.5, R = 0.4 and v ∼ U [0, R]. The

manipulation cost is set to km2.

This figure plots the effect of data coverage ρ on the equilibrium values of lender profit and ex ante borrower
surplus. The manipulation cost function is C(m) = 0.01m2. In addition, we set α = 0.5, qH = 0.95, qL =
0.8, R = 0.4, and v ∼ U [0, R].

Figure 3: Effects of data coverage

When v ∼ U [0, R], the optimal interest rate given an average project quality q, shown

in equation (2) can be solved in closed form as r∗(q) = 1
2

(
1
q
+ R − 1

)
. Thus, r0 = 0.2714,

and rℓ = 0.325. Now, ∆1 can be computed to be 0.0109. As C ′(1) = 2k, it follows that

when k ≥ 0.00545, we have C ′(1) > ∆1. We find that if k ≥ 0.014 (approximately), the

lender chooses maximal data coverage, ρ = 1. Thus, the broader point from Proposition 2

continues to hold — if the marginal cost of manipulation is below some threshold, the lender

endogenously limits its data coverage, whereas when this marginal cost is high, the lender

opts for maximal data coverage.

Figure 3 shows the firm profit and ex ante borrower surplus when k = 0.01. The lender’s

profit is maximized at ρ ≈ 0.698, and the borrower’s ex ante surplus at ρ ≈ 0.157. It is

immediate that the socially optimal level of data coverage lies between the lender’s and the

borrower’s preferred values; in this example total surplus is maximized at ρ ≈ 0.342.

More generally, when v is uniform, we find that in the transparent case the lender prefers

a higher level of ρ than the borrower, and hence the lender over-invests in data collection
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relative to the social optimum.

4.3 Opaque Regime

In the opaque regime, the borrower does not observe the lender’s data coverage. We show

that in this case there is always an equilibrium which features full data coverage, i.e., ρ∗ = 1.

Further, if the manipulation cost is not too high, the equilibrium is unique. Notably, in

equilibrium the low-type borrower manipulates their digital profile, so digital signal is not

fully informative about borrower type.

Proposition 4 (Optimal data coverage in the opaque regime). Suppose the lender’s choice

of digital data coverage, ρ, is not observable to the borrower. Then,

(i) In any equilibrium, the low-type borrower manipulates fully, i.e., m∗ = 1.

(ii) There is always an equilibrium in which the lender chooses maximal data coverage,

i.e., ρ∗ = 1.

(iii) The equilibrium with maximal data coverage is unique if and only if C ′(1) ≥ ∆(1)

(i.e., the manipulation cost is sufficiently high),

Essentially, in the opaque regime the lender cannot credibly commit to acquiring limited

information about the borrower. Suppose the borrower believes that the lender limits the

scope of the alternative data it acquires (i.e., suppose ρ̂ < 1). Then, it is optimal for the

borrower to limit the extent to which they manipulate their digital profile. However, the

lender now has an incentive to deviate and increase its data coverage. In fact, in equilibrium,

either the lender uses all available data (ρ∗ = 1), or the low-type borrower fully manipulates

their digital profile (m∗ = 1).

We can now show that the lender earns a higher profit in the transparent regime, as

compared to the opaque regime. As we show in the proof of Corollary 1, if the manipulation

cost is sufficiently low, the lender’s preference for the transparent regime is strict.

Corollary 1 (Lender prefers transparent regime). The lender’s data coverage is (weakly)

lower, while the expected profit is (weakly) higher in the transparent regime, compared to the

opaque regime.

5 Model with Privacy: Borrowers Own Their Data

A common theme of current regulations in different parts of the world is to grant consumers

control rights over their own data. For example, under open banking, consumers can choose
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with whom to share their banking data. To analyze the effects of such regulations, we extend

our base model to allow borrowers to determine whether to provide access to their data with

the lender.

One downside of a consumer choosing to share their data with a lender is a potential loss of

privacy. Suppose that in addition to different project success probabilities qθ, borrowers have

varying degrees of value for privacy. In particular, a borrower can be “privacy-conscious”

and value their privacy at y > 0 or be “unconcerned” about privacy, and value their privacy

at zero. We assume that y is sufficiently high that a privacy-conscious borrower will not

provide the lender with access to their data. Conversely, unconcerned borrowers who do

not value privacy provide access to their data if it will benefit them financially. A fraction

δ > 0 of borrowers are privacy-conscious, and each borrower knows their own privacy type.

For simplicity, we assume that the borrower’s value for privacy is independent of both the

success probability qθ and the project profitability v.

In this section, we focus on the transparent regime, in which borrowers observe ρ, the

extent of data coverage by the lender. Let γi be the probability that an unconcerned borrower

with success probability qi provides their data to the lender. A borrower who provides such

access may manipulate their information, as in the base model. A borrower who shares their

data receives an interest rate offer rj based on the digital signal obtained by the lender,

dj ∈ {dh, dℓ, d0}. A borrower who does not provide access to their data receives an interest

rate offer rn. The timeline of events is shown in Figure 4.

Consider the optimal decisions of a borrower who has a low success probability qL and is

unconcerned about privacy. All privacy-conscious consumers withhold their data from the

lender. Importantly, because the value for privacy is uncorrelated with the success probability

of the project, the privacy-conscious pool includes high and low types in the same proportion

as their prior. Now, to mask their type, the unconcerned low-type borrower therefore has

two choices: withhold their data (in which case they pool with privacy-conscious borrowers)

or share their data and manipulate their digital profile (in which if successful, they pool

with unconcerned high-type borrowers who have chosen to share their data). In general, in

equilibrium, unconcerned low-type borrowers adopt both masking strategies.

In this scenario, particularly for low values of ρ, there may exist an equilibrium in the

continuation game in which no borrower shares their data with the lender (i.e., γH = γL = 0).

Such an equilibrium may be supported with the off-equilibrium belief that any borrower

sharing data has the low type. However, an equilibrium of this nature does not satisfy the

refinement D1. Among equilibria that do satisfy this criterion, we find that unconcerned

high-type borrowers both share their data with probability one and do not manipulate.

Proposition 5 (Low-type borrowers withhold data). Suppose that, in the transparent regime,
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Time 0

• The lender chooses data
coverage ρ, which is observed
by the borrower.
• The borrower has a success
probability qi and privacy value
y or 0.
• Privacy-conscious borrowers
withhold their data from the
lender.

• Unconcerned borrowers with

success probability qi choose (i)

the probability with which they

provide the lender access to their

data, γi and (ii) a manipulation

intensity, mi.

Time 1

• The borrower learns their
project profitability v.
• If the borrower has provided
access to their data, the lender
receives a digital signal dj and
offers an interest rate rj to the
borrower.
• If the borrower has not
provided access to their data,
the lender offers an interest rate
rn to the borrower.

• The borrower decides whether

or not to accept the offer.

Time 2

• The project yields

1 + v or 0, and both

parties obtain their

payoffs.

Figure 4: Timeline of model in which borrowers choose whether to provide access to data

the lender’s data coverage is strictly positive, i.e., ρ > 0. In any equilibrium that survives

the refinement D1 in the continuation game, among borrowers unconcerned about privacy:

(i) The high-type borrower provides their data to the lender with probability 1 (that is,

γ∗H = 1), and does not manipulate.

(ii) The low-type borrower may withhold access to their data, and if they do provide access,

may manipulate their digital profile with positive probability. That is, γ∗L ∈ [0, 1] and

m∗ ∈ [0, 1].

(iii) The interest rates offered after different signals satisfy rℓ > rn ≥ r0 ≥ rh, with the

second inequality being strict whenever γ∗L < 1 and the third whenever m∗ < 1.

Essentially, the lender faces four groups of borrowers: those who did not share their data

(which includes all privacy-conscious borrowers and some fraction of unconcerned low-type

borrowers), and, from the set that did share their data those who generated each of the high,

low, and uninformative signals (respectively, dh, dℓ, and d0). Among borrowers unconcerned

with privacy, only some low-type borrowers withhold their data. Thus, compared to the prior

pool, the pool of borrowers who do not provide their data is skewed toward the low type.

Conversely, the pool of those who do share data is skewed toward the high type. Therefore,

we generally expect that rn > r0. As before, only low-type borrowers generate signal dℓ, so
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rℓ > rn. Finally, as long as low-type borrowers who share their data do not manipulate with

probability 1, we will see r0 > rh.

Notice that in the special case that δ = 0, the extended model reduces to the base model.

Because all high-type borrowers share their data, when δ = 0 any borrower who fails to share

data is revealed to be the low type. Therefore, in equilibrium γ∗L = 1.

Next, consider the lender’s expected profit as ρ varies. As only the low-type unconcerned

borrower may refuse to share their data, let γ denote the probability with which they do

provide data access, and set γ∗H = 1 as specified by Proposition 5. The lender’s expected

profit given signal dj ∈ {dh, dℓ, d0, dn} is πj(rj) = (1− F (rj)) · [q̄j · rj − (1− q̄j)]. Taking

into account all types of available information, the lender’s expected profit at the beginning

of the game can be expressed as:

Π(ρ) = {δ + (1− α)(1− δ)(1− γ)} πn(rn) + (1− ρ)(1− δ){α + (1− α)γ} π0(r0)

+ρ(1− δ)[{α + (1− α)γm} πh(rh) + (1− α)γ(1−m)πℓ(rℓ)]. (14)

Here, both γ and m (and in turn the interest rates rn, r0, and rh) vary as data coverage ρ

varies.

To explore the properties of equilibria in this section, we turn to a numerical example.

5.1 Example 2

Set α = 0.5, qH = 0.95, qL = 0.8, R = 0.4, C(m) = 0.01m2, and v ∼ U [0, 0.4]. We vary δ,

the proportion of privacy-conscious borrowers, between 0.01 and 0.99.

We exhibit three features of the equilibrium as δ varies. First, given our parameters,

the lender chooses an interior value of ρ for every δ. As shown in the left panel of Figure

5, ρ∗ ranges between 0.7 and 0.89, and is strictly below 1 for all values of δ. Second, for

the low-type borrower who is unconcerned about privacy, refusing to provide access to their

data and manipulating their digital profile are complementary activities. That is, as shown

in the right panel of Figure 5, as δ increases, the proportion of these borrowers who share

their data (γ∗) falls, and the equilibrium manipulation (m∗) increases. Notice also that both

γ∗ and m∗ are strictly between 0 and 1 in this example.

Third, we find that the equilibrium utility of both the high and low type of unconcerned

borrower increases with δ, and in particular is greater when δ > 0 than in the limiting case

when δ goes to 0. To develop some intuition for this result, in the left panel of Figure 6,

we exhibit the equilibrium interest rates faced by borrowers who withhold their data (rn),

those who share their data and generate the uninformative signal (r0), and those who share

their data and generate the high signal (rh). As a point of comparison, the rate offered to

borrowers who share their data (rℓ) is 0.325.
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The left panel shows the lender’s optimal data coverage as the proportion of privacy-conscious borrowers,
δ changes. The right panel shows the equilibrium values of γ∗ and m∗, respectively the probability the
unconcerned low-type borrower shares their data and their manipulation intensity when they do share their
data. The parameters are α = 0.5, qH = 0.95, qL = 0.8, R = 0.4, C(m) = 0.01m2, and v ∼ U [0, 0.4].

Figure 5: Effects of the proportion of privacy-conscious borrowers on optimal data coverage,
data provision, and manipulation when borrowers provide their data

Notice that all three interest rates, rn, r0, and rh are decreasing in δ. Essentially, as the

proportion of privacy-conscious borrowers increases, it is easier for the unconcerned low-type

borrower to hide themselves by pooling with the privacy-conscious borrowers and refusing

to share their data. In turn, this raises the quality of the pool of borrowers who do provide

access to their data (recall that the unconcerned high-type borrower shares their data with

probability 1), leading to a reduction in r0 and rh.

The fall in interest rates for all groups of borrowers as δ increases helps to explain the

effect on the equilibrium utilities of unconcerned high and low type borrowers. As shown in

the right panel of Figure 6, the welfare of both these borrowers increases in δ. In particular,

they are both better off at positive values of δ than in the base model, where δ = 0. Clearly,

privacy-conscious borrowers are better off when they can withhold their data than in the

base model, where there is no option to withhold data. Thus, in this example, we find that

all borrowers are better off when they have the option of withholding or sharing their data,

compared to when such an option is not available.

We find that the property that both types of unconcerned borrower are better off when

δ > 0 (compared to when the borrower does not have a choice about sharing their data) is

robust, in the sense that it holds for different parameter values and also for some different

distributions of project profitability v. Therefore, one benefit of privacy regulations is that
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The left panel in the figure plots the effect of changing the proportion of privacy-conscious borrowers (δ) on
rn, the interest rate offered to borrowers who do not share data (dotted line), r0, the interest rate offered
to borrowers who share data and generate the uninformative signal (dashed line), and rh, the interest rate
offered to borrowers who share data and generate the high signal (solid line). Given our parameters, rℓ, the
interest rate offered to borrowers who share data and generate the low signal, is equal to 0.325. The right
panel shows the equilibrium utilities of high and low type borrowers who are unconcerned about privacy.
The parameters are α = 0.5, qH = 0.95, qL = 0.8, R = 0.4, C(m) = 0.01m2, and v ∼ U [0, 0.4].

Figure 6: Effects of the proportion of privacy-conscious borrowers on interest rates and
welfare of data sharers

even borrowers who choose to provide access to their data may be better off when the laws

allow them to withhold their data.

As noted earlier, we include banking data in the set of alternative data that may be

shared. Thus, our results here contrast with those of Parlour et al. (2022) and He et al.

(2023), who point out possible negative effects of open banking on borrowers.9 Parlour et al.

(2022) feature a monopolist lender, and He et al. (2023) comment (page 462) that their result

may obtain because there is less competition for the high-type borrower if the FinTech lender

in their model has greatly superior screening ability to the bank. In other words, in both

these papers, under some conditions the high-type borrower may prefer to not be unmasked.

In contrast, in our model, the high-type always gains from separating out from the low type.

Potentially, the privately-known project profitability v (which also sets the reservation rate

for a borrower), acts as a reduced-form device to capture a sense of competition in the credit

market.

9Note that the equilibrium we exhibit has the features of the semi-separating equilibrium described by
He et al. (2023): among unconcerned borrowers, the high-type borrower shares data with probability 1, and
the low-type borrower randomizes between sharing and not sharing.
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Two additional points are worth noting here. First, in our model, the information the

lender generates pertains only to the success probability qθ. In an alternative scenario, the

lender may try to infer the project profitability v, as borrowers with a higher v have a higher

willingness-to-pay. In such a scenario, we expect borrowers with a high profitability to try

and manipulate their information, in order to convince the lender that their willingness-to-

pay is low. In that case, some of the high-success-probability borrowers may also manipulate.

Second, we have considered just two privacy types. Our privacy-conscious borrowers are

completely unwilling to trade-off privacy for a better interest rate, and our unconcerned

borrowers do not value privacy. In a more general setting, one can imagine a continuum of

borrowers who trade off privacy and financial benefits at different rates. In such a scenario,

we may expect some borrowers who wish to withhold their information from the lender to

manipulate their information so that the lender cannot infer their type.

6 Other Extensions to Base Model

We consider two additional extensions of our base model: (i) the lender’s data coverage

directly affects the manipulation cost for the borrower, and (ii) acquiring the digital signal

is costly for the lender. The main insights from our base model remain: in the transparent

regime, under some conditions the lender chooses less than complete data coverage, and the

lender’s data coverage is lower in the transparent regime than in the opaque regime.

6.1 Data Coverage Affecting Manipulation Cost

As the data technology employed by the lender becomes more advanced, one may conjecture

that it becomes increasingly challenging for the borrower to manipulate their digital profile.

For instance, the machine learning algorithm can be designed to be highly opaque, making

it difficult for borrowers to understand how each factor affects their creditworthiness as

evaluated by the lender. Additionally, when thousands of variables are incorporated into

the underwriting models, diminishing the individual importance of each variable, it becomes

more arduous to manipulate multiple variables simultaneously.

In this section, we consider this possibility by augmenting the manipulation cost from

C(m) to C(m, ρ), where C(0, ρ) = C ′(0, ρ) = 0, ∂C(m,ρ)
∂m

> 0, ∂C(m,ρ)
∂ρ

> 0, ∂2C(m,ρ)
∂m2 > 0, and

∂2C(m,ρ)
∂m∂ρ

> 0. That is, not only does more intensive manipulation incur a higher cost, similar

to the baseline model, but also a higher level of data coverage in the lender’s underwriting

model induces an additional manipulation cost.

We find that in the transparent regime, if the borrower’s manipulation cost is sufficiently
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low (specifically, ∂C(m,ρ)
∂m

|m=1,ρ=1≤ ∆1), the lender again avoids full data coverage. In the

opaque regime, where the data coverage is unobservable to the borrower, it continues to

be the case that maximal data coverage can be sustained in equilibrium. This finding

aligns with Proposition 4. Furthermore, in the extended economy, the lender gains from the

transparency enforced by regulations, as in Corollary 1.

Proposition 6 in Appendix B provides our formal results for this case.

6.2 Lender Incurs a Cost for Data Coverage

In the base model, the lender can acquire additional data on the borrower at no cost. In this

section, we consider the effect of costly data acquisition. Assume that collecting data to an

extent ρ incurs a cost for the lender denoted asK(ρ). As is standard, letK(0) = 0, K ′(0) = 0,

K ′(ρ) > 0 for ρ > 0 (so the cost increases with the extent of data coverage) and K ′′(ρ) > 0

(so the cost is strictly convex in data coverage).

We find that in the transparent regime, under the sufficient condition characterized in

Proposition 2, the lender again chooses less than complete data coverage. As is intuitive,

with a cost of data collection, the optimal extent of data coverage is strictly lower than in

the base model. The lender’s profit decreases, and the intensity of borrower manipulation

also decreases. In numerical examples we find that borrower surplus can be either higher or

lower than in the base model.

In the opaque regime, once a data collection cost is introduced, the lender will choose

a coverage level strictly less than the level at which the low success probability borrower

manipulates with probability 1, even if the borrower’s manipulation cost is low. This

contrasts with our finding in the baseline model, as shown in Proposition 4. The rationale

is that if the low-type borrower fully manipulates their information, the lender’s signal

becomes entirely useless, thereby undermining the initial investment in data technology by

the lender. As in Proposition 4, when the borrower’s manipulation cost is high and the cost

of data collection for the lender is relatively low, the lender chooses full data coverage.

Finally, similar to the baseline model, the regulatory authority’s request for transparency

can assist the lender in committing to limit its data usage in credit underwriting, thereby

enhancing profitability.

Our formal result for this model extension is exhibited in Proposition 7 in Appendix B.
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7 Regulatory Implications

We now consider the implications of our framework for regulations and policies on the credit

market.

7.1 Regulating the Use of Alternative Data in Underwriting Credit

Regulations on the use of alternative data in credit markets are quite different across

different countries in the world. Consider the U.S., for example. On July 25, 2019, in

a U.S. House hearing entitled “Examining the Use of Alternative Data in Underwriting

and Credit Scoring to Expand Access to Credit,” Stephen Lynch, Chairman of the Task

Force on Financial Technology, commented that “oversight of the use of alternative data is

either highly fragmented or completely nonexistent, leading to uncertainty for lenders and

potential harm for consumers.”10 In contrast, the European Union has taken a significant

step in regulating data usage through the General Data Protection Regulation (GDPR). In

response to the growth of digital lenders and the increasing online distribution of consumer

credit, the European Commission proposed a revision to the directive on consumer credit

in June 2021. This proposal aligns with the GDPR and aims to address issues related to

personal data processing in the consumer credit market, including the use of alternative data

and the transparency of assessments conducted using machine-learning techniques.11

Regulators are therefore aware of some of the trade-offs with the use of data in the context

of creditworthiness assessment. We here discuss three possible aspects of regulations that

our model can shed light on: transparency on the use of alternative data, limits on its use,

and consumers’ control over their data.

7.1.1 Regulations on transparency

There is concern that there is insufficient transparency about the types of alternative data

being used and their impact on credit decisions. To ensure transparency, the Fair Credit

Reporting Act (FCRA) and the Equal Credit Opportunity Act (ECOA) in the U.S. require

lenders to disclose the sources and types of information used, so that consumers are aware of

the reasons for credit decisions. However, as noted by Johnson (2019), the broad applicability

of these regulations needs to be reaffirmed, especially in the context of alternative data.

In the EU, the European Commission’s proposal for the Consumer Credit Directive

has already included provisions to enhance transparency. For instance, it explicitly states

10See https://www.congress.gov/event/116th-congress/house-event/LC65599/text?s=1&r=3.
11EC (2021), ‘The Proposal for a Directive of the European Parliament and of the Council on Consumer

Credits,’ European Commission Brussels COM(2021) 347 final.
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that “the consumer should also have the right to obtain a meaningful explanation of the

assessment made and of the functioning of the automated processing used, including among

others the main variables, the logic and risks involved, as well as a right to express his or

her point of view and to contest the assessment of the creditworthiness and the decision.”

Now, suppose a regulatory authority formally implements rules requiring transparency

of lender behavior. In the model, that translates to an economy switching from the opaque

regime to the transparent regime. Proposition 4 shows that in the opaque regime, the lender

tends to adopt the maximal data coverage in its underwriting model. However, when we

transition to the transparent regime, Proposition 2 illustrates that when the manipulation

cost is low, the equilibrium exhibits less than full data coverage (i.e., ρ∗ < 1); that is, the

lender deliberately limits its use of available data. As shown in the proof of Corollary 1,

when the manipulation cost is low, the lender’s profit is strictly higher in the transparent

regime, and the extent of its data coverage is lower. In other words, the observability of

data coverage imposed by the regulation effectively grants the lender commitment power to

restrict data usage.

In addition to increasing lending profit, Figure 3 demonstrates that transparency on the

use of alternative data can also benefit the borrower, thus providing a Pareto improvement.

In our framework, this improvement arises from the reduction of manipulation cost and a

more favorable interest rate received by the high-type borrower.

7.1.2 Limits on the use of alternative data

Another form of regulation could be to limit the kinds of alternative data that a lender can

use. Within our model, we can interpret such a limit as an upper bound on the extent of

data coverage a lender can choose, say ρmax.

The specific level of ρmax will be determined by the legal and regulatory landscape

governing consumer financial data. For instance, the 1999 Gramm-Leach-Bliley Act (GLBA)

in the U.S. establishes baseline requirements for financial institutions to protect the privacy

and security of consumer financial information. The Equal Credit Opportunity Act (1974)

prohibits discrimination on the basis of race, ethnicity, gender, and some other factors in

any aspect of a credit transaction. Privacy and fairness considerations can therefore limit

the types of alternative data that can be used in credit underwriting, ultimately determining

the level of ρmax.

In the EU, Recital 47 of the Proposal for the Consumer Credit Directive offers clear

indications on the types of information which should not be used to assess creditworthiness.

Specifically, it states that “personal data found on social media platforms or health data,

including cancer data, should not be used when conducting a creditworthiness assessment.”
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Further, the European Data Protection Supervisor (EDPS) explicitly recommends extending

the prohibition to search query data or online browsing activities.

The status quo can be understood as an economy where ρmax is close to 1, enabling the

lender to utilize all available alternative data given the existing technology. As regulations

become more specific regarding the permissible types of alternative data, the upper limit

ρmax may decrease. In both the transparent and opaque regimes, if the regulation moderately

restricts the use of alternative data based on privacy or fairness concerns, the equilibrium level

of data coverage should remain unaffected. However, if regulators impose highly restrictive

regulations (i.e., setting a very low ρmax), it can have negative consequences not only for

the lender but also for the borrower. For example, as can be seen in Figure 3, completely

prohibiting the use of alternative data hurts both the borrower and the lender.

7.1.3 Consumers’ control over their own data

Some regulations are designed to let consumers control how their data are used. For example,

Payment Services Directive 2 (PSD2) in the EU mandates that if consumers request, their

banks must make account information available to non-bank financial institutions. Similarly,

in the US, the 2020 California Consumer Privacy Act (CCPA) gives consumers the right to

know who their data are being sold to, and to prohibit such sales.

The extended model in Section 5 analyzes this scenario. We observe that our main

findings remain robust in this extension. Particularly, in the transparent regime, the lender

refrains from fully leveraging its data to mitigate borrowers’ manipulation and maintain

higher data quality. Similar to the base model, borrowers might also exhibit a preference for

the lender to have access to certain digital data.

It is worth highlighting the intriguing interaction between borrowers’ decisions regarding

data sharing and manipulation. Choosing not to share data with the lender and manipulating

digital data can both be seen as strategies to safeguard borrower privacy. The former is a

passive approach, where the borrower simply opts not to grant permission to the lender,

while the latter is an active approach, where the borrower actively manages their digital

profile and, consequently, the information accessed by the lender.

Finally, as noted in the numerical example in Section 5, comparing the base model (i.e.,

the case of δ = 0) to the model in which consumers can choose whether to share their data,

we find that all borrowers are better off in the latter case. Privacy-conscious borrowers of

course also directly benefit from keeping their data private. Thus, laws on consumer control

over data are unambiguously beneficial to borrowers in our setting.
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7.2 Policies that May Affect Manipulation Costs

The borrower’s manipulation cost is a crucial input in our model. In practice, several factors

can influence this cost. For example, if financial literacy improves (i.e., individuals become

knowledgeable about the data used in credit underwriting and the actions they can take to

enhance their creditworthiness), it may result in a decrease in the manipulation cost within

our model. Conversely, lenders may adopt more sophisticated algorithms and techniques to

detect and prevent borrower manipulation. In our framework, this would correspond to an

increase in the manipulation cost for the borrower.

In the opaque regime, as shown in Proposition 4, the lender continues to adopt maximal

data coverage. To understand the effects of changes in the manipulation cost in the transparent

regime, we consider a numerical example. We fix the parameters to be qH = 0.95, qL = 0.8,

α = 0.5, R = 0.4, and v ∼ U [0, R], the same as those for Figure 3. The manipulation cost

is set to km2. For each value of k, we first determine ρ∗, the optimal data coverage for the

lenders in the transparent regime, and then the equilibrium values of the other variables.

The resulting lender profit and ex ante borrower surplus are shown in Figure 7.

(a) Lender profit (b) Ex ante borrower surplus

This figure plots the effect of manipulation cost on the lender’s profit and borrower’s ex ante surplus. The
manipulation cost function is C(m) = km2. As in Figure 3, we set qH = 0.95, qL = 0.8, α = 0.5, R = 0.4,
and v ∼ U [0, R]. For each value of k, we first find the optimal ρ for the lender, and then compute the
equilibrium values of the other variables.

Figure 7: Effects of changes in borrower’s manipulation cost

When the manipulation cost increases, the lender increases its data coverage, knowing

that the borrower’s actions are now less likely to compromise the quality of data it receives.

As a result of the increase in k, the low-type borrower does indeed (weakly) reduce its

manipulation. Interestingly, for low values of manipulation cost, the low-type’s manipulation
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intensity remains constant. This is because despite the increasing cost for a given level of

manipulation, the higher data coverage adopted by the lender implies higher marginal value

for the low-type borrower to engage in manipulation. Consequently, this justifies and sustains

the intensity of manipulation.

As a result of its superior information (both due to increased data coverage and reduced

manipulation), the lender can generate higher expected profits from the lending business,

as illustrated in Panel (a) of Figure 7. Panel (b) of the figure illustrates that when the

manipulation cost k is low, the borrower surplus decreases as the manipulation cost increases.

However, when the manipulation cost is high enough to deter the low-type’s manipulation,

the borrower surplus increases in manipulation costs. The total surplus monotonically

increases with an increase in the manipulation cost.

Revisiting the discussions at the beginning of the section, our results shed new light on

the implications of financial literacy and technological advancements in credit underwriting.

First, an increase in financial literacy can potentially have negative implications for consumers,

as a resultant decrease in the manipulation cost may lead to a rise in manipulation and a

lower borrower surplus.

On the other hand, anti-fraud measures implemented by lenders may prove beneficial to

borrowers on average. The resulting higher manipulation cost acts as a deterrent for low-

type borrowers, discouraging them from manipulating their digital profile. This allows the

lender to offer low interest rates to borrowers who appear highly creditworthy (i.e., those that

generate high signals). These borrowers benefit, and indeed the ex ante borrower surplus

may increase.

It is worth noting that we find that total surplus increases monotonically with the

manipulation cost. This suggests that, if feasible, the regulator should set the manipulation

cost as high as possible, to allow for a better separation of borrowers on the dimension of

success probability. However, if we expand the model by explicitly incorporating borrowers’

privacy concerns, there may be an optimal choice for the manipulation cost that lies within

a range. Specifically, privacy costs may increase as the lender acquires more data, reducing

borrower surplus. Hence, an intermediate manipulation cost may be optimal for the regulator.

8 Conclusion

FinTech lenders often base their lending decisions on alternative data, including the online

or digital profiles of borrowers. Some components of alternative data may be easier for

borrowers to manipulate than traditional credit metrics. In this paper, we study a credit

model in which the lender collects signals about the borrower’s digital profiles, but the digital
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profiles can be manipulated by the borrower at a cost.

We consider two regulatory regimes: a transparent regime in which the lender’s use of

alternative data is observable to the borrower and an opaque regime in which the usage is

unobservable. In the opaque regime, the lender chooses maximal data coverage. In contrast,

in the transparent regime, when the lender’s signal is improved by higher data coverage,

the borrower is more likely to manipulate their digital profile, which reduces the lender’s

signal quality and impairs its lending decisions. Thus, even if it is costless to include more

data in the underwriting model, in equilibrium, the lender chooses to avoid exploiting the

full potential of its data in the transparent regime. Interestingly, we also find that in the

aggregate borrowers may be better off if the lender does collect some alternative data, as

opposed to not acquiring it at all. Better data leads to the high type obtaining better credit

terms. Even though the low-type borrower has a reduced payoff, aggregate borrower surplus

can initially improve when the lender acquires some alternative data.

Finally, we examine the effects of various regulations on the use of alternative data by

lenders. Regulations that aim to ensure transparency on what data a lender collects and

how the data are used benefit the lender as well. They allow the lender to credibly commit

to restricting the data they use, which in turn reduces borrower manipulation. Without such

regulations, we are in the opaque regime, which leads to maximal data collection by lenders,

greater manipulation by borrowers, and lower lender profit.

Regulations that establish a borrower as the owner of their data, and give the borrower

the right to share (or not share, as the case may be) their data with a lender are beneficial for

privacy-conscious borrowers. Importantly, in our framework, we show that they also benefit

borrowers who do not value privacy. Among such borrowers, low types now have an extra

way to hide that has no direct cost — they can just pool with privacy-conscious borrowers.

Their payoff therefore improves. High-type borrowers who do not value privacy now find

that their credit terms improve, as the pool of data sharers skews toward the high type.

Thus, all borrowers can benefit from such regulations.

Overall, our model provides a framework to study the effects of digital data collection

by lenders and borrower manipulation of such information. As the use of alternative data

increases on the part of lenders, we expect that borrowers too will become more sophisticated

and will manipulate their data. Regulatory and non-regulatory policies may both play an

important role in shaping the future environment of credit markets.
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Appendix

A Proofs of Results in the Main Text

Proof of Lemma 1

Suppose the lender obtains signal dj ∈ {dh, dℓ, d0}. Recall that µj = Prob(θ = H | dj), and
q̄j = µjqH + (1− µj)qL.

(i) Suppose the lender offers the interest rate r. Borrowers of type θ ∈ {H,L} accept the

offer if v ≥ r. If the borrower has type θ, the lender earns qθ(1 + r) when the project is

successful and zero when it is not. The expected profit of the lender given signal dj and

interest rate offer r is therefore

πj(r) = (1− F (r))[µj{qH(1 + r)− 1}+ (1− µj){qL(1 + r)− 1}]

= (1− F (r)[q̄j(1 + r)− 1]. (15)

The first-order condition is:

−f(r)[q̄jr − (1− q̄j)] + (1− F (r))q̄j = 0,

which can be simplified to

r − 1− F (r)

f(r)
=

1

q̄j
− 1, (16)

which is equation (2) in the lemma.

The second-order condition is

−2q̄jf(r)− f ′(r)[q̄jr − (1− q̄j)] < 0. (17)

By assumption, the hazard rate f(r)
1−F (r)

is strictly increasing in r. Therefore, the inverse hazard

rate 1−F (r)
f(r)

is strictly decreasing in r, and the left-hand side of the first-order condition,

equation (2) is strictly increasing in r. Thus, the first-order condition provides a unique

maximum to the lender’s problem.

Finally, note that the first-order condition provides a solution to the lender’s problem

only if there exists an interest rate r ∈ (0, R) at which the lender earns a strictly positive

profit. A necessary and sufficient condition for the latter is that q̄j(1 +R) > 1.

(ii) Suppose that q̄j(1 + R) ≤ 1. Then, there is no interest rate r at which the lender can

earn a positive profit. Therefore, it is optimal to set rj = R.
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Proof of Proposition 1

Suppose that ρ > 0. Let ρ̂ denote the borrower’s belief about ρ (in equilibrium, of course,

ρ̂ = ρ). We first show that if the lender’s posterior beliefs are consistent with the borrower’s

strategy, the lender charges a strictly lower interest rate when it observes the signal d = dh

rather than when it observes the signal d = dℓ. Let rj denote the optimal interest rate offer

after signal dj.

Claim: rh < rℓ.

Proof of Claim We prove the claim by contradiction. Suppose instead that rh ≥ rℓ, that

is, borrowers who generate signal dh are charged a weakly higher interest rate than those

who generate signal dℓ.

As shown in equation (3), the expected utility of a type θ borrower who chooses manipulation

intensity m is

u(θ,m; m̂θ, ρ̂) = qθ

{
ρ̂
(
m

∫ R

rθ̃

(v − rθ̃)dF (v) + (1−m)

∫ R

rθ

(v − rθ)dF (v)
)

+(1− ρ̂)

∫ R

r0

(v − r0)dF (v)
}
− C(mθ). (18)

Observe that the interest rates rθ and rθ̃ are not directly dependent on m, but instead

depend on the lender’s beliefs m̂θ. The borrower takes these interest rates as given (even

though the offers themselves will only materialize at date 1). In equilibrium, manipulation

is strictly positive if and only if ∂u(θ,m;m̂θ,ρ̂)
∂m

|m=0> 0. As C ′(0) = 0, this condition reduces to

ρ̂ qθ

{∫ R

rθ̃

(v − rθ̃))dF (v)−
∫ R

rθ

(v − rθ))dF (v)
}
> 0. (19)

That is, for mθ > 0, it must be that (i) ρ̂ > 0 and (ii)
∫ R

rθ̃
(v− rθ̃))dF (v) >

∫ R

rθ
(v− rθ))dF (v).

Because
∫ R

r
(v − r))dF (v) is decreasing in r, condition (ii) implies that rθ̃ < rθ. Thus, to

have mθ > 0 in equilibrium, it must be that ρ̂ > 0 and rθ̃ < rθ.

Now, suppose that rh ≥ rℓ. Then, it must be that low-type borrowers do not manipulate,

i.e., mL = 0. Therefore, on receiving signal dh, the lender knows the borrower must have the

high type. On receiving signal dℓ, at best the borrower is the high type with probability α

(and this can only happen if the high type manipulates with probability 1; else the probability

of the high type is strictly less than 1 when signal dℓ is received). Therefore, it must be that

rh < rℓ, which is a contradiction.

(i) Given that rh < rℓ, following similar arguments as above, it follows that the high-

type borrower will never manipulate their data, i.e., mH = 0. The low-type borrower will

manipulate with positive intensity, i.e., mL > 0, when ρ̂ > 0.
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(ii) Suppose ρ̂ > 0. Following arguments in the proof of the Claim, the low-type borrower

will manipulate with positive probability if rh < rℓ, which is true. For simplicity, given

that mH = 0, we denote the low-type borrower’s manipulation intensity mL as m, and the

lender’s belief about this intensity as m̂.

Given a belief ρ̂ about the lender’s data coverage, the manipulation intensity of the

low-type borrower satisfies the first-order condition

ρ̂qL

(∫ R

rh(m̂)

(v − rh(m̂))dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
= C ′(m). (20)

Since C(·) is convex, the second-order condition is immediately satisfied. Fixing ρ̂ and m̂,

the left-hand side is a constant. Denote this constant by A. Then, the optimal manipulation

intensity of the low-type borrower is m = 1 if C ′(1) ≤ A, and m = C ′−1(A) otherwise.

In equilibrium, it must be that m̂ = m; i.e., the lender’s beliefs must match the actual

equilibrium intensity of the low-type borrower. We impose m̂ = m in the first-order condition

(20), which yields the equilibrium condition for an interior manipulation intensity:

ρ̂qL

(∫ R

rh(m)

(v − rh(m))dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
= C ′(m). (21)

The left-hand side is strictly positive for all m ∈ [0, 1], and is strictly decreasing in m. The

right-hand side is zero at m = 0 and is strictly increasing in m.

If C ′(1) ≤ ρ̂qL

(∫ R

rh(1)
(v − rh(1))dF (v)−

∫ R

rℓ
(v − rℓ)dF (v)

)
= ∆(ρ̂), equation (21) cannot

be satisfied for any m ∈ (0, 1), so m = 1. Conversely, if C ′(1) > ∆(ρ̂), there is a unique

value of m that satisfies equation (21).

(iii) We have shown above that rh < rℓ. It remains to show that r0 ∈ (rh, rℓ). The consistency

requirement on the borrower’s best response requires that the lender’s posterior beliefs be

determined from the actual manipulation strategies of the borrower. Observe that when

m∗
H = 0 and m∗

L = m > 0, the lender’s posterior beliefs after each digital signal dj ∈
{dh, dℓ, d0} satisfy µh = α

α+(1−α)m
, µℓ = 0, and µ0 = α. That is, we have µℓ < µ0 < µh. It

follows immediately that rh < r0 < rℓ.

Proof of Lemma 2

In what follows, for notational convenience we write m = m∗(ρ̂). When m < 1, it satisfies

the first-order condition for optimal manipulation, equation (21).

Denote Ih =
∫ R

rh(m)
(v − rh(m))dF (v), and Iℓ =

∫ R

rℓ
(v − rℓ)dF (v). Then, this first-order

condition may be written as ρ̂qL(Ih − Iℓ) = C ′(m).
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Applying the implicit function theorem, we have

dm

dρ̂
= − qL(Ih(m)− Iℓ)

−C ′′(m) + ρ̂qL
∂Ih(m)
∂m

=
qL(Ih(m)− Iℓ)

C ′′(m)− ρ̂qL
∂Ih(m)
∂m

. (22)

In the last expression, Ih(m) > Iℓ because rh(m) < rℓ, so the numerator is strictly positive.

Further, ∂Ih(m)
∂m

= −(1− F (rh))r
′
h(m) < 0. Now, an increase in m implies a reduction in µh,

the posterior probability of the high type after signal dh. In turn, through Lemma 1 part

(i), it implies an increase in rh. That is, r
′
h(m) > 0. Therefore, the denominator in the last

expression in equation (22) is strictly positive. Hence, dm
dρ̂
> 0.

Proof of Lemma 3

Suppose the borrower cannot manipulate their signal. Then, for any positive value of ρ, the

lender’s beliefs after each signal dj are µh = 1, µℓ = 0, and µ0 = α. The corresponding

optimal interest rates are as in Lemma 1, and it follows that rh < r0 < rℓ.

Recall that the lending profit after signal dj and interest rate r is πj = (1− F (r))[q̄jr −
(1− q̄j)], where q̄j = µjqH + (1− µj)qL is the average quality of the project given signal dj.

Then, at date 0, given the data coverage ρ the lender’s expected profit may be written as

Π = ρ {απh(rh) + (1− α)πℓ(rℓ)}+ (1− ρ)π0(r0). (23)

To prove that the lender optimally chooses ρ∗ = 1, we show that the lender’s expected

profit Π is monotonically increasing in ρ. Observe that as the borrower is taking no action

with respect to manipulation, the offers rh, rℓ, and r0 do not depend on ρ. Thus, taking the

derivative of the expected profit in (23) with respect to ρ yields

dΠ

dρ
= απh(rh) + (1− α)πℓ(rℓ)− π0(r0).

Thus, dΠ
dρ
> 0 is equivalent to

dΠ

dρ
> 0 ⇐⇒ απh(rh) + (1− α)πℓ(rℓ) > π0(r0)

⇐⇒ αmax
r
πh(r) + (1− α)max

r
πℓ(r) > max

r
π0(r)

⇐⇒ αmax
r
πh(r) + (1− α)max

r
πℓ(r) > max

r

[
απh(r) + (1− α)πℓ(r)

]
. (24)

As rh ̸= rℓ, it is straightforward that the last inequality must hold. Therefore, the lender’s

expected profit is monotonically increasing in ρ and it thus chooses the maximum ρ in

equilibrium.
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Proof of Proposition 2

In the transparent regime, the borrower directly observes the extent of data coverage, ρ.

When C ′(1) ≤ ∆1, because m
∗ is increasing in ρ (Lemma 2), it follows that there exists

ρ ≤ 1 at which m∗(ρ) = 1. Hence, ρ̄ = min{ρ | m∗(ρ) = 1}.
Recall from equation (7) that the lender’s profit is

Π(ρ) = ρ
(
{α + (1− α)m}πh(rh) + (1− α)(1−m)πℓ(rℓ)

)
+ (1− ρ)π0(r0). (25)

Observe that when ρ = 0 or m = 1, the lender’s profit reduces to π0(r0) ≡ Πu (where the

subscript u denotes “uninformed”). For ρ = 0 it follows immediately from the expression

for Π. When m = 1, after signal dh, we have µh = α and so qh = q0. Therefore, the optimal

interest rate is equal to r0, and so πh(rh) reduces to π0(r0).

Now, consider ρ > 0 and m ∈ (0, 1). The argument is essentially the same as used in

Lemma 3. Observe that

{α + (1− α)m}πh(r0) + (1− α)(1−m)πℓ(r0) = π(q0, r0). (26)

That is, by charging the interest rate r0 after signals dh and dℓ, the lender recovers exactly

Πu. Now, rh and rℓ are by definition the optimal interest rates after signals dh and dℓ

respectively. Therefore, πh(rh) > πh(r0) and πℓ(rℓ) > πℓ(r0). Hence, we have

{α + (1− α)m}πh(rh) + (1− α)(1−m)πℓ(rℓ) >

{α + (1− α)m}πh(r0) + (1− α)(1−m)πℓ(r0) = π(q0, r0). (27)

Therefore,

Π(ρ | rh, rℓ, r0) > Π(ρ | r0, r0, r0) ≡ Πu. (28)

That is, for all ρ > 0 such that m∗(ρ) < 1, the lender earns a higher profit than at ρ = 0

or when m∗(ρ) = 1 (i.e., when ρ = ρ̄). It follows that ρ∗ > 0 and ρ∗ < ρ̄, thus proving both

parts of the Proposition.

Proof of Proposition 3

(i) As in the Proof of Lemma 2, denote Ij =
∫ R

rj
(v − rj)dF (v), for digital signal dj ∈

{dh, dℓ, d0}. Specifically, Ih(m) =
∫ R

rh(m)
(v − rh(m))dF (v), Iℓ =

∫ R

rℓ
(v − rℓ)dF (v) and I0 =∫ R

r0
(v − r0)dF (v).

Then, the payoff of the high-type borrower may be written as

uH(ρ,m(ρ)) = ρqHIh(m) + (1− ρ)qHI0.

Hence,

duH
dρ

=
∂uH
∂ρ

+
∂uH
∂m

dm

dρ
= qH(Ih(m)− I0) + ρqH

∂Ih
∂m

dm

dρ
. (29)
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Here, ∂Ih
∂m

= −(1− F (rh(m))) r′h(m), and dm
dρ

is as in equation (22).

Now, observe that when ρ = 0 we obtain

duH
dρ

|ρ=0 = qH(Ih(m)− I0). (30)

Note that when ρ = 0, the low-type optimally sets m = 0. Further Ih(0) > I0. Thus,
duH

dρ
|ρ=0> 0.

Similarly, we can write the payoff of the low-type borrower as

uL(ρ,m(ρ)) = −C(m) + ρmqLIh + ρ(1−m)qLIℓ + (1− ρ)qLI0.

Therefore,

duL
dρ

=
∂uL
∂ρ

+
∂uL
∂m

dm

dρ
. (31)

Here, ∂uL

∂ρ
= qL{mIh + (1 −m)Iℓ − I0}. Further, ∂uL

∂m
= −C ′(m) + ρqL(Ih − Iℓ) + ρmqL

∂Ih
∂m

.

Observe that the low-type’s first-order condition for optimal manipulation (see Proposition

1) specifies that C ′(m) = ρqL(Ih − Iℓ). Therefore, we have ∂uL

∂m
= ρmqL

∂Ih
∂m

.

Substituting these expressions into equation (31), we obtain

duL
dρ

= qL{mIh + (1−m)Iℓ − I0}+ ρmqL
∂Ih
∂m

dm

dρ
. (32)

Noting again that when ρ = 0 we also have m = 0,

duL
dρ

|ρ=0= qL{Iℓ − I0} < 0, (33)

as Iℓ < I0.

(ii) The ex ante borrower payoff is

U = αuH + (1− α)uL. (34)

Using the expressions for duH

dρ
|ρ=0 and duL

dρ
|ρ=0 in equations (30) and (33) respectively, we

obtain
dU
dρ

|ρ=0 = αqH(Ih(0)− I0) + (1− α)qL(Iℓ − I0). (35)

Now, observe that when qL(1 + R) ≥ 1, for each signal dj ∈ {dh, dℓ, d0}, the optimal

interest rate offered by the lender will be satisfy (2) in Lemma 1. Denote a function G(q) ≡
q
∫ R

r(q)
(v − r(q))dF (v), where r(q) satisfies equation (2).

Then, we can write equation (35) as

dU
dρ

|ρ=0 = αG(qH) + (1− α)G(qL)−G(αqH + (1− α)qL). (36)

Hence, a sufficient condition for dU
dρ

|ρ=0> 0 is that G is strictly convex, that is, G′′(q) > 0

for all q. Similarly, a sufficient condition for dU
dρ

|ρ=0< 0 is that G is strictly concave, that is,

G′′(q) < 0 for all q.
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Now,

G′(q) =

∫ R

r(q)

(v − r(q))dF (v)− q

∫ R

r(q)

r′(q)dF (v), (37)

G′′(q) = −(1− F (r)){2r′(q) + qr′′(q)}+ q f(r(q)) (r′(q))2. (38)

Define the inverse hazard rate as H(r) = 1−F (r)
f(r)

. Then, from Lemma 1, the optimal interest

rate when q(1 +R) > 1 may be written as:

r =
1

q
− 1 +H(r). (39)

Thus,

r′(q) = − 1

q2
+H ′(r)r′(q), (40)

r′′(q) =
2

q3
+H ′(r)r′′(q) +H ′′(r){r′(q)}2. (41)

We can now compute

r′(q) = − 1

q2(1−H ′(r))
, (42)

r′′(q) =
1

1−H ′(r)

( 2

q3
+H ′′(r){r′(q)2}

)
= r′(q)

(
− 2

q
+
H ′′(r)r′(q)

1−H ′(r)

)
. (43)

Substituting into the right-hand side of equation (38), we have

G′′(q) = −(1− F (r)){2r′(q)− 2r′(q) +
qH

′′
(r)(r′(q))2

1−H ′(r)
}+ q f(r(q)) (r′(q))2

=
(
− H(r)H ′′(r)

1−H ′(r)
+ 1

)
q f(r(q) (r′(q))2. (44)

Therefore, G′′(q) > 0 whenever

H(r)H ′′(r) < 1−H ′(r). (45)

The right-hand side (LHS) is strictly positive, as H ′(r) is strictly decreasing (recall that we

have assumed F (·) has an increasing hazard rate).

Consider the generalized uniform distribution: F (r) =
(

r
R

)β

such that f(r) = β rβ−1

Rβ .

Thus, the inverse hazard rate and its derivatives are

H(r) =
1

β

( Rβ

rβ−1
− r

)
, H ′(r) =

(1− β

β

) Rβ

rβ
− 1

β
, H ′′(r) = −(1− β)

Rβ

rβ+1
.

Now, suppose β = 1, i.e., the distribution of F (·) is uniform. Then, for any r, H(r) =

R − r ≥ 0, H ′(r) = −1, and H ′′(r) = 0. It is immediate that equation (45) is satisfied, so

that G′′(q) > 0 for all q. Therefore, when β = 1, we have dU
dρ

|ρ=0> 0. That is, ex ante

consumer surplus is increasing in data coverage ρ at ρ = 0.

As H(·), H ′(·) and H ′′(·) are all continuous in β, it follows now that there exist thresholds

β1 < 1 and β2 > 1 such that dU
dρ

|ρ=0> 0 for all β ∈ (β1, β2).

Now, consider the case of β becoming large. Observe that, for the generalized uniform
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distribution, condition (45) is equivalent to:

−1− β

β

(R2β

r2β
− Rβ

rβ

)
< 1 +

1

β
− 1− β

β

Rβ

rβ
. (46)

When β > 1, we can write this last inequality as

⇔
(R
r

)β ((R
r

)β

− 2
)
<

1 + 1
β

1− 1
β

. (47)

As mentioned earlier, the optimal interest rate for a given project success probability q

satisfies equation (2) in Lemma 1. That is, r − 1−( r
R)

β

β rβ−1

Rβ

= 1
q
− 1, which can be rewritten as

following: (
R

r

)β

= 1 + β − β

r

(
1

q
− 1

)
. (48)

Now, consider condition (47), and substitute in the right-hand-side of equation (48) for(
R
r

)β
and simplify. We obtain that condition (45) is equivalent to:

β2

(
1− 1

r

(
1

q
− 1

))2

− 1 <
1 + 1

β

1− 1
β

. (49)

When β → ∞, the right-hand side goes to 1. As long as r ̸→ 1
q
− 1, the left-hand side goes

to +∞, so the condition is violated. We show that r ̸→ 1
q
− 1 as β → ∞ by contradiction.

Suppose that r → 1
q
− 1 as β → ∞. Then, the right-hand side of equation (48) goes to 1 as

β → ∞. Therefore, for the equation to hold, it must be that r → R, which is a contradiction,

because we have assumed that qL(1 +R) > 1, so that for any q ≥ qL, R > 1
q
− 1.

Therefore, when β → ∞, in the limit condition (49) is violated. By continuity, it now

follows that there exists some β3 such that for all β > β3, the borrower’s ex ante utility U is

decreasing in ρ at ρ = 0.

Proof of Proposition 4

Let ρ̂ denotes the borrower’s belief about the extent of data coverage and ρ denotes the actual

choice of data coverage. Then, the low-type borrower’s equilibrium manipulation intensity

m is a function of ρ̂. Thus, the offered interest rate after signal dh depends on ρ̂ rather than

ρ.

The lender’s payoff function may be written as:

Π(ρ | ρ̂) = ρ
(
{α + (1− α)m(ρ̂)}πh(rh(m(ρ̂))) + (1− α)(1−m(ρ̂))πℓ

)
+(1− ρ)π0(r0). (50)

The partial derivative with respect to ρ is

∂Π

∂ρ
= {α + (1− α)m(ρ̂)}πh(rh) + (1− α)(1−m(ρ̂))πℓ(rℓ)− π0(r0).
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Noting that πh(rh) > πℓ(rℓ) and 0 ≤ m(ρ̂) < 1 we have

{α + (1− α)m(ρ̂)}πh(rh) + (1− α)(1−m(ρ̂))πℓ(rℓ) ≥ απh(rh) + (1− α)πℓ(rℓ)

> π0(r0),

where the last inequality is shown in the proof of Lemma 3.

Therefore, whenever m(ρ̂) < 1, we have ∂Π
∂ρ

> 0, and the lender has an incentive to

increase ρ. If m(ρ̂) = 1, then the posterior beliefs after signal dh and signal d0 are the same

and equal to the prior α. Thus, at this point, setting ρ = ρ̂ is a best response, and any ρ ≥ ρ̂

represents an equilibrium (because m is weakly increasing in ρ, it follows that m(y) = 1 for

any y ≥ ρ̂). In particular, ρ = 1 is a best response.

Finally, note that following the arguments in the proof of Proposition 2, when C ′(1) ≥
qL

(∫ R

r0
(v − r0)dF (v)−

∫ R

rℓ
(v − rℓ)dF (v)

)
, we have m(ρ̂) < 1 for any ρ̂ < 1.

Both parts of the Proposition now follow.

Proof of Corollary 1

The proof follows from Propositions 2 and 4. Specifically, when the manipulation cost is

low, i.e., C ′(1) ≤ ∆1, where ∆1 is given by equation (9), there exists some ρ such that the

left derivative of the lender’s profit function is strictly less than zero. That is, the lender

earns a strictly higher profit at some ρ strictly less than ρ than at ρ = 1. In contrast, when

the data coverage is unobservable, the lender is indifferent between ρ ∈ [ρ, 1]. Consequently,

the lender’s data coverage is strictly lower when the data coverage is observable compared

to when it is unobservable. Furthermore, the lender earns a higher profit in the former case.

Otherwise, when C ′(1) > ∆1, even at ρ = 1 the low-type borrower manipulates with

probability less than 1. Here, the lender might choose full data coverage even when data

coverage is observable data. If so, the lender chooses the same extent of data coverage and

it earns the same profit as under unobservable data coverage.

Proof of Proposition 5

Suppose ρ > 0. The signal obtained by the lender on a borrower is dj ∈ {dh, dℓ, d0, dn}, where
the subscript n denotes borrowers who chose to not share their data with the lender. Let

µj denote the posterior probability the borrower has the high success probability qH given

signal dj, and let q̄j = µjqH + (1 − µj)qL be the average success probability. The optimal

interest rate offered after signal dj then satisfies equation (2) in Lemma 1, and is inversely

related to µj.

Suppose for now that at least one of γH or γL is non-zero. Then, the prior probability of
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the high-type borrower among those who choose to share their data is

µ0 =
αγH

αγH + (1− α)γL
> 0. (51)

With this modification, Proposition 1 goes through, and so rh > r0 > rℓ in any continuation

equilibrium in which the lender chooses ρ > 0, i.e. positive data coverage.

In comparison, among borrowers who choose to not share their data, the posterior

probability of the high type is

µn =
α{δ + (1− δ)(1− γH)}

α{δ + (1− δ)(1− γH)}+ (1− α){δ + (1− δ)(1− γL)}
. (52)

Therefore, µn ≥ µ0 if and only if γH ≤ γL.

There may exist an equilibrium in the continuation game in which γ∗H = γ∗L = 0, with

the off-equilibrium belief that any borrower who shares their data is the low type. In such

a case, a lender who obtains the signal d0 charges r0 = rℓ. A low-type borrower is better off

not sharing their data and obtaining rn < rℓ for sure, where rn is determined by µn = α.

A high-type borrower who shares their data obtains rh with probability ρ and r0 = rℓ with

probability 1 − ρ. If ρ is sufficiently small, they too may prefer to not share their data.

However, such an equilibrium does not survive the refinement criterion D1; as noted, the

high type has a greater incentive to deviate and share their data than the low type does.

Therefore, consider an equilibrium in which at least one of γH and γL is strictly positive.

In such an equilibrium, it must be that γH > 0 (if γH = 0, then it is optimal for the low

type to set γL = 0, as any borrower that shares data is revealed to be the low type).

Suppose that γH ∈ (0, 1). For a borrower with success probability qθ, let

ψθ(r) = qθ

∫ R

r

(v − r)dF (v) (53)

denote the expected payoff from an interest rate offer r. If γH ∈ (0, 1), the type H borrower

must earn the same expected payoff whether they share their data or not. That is, it must

be that

ψH(rn) = ρψH(rh) + (1− ρ)ψH(r0), (54)

which implies that
∫ R

rn
(v−rn)dF (v) = ρ̂

∫ R

rh
(v−rh)dF (v)+(1−ρ̂)

∫ R

r0
(v−r0)dF (v). Multiplying

throughout by qL, we have

ψL(rn) = ρψL(rh) + (1− ρ)ψL(r0). (55)

Let m be the probability with which a low-type data sharer manipulates their data. The

payoff to such a borrower is

ρ{mψL(rh) + (1−m)ψL(rℓ)}+ (1− ρ̂)ψL(r0)− C(m). (56)
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Now, if rℓ > rh, for any m ∈ [0, 1] we have

ψL(rn) = ρψL(rh) + (1− ρ)ψL(r0) (57)

> ρ{mψL(rh) + (1−m)ψL(rℓ)}+ (1− ρ̂)ψL(r0)− C(m). (58)

That is, it must be that γL = 0. But if γL = 0, we have µ0 = 1, and so r0 < rn. But in that

case, the high type has a strict incentive to reveal their data — by revealing, they obtain

either r0 or rh, where rh ≤ r0 < rn. Therefore, it cannot be that γH ∈ (0, 1), and so in

equilibrium we have γ∗H = 1.

Now, when γ∗H = 1, it follows that µn ≤ µ0, with equality only in the case that we also

have γ∗L = 1. Hence, rn ≥ r0, with strict inequality whenever γ∗L < 1.

B Model Extensions

B.1 Data Coverage Affects Manipulation Cost

Proposition 6 (Augmented Manipulation Cost). Suppose that the manipulation cost increases

in the lender’s data coverage, i.e., C(m, ρ), where C(0, ρ) = C ′(0, ρ) = 0, ∂C(m,ρ)
∂m

> 0,
∂2C(m,ρ)

∂m2 > 0, ∂C(m,ρ)
∂ρ

> 0, and ∂2C(m,ρ)
∂m∂ρ

∈ (0, qL(Ih(1)− Iℓ)).

(i) In the transparent regime, the lender chooses strictly positive data coverage in equilibrium,

i.e., ρ∗ > 0. Moreover, if ∂C(m,ρ)
∂m

|m=1,ρ=1≤ ∆1 (i.e., the manipulation cost is sufficiently

low), where ∆1 is given by equation (9), the lender chooses less than full data coverage

(i.e., ρ∗ < 1).

(ii) In the opaque regime:

(a) If ∂C(m,ρ)
∂m

|m=1,ρ=1< ∆1, there is an equilibrium the lender chooses maximal data

coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates with probability 1

(i.e., m∗ = 1).

(b) If ∂C(m,ρ)
∂m

|m=1,ρ=1≥ ∆1, there is a unique equilibrium in which the lender chooses

maximal data coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates with

strictly positive probability (i.e., m∗ > 0).

(iii) As in Corollary 1, the lender’s data coverage is (weakly) lower, while its expected

profit is (weakly) higher when the data coverage is observable compared to when it

is unobservable.

Proof : (i) In the transparent regime, the derivation follows similar procedures in the baseline

model. As in Proposition 1, we can show that rh < r0 < rℓ. In addition, for a given ρ̂ > 0,
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if ∂C(m,ρ)
∂m

|m=1> ∆(ρ̂), there is a unique value of m that satisfies the following equation:

ρqL

(∫ R

rh(m)

(v − rh(m))dF (v)−
∫ R

rℓ

(v − rℓ)dF (v)

)
=
∂C(m, ρ)

∂m
. (59)

Otherwise, if ∂C(m,ρ)
∂m

|m=1≤ ∆(ρ̂), we have m = 1, i.e., the low-type borrower manipulates

with probability 1.

As in equation (22) in the proof of Lemma 2, we have

dm

dρ̂
= − qL(Ih(m)− Iℓ)

−C ′′(m) + ρ̂qL
∂Ih(m)
∂m

=
qL(Ih(m)− Iℓ)− ∂2C(m,ρ)

∂m∂ρ

∂2C(m,ρ)
∂m2 − ρ̂qL

∂Ih(m)
∂m

. (60)

Unlike the base model, dm
dρ̂

> 0 only when qL(Ih(m) − Iℓ) >
∂2C(m,ρ)
∂m∂ρ

. Thus, to ensure that

the increase in data coverage does not diminish the borrower’s manipulation incentive, we

assume that qL(Ih(1)− Iℓ) >
∂2C(m,ρ)
∂m∂ρ

|m=1 so that dm
dρ̂
> 0 for all values of ρ̂.

Now, suppose ∂C(m,ρ)
∂m

|m=1,ρ=1≤ ∆1 so that if the lender chooses ρ = 1, the low-type

borrower manipulates with probability 1. Then, by continuity there exists some ρ̄ = min{ρ |
m∗(ρ) = 1}. The same arguments as in the Proof of Proposition 2 now go through, so that

ρ∗ ∈ (0, ρ̄).

(ii) The proof of this part is similar to the proof of Proposition 4, replacing C ′(1) with
∂C(m,ρ)

∂m
|m=1,ρ=1.

(iii) The proof of this part is similar to that of Corollary 1.

B.2 Data Coverage is Costly for the Lender

Proposition 7 (Data collection cost). Suppose that to acquire and process the data with

data coverage ρ costs the lender K(ρ), where K(0) = 0, K ′(0) = 0, K ′(ρ) > 0 for ρ > 0, and

K
′′
(ρ) > 0.

(i) In the transparent regime, the lender chooses strictly positive data coverage, i.e., ρ∗ > 0.

Moreover, the same condition in Proposition 2 identifies the sufficient condition for

ρ∗ < 1. That is, C ′(1) ≤ ∆1 (i.e., manipulation cost is sufficiently low), where ∆1 is

given by equation (9).

(ii) In the opaque regime, in contrast to Proposition 4, even if C ′(1) ≤ ∆1, the lender will

not choose the optimal data coverage such that the low-type manipulates with probability

1. If C ′(1) > ∆1 and the marginal data collection cost K ′(ρ) is not that steep, like

Proposition 4, there is a unique equilibrium in which the lender chooses maximal data

coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates with strictly positive

probability (i.e., m∗ > 0).
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(iii) As in Corollary 1, the lender’s data coverage is (weakly) lower, while its expected

profit is (weakly) higher when the data coverage is observable compared to when it

is unobservable.

Proof : (i) Consider the transparent regime. Given a data coverage ρ, the subsequent game

will be characterized in the same way as in the base model. Thus, the only change occurs

at the beginning of the game when determining the optimal data coverage. The proof here

follows that of Proposition 2. The lender’s profit function is

Π(ρ) = ρ
(
{α + (1− α)m}πh(rh) + (1− α)(1−m)πℓ(rℓ)

)
+ (1− ρ)π0(r0)−K(ρ). (61)

Compared with equation (7), there is an extra cost term −K(ρ) here.

Because K ′(0) = 0, using the same arguments as in the proof of Proposition 2, it follows

that the lender’s profit is strictly greater when ρ > 0 but sufficiently close to 0, rather than

at ρ = 0. Further, recalling that ρ̄ = min{ρ | m∗(ρ) = 1}, because K ′(ρ̄) > 0, it follows that

the lender’s profit is strictly greater when ρ < ρ̄ but sufficiently close to ρ̄ than at ρ = ρ̄.

Thus, the lender’s optimal data coverage ρ∗ is strictly between 0 and ρ̄.

(ii) Consider the opaque regime. Again, given the borrower’s belief about the data coverage

ρ̂, the borrower determines the manipulation intensity. The lender’s optimal interest rates

are also set in accordance with the borrower manipulation behavior. So the characterization

of the subsequent game after ρ̂ remains the same as in the baseline model.

We then move back to the beginning of the game to determine the lender’s optimal

data coverage, following similar procedures as in Proposition 4. The lender’s expected profit

function (50) can be augmented as the following:

Π(ρ | ρ̂) = ρ
(
{α + (1− α)m(ρ̂)}πh(rh(m(ρ̂))) + (1− α)(1−m(ρ̂))πℓ

}
+(1− ρ)π0(r0)−K(ρ).

The derivative with respect to ρ is

∂Π

∂ρ
= {α + (1− α)m(ρ̂)}πh(rh) + (1− α)(1−m(ρ̂))πℓ(rℓ)− π0(r0)−K ′(ρ). (62)

Denote Γ(ρ̂) = {α + (1− α)m(ρ̂)}πh(rh) + (1− α)(1−m(ρ̂))πℓ(rℓ)− π0(r0). Then

∂Π

∂ρ
= Γ(ρ̂)−K ′(ρ). (63)

When m(ρ̂) = 1 so that Γ(ρ̂) = 0, we know that ∂Π
∂ρ
< 0 for any ρ > 0. Therefore, unlike

the baseline model, the lender will never allow m∗ = 1 in equilibrium.

When m(ρ̂) < 1, we’ve shown Γ(ρ̂) > 0 in the baseline model. Inserting ρ̂ = ρ in equation

(62) and setting it to zero yields the optimal data coverage ρ, which is the solution implicitly

determined by: Γ(ρ) = K ′(ρ). Only when the marginal data-collection cost is not steep, i.e.,

K ′(ρ) is low for any ρ, do we have ∂Π
∂ρ
> 0 so that the equilibrium ρ∗ = 1.

47



(iii) Since the newly added data-collection cost K(ρ) affects the lender by only reducing

their expected profit by K(ρ), under both observable and unobservable data coverage, the

comparison between the two scenarios should resemble that in the baseline model where

K(ρ) = 0. Therefore, Corollary 1 remains valid in this extension.
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