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Abstract

How should we expect firms to communicate with their shareholders in the presence

of uncertainty? This paper studies a model of corporate communication in which cash

flow variance is priced and stochastic. The model rationalizes “biases” for reports that

are internally consistent and confirm market priors. Managers prioritize consistency

over confirmation when cash flows have higher variance or when the signal space is

larger. Ex-ante, managers prefer larger signal spaces to smaller ones. Complemen-

tary notions of dissociation and divergence arise in settings with priced, stochastic

covariance (e.g., one-factor SDF, multiple segments, multiple firms). The model makes

several cross-sectional predictions.
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1 Introduction

Modern corporate communication encompasses a wide range of media, including regulatory

filings, earnings calls, press releases, social media posts, pitchbooks, and prospectuses. In

addition to informing investors, regulators, and the media, corporate communication is now

extensively used in academic research to measure everything from product market boundaries

(Hoberg and Phillips, 2016) to country risk (Hassan et al., 2024) to firm objectives (Rajan

et al., 2025).1 Of course, firms craft messages not only to inform, but also to influence—

especially when the exact distribution of the firm’s cash flows is uncertain. How then should

we expect firms to communicate with their shareholders in the presence of uncertainty?

This paper develops a signal-jamming model of corporate communication under the as-

sumption that cash flow variance (or covariance with other cash flows) is (a) priced and

(b) stochastic. The analysis rationalizes four distortions in corporate communication. If

cash flow variance is priced, we rationalize consistency and confirmation. By consistency,

we mean the reduction of the variance of the information being communicated—perhaps

by smoothing data or harmonizing prose. By confirmation, we mean the manipulation of

the mean to confirm market priors. For example, one might rescale data or strike an opti-

mistic tone. In settings where covariance is priced—such as when an SDF is specified, when

there are multiple firms and the CAPM applies, or when the firm operates multiple, corre-

lated segments—we additionally rationalize dissociation and divergence. Dissociation means

reducing the covariance while divergence means emphasizing differences with the mean.

Importantly, these distortions emerge endogenously in a rational expectations equilibrium

and do not require the specification of ad-hoc behavioral biases. The manager inflates the

mean and deflates the variance (or covariance), knowing the market will attempt to “de-bias

her bias.” As in Stein (1989), bias is a form of “window dressing.” Biasing is costly to the

manager, but she cannot commit not to bias.

The main contribution of the present work is to collect these distortions into a single

framework, which admits closed-form solutions and comparative statics. In addition to

cataloging the distortions, the model delivers several new results. First, the marginal benefit

of consistency (dissociation) is higher than that of confirmation (divergence) when cash flows

are expected to have higher variance or when the signal space is larger. Second, any pair

of distortions—except for consistency and dissociation—can vary independently. Third, the

model predicts how uncertainty in cash flow variance (“variance-of-variance”) affects both

1See Loughran and McDonald (2016) for a review.
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consistency and confirmation. Finally, we characterize managers’ ex-ante preferences over

the size of the signal space. Although the paper is motivated by corporate communication,

one could easily reinterpret the model in other disclosure environments, such as disclosure

by traders (e.g. Huddart et al., 2001; Banerjee et al., 2024).

In the first part of the paper, we assume that cash flow variance is priced. The manager

observes a sample of draws from the cash flow distribution, which are of purely informational

value. She then reports the signals to the market with bias. Following the literature, we

assume that the manager incurs an exogenous cost from biasing (e.g., Fischer and Verrecchia,

2000). Assuming a Normal-Gamma prior, the posterior variance is linear in (1) the report

sample variance and (2) the squared deviation of the report sample mean from the prior

mean. The former creates an incentive for consistency, the latter for confirmation.

In equilibrium, consistency and confirmation are orthogonal: The manager can change the

sample variance of signals extracted by the market without changing the squared deviation

of the sample mean from the prior (and vice-versa).2 The difference between consistency

and confirmation regards their marginal benefit. We show that the marginal benefit of

consistency is higher than that of confirmation when the expected variance of the cash flows

is high or when the signal space is large—exactly when the market relies on the new data

more than its prior. It follows that if the manager has a choice in the dimension of the

signal space, she prefers a large one over a small one. The model has implications for the

cross section of reports. In particular, firms whose cash flow variance is more uncertain (i.e.,

higher variance-of-variance), such as younger firms in newer industries, should have more

optimistic and consistent communication. The effect of cash flow variance uncertainty on

confirmation is more nuanced and is explored in the body of the paper.

In the second part of the paper, we consider priced, stochastic covariance through three

extensions. In each extension, the Normal-Gamma prior is replaced with a Normal-Wishart

prior and the posterior covariance is linear in (1) the sample covariance and (2) the product

of the deviations of the sample means from the prior means. In the first extension, we

imagine that the covariance between the firm’s cash flows and a priced factor—such as the

market portfolio—is uncertain. The manager privately observes signals about the firm’s

cash flows, while the manager and market observe public signals about the priced factor.

In equilibrium, the manager distorts her information to maximize the posterior mean and

minimize the posterior covariance. The analysis highlights the twin distortions of dissociation

2Mathematically, the manager changes the mean without changing the variance through translation and
changes the variance without changing the mean through rotation.
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and divergence. Specifically, the manager attenuates the sample covariance and emphasizes

differences between sources of cash flows using the sample mean.

In the second extension, we consider a firm whose cash flows are derived from two,

correlated segments (e.g., “iron and copper” or “food and beverages”) and assume that the

variance is priced as in the baseline model. In this example, all four distortions arise in

equilibrium—consistency, confirmation, dissociation, and divergence—as the manager tries

to reduce both the posterior variances of both segments and the covariance between the two.

In contrast to other iterations of the model, consistency and “dissociation” are not necessarily

orthogonal. In simpler terms, one cannot change the variance without also changing the

covariance (and vice-versa).

In the third extension, we consider an economy populated by two firms whose cash flows

are correlated. The market is uncertain about the variances of each firms’ cash flows and

the covariance between them. We construct the price of each firm using the wealth portfolio

as in the CAPM. We find that as the expected correlation between the firms increases, the

incentives for confirmation and consistency become stronger. This is because the manager’s

best guess about the other manager’s information is linear in her own information. Her

problem is “as if” hers was the only firm.

The statistical mechanism underlying the model comes from Bayesian updating when

updating beliefs about both the first and second moments. In “Normal-Normal” updating

(Normal prior and Normal likelihood), the posterior variance is a deterministic function of

the number of observations. As observed by several authors (e.g. O’Hagan, 1979), this is not

true for priors with “fat-tails.” If, as in this paper, the prior is Normal-Gamma (or Normal-

Wishart), the posterior variance (or covariance) depends on the observations themselves. In

particular, the posterior variance is linear in the sample standard deviation and the squared

deviation of the sample mean from the prior mean; the posterior covariance is linear in the

sample covariance and the product of the deviations of the sample means. These terms

create incentives for consistency, confirmation, dissociation, and divergence.

This paper is intentionally silent on the real effects of these four distortions. A large

literature examines the effect of disclosure on prices and investment.3 Our objective in this

paper is different. Given the widespread consumption of corporate communication, we wish

to understand the ways in which communication is distorted so that they are used properly,

3See Bertomeu and Cheynel (2016) for an excellent review of the literature on disclosure and cost of
capital (notable papers include Lambert et al., 2007; Strobl, 2013). Banerjee et al. (2018) and Goldstein and
Yang (2019) show that disclosure can “crowd out” information and cause inefficiencies. Terry et al. (2023)
explores the relationship between earnings management and investment.
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even if such distortions have no equilibrium impact on price or investment.

2 Literature

Broadly speaking, this paper contributes to the literature on information disclosure in fi-

nancial markets (Goldstein and Yang, 2017) and communication games in which senders

engage in costly manipulation to deceive a receiver (e.g. Frankel and Kartik, 2019). This

paper is motivated by empirical work studying the text of corporate communication, which

is vast and growing (Loughran and McDonald, 2016). Ahern and Sosyura (2014) show that

fixed exchange ratio acquirers use press releases to increase their own valuation. Hanley and

Hoberg (2010) and Loughran and McDonald (2013) investigate the effects of the content of

IPO filings on underpricing. Huang et al. (2014) explore tone management in earnings press

releases. Larcker and Zakolyukina (2012) analyze the “truthfulness” and “deceitfulness” of

conference calls. Li (2008) and Loughran and McDonald (2014) examine the effects of 10-K

readability. The present manuscript suggests a unified framework through which researchers

can interpret the findings of these empirical studies.

This paper specifically builds on the earnings management literature, beginning with the

canonical models of Stein (1989), Fischer and Verrecchia (2000), and Dye and Sridhar (2004).

A number of papers in earnings management model stochastic variance (Subramanyam,

1996; Kirschenheiter and Melumad, 2002; Beyer, 2009). These papers generally conclude

that prices are non-linear in earnings surprises (a fact that emerges in the present paper as

well). While the earnings management literature has been extended to look at interactions

between multiple firms (Acharya et al., 2011; Gao and Zhang, 2019; Aghamolla et al., 2024)

and dynamic settings (Beyer et al., 2019; Fang et al., 2024), less has been written on high-

dimensional disclosure.4 A notable exception is Harbaugh et al. (2016), which is the closest

paper in terms of model setup. It too considers a manager who receives an arbitrarily large

number of i.i.d. signals about a distribution. They find incentives for consistency and “too

good to be true” inferences (i.e., confirmation). The main difference between the models is

the biasing technology. In their paper, the mean of the report must equal the mean of the

signals and the bias to any particular dimension is costless, but capped by a constraint (that

always binds in equilibrium). In contrast, the model in this paper adopts the quadratic cost

technology used in the accounting literature. This admits richer predictions regarding the

shape of the distribution of reports. In addition, the model in this paper extends seamlessly

4Battaglini (2002) examines cheap-talk in higher dimensions.
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to covariance uncertainty, which is critical to exploring more realistic pricing functions.

3 Model

3.1 Setup

There are three dates, t ∈ {0, 1, 2}. On date t = 0, a manager (she) privately observes a

signal x ∈ Rn—for some n ≥ 2—which is informative about the cash flow d of the firm she

manages. On date t = 1, she issues a potentially biased report r ∈ Rn about x to the market.

The market sets the price p(r) of the manager’s shares. On date t = 2, d is revealed and the

game ends.

The main assumption of the model is that there is uncertainty about the mean and

variance of d. Let τ be Gamma distributed with shape α0 > 0 and rate β0 > 0. 1/τ is

the stochastic variance of d. Let υ = 1/(α0 − 2). For the remainder of the paper, we will

assume that β0 = α0 − 1. It follows that E(1/τ) = 1 and Var(1/τ) = υ, so that υ represents

the variance uncertainty (or variance-of-variance). The assumption that β0 = α0 − 1 is

not critical for any of the results and merely eases the exposition. Let e|τ be normally

distributed with mean µ0 and precision λ0τ , where λ0 > 0. Equivalently, (e, τ) is distributed

according to a Normal-Gamma with parameters µ0, λ0, α0, and β0. Finally, d is normally

distributed with mean e and precision τ . Standard calculations show that E(d) = µ0 and

Var(d) = 1 + λ−1
0 .

On date t = 0, the manager privately observes a vector of n i.i.d. signals x = (x1, x2, . . . , xn),

where xi is normally distributed with mean e and precision τ—the exact same distribution

as the cash flow d. Equivalently, xi is distributed according to a t-distribution with location

µ0, scale α
−1
0 β0(1 + λ−1

0 ), and degrees of freedom 2α0. Upon observing the signal x, the

manager releases a report r of x with bias b(x) ∈ Rn:

r = x+ b(x). (1)

We assume that investors have mean-variance preferences over the cash flow d and we nor-

malize the risk-free rate to be zero. Therefore, the price is

p(r) = E(d|r)− γVar(d|r) (2)
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for some γ > 0. It is in this sense that the cash flow variance is priced.5

The manager’s problem is to choose a bias to maximize the share price less a quadratic

cost of biasing:

b(x) ∈ argmax
b∈Rn

{
p(x+ b)− c

2
b′b
}
, (3)

where c > 0. The quadratic cost represents explicit costs of biasing, such as distraction

or regulatory action (Fischer and Verrecchia, 2000). It transpires that if c = 0, then the

manager always chooses the same report in equilibrium and hence the report is uninformative.

Therefore, consistency and confirmation are by themselves insufficient to keep the manager

from biasing communication.

Definition 3.1 (Equilibirum). An equilibrium is a price function p and bias function b such

that p and b jointly satisfy equations (2) and (3).

3.2 First-Best

Before solving for the equilibrium, we compute the price under truth-telling. Specifically,

suppose that b(x) = 0, so that r(x) = x. We first lay out some additional notation. As they

will appear often, let

m = n−11 (4)

C = n−1(I − n−111′), (5)

where I is the n×n identity matrix and 1 is the n-dimensional vector of ones (and therefore

11′ is the n× n matrix of ones). The sample mean and variance of x are

µx = x′m (6)

σ2
x = x′Cx. (7)

Note that C2 = n−1C, (mm′)2 = n−1mm′, and C(mm′) = (mm′)C = 0. Next, let

η0 =
λ0

λ0 + n
(8)

η1 =
n

λ0 + n
(9)

5One can interpret the price as containing a premium for earnings quality (EQ), defined by Beyer et al.
(2019) as −Var(d|r).
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and

θ0 =
2β0(λ0 + n+ 1)

(2α0 + n− 2)(λ0 + n)
(10)

θ1 =
n(λ0 + n+ 1)

(2α0 + n− 2)(λ0 + n)
(11)

θ2 =
λ0n(λ0 + n+ 1)

(2α0 + n− 2)(λ0 + n)2
. (12)

Lemma 3.1. Under truth-telling, the posterior mean and variance of d are

E(d|x) = η0µ0 + η1µx (13)

Var(d|x) = θ0 + θ1σ
2
x + θ2(µx − µ0)

2. (14)

Proofs of all results can be found in Section A. Note that θ0, θ1, and θ2 are strictly positive

and θ0, θ1, θ2 → 0 as n → ∞, so the posterior variance goes to zero as n → ∞. Moreover,

θ2/θ1 = λ0/(λ0 + n) < 1.

We now consider the price. Let

r = µ0 +
η1

2γθ2
(15)

Proposition 3.1 (First-Best). Under truth-telling, the price is

pF (x) = π0,B + π′
1,Bx+

1
2
x′π2,Bx, (16)

where

π2,B = −2γ(θ1C + θ2mm
′) (17)

π1,B = −rπ2,B1 = (η1 + 2γθ2µ0)m (18)

π0,B = η0µ0 − γ(θ0 + θ2µ
2
0). (19)

Note that pF achieves its maximum at r1.

3.3 Equilibrium Construction

Motivated by Proposition 3.1, we restrict attention to equilibria in which the bias is linear

in the signal x and the price is quadratic in the manager’s report r.

7



Definition 3.2 (LBQP Equilibrium). A linear-bias, quadratic-price (LBQP) equilibrium is

an equilibrium of the form

b(x) = ρ0 + ρ1x (20)

p(r) = π0 + π′
1r +

1
2
r′π2r, (21)

where π0 ∈ R, ρ0, π1 ∈ Rn, and ρ1, π2 ∈ Rn×n.

Evidently, the LBQP equilibrium nests the standard linear equilibria considered in the

literature. x is distributed according to a multivariate t-distribution with location µ01,

scale matrix α−1
0 β0(I + λ−1

0 11′), and degrees of freedom 2α. Therefore, r(x) is also dis-

tributed according to a multivariate t-distribution, but with location ρ0+µ0ρ11, scale matrix

α−1
0 β0ρ

′
1(I + λ−1

0 11′)ρ1, and degrees of freedom 2α.

Lemma 3.2 (Price Formation). Given a manager’s bias function in equation (20), the

market extracts from the report r the signal

s(r) = (I + ρ1)
−1(r − ρ0). (22)

As a function of the report r, the price is given by

p(r) = η0µ0 + η1µs(r) − γ
(
θ0 + θ1σ

2
s(r) + θ2(µs(r) − µ0)

2
)
. (23)

Equation (23) illustrates the manager’s incentive for consistency and confirmation. First,

there is the marginal benefit of increasing µs(r) in the first term. However, there is a cost of

increasing µs(r) related to the squared deviation of the report from the prior, (µs(r) − µ0)
2—

what we have called confirmation. The manager wants to bias upwards, but not so much

that it greatly increases the posterior variance. Second, the manager wishes to minimize the

sample standard deviation of the market’s signal, σ2
s(r)—what we have called consistency.

In the following proposition, equation (23) is shown to be quadratic in the report r.

Additionally, the optimal bias, obtained by maximizing the price in equation (21) minus the

quadratic cost, is shown to be linear in the manager’s signal x. The following proposition

characterizes the equilibrium values of ρ0, ρ1, π0, π1, π2.
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Proposition 3.2 (Equilibrium). If c > 8γθ1/n, there are four LBQP equilbria:

π∗
2 = κ1C + κ2mm

′ (24)

ρ∗1 = (cI − π∗
2)

−1π∗
2 = κ1(c− n−1κ1)

−1C + κ2(c− n−1κ2)
−1mm′, (25)

where κ1 and κ2 are roots of

c2κ1 = −2γθ1(c− n−1κ1)
2 (26)

c2κ2 = −2γθ2(c− n−1κ2)
2 (27)

and

π∗
1 = −rπ∗

21 = −rκ2m (28)

ρ∗0 = (cI − π∗
2)

−1π∗
1 = −rρ∗11 = −rκ2(c− n−1κ2)

−1m. (29)

Finally,

π∗
0 = π0,B − c−1π′

1,Bπ
∗
1 +

1
2
c−2π∗′

1 π2,Bπ
∗
1. (30)

Although we will explore many implications of the Proposition 3.2, we begin with the or-

thogonality of consistency and confirmation.

Corollary 3.1. In general, changes to the sample mean of the extracted signal are not

orthogonal to changes in the sample variance:

∇rµs(r) · ∇rσ
2
s(r) = 2m′(I + ρ1)

−1(I + ρ1)
−1′Cs(r). (31)

In equilibrium, however, they are orthogonal: ∇rµs∗(r) · ∇rσ
2
s∗(r) = 0.

As an elementary example, translating all signals by a constant changes the sample mean,

but does not change the sample variance. Similarly, rotating all signals about the mean

by a constant angle changes the variance, but does not change the mean. This is true

equilibrium—where the market calculates the sample mean and variance using using ρ∗0 and

ρ∗1—but is not true for an arbitrary conjecture of ρ0 and ρ1.

Since confirmation and consistency are orthogonal, any conflict between the two regards

their relative marginal benefit.

Corollary 3.2. The manager has a greater incentive to reduce the sample variance σ2
s(r)—

consistency—than to reduce the squared deviation (µs(r)−µ0)
2—confirmation—when the size
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of the signal space n is large or when the variance Var(d) = 1 + λ−1
0 is large.

Intuitively, the manager focuses more on consistency exactly when the market relies more

on new data than on its priors.

3.4 Equilibrium Selection

To sharpen the empirical predictions of the model, we choose one of the equilibria for our

analysis. Fortunately, one of the equilibria is Pareto efficient.

Lemma 3.3. The price distributions in each of the four equilibria are identical to the price

distribution under first-best.

This is the “window dressing” result, which shows that although there is bias in equilibrium,

the market anticipates and removes the equilibrium bias.

In what follows, we will refer to the equilibrium in which κ1 and κ2 are the larger roots

of equations (26) and (27) as the light-catering equilibrium. The manager strictly prefers the

light-catering equilibrium as it is less costly.

Proposition 3.3. The market is indifferent across equilibria. However, the manager’s ex-

pected utility is strictly higher in the light-catering equilibrium than any other equilibrium

equlibrium.

For the remainder of this section, we will operate under the assumption that all equilibrium

objects belong to the light-catering equilibrium. The following technical result will be used

in the propositions that follow.

Lemma 3.4. In the light-catering equilibrium, κ1, κ2 ∈ (−nc, 0). Moreover, κ1 and κ2 are

strictly decreasing in γ and υ. Finally, n−1κ1 and n−1κ2 are strictly increasing in n.

3.5 Equilibrium Analysis

3.5.1 Reporting

In this section, we prove a number of results that shed light on the properties of the equilib-

rium selected in the previous section. We first wish to understand the action of the reporting

policy under the light-catering equilibrium. The signal-to-report map x 7→ r∗(x)—an exam-

ple of which is illustrated in Figure 1—pulls signals towards the price maximizing report,

r1, in the following sense.
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Figure 1: Equilibrium Reporting. This figure plots two examples of signals and the
associated equilibrium reports for two sets of signals. The parameters used are µ0 = 1,
λ0 = 100, α0 = 3, β0 = 2, n = 10, c = 0.05, and γ = 0.95cn/8θ1.

Lemma 3.5. r∗ has the fixed-point r1, which can be obtained by fixed-point iteration.

By “pulling” signals towards r1, the manager simultaneously reduces sample variance while

trading-off the costs and benefits of increasing the sample mean.

Another way to see this is to look at how the map x 7→ r∗(x) changes the sample mean

and sample variance.

Lemma 3.6. The mean and variance are

µr∗(x) = r + c(c− n−1κ2)
−1(µx − r) (32)

σ2
r∗(x) = c2(c− n−1κ1)

−2σ2
x. (33)

These relationships are plotted in Figure 2. From equation (32), the sample mean of the

report, µr(x), is a convex combination of the sample mean of the signals, µx, and the ideal

mean r. The exact combination depends primarily on the cost of biasing—the larger the

cost, the less the manager is able to bias, the closer is µr(x) to µx. From equation (33), the

sample variance of the report, σ2
r(x), is always less than the sample variance of the signals,

σ2
x. Unlike the sample mean, there is no benefit to increasing the sample variance. As in

equation (32), the extent to which the manager can reduce the sample variance depends on

11



Figure 2: Sample Mean and Variance. This figure visualizes the mapping from the
sample mean µx and variance σ2

x of the signals to the sample mean µr(x) and variance σ2
r(x)

of reports (black line). The dashed line is the 45◦ line and represents the mapping under
truth-telling. The parameters used are µ0 = 1, λ0 = 100, α0 = 3, β0 = 2, n = 10, c = 0.05,
and γ = 0.95cn/8θ1.

the cost of biasing—the larger the cost, the less the manager is able to bias, the closer is

σ2
r(x) to σ

2
x.

Our main empirical implications regard how changes in the variance-of-variance υ, affect

the distribution of reports. First, note that

Lemma 3.7. E(µx) = µ0, Var(µx) = 1/n+ 1/λ0, and E(σ2
x) = 1− 1/n.

From Lemmas and 3.7, we immediately obtain the expected report mean, the expected report

variance (i.e., consistency), and the expected squared deviation (i.e., confirmation):

E(µr∗(x)) = µ0 + n−1κ2(c− n−1κ2)
−1(µ0 − r) (34)

E(σ2
r∗(x)) = c2(c− n−1κ1)

−2E(σ2
x) (35)

Var(µr∗(x)) = c2(c− n−1κ2)
−2Var(µx). (36)

Consequently, the expected squared deviation is given by

E((µr∗(x) − µ0)
2) = Var(µr∗(x)) + (E(µr∗(x))− µ0)

2. (37)
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Figure 3: Consistency, Confirmation, and the Variance-of-Variance. This figure
shows the relationship between the expected sample variance of reports, E(σr∗(x)) (consis-
tency) and the variance-of-variance υ in panel (a) and the relationship between the ex-
pected squared deviation, E((µr∗(x) − µ0)

2) (confirmation) and the variance-of-variance υ in
panel (b). The parameters used are µ0 = 1, λ0 = 100, n = 10, c = 0.05, and γ = 10.
υ = c(λ0 + n)/(4γ(λ0 + n + 1) − c(λ0 + n)) is the maximum value of υ for which LBQP
equilibria exist.

Evidently, E(µr∗(x)) > µ0 and E(σ2
r∗(x)) < E(σ2

x).

Proposition 3.4 (Comparative Statics: Variance). The expected sample mean E(µr∗(x)) is

strictly increasing in the variance-of-variance υ; the variance of the sample mean Var(µr∗(x))

and expected sample variance E(σ2
r∗(x)) are strictly decreasing in υ. The mean-squared-error

of the sample mean E((µr∗(x) − µ0)
2) may be non-monotonic in υ.

These results are shown in Figure 3. In general, variance uncertainty increases the posterior

variance and incentivizes both consistency and confirmation. In the case of consistency, the

relationship is clear-cut: the lower the sample variance, the better. According to Proposition

3.4, this is true in expectation. The effect on the expectation of the confirmation term is

more complicated. The variance of the sample mean is decreasing in variance uncertainty,

but the expected sample mean is increasing in variance uncertainty. As a result, the net

effect on the expectation of the confirmation term can be U-shaped, as demonstrated in

Figure 3.
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3.5.2 Dimensionality

In this section, we explore the manager’s ex-ante preferences over the size of the signal space,

n. First, the expected price is

P(n) = E
[
p∗(r∗(x))

]
, (38)

and the manager’s expected profit is

Π(n) = E
[
p∗(r∗(x))− c

2
b∗(x)′b∗(x)

]
. (39)

Next, the expected price is strictly increasing in n:

Lemma 3.8. P(n) = µ0 − γ(1 + 1/(λ0 + n)).

Finally, we apply the Envelope Theorem:

Proposition 3.5. The expected profit Π(n) is strictly increasing in n.

Our analysis shows that the manager prefers a richer signal space. However, empirical studies

document that gathering and processing information is not free. For instance, Blankespoor

et al. (2020) find substantial information processing costs borne by investors and analysts as

they digest firm disclosures. To capture these frictions, the literature models a constraint on

agents’ ability to reduce uncertainty—formalized as an entropy-reduction constraint (Veld-

kamp, 2023). Under such an entropy-reduction constraint, an agent optimally chooses a finite

number of signals to acquire. The finite signal-space size n that we assume throughout the

paper can be interpreted the outcome of a more complicated game featuring these frictions.

4 Covariance

In this section, we explore three extensions in which the covariance of the firm’s cash flows

is priced. In the first extension, we imagine that instead of a variance discount, there is

the usual discount due to the covariance of the firm’s cash flows with the SDF. In the

second extension, we imagine that the firm’s cash flows are derived from the cash flows of

two, correlated segments. Finally, we imagine an economy in which there are two firms

and derive the price using the CAPM. Mathematically, each of these extensions extends

the previous model by introducing a second source of uncertainty (an SDF, another cash

flows source, or another firm). The one-dimensional Gamma distribution becomes a two-

dimensional Wishart distribution.
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While the variance is bounded below, the covariance has no lower bound. In our applica-

tions, the manager will wish to make the cash flows (or segments contributing to cash flows)

appear as different as her cost function permits. The notion of consistency becomes “disso-

ciation,” whereby the manager wishes to make the sample covariance as negative as possible.

Similarly, the notion of confirmation becomes divergence. If one cash flow is unusually low,

she wishes to make the other cash flow appear unusually high (and vise-versa).

In the previous model, one of the main variables of interest was the stochastic precision,

τ , which was distributed according to a Gamma distribution with parameters α0 and β0.

In the extensions that follow, we consider two variables with an unknown precision matrix.

Specifically, we consider a random, 2 × 2 precision matrix Λ, distributed according to a

Wishart distribution with a known, 2× 2 scale matrix Ψ−1
0 and degrees of freedom ν > 0. It

follows that the covariance matrix, Λ−1, is distributed according to an Inverse-Wishart (just

as 1/τ was distributed according to an Inverse-Gamma). Now E(Λ−1) = Ψ0/(ν − 3). Let

ψ0, ϕ0, and ω0 be such that

Ψ0 =

(
ψ0 ω0

ω0 ϕ0

)
(40)

so that ψ0 represents the expected variance of the first variable, ϕ0 the expected variance of

the second variable, and ω0 the expected covariance. Similar to equations (10), (11), and

(12), let

ζ0 =
λ0 + n+ 1

(ν0 + n− 3)(λ0 + n)
(41)

ζ1 =
n(λ0 + n+ 1)

(ν0 + n− 3)(λ0 + n)
(42)

ζ2 =
λ0n(λ0 + n+ 1)

(ν0 + n− 3)(λ0 + n)2
. (43)

In the examples that follow, the posterior covariance matrix will depend on these three pa-

rameters. While in the previous section, the variance-of-variance υ was the primary variable

of interest, in this section, the expected covariance ω0 will be the main variable of interest.

We continue to use the sample mean and sample variance in equations (6) and (7). In

addition, equation (7) can be used to compute the sample covariance:

σx,y = x′Cy. (44)

Note that while most changes to x and y are orthogonal, there are two important exceptions:
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∇xσ
2
x ·∇xσx,y = ∇yσ

2
y ·∇yσx,y = 2n−1x′Cy. In words, one cannot change the variance without

also changing the covariance. This fact will be relevant when we study firms with multiple

segments or in economies with multiple firms.

4.1 One Factor

Unless the firm’s cash flows are truly undiversifiable, the price in equation (2) is misspecified.

In this section, we assume that the firm’s cash flows have an unknown covariance with a

priced factor f . The two main assumptions that we make are that (1) the manager cannot

manipulate data about the factor and (2) the variance of the factor is known (although the

covariance with the firms’ cash flows are not).

Let (e, f)|Λ be normally distribution with mean (µ0, ξ0) and precision λ0Λ, where λ0 > 0

is as before. Therefore, ((e, f),Λ) is Normal-Wishart with parameters (µ0, ξ0), λ0, Ψ−1
0 ,

and ν. The cash flow (d, w) is normally distributed with mean (e, f) and precision λΛ.

The manager observes i.i.d. signals (x1, y1), . . . , (xn, yn), which are drawn from the same

distribution as the cash flow. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) so that x represents

signals about the firm and y data about the factor.

Now given the stochastic discount factor 1− γ(w − E(w|r)), the price is

p(r) = E(d|r)− γCov(d, w|r). (45)

Naturally, the manager can bias data about her firm, but cannot bias information about the

factor. The manager’s problem is to choose a bias

b(x, y) ∈ argmax
b∈Rn

{
p(x+ b, y)− c

2
b′b
}
. (46)

Conjecture again that the manager’s bias is linear in signals and that the price is quadratic

in the report:

b(x, y) = ρ0 + ρ1x+ ρ2y (47)

p(r, y) = π0 + π′
1r + π′

2y +
1
2
r′π3r + r′π4y +

1
2
y′π5y, (48)

where π0 ∈ R, x, y, r, ρ0, π1, π2 ∈ Rn, and ρ1, ρ2, π3, π4, ρ5 ∈ Rn×n.

Lemma 4.1 (Price Formation: One Factor). Given the manager’s bias function in equation
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(47), the market extracts from the report r the signal

s(r, y) = (I + ρ1)
−1(r − ρ0 − ρ2y) (49)

from which it forms the price

p(r, y) = η0µ0 + η1µs(r) − γ
(
ζ0ω0 + ζ1σs(r),y + ζ2(µs(r) − µ0)(µy − ξ0)

)
. (50)

Equation (50) illustrates the manager’s incentive for dissociation and divergence. First, there

is the marginal benefit of increasing µs(r) in the first term. However, there is an additional

incentive from the product (µs(r) − µ0)(µy − ξ0)—what we have called divergence. If the

factor is below average (µy < ξ0), the manager wishes to make her firm’s cash flows look

above average (µs(r) > µ0) and vice-versa. Second, the manager wishes to minimize the

sample covariance of the market’s signal with the factor signal, σs(r),y—what we have called

dissociation.

We now turn to equilibrium construction. Let

y = ξ0 +
η1
γζ2

. (51)

Note the similarity between y in equation (51) and r in equation (15).

Proposition 4.1 (Equilibrium: One Factor). There is a unique equilibrium in which

ρ∗2 = −γc−1(ζ1C + ζ2mm
′) (52)

ρ∗1 = 0 (53)

ρ∗0 = −yρ∗21 = c−1(η1 + γζ2ξ0)m. (54)

We omit the parameters for the equilibrium price function π∗
0, . . . , π

∗
5 (they can be found

in the proof). It transpires that while the price depends on χ0 (specifically, π∗
0), the bias

function does not.

Corollary 4.1 (Orthogonality: One Factor). In equilibrium, changes to the sample mean of

the extracted signal are orthogonal to changes in the sample variance:

∇rµs∗(r,y) · ∇rσs∗(r,y),y = 0. (55)

Intuitively, the manager can change the sample mean without changing the sample covariance
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(and vice-versa). Analogous to the baseline model, the manager has a greater incentive to

reduce the sample covariance σs(r,y),y (i.e., dissociation) than to reduce the product (µs(r,y)−
µ0)(µy−ξ0) (i.e., divergence) when the size of the signal space n is large or when the variance

Var(d) = 1 + λ−1
0 is large (since ζ2/ζ1 = λ0/(λ0 + n)).

Following our analysis of the baseline model, we examine how the sample statistics of the

signals available to the manager map to the sample statistics of the reports she dispatches

to the market.

Corollary 4.2 (Sample Stats: One Factor). The mean and covariance are

µr(x,y) = µx + c−1n−1(η1 + γζ2ξ0)− γc−1n−1ζ2µy (56)

σr(x,y),y = σx,y − γc−1n−1ζ1σ
2
y (57)

Since µr(x,y) = µx + µb(x,y), Corollary 4.2 shows that the mean bias should strictly decrease

in the factor mean. Intuitively, the manager wishes to bias signals upward, but less so if the

mean of the factor is already high. Similarly, σr(x,y),y = σx,y + σb(x, y), y and so Corollary

4.2 shows that the manager always wants to decrease the covariance (“disassociation”).

4.2 Two Segments

In this section, we imagine that a single firm operates two segments. One of the key insights

is that in a multi-segment firm, consistency will be in conflict with “dissociation,” as the

manager cannot reduce the variance regarding one segment without changing the covariance

between the two segments. Whether attempts to increase consistency and dissociation are

complimentary or substitutable depends on the sample covariance.

e|Λ is normally distributed with mean µ0 = µ012 and precision λΛ. Therefore, (e,Λ) is

distributed according to a Normal-Wishart with parameters µ0, λ0, Ψ
−1
0 , and ν. Finally, the

cash flows d are normally distributed with mean e and precision λΛ. The aggregate cash

flow is the sum of the cash flows from the two segments:

d = 1′
2d = d1 + d2. (58)

Under mean-variance pricing, the price is

p(r) = E(d|r)− γVar(d|r) =
∑

j∈{1,2}

(E(dj|r)− γVar(dj|r))− 2γCov(di, dj|r). (59)
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The manager observes i.i.d. signals x1, . . . ,xn, which are drawn from the same distribution

as the cash flows. The manager’s problem is to choose a bias

b(x) ∈ argmax
b∈Rn×2

{
p(x+ b)− c

2
tr(b′b)

}
. (60)

Conjecture again that the manager’s bias is linear in signals and that the price is quadratic

in the report:

bj(x) = ρ0 + ρ1xj + ρ2x−j (61)

p(r) = π0 + π′
1r1 + π′

1r2 +
1

2
r′
1π2r1 + r′

1π3r2 +
1

2
r′
2π2r2, (62)

where x, r ∈ Rn×2 (rj and xj denote the j-th columns of r and x respectively), π0 ∈ R,
ρ0, π1 ∈ Rn, and ρ1, ρ2, π2, π3 ∈ Rn×n. Moreover, we conjecture that π2 + π3 and π2 − π3 are

symmetric negative definite.6 Equations (61) and (62) can be written as

vec(b(x)) = 12 ⊗ ρ0 + (I2 ⊗ ρ1 + J2 ⊗ ρ2)vec(x) (63)

p(r) = π0 + (1′
2 ⊗ π′

1)vec(r) +
1

2
vec(r)′(I2 ⊗ π2 + J2 ⊗ π3)vec(r), (64)

where b(x) ∈ Rn×2, bj(x) in equation (61) is the j-th column of b(x), I2 is the 2× 2 identity

matrix and J2 is the 2× 2 exchange matrix.

Lemma 4.2 (Price Formation: Two Segments). Given the manager’s bias function in equa-

tion (63), the market extracts from the report r the signal

s(r) = (I2 ⊗ (I + ρ1) + J2 ⊗ ρ2)
−1(vec(r)− 12 ⊗ ρ0), (65)

from which it forms the price

p(r) =
∑

j∈{1,2}

(
η0µ0 + η1µsj(r) − γ

(
ζ0ψ0 + ζ1σ

2
sj(r)

+ ζ2(µsj(r) − µ0)
2
))

− 2γ
(
ζ0ω0 + ζ1σs1(r),s2(r) + ζ2(µs1(r) − µ0)(µs2(r) − µ0)

)
, (66)

where sj(r) denotes the j-th column of s(r).

In equation (66), we see the incentives for consistency and confirmation in each segment in

the first line and incentives for dissociation and divergence in the second.

6This guarantees that I2 ⊗ π2 + J2 ⊗ π3, which appears in equation (64), is symmetric negative definite.
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We now turn to equilibrium construction. Let

rS = µ0 +
η1
4γζ2

. (67)

and

π0,S = 2η0µ0 − γ(2ζ0(ω0 + ψ0) + 4ζ2µ
2
0) (68)

π1,S = −2rSπ2,S1 = (η1 + 4γζ2µ0)m (69)

π2,S = π3,S = −2γ(ζ1C + ζ2mm
′). (70)

π0,S, π1,S, and π2,S are analogous to π0,B, π1,B, and π2,B in equations (19), (18), and (17).

Proposition 4.2 (Equilibrium: Two Segments). If c > 16γζ1/n, there are four equilibria of

the form given by equations (61) and (62):

π∗
2 = π∗

3 = κ1C + κ2mm
′ (71)

ρ∗1 = ρ∗2 = κ1(c− 2n−1κ1)
−1C + κ2(c− 2n−1κ2)

−1mm′ (72)

where κ1 and κ2 are roots of

c2κ1 = −2γζ1(c− 2n−1κ1)
2 (73)

c2κ2 = −2γζ2(c− 2n−1κ2)
2 (74)

Next, ρ∗1 = −2rSρ
∗
21 and ρ∗0 = −2rSρ

∗
11. Finally,

π∗
0 = π0,S − 2c−1π′

1,Sπ
∗
1 + 2c−2π∗′

1 π2,Sπ
∗
1. (75)

According to Proposition 4.2, the manager’s bias for any particular segment only depends

on the total cash flows, not the individual segment cash flows. As the correlation between

the two segments increases, the manager biases more. In particular, since π∗
2 = π∗

3, the price

can be written in terms of the sum of the reports, r12:

p(r) = π∗
0 + π∗′

1 r12 +
1

2
(r12)

′π∗
2(r12). (76)

The only variable that depends on the correlation is π∗
0. Increasing the covariance between

segments, ω0, increases prices, but does not affect the equilibrium report.
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Corollary 4.3 (Orthogonality: Two Segments). In equilibrium, changes to the sample vari-

ance are not orthogonal to changes in the sample covariance:

∇rjσ
2
s∗j (r)

·∇rjσs∗j (r),s∗−j(r)
= 2c−2n−1(c−n−1κ1)

(
(c− n−1κ1)σs∗j (r),s∗−j(r)

− n−1κ1σ
2
s∗j (r)

)
(77)

Of course, changes to the means of different segments and the means and variances of seg-

ments are also orthogonal.

Corollary 4.4 (Sample Stats: Two Segments). The mean, variance, and covariance are

µr∗(xj) = µxj
+ n−1κ2(c− 2n−1κ2)

−1(µxj
− rS) (78)

σ2
r∗(xj)

= c2(c− 2n−1κ1)
−2σ2

xj
(79)

σr∗(xj),r∗(x−j) = c2(c− 2n−1κ1)
−2σxj ,x−j

. (80)

Although the manager would like to make the sample covariance as small as possible, she

cannot do so without negatively affecting the variance.

4.3 Two Firms

In this section, we imagine that there are two firms in the economy. The main assumption

is that each manager observes signals about her own firm, but not the signals observed by

the other manager. As a result, the manager makes a best-guest about what the manager

observed based on what she herself observed.

Just as in the two segment case, e|Λ is normally distributed with mean µ0 = µ012 and

precision λΛ. Finally, the cash flows d are normally distributed with mean e and precision

λΛ. Signals x1, . . . ,xn are drawn from the same distribution as d. In contrast to the two

segment case, the manager only observes the n signals regarding her firm, which we collect

in the vector xj. Importantly, we must compute firm j’s expectation of −j’s signal given its

own. Let

χ0 =
ω0

ψ0

. (81)

Because the two firms are symmetric, χ0 is the correlation between the firms’ cash flows.

Lemma 4.3. E(x−j|xj) = µ01+ χ0(xj − µ01).

Lemma 4.3 is related to the standard results regarding conditional distributions of multi-

variate t-distributions. If the managers’ signals are expected to be perfectly correlated (i.e.,

21



ω0 = ψ0), then E(x−j|xj) = xj; if they are expected to be uncorrelated, (i.e., ω0 = 0), then

E(x−j|xj) = 0.

Assuming that the supply of shares is fixed, the payoff of the wealth portfolio is d1 + d2.

Given the stochastic discount factor

1− γ((d1 − E(d1|r1, r2)) + (d2 − E(d2|r1, r2))) (82)

the price of firm j is

pj(r) = E(dj|r)− γ(Var(dj|r) + Cov(dj, d−j|r)). (83)

Manager j’s problem is to choose a bias

bj(xj) ∈ argmax
bj∈Rn

{
E
(
pj(xj + bj, x−j + b−j)− c

2
b′jbj
)}
. (84)

Conjecture a symmetric equilibrium in which

b(xj) = ρ0 + ρ1xj (85)

p(rj, r−j) = π0 + π′
1rj + π′

2r−j +
1
2
r′jπ3rj + r′jπ4r−j +

1
2
r′−jπ5r−j. (86)

Lemma 4.4 (Price Formation: Two Firms). Given the manager’s bias function in equation

(85), the market extracts from the report rj the signal

s(rj) = (I + ρ1)
−1(rj − ρ0) (87)

from which it forms the price

pj(rj, r−j) = η0µ0 + η1µs(rj) − γ(ζ0ψ0 + ζ1σ
2
s(rj)

+ ζ2(µs(rj) − µ0)
2)

− γ
(
ζ0ω0 + ζ1σs(rj),s(r−j) + ζ2(µs(rj) − µ0)(µs(r−j) − µ0)

)
. (88)

Equation (88) illustrates the manager’s incentives to bias. Now under the equilibrium con-

jecture, s(r−j) = x−j. Therefore,

E(µx−j
|xj) = µ0 + χ0(µxj

− µ0) (89)

E(σs(rj),x−j
|xj) = χ0σs(rj),xj

(90)
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Figure 4: Sample Mean and Variance: Two Firms. This figure visualizes the mapping
from the sample mean µxj

and variance σ2
xj

(or covariance σxj ,x−j
) of the signals to the sample

mean µr(xj) and variance σ2
r(xj)

(or covariance σr(xj),r(x−j)) of reports for three different values
of χ0. The dashed line is the 45◦ line and represents the mapping under truth-telling. The
parameters used are µ0 = 1, λ0 = 100, ν0 = 3, n = 10, c = 0.05, and γ = 0.95cn/12ζ1.

Taking expectations yields

E(pj(rj, r−j)|xj) = η0µ0 + η1µs(rj) − γ(ζ0ψ0 + ζ1σ
2
s(rj)

+ ζ2(µs(rj) − µ0)
2)

− γ
(
ζ0ω0 + ζ1χ0σs(rj),xj

+ ζ2χ0(µs(rj) − µ0)(µxj
− µ0)

)
. (91)

Define

rF = µ0 +
η1
3γζ2

(92)

and

π0,F = η0µ0 − γ
(
ζ0(ψ0 + ω0) + 2ζ2µ

2
0

)
(93)

π1,F = −3rFπ4,F1 = (η1 + 3γζ2µ0)m (94)

π2,F = γζ2µ0m (95)

π3,F = −2γ(ζ1C + ζ2mm
′) (96)

π4,F = −γ(ζ1C + ζ2mm
′). (97)
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π0,F , . . . , π4,F are analogous to π0,B, π1,B, and π2,B in equations (19), (18), and (17).

Proposition 4.3 (Equilibrium: Two Firms). If c > 4γ(2+χ0)ζ1/n, the low-cost equilibrium

is of the form

π∗
5 = 0 (98)

π∗
4 = (2 + χ0)

−1(κ1C + κ2mm
′) (99)

π∗
3 = 2π∗

4 (100)

and hence

ρ∗1 = κ1(c− n−1κ1)
−1C + κ2(c− n−1κ2)

−1mm′, (101)

where κ1 and κ2 are roots of

c2κ1 = −γ(2 + χ0)ζ1(c− n−1κ1)
2 (102)

c2κ2 = −γ(2 + χ0)ζ2(c− n−1κ2)
2. (103)

Corollary 4.5 (Orthogonality: Two Firms). In equilibrium, changes to the sample variance

are not orthogonal to changes in the sample covariance:

∇rjσ
2
s∗(rj)

· ∇rjσs∗(rj),xj
= 2c−2n−1(c− n−1κ1)

2σs∗(rj),xj
. (104)

In this extension, we are principally interested in the role of the correlation between the

firms’ cash flows as measured by χ0.

Corollary 4.6. In the light-catering equilibrium, κ1, κ2 ∈ (−nc, 0). Moreover, κ1 and κ2 are

strictly decreasing in χ0.

Following our analysis in previous iterations of the model, we investigate the mapping

from signal moments to report moments.

Corollary 4.7 (Sample Stats: Two Firms). The mean, variance, and covariance are

µr∗(xj) = µxj
+ n−1κ2(c− n−1κ2)

−1(µxj
− r̃) (105)

σr∗(xi),r∗(xj) = c2(c− n−1κ1)
−2σxi,xj

(106)

where r̃ = −m′ρ∗−1
1 ρ∗0.
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Together with 4.6, we see that when the firms’ cash flows are less correlated, the covariance

discount in the price is smaller, and so the manager has to bias less. This effect is illustrated

in Figure 4 In contrast to previous analyses, where there was a clear expression for r, here

it is more complicated. r̃ is a highly non-linear function of χ0.

5 Conclusion

In this paper, we answer the question of how firms optimally shape their messages under

uncertainty by developing a unified signal-jamming framework that admits closed-form solu-

tions and comparative statics. Under priced, stochastic variance (and covariance), managers

endogenously distort their reports along four dimensions—consistency, confirmation, disso-

ciation, and divergence. We obtain these distortions without appealing to ad-hoc behavioral

biases. These distortions emerge in rational expectations equilibrium in which the manager

trades off the benefit of influencing the market’s posterior against the cost of biasing and

cannot credibly commit to truthful reporting.

Our comparative-statics results reveal that when cash flows are more volatile or the

signal space is richer, the marginal benefit to consistency (and, in covariance-priced settings,

dissociation) exceeds that of confirmation (or divergence). We show that any two distortions

except consistency and dissociation can vary independently, and we characterize how variance

uncertainty drives shifts in confirmation and consistency. Extending to multiple segments

and multiple firms under CAPM pricing, the model highlights how correlation structures

shape a firm’s incentive to bias.
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A Proofs

Proof of Lemma 3.1. Standard calculations show that the posterior (e, τ)|x is Normal-Gamma

with parameters

µn = η0µ0 + ηµx (107)

λn = λ0 + n (108)

αn = α0 + n/2 (109)

βn = β0 + (n/2)
(
σ2
x + η0(µx − µ0)

2
)
. (110)

Therefore, the posterior mean and variance of d are

E(d|x) = E(e|x) = µn = η0µ0 + η1µx (111)

and

Var(d|x) = E(1/τ |x) + Var(e|x) = (λn + 1)βn
λn(αn − 1)

= θ0 + θ1σ
2
x + θ2(µx − µ0)

2 (112)

respectively. ■

Proof of Proposition 3.1. Note that

(µx − µ0)
2 = (m′(x− µ01))

2 (113)

= (x− µ01)
′mm′(x− µ01) (114)

= x′mm′x− 2µ01
′mm′x+ µ2

01
′mm′1 (115)

= x′mm′x− 2µ0m
′x+ µ2

0. (116)

From equations (2), (13), (14), (6), and (7), we have

p(r) = η0 + η1m
′(x− µ01)− γ(θ0 + θ1x

′Cx+ θ2(x
′mm′x− 2µ0m

′x+ µ2
0)) (117)

from which equations (19), (18), and (17) follow. ■

Proof of Lemma 3.2. Consider the market’s problem given ρ = (ρ0, ρ1). The manager’s

report is

r = x+ b∗(x) = x+ (ρ0 + ρ1x) = ρ0 + (I + ρ1)x (118)
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from which the market extracts the signal in equation (22). Standard calculations show that

the posterior (e, τ)|s(r) is Normal-Gamma with parameters

µn = η0µ0 + η1µs(r) (119)

λn = λ0 + n (120)

αn = α0 + n/2 (121)

βn = β0 + (n/2)
(
σ2
s(r) + η0(µs(r) − µ0)

2
)
. (122)

Therefore, the posterior mean and variance of d are

E(d|x) = E(e|x) = µn = η0µ0 + η1µs(r) (123)

and

Var(d|x) = E(1/τ |x) + Var(e|x) = (λn + 1)βn
λn(αn − 1)

= θ0 + θ1σ
2
s(r) + θ2(µs(r) − µ0)

2 (124)

respectively. ■

Proof of Proposition 3.2. Consider first the manager’s problem given π = (π0, π1, π2). The

first-order condition is

0 = π1 + π2(x+ b∗(x))− cb∗(x). (125)

Hence,

b∗(x) = ρ̃0(π) + ρ̃1(π)x (126)

where

ρ̃0(π) = (cI − π2)
−1π1 (127)

ρ̃1(π) = (cI − π2)
−1π2. (128)

Next, consider the market’s problem given ρ = (ρ0, ρ1). Recall the signal s(r) and price p(r)

given in equations (22) and (23) of Lemma 3.2. For ease of exposition, let P = (I + ρ1)
−1 so

that s(r) = P (r − ρ0). Now

s(r)− µ01 = P (r − ρ0)− µ01 = Pr − (Pρ0 + µ01) (129)
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and hence

µs(r) − µ0 = m′(s(r)− µ01) = m′Pr −m′(Pρ0 + µ01) (130)

and hence

(µs(r) − µ0)
2 = (s(r)− µ01)

′mm′(s(r)− µ01) (131)

= r′P ′mm′Pr − 2(Pρ0 + µ01)
′mm′Pr + (Pρ0 + µ01)

′mm′(Pρ0 + µ01). (132)

Moreover,

σ2
s(r) = s(r)′Cs(r) = r′P ′CPr − 2ρ′0P

′CPr + ρ′0P
′CPρ0. (133)

Therefore, the market price is

p(r) = E(e|r)− γVar(e|r) = π̃0(ρ) + π̃1(ρ)
′r + 1

2
r′π̃2(ρ)r (134)

where

π̃0(ρ) = µ0 − η1m
′(Pρ0 + µ01)

− γ(θ0 + θ1ρ
′
0P

′CPρ0 + θ2(Pρ0 + µ01)
′mm′(Pρ0 + µ01)) (135)

π̃1(ρ) = η1P
′m+ 2γ(θ1P

′CPρ0 + θ2P
′mm′(Pρ0 + µ01)) (136)

π̃2(ρ) = −2γ(θ1P
′CP + θ2P

′mm′P ) = P ′π2,BP. (137)

An equilibrium jointly satisfies equations (127), (128), (135), (136), and (137). Now since

π2,B is symmetric, so too is π∗
2, which is given by

c2π∗
2 = (cI − π∗

2)π2,B(cI − π∗
2) = −2γ(cI − π∗

2)(θ1C + θ2mm
′)(cI − π∗

2). (138)

Since all terms in equation (138) live in the span of C and mm′, so too must the solution π∗
2:

π∗
2 = κ1C + κ2mm

′ (139)
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for constants κ1 and κ2. Therefore,

c2(κ1C + κ2mm
′)

= −2γ(cI − (κ1C + κ2mm
′))(θ1C + θ2mm

′)(cI − (κ1C + κ2mm
′)) (140)

= −2γ(cI − (κ1C + κ2mm
′))(θ1(c− n−1κ1)C + θ2(c− n−1κ2)mm

′) (141)

= −2γ(θ1(c− n−1κ1)
2C + θ2(c− n−1κ2)

2mm′), (142)

from which we obtain the quadratic equations in (26) and (27). Equations (26) and (27)

have discriminates

∆1 = (c− 8γθ1n
−1)c3 (143)

∆2 = (c− 8γθ2n
−1)c3 (144)

so real roots exist if and only if c > 8γmax{θ1, θ2}/n = 8γθ1/n. Note that the eigenvalues

of π∗
2 are n−1κ2 < 0 (with multiplicity one and eigenvector m) and n−1κ1 (with multiplicity

n− 1). Therefore, π2 is symmetric negative definite as conjectured. Next, we have that

ρ∗1 = (cI − π∗
2)

−1π∗
2 (145)

= (cI − (κ1C + κ2mm
′))−1(κ1C + κ2mm

′) (146)

= c−1(I + κ1(c− n−1κ1)
−1C + κ2(c− n−1κ2)

−1mm′)(κ1C + κ2mm
′) (147)

= κ1(c− n−1κ1)
−1C + κ2(c− n−1κ2)

−1mm′ (148)

and hence

P ∗ = (I + ρ∗1)
−1 = I − c−1κ1C − c−1κ2mm

′ (149)

In terms of π∗
1, P

∗ρ∗0 = c−1π∗
1. Therefore,

π∗
1 = η1P

∗m+ 2γ(c−1θ1P
∗Cπ∗

1 + θ2P
∗mm′(c−1π∗

1 + µ01)) (150)

= (η1 + 2γθ2µ0)P
∗m+ 2γc−1P ∗(θ1C + θ2mm

′)π∗
1 (151)

= P ∗π1,B − c−1P ∗π2,Bπ
∗
1. (152)
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Solving for π∗
1, we obtain

π∗
1 = (I + c−1P ∗π2,B)

−1P ∗π1,B (153)

= P ∗2π1,B (154)

= P ∗π2,BP
∗π−1

2,Bπ1,B (155)

= −rπ∗
21, (156)

where the second line follows from the fact that P ∗ = c−1(cI − π∗
2), the third line from the

fact that all of the terms are linear combinations of I, C, and mm′ and therefore commute,

and the fourth line from the facts that π∗
2 = P ∗π2,BP

∗ and π−1
2,Bπ1,B = −r1. Hence

ρ∗0 = (cI − π∗
2)

−1π∗
1 = (cI − π∗

2)
−1π∗

2π
∗−1
2 π∗

1 = −rρ∗11 (157)

and

π∗
0 = µ0 − η1m

′(P ∗ρ∗0 + µ01)

− γ(θ0 + θ1ρ
∗′
0 P

∗CP ∗ρ∗0 + θ2(P
∗ρ∗0 + µ01)

′mm′(P ∗ρ∗0 + µ01)) (158)

= π0,B − c−1π′
1,Bπ

∗
1 +

1
2
c−2π∗′

1 π2,Bπ
∗
1 (159)

having used the fact that P ∗ρ∗0 = c−1π∗
1. ■

Proof of Corollary 3.1. Equation (31) follows from the chain rule for gradients. Using Propo-

sition 3.2 and equation (149), we have

∇rµs∗(r) · ∇rσ
2
s∗(r) = 2m′(I + ρ∗1)

−2Cs∗(r) (160)

= 2m′(I − κ1c
−1C − κ2c

−1mm′)2Cs∗(r) (161)

= 0 (162)

as desired. ■

Proof of Corollary 3.2. The result follows from equation (23) and θ2/θ1 = λ0/(λ0 + n). ■
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Proof of Lemma 3.3. Let

A = (I + ρ∗1)π
∗
2(I + ρ∗1) (163)

B = (π∗′
1 + ρ∗′0 π

∗
2)(I + ρ∗1) (164)

C = π∗
0 + π∗′

1 ρ
∗
0 +

1
2
ρ∗′0 π

∗
2ρ

∗
0 (165)

so that

p∗(r∗(x)) = 1
2
x′Ax+Bx+ C (166)

(using the fact that π∗
2 and ρ∗1 are symmetric). It suffices to show that A = π2,B, B = π1,B,

and C = π0,B. Note that

A = (I + ρ∗1)π
∗
2(I + ρ∗1) (167)

= c2(cI − π∗
2)

−1π∗
2(cI − π∗

2)
−1. (168)

Pre- and post-multiplication by cI − π∗
2 together with equation (138) imply that that A =

π2,B. Using the facts that π∗
1 = −rπ∗

21 and ρ∗0 = −rρ∗11 (Proposition 3.2), we have that

B = −r(1′π∗
2 + 1′ρ1π

∗
2)(I + ρ∗1) (169)

= −r1′(I + ρ1)π
∗
2(I + ρ∗1) (170)

= −r1′A (171)

= π1,B. (172)

Using the results from Propositions 3.1 and 3.2, we have that

π′
1,Bπ

∗
1 = −(η1 + 2γθ2µ0)rn

−1κ2 = −2γθ2r
2n−1κ2 (173)

π∗′
1 π2,Bπ

∗
1 = −2γθ2r

2n−2κ22 (174)

π∗′
1 ρ

∗
0 = r2n−1κ22(c− n−1κ2)

−1 = −2γθ2r
2c−2n−1κ2(c− n−1κ2) (175)

ρ∗′0 π
∗
2ρ

∗
0 = r2n−2κ32(c− n−1κ2)

−2 = −2γθ2r
2c−2n−2κ22. (176)
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From equation (30),

C = π0,B − c−1π′
1,Bπ

∗
1 +

1
2
c−2π∗′

1 π2,Bπ
∗
1 + π∗′

1 ρ
∗
0 +

1
2
ρ∗′0 π

∗
2ρ

∗
0 (177)

= π0,B − 2γθ2r
2(−c−1n−1κ2 +

1
2
c−2n−2κ22 + c−2n−1κ2(c− n−1κ2) +

1
2
c−2n−2κ22) (178)

= π0,B (179)

as desired. ■

Proof of Proposition 3.3. From Lemma 3.3, E(p∗(r∗(x)) is constant across equilibria. We

therefore wish to compute E(b∗(x)′b∗(x)). From equation (25),

ρ∗21 = n−1κ21(c− n−1κ1)
−2C + n−1κ22(c− n−1κ2)

−2mm′ (180)

= −2γc−2n−1(θ1κ1C + θ2κ2mm
′), (181)

where the second line follows from equations (26) and (27). Two facts follow. First,

tr(ρ∗21 ) = −2γc−2n−1(θ1κ1 tr(C) + θ2κ2 tr(mm
′)) (182)

= −2γc−2n−1(θ1κ1(1− n−1) + θ2κ2n
−1) (183)

having used the fact that tr(C) = 1− n−1. Second,

1′ρ∗21 1 = −2γc−2n−1θ2κ2 (184)

From Proposition 3.2, we have b∗(x) = ρ∗1(x− r1). Hence,

E(b∗(x)′b∗(x)) = E((x− r1)′ρ∗21 (x− r1)) (185)

= tr(ρ∗21 ) + (µ0 − r)21′ρ∗21 1 (186)

= −2γc−2n−1(θ1κ1(1− n−1) + θ2κ2n
−1 + (µ0 − r)2θ2κ2). (187)

Therefore, the manager’s expected utility is greatest when κ1 and κ2 are the larger roots of

equations (26) and (27) respectively. ■

Proof of Lemma 3.4. From equations (26) and (27), we have that for k ∈ {1, 2},

c2κk = −2γθk(c− n−1κk)
2. (188)
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where κk is the larger root (following the discussion of Section 3.4). Let

Qk(κ) = c2κ+ 2γθk(c− n−1κ)2 (189)

so that Qk(κk) = 0. Note that Qk(−nc) = −nc3 + 8γθkc
2 < 0 (see equations 143 and 144).

Since κk is the larger root, it follows that −nc < κk and hence c2 > n−2κ2k. Differentiating

equation (188) with respect to θk and rearranging yields

dκk
dθk

= − c2κ2k
2γθ2k(c

2 − n−2κ2k)
< 0. (190)

Evidently, θ1 and θ2 are strictly increasing in υ. A similar calculation shows that κk is strictly

decreasing in γ. Next,
dκk
dc

=
2n−1κ2k

c(c+ n−1κk)
> 0. (191)

We can rewrite equation (188) as

c2n−1κk = −2γn−1θk(c− n−1κk)
2. (192)

Differentiating with respect to n and rearranging yields

d(n−1κk)

dn
= −2γ(c− n−1κk)

3

c2(c+ n−1κk)
· d(n

−1θk)

dn
> 0 (193)

as desired. ■

Proof of Lemma 3.5. From equation (25), I + ρ∗1 has eigenvalue c(c− n−1κ2)
−1 (with multi-

plicity one and eigenvector m) and c(c − n−1κ1)
−1 (with multiplicity n − 1). From Lemma

3.4, these eigenvalues are strictly greater than zero and strictly less than one. The result

follows from standard results regarding affine mappings. ■

Proof of Lemma 3.5.1. Note that

µr∗(x) = m′r(x) (194)

= m′(x+ ρ∗1(x− r1)) (195)

= m′x+ n−1κ2(c− n−1κ2)
−1m′(x− r1) (196)

= µx + n−1κ2(c− n−1κ2)
−1(µx − r) (197)
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and

σ2
r∗(x) = r(x)′Cr(x) (198)

= (x′ + (x′ − r1′)ρ∗1)C(x+ ρ∗1(x− r1)) (199)

= x′Cx+ 2x′Cρ∗1(x− r1) + (x′ − r1′)ρ∗1Cρ
∗
1(x− r1) (200)

= σ2
x(1 + 2n−1κ1(c− n−1κ1)

−1 + n−2κ21(c− n−1κ1)
−2) (201)

= c2(c− n−1κ1)
−2σ2

x (202)

as desired. ■

Proof of Lemma 3.7. Using x|e, τ ∼ N (e1, τ−1I) and e|τ ∼ N (µ0, λ
−1
0 τ−1), we have

E(µx) = E(m′x) = E(E(m′x|e, τ)) = E(e) = µ0. (203)

Next,

Var(µx) = Var(m′x) (204)

= E(Var(m′x|e, τ)) + Var(E(m′x|e, τ)) (205)

= n−1E(1/τ) + Var(e) (206)

= n−1 + λ−1
0 . (207)

Next,

E(σ2
x) = E(x′Cx) (208)

= E(E(x′Cx|e, τ)) (209)

= E(tr(τ−1C) + e21′C1) (210)

= E(tr(τ−1C)) (211)

= E(1/τ) tr(C) (212)

= 1− n−1 (213)

as desired. ■

Proof of Proposition 3.4. First, consider E(µr∗(x)) from equation (34). Using equation (27),

we have

E(µr∗(x)) = µ0 + c−2(λ0 + n)−1(c− n−1κ2), (214)
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which, according to Lemma 3.4, is strictly increasing in υ. Next, consider E(σ2
r∗(x)) from

equation (35). From Lemma 3.7, E(σ2
x) is constant with respect to υ. Since c2(c− n−1κ1)

−2

is strictly decreasing in υ (Lemma 3.4), so too is E(σ2
r∗(x)). An identical argument shows that

Var(µr∗(x)) from equation (36) is also strictly decreasing in υ. Finally, the non-monotonicity

of E((µr∗(x) − µ0)
2) in equation (37) follows from the facts that (a) Var(µr∗(x)) is strictly

decreasing in υ and (b) E(µr∗(x)) is strictly greater than µ0 and strictly increasing in υ. An

identical set of arguments deliver the results for γ. ■

Proof of Lemma 3.8. As a consequence of Lemma 3.3, P(n) = E(pF (x)). From equations

(19), (18), and (17),

pF (x) = η0µ0 − γ(θ0 + θ2µ
2
0) + (η1 + 2γθ2µ0)µ

2
x − γ(θ1σ

2
x + θ2µ

2
x). (215)

Therefore,

P(n) = E(pF (x)) (216)

= µ0 − γ(θ0 + θ1(1− n−1) + θ2(n
−1 + λ−1

0 )) (217)

= µ0 −
γ(2β0 + n)(λ0 + n+ 1)

(2α0 + n− 2)(λ0 + n)
. (218)

The result follows from the parameter assumption that β0 = α0 − 1. ■

Proof of Proposition 3.5. By the Envelope theorem, Π′(n) = P ′(n). ■

Proof of Proposition ??. Using equations (15) and (27), we have that

n−1κ2
c− n−1κ2

· (µ0 − r) = − n−1κ2
c− n−1κ2

· η1
2γθ2

= n−1c−2(c− n−1κ2)η1. (219)

Moreover, equations (26) and (27) reveal that n−1κ1 → 0 and n−1κ2 → 0 as n→ ∞. Taking

these facts to equations (34), (34), and (37) yield the desired results. ■

Proof of Lemma 4.1. Consider the markt’s problem given ρ = (ρ0, ρ1, ρ2). The manager’s

report is

r(x, y) = x+ b∗(x, y) = x+ (ρ0 + ρ1x+ ρ2y) = ρ0 + (I + ρ1)x+ ρ2y, (220)

from which the market extracts the signal in equation (49). Standard calculations show that
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the posterior ((e, f),Λ)|(s(r), y) is Normal-Wishart with parameters

µn = η0µ0 + η1µs(r) (221)

ξn = η0ξ0 + η1µy (222)

λn = λ0 + n (223)

νn = ν0 + n (224)

ωn = ω0 + n(σs(r,y),y + η0(µs(r,y) − µ0)(µy − ξ0)) (225)

Therefore, the posterior mean and variance of d are

E(d|r) = E(e|r) = µn = η0µ0 + η1µs(r,y) (226)

and

Cov(d, w|r, y) = (λn + 1)ωn

λn(νn − 3)
= ζ0ω0 + ζ1σs(r),y + ζ2(µs(r) − µ0)(µy − ξ0) (227)

respectively. The result follows from equation (45). ■

Proof of Proposition 4.1. Consider first the manager’s problem given π = (π0, . . . , π6). The

first-order condition is

0 = π1 + π3(x+ b∗(x, y)) + π4y − cb∗(x, y). (228)

Hence,

b∗(x, y) = ρ̃0(π) + ρ̃1(π)x+ ρ̃2(π)y, (229)

where

ρ̃0(π) = (cI − π3)
−1π1 (230)

ρ̃1(π) = (cI − π3)
−1π3 (231)

ρ̃2(π) = (cI − π3)
−1π4. (232)

Next, consider the market’s problem given ρ = (ρ0, ρ1, ρ2). Recall the signal s(r, y) and

price p(r, y) given in equations (49) and (50) of Lemma 4.1. Let P = (I + ρ1)
−1 so that

s(r, y) = P (r − ρ0 − ρ2y). Now

µs(r,y) = m′s(r, y) = m′P (r − ρ0 − ρ2y) = m′Pr −m′Pρ0 −m′Pρ2y (233)
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and hence

(µy − ξ0)(µs(r,y) − µ0) = (m′y − ξ0)(m
′s(r, y)− µ0) (234)

= (y − ξ01)
′mm′(s(r, y)− µ01) (235)

= (y − ξ01)
′mm′(P (r − ρ0 − ρ2y)− µ01) (236)

= ξ0(µ0 +m′Pρ0)− ξ0m
′Pr + (ξ0m

′Pρ2 − ρ′0P
′mm′ − µ0m

′)y

+ r′P ′mm′y − y′mm′Pρ2y. (237)

Moreover,

σs(r,y),y = s(r, y)′Cy = (r − ρ0 − ρ2y)
′P ′Cy = r′P ′Cy − ρ′0P

′Cy − y′ρ′2P
′Cy. (238)

Therefore, the market price is

p(r, y) = E(d|r, y)− γCov(d, w|r, y) (239)

= π̃0(ρ) + π̃1(ρ)
′r + π̃2(ρ)

′y + 1
2
r′π̃3(ρ)r + r′π̃4(ρ)y +

1
2
y′π̃5(ρ)y, (240)

where

π̃0(ρ) = η0µ0 − η1m
′Pρ0 − γζ0ω0 − γζ2ξ0(µ0 +m′Pρ0) (241)

π̃1(ρ) = η1P
′m+ γζ2ξ0P

′m (242)

π̃2(ρ) = −η1m′Pρ2 + γζ1CPρ0 − γζ2(ξ0ρ
′
2P

′m−mm′Pρ0 − µ0m) (243)

π̃3(ρ) = 0 (244)

π̃4(ρ) = −2γP ′(ζ1C + ζ2mm
′) (245)

π̃5(ρ) = γρ′2P
′(ζ1C + ζ2mm

′). (246)

Therefore, π∗
3 = 0 and hence ρ∗1 = 0 and hence P ∗ = I. Moreover, ρ∗0 = c−1π1 and ρ

∗
2 = c−1π4.
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Finally,

π∗
0 = η0µ0 − c−1η1m

′π∗
1 − γζ0ω0 − γζ2ξ0(µ0 + c−1m′π∗

1) (247)

π∗
1 = (η1 + γζ2ξ0)m (248)

π∗
2 = −c−1η1m

′π∗
4 + c−1γζ1Cπ

∗
1 − γζ2(c

−1ξ0π
∗′
4 m− c−1mm′π∗

1 − µ0m) (249)

π∗
3 = 0 (250)

π∗
4 = −γ(ζ1C + ζ2mm

′) (251)

π∗
5 = 2c−1γπ∗′

4 (ζ1C + ζ2mm
′) (252)

from which the result follows. ■

Proof of Corollary 4.1. From Proposition 4.1, the report is

r(x, y) = x+ c−1(η1 + γζ2ξ0)m− c−1γ(ζ1C + ζ2mm
′)y. (253)

The first result follows from equations (6) and (44). Now computing the gradients of equa-

tions (233) and (238) with respect to r, we obtain ∇µs(r,y) = m and ∇σ2
s(r,y),y = Cy, from

which it follows immediately that ∇µs(r,y) · ∇σ2
s(r,y),y = 0. ■

Proof of Corollary 4.2. Note that

µr(x,y) = m′r(x, y) (254)

= m′(x+ c−1(η1 + γζ2ξ0)m− c−1γ(ζ1C + ζ2mm
′)y) (255)

= µx + c−1n−1(η1 + γζ2ξ0)− γc−1n−1ζ2µy (256)

and

σr(x,y),y = r(x, y)′Cry (257)

= (x+ c−1(η1 + γζ2ξ0)m− c−1γ(ζ1C + ζ2mm
′)y)′Cy (258)

= σx,y − γc−1n−1ζ1σ
2
y (259)

as desired. ■

Proof of Lemma 4.2. Consider the market’s problem given ρ = (ρ0, ρ1, ρ2). The manager’s
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report is

vec(r) = vec(x) + b∗(x) (260)

= vec(x) + 12 ⊗ ρ0 + (I2 ⊗ ρ1 + J2 ⊗ ρ2)vec(x) (261)

= 12 ⊗ ρ0 + (I2 ⊗ (I + ρ1) + J2 ⊗ ρ2))vec(x) (262)

from which the market extracts the signal in equation (65). Standard calculations show that

the posterior (z,Λ)|s(r) is Normal-Wishart with parameters

µn = η0µ0 + η1µs(r) (263)

λn = λ0 + n (264)

νn = ν0 + n (265)

Ψn = Ψ0 + n(σ2
s(r) + η0(µs(r) − µ0)

′(µs(r) − µ0)). (266)

The posterior mean and variance of d are

E(d|r) = 1′
2E(z|r) (267)

= 1′
2µn (268)

= η01
′
2µ0 + η11

′
2µs(r) (269)

= 2η0µ0 + η11
′
2(I2 ⊗m′)P (vec(r)− 12 ⊗ ρ0) (270)

= 2η0µ0 − η11
′
2(I2 ⊗m′)P (12 ⊗ ρ0) + η11

′
2(I2 ⊗m′)Pvec(r) (271)

and

Var(d|r) = 1′
2Cov(z|r)12 (272)

= (λn + 1)λ−1
n (ν − 3)−1Ψn (273)

= ζ01
′
2Ψ012 + ζ11

′
2σ

2
s(r)12 + ζ21

′
2(µs(r) − µ0)

′(µs(r) − µ0)12 (274)

respectively. The result follows from equation (59). ■

Proof of Proposition 4.2. Consider first the manager’s problem given π = (π0, π1, π2). The

first-order condition is

0 = 12 ⊗ π1 + (I2 ⊗ π2 + J2 ⊗ π3)(vec(x) + b)− cb. (275)
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Hence

b∗(x) = (I2 ⊗ (cI − π2)− J2 ⊗ π3)
−1(12 ⊗ π1 + (I2 ⊗ π2 + J2 ⊗ π3)vec(x)). (276)

Note that

(I2 ⊗ (cI − π2)− J2 ⊗ π3)
−1

= (I2 ⊗ π−1
3 + J2 ⊗ (cI − π2)

−1)(I2 ⊗ ((cI − π2)π
−1
3 − π3(cI − π2)

−1)). (277)

Hence, the manager’s best response to π is

b∗(x) = 12 ⊗ ρ̃0(π) + (I2 ⊗ ρ̃1(π) + J2 ⊗ ρ̃2(π))vec(x) (278)

where

ρ̃0(π) = (π−1
3 + (cI − π2)

−1)((cI − π2)π
−1
3 − π3(cI − π2)

−1)π1 (279)

ρ̃1(π) = π−1
3 ((cI − π2)π

−1
3 − π3(cI − π2)

−1)π2

+ (cI − π2)
−1((cI − π2)π

−1
3 − π3(cI − π2)

−1)π3 (280)

ρ̃2(π) = π−1
3 ((cI − π2)π

−1
3 − π3(cI − π2)

−1)π3

+ (cI − π2)
−1((cI − π2)π

−1
3 − π3(cI − π2)

−1)π2. (281)

Next, consider the market’s problem given ρ = (ρ0, ρ1, ρ2). Recall the signal s(r) and price

p(r) given in equations (65) and (66). For ease of exposition, let

P = (I2 ⊗ (I + ρ1) + J2 ⊗ ρ2)
−1 = I2 ⊗ P1 + J2 ⊗ P2, (282)

where

P1 = −ρ−1
2

(
ρ2(I + ρ1)

−1 − (I + ρ1)ρ
−1
2

)−1
(283)

P2 = (I + ρ1)
−1
(
ρ2(I + ρ1)

−1 − (I + ρ1)ρ
−1
2

)−1
(284)

so that

s(r) = P (vec(r)− 12 ⊗ ρ0). (285)
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Using the mixed product property, we have that

(1′
2 ⊗m′)P = (1′

2 ⊗m′)(I2 ⊗ P1 + J2 ⊗ P2) = 1′
2 ⊗m′(P1 + P2) (286)

and

P ′(121
′
2 ⊗mm′)P = (I2 ⊗ P ′

1 + J2 ⊗ P ′
2)(121

′
2 ⊗mm′)(I2 ⊗ P1 + J2 ⊗ P2) (287)

= 121
′
2 ⊗ (P1 + P2)

′mm′(P1 + P2) (288)

= (I2 + J2)⊗ (P1 + P2)
′mm′(P1 + P2) (289)

and (similarly)

P ′(121
′
2 ⊗ C)P = (I2 + J2)

′ ⊗ (P1 + P2)
′C(P1 + P2). (290)

Finally,

P (12 ⊗ ρ0) = (I2 ⊗ P1 + J2 ⊗ P2)(12 ⊗ ρ0) = 12 ⊗ (P1 + P2)ρ0. (291)

The sample mean, µs(r), is a column vector of length two given by

µs(r) = s(r)′m (292)

= (I2 ⊗m′)vec(s(r)) (293)

and hence

µs(r) − µ0 = (I2 ⊗m′)(vec(s(r))− µ0 ⊗ 1) (294)

(note that µs(r) − µ0 is column vector of length two). We therefore have

1′
2µs(r) = (1′

2 ⊗m′(P1 + P2))vec(r)− 2m′(P1 + P2)ρ0 (295)

and

1′
2(µs(r) − µ0)(µs(r) − µ0)

′12 = vec(r)′((I2 + J2)⊗ (P1 + P2)
′mm′(P1 + P2))vec(r)

− (1′
2 ⊗ 4ρ′0(P1 + P2)

′mm′(P1 + P2))vec(r)

+ 4ρ′0(P1 + P2)
′mm′(P1 + P2)ρ0

− (1′
2 ⊗ 4µ0m

′(P1 + P2))vec(r)

+ 8µ0m
′(P1 + P2)ρ0 + 4µ2

0 (296)
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and

1′
2σ

2
s(r)12 = vec(r)′((I2 + J2)⊗ (P1 + P2)

′C(P1 + P2))vec(r)

− (1′
2 ⊗ 4ρ′0(P1 + P2)

′C(P1 + P2))vec(r)

+ 4ρ′0(P1 + P2)
′C(P1 + P2)ρ0. (297)

Therefore, the market price is

p(r) = π̃0(ρ) + (1′
2 ⊗ π̃1(ρ)

′)vec(r) +
1

2
vec(r)′(I2 ⊗ π̃2(ρ) + J2 ⊗ π̃3(ρ))vec(r), (298)

where

π̃0(ρ) = 2η0µ0 − 2η1m
′(P1 + P2)ρ0 − γ(2ζ0(ω0 + ψ0)

+ 4ζ1ρ
′
0(P1 + P2)

′C(P1 + P2)ρ0 + 4ζ2(µ0 +m′(P1 + P2)ρ0)
2) (299)

π̃1(ρ) = η1(P1 + P2)
′m+ 4γ(ζ1(P1 + P2)

′C(P1 + P2)ρ0

+ ζ2(P1 + P2)
′mm′((P1 + P2)ρ0 + µ01)) (300)

π̃2(ρ) = π̃3(ρ) = −2γ(P1 + P2)
′(ζ1C + ζ2mm

′)(P1 + P2). (301)

An equilibrium jointly satisfies equations, (279), (280), (281), (299), (300), and (301). Now

since C and mm′ are symmetric, so too are π∗
2 and π∗

3. Since π∗
2 = π∗

3, equations (280) and

(281) imply that

ρ∗1 = ρ∗2 = (π∗−1
2 + (cI − π∗

2)
−1)((cI − π∗

2)π
∗−1
2 − π∗

2(cI − π∗
2)

−1)−1π∗
2 = (cI − 2π∗

2)
−1π∗

2 (302)

and hence

P ∗
1 + P ∗

2 =
(
(I + ρ∗1)

−1 − ρ∗−1
1

)
(ρ∗1(I + ρ∗1)

−1 − (I + ρ∗1)ρ
∗−1
1 )−1 = c−1(cI − 2π∗

2). (303)

Similarly, ρ∗0 = (cI − 2π∗
2)

−1π∗
1. Using the fact that

π̃2(ρ) = π̃3(ρ) = −2γ(P1 + P2)
′(ζ1C + ζ2mm

′)(P1 + P2), (304)

we have that

c2π2
2 = −2γ(cI − 2π2

2)(ζ1C + ζ2mm
′)(cI − 2π2

2). (305)

The subsequent analysis follows that found in the proof of Proposition 3.2 and is abridged
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for brevity. The solution of equation (305) is of the form

π∗
2 = π∗

3 = κ1C + κ2mm
′. (306)

Substitution of equation (306) into equation (305) yields

c2(κ1C + κ2mm
′) = −2γ(ζ1(c− 2n−1κ1)

2C + ζ2(c− 2n−1κ2)
2mm′), (307)

from which we obtain the quadratic equations in (73) and (74). The restriction c > 16γζ1/n

follows by requiring that equations (73) and (74) have real roots. Equations (306) and (302)

yield the final expressions for ρ∗1 and ρ∗2. Following equation (302) and (279), we have that

ρ∗0 = (cI − 2π∗
2)

−1π∗
1 (308)

and hence (P ∗
1 + P ∗

2 )ρ
∗
0 = c−1π∗

1. Therefore,

π∗
1 = (P ∗

1 + P ∗
2 )π1,S − 2c−1(P ∗

1 + P ∗
2 )π2,Sπ

∗
1. (309)

Solving for π∗
1, we obtain π∗

1 = −2rSπ
∗
21 and hence ρ∗0 = −2rSρ

∗
11 (equation 308). Finally,

the expression for π∗
0 follows from the fact that (P ∗

1 + P ∗
2 )ρ

∗
0 = c−1π∗

1. ■

Proof of Corollary 4.3. In equilibrium,

P ∗
1 = (I + ρ∗1)(I + 2ρ∗1)

−1 = (n− c−1κ1)C + (n− c−1κ2)mm
′ (310)

P ∗
2 = −ρ∗1(I + 2ρ∗1)

−1 = −c−1κ1C − c−1κ2mm
′. (311)

Evidently, P ∗
1 and P ∗

2 are symmetric. Consequently,

CP ∗
1P

∗
1C = c−2n−1(c− n−1κ1)

2C (312)

CP ∗
1P

∗
2C = −c−2n−1(n−1κ1)(c− n−1κ1)

2C. (313)

Recall that sj(r) = P1(rj − ρ0) + P2(r−j − ρ0). Using the chain rule for gradients,

(∇rjσ
2
sj(r)

)′(∇rjσs−j(r),sj(r)) = (2P ∗
1Csj(r))

′(P ∗
2Csj(r) + P ∗

1Cs−j(r)) (314)

= 2sj(r)
′CP ∗

1P
∗
2Csj(r) + 2sj(r)

′CP ∗
1P

∗
1Cs−j(r). (315)

Substitution of equations (312) and (313) yields the desired result. ■
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Proof of Corollary 4.4. Note that

σr(x−j),r(xj) = r(x−j)
′Cr(xj) (316)

= (x′−j + (x′−j − r1′)ρ∗1)C(xj + ρ∗1(xj − r1)) (317)

= x′−jCx+ 2x′−jCρ
∗
1(xj − r1) + (x′−j − r1′)ρ∗1Cρ

∗
1(xj − r1) (318)

= σx−j ,xj
(1 + 2n−1κ1(c− 2n−1κ1)

−1 + n−2κ21(c− 2n−1κ1)
−2) (319)

= c2(c− 2n−1κ1)
−2σx−j ,xj

(320)

as desired. ■

Proof of Lemma 4.3. Note that x|e,Λ is distributed according to a matrix normal dis-

tribution with mean matrix 1e′, row covariance matrix I (observations are i.i.d.), and

column covariance matrix Λ−1 (i.e., x|e,Λ ∼ Nn×2(1e
′, I,Λ−1)). It follows that x|Λ ∼

Nn×2(1µ
′
0, I + λ−1

0 11′,Λ−1). Integrating out Λ reveals that x ∼ Tν(1µ
′
0, I + λ−1

0 11′,Ψ−1
0 )

(where T is the matrix t-distribution) (see, for example, Chapter 4 of Gupta and Nagar

(2000)). Therefore, vec(x) ∼ tν(µ0 ⊗ 1,Ψ−1
0 ⊗ (I + λ−1

0 11′)). The result follows from stan-

dard results about conditional distributions of the multivariate t-distribution. ■

Proof of Lemma 4.4. Consider the market’s problem given ρ = (ρ0, ρ1). The manager’s

reports is

rj = xj + b(x) = ρ0 + (I + ρ1)xj, (321)

from which the market extracts the signals

s(rj) = (I + ρ1)
−1(rj − ρ0). (322)

As in previous derivations, let P = (I+ρ1)
−1 = c−1(cI−(π3+χ0π

′
4)) so that s(r) = P (r−ρ0).

Standard calculations show that the posterior (µ0,Λ)| is Normal-Wishart with parameters

µj,n = η0µ0 + η1µs(rj) (323)

λn = λ0 + n (324)

νn = ν0 + n (325)

ψj,n = ψ0 + n(σ2
s(rj)

+ η0(µs(rj) − µ0)
2) (326)

ωn = ω0 + n(σs(r1),s(r2) + η0(µs(r1) − µ0)(µs(r2) − µ0)), (327)

where, with slight abuse of notation, we use ψj,n to denote the (j, j) entry of the matrix Ψ.
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The posterior mean, variance, and covariance of d are

E(ej|r) = µn = η0µ0 + η1µs(rj), (328)

and

Var(ej|r) =
ψj,n

λn(νn − 3)
= ζ0ψ0 + ζ1σ

2
s(rj)

+ ζ2(µs(rj) − µ0)
2 (329)

and

Cov(ej|r) =
ωn

λn(νn − 3)
= ζ0ω0 + ζ1σs(r1),s(r2) + ζ2(µs(r1) − µ0)(µs(r2) − µ0) (330)

respectively. The result follows from equation (83). ■

Proof of Proposition 4.3. In what follows, let π = (π0, . . . , π5). The firm’s objective is

F (bj) = E
(
pj(xj + bj, x−j + b−j)− c

2
b′jbj|xj

)
(331)

= E (π0 + π′
1(xj + bj) + π′

2(x−j + b−j(x−j))

+1
2
(xj + bj)

′π3(xj + bj) + (x−j + b−j(x−j))
′π4(xj + bj)

+1
2
(x−j + b−j(x−j))

′π5(x−j + b−j(x−j))− c
2
b′jbj|xj

)
. (332)

The first-order condition is

0 = F ′(bj) = π1 + π3(xj + bj) + π′
4E(x−j + b−j(x−j)|xj)− cbj (333)

= π1 + π3(xj + bj) + π′
4(ρ0 + (I + ρ1)E(x−j|xj))− cbj (334)

= π1 + π3(xj + bj) + π′
4(ρ0 + (I + ρ1)(µ01+ χ0(xj − µ01)))− cbj. (335)

Hence,

b∗j(xj) = ρ0(π) + ρ1(π)xj, (336)

where in equilibrium,

ρ0(π) = (cI − π3)
−1(π1 + π′

4(ρ0(π) + (I + ρ1(π))(1− χ0)µ01)) (337)

ρ1(π) = (cI − π3)
−1(π3 + χ0π

′
4(I + ρ1(π))). (338)

48



Solving for ρ0 and ρ1, we obtain

ρ0(π) = (cI − (π3 + π′
4))

−1(π1 + (1− χ0)µ0π
′
4(I + ρ1(π))1) (339)

ρ1(π) = (cI − (π3 + χ0π
′
4))

−1(π3 + χ0π
′
4). (340)

Next, consider the market’s problem given ρ = (ρ0, ρ1). Recall the signal s(rj) and price

pj(rj, r−j) given in equations (87) and (88). As before, let P = (I + ρ1)
−1 so that s(rj) =

P (rj − ρ0). Now

s(rj)− µ01 = P (rj − ρ0)− µ01 = Prj − (Pρ0 + µ01) (341)

and hence

µs(rj) − µ0 = m′(s(rj)− µ01) = m′Prj −m′(Pρ0 + µ01) (342)

and hence

(µs(rj) − µ0)
2 = (s(rj)− µ01)

′mm′(s(rj)− µ01) (343)

= r′jP
′mm′Prj − 2(Pρ0 + µ01)

′mm′Prj

+ (Pρ0 + µ01)
′mm′(Pρ0 + µ01). (344)

Therefore,

σ2
s(rj)

= s(rj)
′Cs(rj) = r′jP

′CPrj − 2ρ′0P
′CPrj + ρ′0P

′CPρ0. (345)

and

σs(rj),s(r−j) = s(rj)
′Cs(r−j) = r′jP

′CPr−j − ρ′0P
′CP (rj + r−j) + ρ′0P

′CPρ0 (346)

and

(µs(r1) − µ0)(µs(r2) − µ0) = (s(rj)− µ01)
′mm′(s(r−j)− µ01) (347)

= (Prj − (Pρ0 + µ01))
′mm′(Pr−j − (Pρ0 + µ01)) (348)

= r′jP
′mm′Pr−j − (Pρ0 + µ01)

′mm′P (rj + r−j)

+ (Pρ0 + µ01)
′mm′(Pρ0 + µ01). (349)
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Therefore, firm j’s market price is

pj(r) = E(ej|r)− γ(Var(ej|r) + Cov(ej|r)) (350)

= π̃0 + π̃′
1rj + π̃′

2r−j +
1
2
r′jπ̃3rj + r′jπ̃4r−j +

1
2
r′−jπ̃5r−j, (351)

where

π̃0(ρ) = µ0 − η1m
′(Pρ0 + µ01)

− γ(ζ0(ψ0 + ω0) + 2ζ1ρ
′
0P

′CPρ0 + 2ζ2(Pρ0 + µ01)
′mm′(Pρ0 + µ01)) (352)

π̃1(ρ) = η1P
′m+ 3γ(ζ1P

′CPρ0 + ζ2P
′mm′(Pρ0 + µ01)) (353)

π̃2(ρ) = γ(ζ1P
′CPρ0 + ζ2P

′mm′(Pρ0 + µ01)) (354)

π̃3(ρ) = −2γ(ζ1P
′CP + ζ2P

′mm′P ) (355)

π̃4(ρ) = −γ(ζ1P ′CP + ζ2P
′mm′P ) (356)

π̃5(ρ) = 0. (357)

Since C and mm′ are symmetric, so too are π3(π) and π4(π). Let

k∗ = π∗
3 + χ0π

∗′
4 . (358)

It follows that

c2k∗ = −γ(2 + χ0)(cI − k∗)(ζ1C + ζ2mm
′)(cI − k∗). (359)

The subsequent analysis follows that found in the proof of Proposition 3.2 and is abridged

for brevity. The solution of equation (359) is of the form

k∗ = κ1C + κ2mm
′. (360)

Substitution of equation (360) into equation (359) yields

c2(κ1C + κ2mm
′) = −γ(2 + χ0)(ζ1(c− n−1κ1)

2C + ζ2(c− n−1κ2)
2mm′), (361)

from which we obtain the quadratic equations in (102) and (103). The restriction c >

4γ(2 + χ0)ζ1/n follows by requiring that equations (102) and (103) have real roots.

ρ∗1 = κ1(c− n−1κ1)
−1C + κ2(c− n−1κ2)

−1mm′ (362)
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Equations (340) and (360) yield the final expression for ρ∗1. Using the facts that π∗
3 and π∗

4

are symmetric and π∗
3 = 2π∗

4, equations (339) and (340) become

ρ∗1 = (2 + χ0)(cI − (2 + χ0)π
∗
4)

−1π∗
4 (363)

ρ∗0 = (1− χ0)(cI − 3π∗
4)

−1π∗
4(I + ρ∗1)µ01+ (cI − 3π∗

4)
−1π∗

1. (364)

and hence

P ∗ = c−1(cI − (2 + χ0)π
∗
4). (365)

Moreover,

π∗
4 = (2 + χ0)

−1(κ1C + κ2mm
′). (366)

Using the commutability of P ∗ with all of the terms in equation (364), we have

P ∗ρ∗0 = (1− χ0)(cI − 3π∗
4)

−1π∗
4µ01+ (cI − 3π∗

4)
−1P ∗π∗

1. (367)

Equation (353) becomes

π∗
1 = η1P

∗m+ 3γ(ζ1P
∗CP ∗ρ∗0 + ζ2P

∗mm′(P ∗ρ∗0 + µ01)) (368)

= (η1 + 3γζ2µ0)P
∗m+ 3γP ∗(ζ1C + ζ2mm

′)P ∗ρ∗0 (369)

= P ∗(π1,F − 3π4,F ((1− χ0)(cI − 3π∗
4)

−1π∗
4µ01+ (cI − 3π∗

4)
−1P ∗π∗

1)) (370)

= P ∗(π1,F − 3(1− χ0)π4,F (cI − 3π∗
4)

−1π∗
4µ01)− 3P ∗π4,F (cI − 3π∗

4)
−1P ∗π∗

1. (371)

Solving for π∗
1,

π∗
1 = (I + 3P ∗π4,F (cI − 3π∗

4)
−1P ∗)−1P ∗(π1,F − 3(1− χ0)π4,F (cI − 3π∗

4)
−1π∗

4µ01) (372)

= c−1(cI − 3π∗
4)P

∗(π1,F − 3(1− χ0)π4,F (cI − 3π∗
4)

−1π∗
4µ01) (373)

= c−1(cI − 3π∗
4)P

∗π1,F − 3c−1(1− χ0)P
∗π4,Fπ

∗
4µ01 (374)

= −3c−1rF (cI − 3π∗
4)P

∗π4,F1− 3c−1(1− χ0)P
∗π4,Fπ

∗
4µ01 (375)

= −3c−1P ∗(rF (cI − 3π∗
4)π4,F + µ0(1− χ0)π4,Fπ

∗
4)1. (376)

Substitution into equation (364) yields ρ∗0. π
∗
0 can be computed using equation (352). ■

Proof of Corollary 4.5. In equilibrium,

P ∗ = I − c−1κ1C − c−1κ2mm
′. (377)
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Evidently, P ∗ is symmetric. Consequently,

CP ∗P ∗C = c−2n−1(c− n−1κ1)
2C. (378)

Recall that s(rj) = P ∗(rj − ρ0). Using the chain rule for gradients,

(∇rjσ
2
s∗(rj)

)′(∇rjσs∗(rj),xj
) = (2P ∗Cs(rj))

′(P ∗Cxj) = 2s(rj)
′CP ∗P ∗Cxj. (379)

Substitution of equation (378) yields the desired result. ■

Proof of Corollary 4.6. From equations (102) and (103), we have that for k ∈ {1, 2},

c2κk = −γ(2 + χ0)ζk(c− n−1κk)
2. (380)

where κk is the smaller root in absolute value. Let

Qk(κ) = c2κ+ γ(2 + χ0)ζk(c− n−1κ)2 (381)

so that Qk(κk) = 0. Note that Qk(−nc) = −nc3 + 4γ(2 + χ0)ζkc
2 < 0 (see the discriminates

of equations (102) and (103)). Since κk is the smaller root in absolute value, it follows that

−nc < κk and hence c2 > n−2κ2k. Differentiating equation (380) with respect to χ0 and

rearranging yields
dκk
dχ0

=
κk(c− n−1κk)

(c+ n−1κk)(2 + χ0)
< 0 (382)

as desired. ■

Proof of Corollary 4.7. Using the facts thatm′π4,F = −γζ2n−1m′,m′π∗
4 = (2+χ0)

−1n−1κ2m
′,

and m′P ∗ = (1− c−1n−1κ2)m
′, it can be shown that

m′π∗
1 = 3γζ2c

−2n−1(c−n−1κ2)(rF (c−3(2+χ0)
−1n−1κ2)+µ0(1−χ0)(2+χ0)

−1n−1κ2) (383)

and

m′(cI − 3π∗
4)

−1 = (c− 3(2 + χ0)
−1n−1κ2)

−1m′ (384)

and

m′π∗
4(I + ρ∗1)1 = (2 + χ0)

−1n−1κ2m
′(I + ρ∗1)1 (385)

= (2 + χ0)
−1n−1κ2c(c− n−1κ2)

−1. (386)
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and hence

m′ρ∗0 = m′(cI − 3π∗
4)

−1((1− χ0)π
∗
4(I + ρ∗1)µ01+ π∗

1) (387)

= (c− 3(2 + χ0)
−1n−1κ2)

−1m′((1− χ0)π
∗
4(I + ρ∗1)µ01+ π∗

1). (388)

Next, m′ρ∗1 = n−1κ2(c − n−1κ2)
−1m′, m′ρ∗−1

1 = nκ−1
2 (c − n−1κ2)m

′, and m′(I + ρ∗1) = c(c −
n−1κ2)

−1m′. Therefore,

µr∗(xj) = m′xj + (ρ∗0 + ρ∗1xj) (389)

= µr∗(xj) +m′ρ∗1(xj + ρ∗−1
1 ρ∗0) (390)

= µr∗(xj) + n−1κ2(c− n−1κ2)
−1m′(xj + ρ∗−1

1 ρ∗0) (391)

= µr∗(xj) + n−1κ2(c− n−1κ2)
−1(µr∗(xj) − r̃1) (392)

and

σr(xi),r(xj) = r(xi)
′Cr(xj) (393)

= (ρ∗0 + (I + ρ∗1)xi)
′C(ρ∗0 + (I + ρ∗1)xj) (394)

= x′i(I + ρ∗1)
′C(I + ρ∗1)xj (395)

= c2(c− n−1κ1)
−2x′iCxj (396)

= c2(c− n−1κ1)
−2σr(xi),r(xj), (397)

where the second line follows from the fact that Cρ∗0 = 0. ■
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